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Abstract

Multiple sclerosis (MS) remains a complex and costly neurological condition characterised by progressive disability,
making early detection and accurate prognosis of disease progression imperative. While artificial intelligence (Al)
combined with big data promises transformative advances in personalised MS care, integration of multimodal,
real-world datasets, including clinical records, magnetic resonance imaging (MRI), and digital biomarkers, remains
limited. This perspective paper identifies a critical gap between technical innovation and clinical implementation,
driven by methodological constraints, evolving regulatory frameworks, and ethical concerns related to bias, privacy,
and equity. We explore this gap through three interconnected lenses: the underuse of integrated real-world

data, the barriers posed by regulation and ethics, and emerging solutions. Promising strategies such as federated
learning, regulatory initiatives like DARWIN-EU and the European Health Data Space, and patient-led frameworks
including PROMS and CLAIMS, offer structured pathways forward. Additionally, we highlight the growing relevance
of foundation models for interpreting complex MS data and supporting clinical decision-making. We advocate for
harmonised data infrastructures, patient-centred design, explainable Al, and real-world validation as core pillars

for future implementation. By aligning technical, regulatory, and ethical domains, stakeholders can unlock the full
potential of Al to enhance prognosis, personalise care, and improve outcomes for people with MS.
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Introduction

Multiple sclerosis (MS) is an autoimmune disease of
the central nervous system with a complex pathogen-
esis involving inflammatory and neurodegenerative pro-
cesses. The global prevalence of MS has increased from
2.1 million in 2008 to 2.9 million in 2023 [1]. The total
yearly cost of MS management, estimated at €15.5 billion
in Europe alone, is largely driven by progressive disabil-
ity, related productivity losses and informal care costs [2].
Conventionally, MS is classified into ‘relapsing-remitting’
and ‘progressive’ MS. The latter is further divided into
primary and secondary progressive MS, based on the
presence or absence of a preceding relapsing-remitting
phase. ‘Progressive MS’ is characterised by a gradual,
continuous worsening of neurological disability over
time, usually without relapses. However, recent evidence
suggests that the clinical course of MS is better viewed as
a continuum, with different pathophysiological processes
affecting individuals at different times and to differing
extents [3].

Early detection of MS progression is imperative
because progressive MS has limited treatment options
[4]. Moreover, accurate prognostic information might
improve the quality of life of people with MS (PwMS) [5].
Identifying and quantifying progression in MS remains a
challenge due to differing patient demographics, hetero-
geneity in lesion location and disease mechanisms [3].
Diagnosis of progression is currently based on worsening
of the physical examination and persistent symptoms [6].
While many biomarkers have been proposed to detect
progression, they often lack sufficient sensitivity or speci-
ficity at the individual patient level, limiting their clinical

Table 1 Key regulatory frameworks for Al applied to medical data
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usefulness. As a result, they are rarely adopted in daily
practice. Consequently, progression is often diagnosed
retrospectively with an average delay of 2-3 years [7].

Big data and artificial intelligence (AI) have the poten-
tial to play a role in overcoming the complexity of MS
progression [8]. AI can be defined as processes that
allow machines or computers to exhibit intelligent
behaviour. Al is typically classified into different types,
such as machine learning (ML) and deep learning (DL).
ML gives computers the ability to learn without being
explicitly programmed and refers to computational
algorithms for gathering and making sense of evidence
derived from large volumes of data, thereby allowing or
facilitating human judgment and decision-making. DL
consists of ML algorithms with a brain-like algorithmic
structure called artificial neural networks [9]. To date, Al
has already shown promise in improving diagnostic and
prognostic performances, workflow, and cost-effective-
ness in various fields such as oncology [10], Parkinson’s
disease [11], depression [12], and epilepsy [13]. Given the
increased use of Al tools assisting in medical care, the
European Union (EU) has broadly classified such tools
as high-risk software-as-a-medical-device (SaMD) under
the EU MDR 2017/745 [14]. To clarify which frameworks
govern Al when used on medical data, Table 1 contrasts
the main European regulations/guidelines, indicating
whether they are mandatory in clinical research, in rou-
tine care, or both.

While there have been advancements in Al [15], its
use in MS clinical settings to predict disability progres-
sion remains limited, representing a significant gap [16].
This limited adoption stems largely from the lack of

Framework Jurisdiction/Issuer Relevance to Relevance  Core relevance for Al on Typical validation/oversight
research to clinical datasets requirements
routine
General Data Pro-  European Union Yes Yes Lawful processing of Data-protection impact
tection Regulation personal health data; data assessment, informed
GDPR (2016/679) minimisation; cross-border  consent, pseudonymisation/
[70] transfer rules anonymisation
EU Medical Device  European Union +/- Yes Classifies diagnostic/ CE-marking (European Confor-
Regulation MDR prognostic Al software as mity marking), clinical evalua-
(2017/745) [14] Software-as-a-Medical- tion, post-market surveillance,
Device (SaMD) quality-management system
EU Al Act (2024) European Union Exempt for Al Yes All"high-risk” clinical Al must  Risk-management system,
[17] systems and models meet horizontal lifecycle data/algorithm transparency,
developed and rules human oversight, conformity
used only for the assessment
purpose of the sci-
entific research and
developments
European Health  European Union Yes Yes Legal & technical infrastruc-  Common data models, man-

Data Space (EHDS)
[62]

ture for secure cross-border
health-data exchange

datory metadata, secondary-
use permits

+/- MDR obligations apply to research prototypes only if they are used to support clinical decision-making in patient care; pure exploratory research is usually

exempt but must still follow GDPR and ethics rules
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Fig. 1 A Path Forward for Artificial Intelligence in Multiple Sclerosis Progression Prediction. The figure illustrates three interlinked challenges and enablers:
the current gap in multimodal data integration, persistent regulatory barriers, and actionable solutions such as federated learning, inclusive design, and
ethical oversight to support real-world clinical implementation for predicting disability progression in people with Multiple Sclerosis

availability of multimodal, diverse datasets and longitu-
dinal validations, which are essential for clinically reliable
AT algorithms. Furthermore, the 2024 EU AI Act imposes
rigorous conformity assessments for SaMD, requiring
evidence of data quality, risk mitigation, and robust post-
market surveillance [17, 18]. In this perspective paper, we
examine this gap and propose a structured way forward.
Specifically, we argue that, although AI applications in
MS are advancing, their potential to predict disabil-
ity progression remains underutilised due to barriers in
multimodal data integration and data harmonisation,
leading to insufficient clinical implementation. Figure 1
summarises our perspective, highlighting three intercon-
nected areas that will structure our argument: first, we
identify the key gaps in how real-world data and AI are
currently used in MS prognostication; second, we explore
why these innovations have yet to be implemented at
scale, focusing on regulatory, ethical, and methodological
hurdles; and third, we propose a practical path forward,
outlining strategies to bridge these barriers and enable
meaningful clinical adoption.

The current gap: integrating real-world data and Al for MS
prognosis

Despite rapid developments in Al applications across
MS, the integration of high-dimensional, real-world
data (RWD) streams remains scarce. Data from clinical

records, MRI scans, laboratory tests, paraclinical tests
(e.g., evoked potentials), and digital monitoring are typi-
cally analysed in isolation, limiting the full potential of Al
to reveal MS progression patterns. Nevertheless, the role
of RWD in MS research can not be understated.

The term ‘Real-World Data’ is used with various defini-
tions across the literature. In this paper, RWD is pragmat-
ically defined as any data gathered within the context of
standard care, distinct from experimental data obtained
from randomised clinical trials (RCT). RWD is increas-
ingly used to address clinical questions related to MS
disease diagnosis, prognosis, and treatment [19]. Some
large-scale initiatives have begun to demonstrate the
potential of well-integrated RWD. Examples that stand
out include the COVID-19 in MS Global Data Sharing
Initiative (GDSI) [20] and the Big MS Data Network [21].
The latter, initiated in 2014, comprises data from over
350,000 PwMS across multiple European countries and
has significantly advanced our understanding of disease
progression and treatment effectiveness [22]. Similarly,
the GDSI also illustrates a successful international data
collaboration that has the potential to effectively utilise
large-scale, multicentric data [20]. However, such efforts
are resource-intensive and often emerge reactively during
crises. To enable routine clinical Al, foundational invest-
ments and efforts in data standardisation and integration
are required.
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MS registries represent one of the most immedi-
ate opportunities to build this foundation. Existing for
over 70 years, they have recently proliferated, with over
500,000 PwMS globally contributing data globally to
varying registries [23], which can contribute to the devel-
opment of prognostic models in MS [24]. There is exten-
sive literature on prognostic MS models, summarised
in several recent reviews [25, 26]. However, none have
been widely adopted in clinical practice. Before introduc-
ing solutions, it is important to understand why current
Al-based prognostic models in MS struggle. Despite the
scale of data collection, fragmentation persists. Regis-
tries often vary in structure, granularity, and data stan-
dards, making integration across systems difficult [18].
Moreover, these registries typically collect clinical out-
comes, while imaging, digital monitoring, or paraclinical
test results are stored elsewhere. As a result, Al mod-
els trained on such data are constrained in scope and
generalisability.

Another reason why most prognostic studies are lim-
ited is a small sample size, typically fewer than 200 sub-
jects, restricted data sources, and limited accuracy, rarely
surpassing 90% area under the receiver operating charac-
teristic curve (AUROC) [27]. Methodological challenges
such as poor calibration, selection bias, limited use of
high-dimensional data, and insufficient external valida-
tion remain barriers to clinical implementation [25, 26].
Moreover, these weaknesses also reflect the limitations
of relying on narrow or poorly harmonised data sources.
In this paper, we mainly explore magnetic resonance
imaging (MRI), which is the clinical cornerstone of MS
diagnosis and monitoring [28], and patient-reported
outcome measures in MS (PROMS), given their poten-
tial to incorporate patient perspectives. AI models that
take into account patient-reported outcomes (PROs) and
clinician-assessed outcomes (CAOs) have shown prom-
ise in one proof-of-concept study, where an Al algorithm
using PROs and CAOs data correctly classified current
MS disease course with ~86% accuracy and predicted
progression to a secondary phase with ~82% accuracy,
supporting the idea that PROs and CAOs can meaning-
fully aid prognostication and thus might be useful in a
multimodal setting [29].

While multimodal data integration is ideal, many ML
and DL applications continue to rely heavily on single
modalities, particularly MRI. One of the reasons why
MRI remains the central modality of neuroradiology
research in MS is due to its ability to capture spatial and
temporal dissemination of lesions [28]. Considerable
work using MRI has been done in the field of MS diagno-
sis, predicting disease course and disability progression,
and disease-modifying therapy (DMT) response [30—32].
Yet, traditional MRI approaches face critical limitations,
encapsulated in the “clinico-radiological paradox,” where
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clinical symptoms do not always align with visible MRI
lesions [33, 34].

Recent studies suggest that quantitative MRI features,
such as radiomics, combined with AI algorithms, have
the capability to overcome some of these limitations by
detecting subtle structural changes and microstructural
damages not visible to conventional radiological assess-
ments [35, 36]. Radiomics is a computational technique
for extracting large amounts of quantifiable features from
medical images [37]. The features extracted from the
images comprise features related to size, shape, intensity,
texture etc., that can be correlated with biological fac-
tors or clinical outcomes and help identify potential fast
responders to DMTs [38]. A recent study conducted in
2024 identified a radiomic “warning sign” on brain MRIL
By analysing normal-appearing white matter (NAWM)
on a prior scan, their ML model (XGBoost) could dis-
tinguish regions where new MS lesions would later form
. The model showed high internal performance with an
accuracy of 0.91 and reasonable external validity achiev-
ing 0.74 accuracy on an independent dataset. The most
important radiomic features reflected tissue heterogene-
ity and suggested that radiomics features from NAWM
could serve as an imaging biomarker for MS progression
[39].

Similarly, a review conducted by Yousef et al. (2024)
found that a multimodal approach with quantitative MRI
features, in most cases, improves prognostic accuracy
compared to approaches without MRI [26]. Moreover,
DL models that incorporate longitudinal MRI or multi-
modal health data have further improved prediction per-
formance. For example, a study conducted in 2024 used
innovative DL models with incorporated longitudinal
MRI sequences to enhance long-term predictions. A con-
volutional neural network with long short-term memory
(CNN-LSTM) using sequential spinal cord MRI achieved
an AUROC of approximately 0.74 over a six-year predic-
tion horizon, while a Vision Transformer-based model
notably outperformed this, reaching an AUROC of
around 0.84 [40]. Additionally, another study integrated
longitudinal electronic health records (EHR), MRI fea-
tures, and clinical notes using a deep neural network, and
reported up to a 19% higher AUROC compared to mod-
els using any single modality [41].

All these studies point to a shift to explore options
that go beyond conventional lesion-based assessments,
and consequently, it has indeed sparked interest among
the scientific community to explore radiomics-based Al
algorithms to predict MS disease progression [42-45].
However, despite promising results [35, 36, 46, 47], the
use of radiomics currently faces challenges in its integra-
tion into MS clinical practice. For instance, the lack of
harmonisation of MRI protocols and multi-centre stud-
ies poses significant challenges that must be addressed
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in order to validate its clinical utility [48], which further
led to a non-recommendation in 2021 MAGNIMS-
CMSC-NAIMS guidelines [49]. Moreover, even state-
of-the-art ML models may struggle with the inherent
unpredictability of MS in unseen cases. For example, one
multi-cohort study found that while ML could classify
subjects with existing high disability with good accuracy
(area under the curve (AUC)~0.83), it failed to signifi-
cantly predict which subjects would worsen over 2-5
years [50]. The study further points towards the need for
continued research in refining these MRI-based models
and addressing issues such as limited longitudinal data,
cohort bias, and overfitting, with an eye towards improv-
ing robustness and clinical utility [50].

Ultimately, while MRI offers valuable snapshots of dis-
ease burden and holds significant promise when com-
bined with Al it remains inherently limited by its scanner
variability and resource demands. Additionally, comple-
mentary approaches are required to capture the everyday
health status of PwMS and enable real-time progression
monitoring. One avenue could be the use of smartphone
applications and wearables, which are capable of record-
ing continuous functional and mental assessments; such
tools hold promise given recent evidence that patient-
reported outcomes, particularly fatigue and depression
scores, can independently predict disability progression
in relapsing MS, even in the absence of relapses [51].

Smartphones and wearable monitoring devices are
increasingly available, opening possibilities for individ-
ual monitoring in daily life. A recent online survey [52]
of healthcare professionals working in the care of people
with epilepsy, MS and depression showed that the major-
ity of healthcare professionals are positive about imple-
menting remote monitoring in patient care plans. Most
PwMS have no experience using mobile health applica-
tions for their MS, with only a minority being current
users of this technology [53]. Although compliance with
remote monitoring remains a challenge [54], continu-
ous, passive data collection can capture disease-related
changes earlier and more consistently than episodic clini-
cal assessments [55, 56].

Wearables and smartphones are also equipped with
multiple sensor types (e.g., accelerometer, touchscreen,
microphone), and therefore provide the opportunity to
extract digital biomarkers for cognitive function, dex-
terity, gait, and balance through both active tests and
passive monitoring. Recent scientific publications have
showcased the use of AI and digital tools for remote
monitoring of people with MS, highlighting the poten-
tial importance of these devices and softwares in MS care
[57-60].

Indeed, digital health tools have recently shown their
value in capturing the clinical manifestation of MS in
PwMS. Multiple medical device smartphone apps for the
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telemonitoring of PwMS have already been developed -
e.g., Floodlight [58] and iCompanion [53]. However, rig-
orous clinical validation and strategic oversight remain
limited. Furthermore, most digital monitoring tools are
being developed independently of clinical and imaging
datasets. This fragmentation impairs efforts to build inte-
grated prediction models that reflect the full disease bur-
den, incorporating the perspective of PwMS. Therefore
to bridge the gap, a truly multimodal approach is needed
linking real-world clinical data, MRI, and digital moni-
toring tools.

Regulatory and ethical barriers beyond data fragmentation
While we emphasise the importance of big data and Al in
MS, it is important to know why it is not merely a techni-
cal problem. In our opinion, it reflects deeper challenges
at the intersection of regulation and ethics. In this sec-
tion, we examine two key components that contribute
to the persistence of the gap: evolving regulatory frame-
works and ethical concerns around bias.

In Europe, a comprehensive regulatory shift is under-
way with the proposed European Al Act, which is in force
as of 2025. This legislation classifies all Al systems used
in healthcare as “high risk,” mandating strict require-
ments for quality, transparency, and oversight [61]. Al
tools for MS must demonstrate conformity and robust
safety evidence, ensuring Al-driven decision support is
reliable and unbiased before use [61]. Similarly, updates
to the EU Medical Device Regulation (MDR) [14] also
impact Al software and require post-market surveillance
and risk management.

Complementing these regulatory changes, major EU-
level initiatives, such as the European Health Data Space
(EHDS) and DARWIN-EU (Data Analysis and Real
World Interrogation Network), have emerged to facilitate
the integration and harmonisation of health data. EHDS
aims to standardise data collection, improve interoper-
ability, and enable secure cross-border data exchange
across Europe [62]. Specifically, the DARWIN-EU ini-
tiative by the European Medicines Agency (EMA) aims
to create a sustainable platform to access and analyse
healthcare data across Europe. DARWIN-EU focuses on
using RWD to assess the safety, effectiveness, and post-
marketing surveillance of medicines. It promotes meth-
odological rigour, transparency, and harmonisation in
RWD analytics, providing practical guidance to ensure
high-quality evidence generation [62—64].

Even though these initiatives represent major progress
and aim to protect subjects and ensure trust in Al, they
also create additional complexity that slows down the
adoption of Al models in clinical MS care. Researchers
who are often at the forefront of developing these tools
lack the regulatory expertise, technical infrastructure, or
financial resources to meet such stringent certification
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demands. For example, demonstrating real-world safety
and performance across heterogeneous populations often
requires multi-site validation studies, long-term moni-
toring, and formal quality management systems that are
rarely feasible outside large industry-sponsored trials
[65].

Furthermore, while the EHDS and DARWIN-EU initia-
tives aim to promote data interoperability and reuse, their
implementation is still at an early stage. Many clinical
centres are not yet integrated into these infrastructures,
and cross-border sharing remains limited by governance
and consent constraints. Thus, the intended benefits of
these frameworks, while promising, are not yet accessible
to most Al developers or clinical users.

To sum it up, although regulation is essential for
responsible AJ, it currently operates as a barrier for many
early-stage innovations, especially in the context of MS
where multimodal data and patient variability introduce
additional complexity. Without clearer operational guid-
ance and aligned incentives [65], the regulatory burden
risks reinforcing the gap between research and real-world
implementation.

As Al becomes embedded in MS care, careful atten-
tion must be paid to ethics, bias, and equity to ensure
Al-driven healthcare benefits all subjects fairly. Bias pri-
marily arises from underrepresented or unrepresentative
training data. In an Al pipeline, the training dataset is the
subset of data on which the algorithm actually “learns”
its parameters, whereas the validation dataset is kept
separate and used only to measure how well the trained
model generalises to unseen cases. A bias in the training
data would translate into a biased model, leading to per-
formance disparities across diverse populations [66].

Additional ethical barriers include limited explain-
ability, unclear accountability, privacy risks and unequal
access to Al augmented health care [67-69]. The
FUTURE-AI guidelines attempt to address this, recom-
mending early identification of bias, diversified dataset
inclusion, and transparent evaluation of model fairness.
They recommend techniques such as data augmentation,
re-sampling, or algorithmic adjustments that can help
reduce bias, but they must be transparently reported and
validated [61].

However, implementing these safeguards again intro-
duces practical challenges. Al-driven MS care often
relies on pooling large amounts of personal health data.
Strong safeguards are needed to protect this sensitive
information. European regulators have closely aligned Al
requirements with the General Data Protection Regula-
tion (GDPR) [70] to ensure data protection by design,
requiring informed consent and transparency around
how patient data is used, especially in continuous moni-
toring scenarios. In practice, GDPR compliance can
delay multi-site data integration, particularly when local
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interpretations differ or when institutional review boards
lack Al-specific guidance. This slows down model devel-
opment and restricts access to diverse, representative
training datasets.

An often overlooked aspect is the risk of Al-induced
disparities in access to care. Advanced Al tools and dig-
ital platforms might not be equally available to all clin-
ics or subjects. This can lead to inequitable access to
Al-guided MS care. Furthermore, equity concerns also
demand that AI systems be validated in underrepre-
sented subgroups yet such datasets are often unavailable,
or require costly oversampling and annotation. Policies
promoting Al integration into public healthcare systems,
subsidisation of validated digital tools, and explicit incor-
poration of social determinants of health into AI algo-
rithms are essential strategies to ensure equity [61, 71].

Taken together, ethical, privacy, and equity concerns
are necessary safeguards, but they also raise the thresh-
old for real-world implementation. Without institutional
support, funding, or dedicated guidance, these concerns
may unintentionally stall or prevent Al deployment in
clinical MS care.

How we can move forward: bridging barriers with practical
strategies

In recent years, several emerging frameworks and initia-
tives have pointed the way forward. These approaches,
ranging from technical architectures to regulatory sand-
boxes and patient-led design, demonstrate practical
methods for implementation while addressing the ethi-
cal, methodological, and operational complexities out-
lined previously.

The era of big data has enabled the training of more
generalisable AI models, despite the limited availability
of RWD in MS [16]. One example is a 2023 international
study using the MSBase registry (15,240 PwMS from
146 MS centres) to predict 2-year disability progression
. Using only routinely collected clinical variables (EDSS
scores, relapses, treatments, etc.), machine-learning
models achieved an external validation AUC of ~0.71
for predicting confirmed progression. An external vali-
dation AUC of 0.71 means that, for 71% of randomly
selected pairs consisting of one progressive and one non-
progressive patient, the model assigns a higher risk score
to the progressive patient (counting ties as half correct).
Given the arguably modest discriminative capability, the
authors of the study concluded that these models are
ready for clinical impact evaluation [72]. This real-world
evidence signals that Al tools could be ready to assist
clinicians in prognosis using data available in everyday
practice.

However, sharing patient-level data across borders
remains a major obstacle to Al development. To fur-
ther scale data-driven discovery, federated learning
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approaches have gained traction. Federated models refer
to AI models training on distributed datasets across
multiple hospitals or countries without pooling patient-
level data. Thus, each site keeps its data locally and only
model updates or learned parameters are shared, thereby
addressing privacy and data-sharing barriers. Pirmani et
al. (2023) describe a 3-layer federated analysis pipeline
for global MS research, enabling multi-site collabora-
tion via shared model updates instead of raw data [73].
Such frameworks have already demonstrated the ability
to train lesion segmentation algorithms across differ-
ent centres while preserving data confidentiality [74]. By
incorporating data from diverse populations and scan-
ners, federated learning can produce more robust Al
models and reduce biases caused by single-centre train-
ing. However, federated learning, while solving the chal-
lenge of centralised data sharing, does not inherently
resolve the deeper issue of data interoperability. Without
standardised data schemas, ontologies, and harmon-
ised semantic structures, Al models trained via feder-
ated methods risk learning institution-specific biases or
missing key clinical nuances. Data standardisation initia-
tives like Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM), and interna-
tional MS-specific minimum datasets offer promising
blueprints for semantic alignment across sites and should
be considered as essential complements to any federated
Al pipeline [75-78]. These methods offer a technical path
forward that is inherently aligned with regulatory and
ethical demands. In addition to RWD, RCT datasets can
also serve as valuable complementary resources. While
RCTs provide high-quality evidence under controlled
conditions, combining them with RWD could enhance
Al-based predictions of MS progression by merging the
internal validity of trial data with the broader population
relevance of real-world evidence. Although the primary
focus of this paper remains on RWD, future implementa-
tion strategies could explore such hybrid approaches to
strengthen both model robustness and generalisability.

To address the disconnect between innovation and
regulation, regulatory sandboxes, which are essentially
safe spaces for supervised testing of Al tools, can serve
as vital bridges between research and clinical practice.
These frameworks provide a controlled environment
where Al developers, clinicians, and regulators can co-
design and test high-risk Al tools before formal deploy-
ment. The European Al Act explicitly encourages such
frameworks as part of its high-risk classification process
[79]. By providing provisional pathways and early feed-
back, sandboxes reduce the risk of costly redesigns after
full development.

Building on their aforementioned contributions, EHDS
and DARWIN-EU provide blueprints for methodologi-
cal rigour, with the former aiming to standardise data
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structures and secure cross-border sharing, and the lat-
ter focusing on post-marketing safety, effectiveness,
and RWD analysis for healthcare interventions. More-
over, DARWIN-EU supports a federated infrastructure,
enabling the reuse of healthcare data from across the EU
for better evidence-generation [62-64]. These projects
not only provide guidance, but they model what sustain-
able, GDPR-compliant, multicentre Al research could
look like. Their value lies not only in guidance, but in
building the infrastructure and legal framework needed
for AI to move safely from research to clinic.

It is also important to note that Al systems for MS must
not only be technically performant but also clinically rel-
evant and patient-centred. Professional and scientific
organisations have stepped up with practical guidance.
An international consortium of experts published the
FUTURE-AI guidelines in 2025, articulating good prac-
tices for trustworthy Al in healthcare [61].

Moreover, patient-centric initiatives such as PROMS,
which is a global multi-stakeholder collaboration aim-
ing to address these gaps by mapping and standardis-
ing patient-reported outcomes, can provide structured,
meaningful data on the patient’s lived experiences.
Similarly, another initiative called IMPROVE, which is
short for “Framework to IMPROVE the Integration of
Patient-Generated Health Data to Facilitate Value-Based
Healthcare’, is an EU project on patient-generated health
data, which also aims to use PROs, patient experience
measures and other patient-generated health data [80].
These initiatives allow Al to prioritise what matters most:
patient outcomes. Engaging PwMS in the co-design
of algorithms, feature selection, and usability testing
ensures greater trust and adoption of Al solutions [81].

Bridging the final mile from prototype to clinical real-
ity, initiatives like the Clinical Impact through Al-assisted
MS Care (CLAIMS) represent efforts to bridge the gap
between research prototypes and clinical workflows.
CLAIMS integrates regulatory, technical, and clinical
stakeholders to identify and validate Al tools that are
ready for impact assessment and deployment in MS
clinics [82]. These types of programmes illustrate how a
coordinated, cross-disciplinary approach can expedite
the safe and effective integration of Al into routine care.

Together, these frameworks and initiatives demon-
strate that the technical feasibility of AI for MS progres-
sion is no longer in question. What is needed now is a
structured, multi-layered implementation with sustained
investment in ethical oversight, patient engagement, data
harmonisation, and real-world evaluation.

Conclusion - towards clinical implementation

To meaningfully translate the promise of Big Data and Al
into clinical value for PWMS, a shift is required from frag-
mented, siloed efforts to coordinated, patient-driven, and
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ethically sound integration strategies. This paper high-
lights three interlinked imperatives: acknowledging the
persistent gap in multimodal integration; understanding
why this gap persists; and identifying practical, collabora-
tive pathways to overcome it.

Standardisation and interoperability remain founda-
tional hurdles for integrating Al into clinical practice.
Initiatives such as EHDS and DARWIN-EU facilitate
cross-border data sharing, but harmonising RWD col-
lection methods across institutions is equally critical. For
example, hospitals EHR systems can adopt a consistent
structure by incorporating “Fast Health Interoperabil-
ity Resources” (FHIR) [83] and/or OMOP common data
models, which can standardise MS data collection across
sites and lead to robust interoperability. Projects such
as PROMS and CLAIMS advocate for effective strate-
gies leading to the creation of common data frameworks,
resulting in consistent, reliable, and generalisable Al
models [81, 82]. However, despite their potential, practi-
cal challenges such as inconsistent coding practices, lack
of semantic alignment, and vendor lock-in can hinder the
broader goal of achieving true interoperability. Therefore,
a continued international collaboration in harmonising
clinical, imaging, and digital data will be instrumental in
advancing Al towards widespread clinical adoption.

Al tools must be developed through active patient
involvement, ensuring they meaningfully address the pri-
orities of PwMS. Engaging patients and advocacy groups
in defining relevant outcomes, dataset priorities, and
design decisions enhance the relevance and acceptance
of Al systems. The global PROMS initiative exemplifies
such patient-led collaboration by embedding patient-
reported outcomes into digital health technologies [81,
84]. Furthermore, explainable AI (XAI) principles foster
transparency, enabling clinicians to make informed deci-
sions rather than relying solely on opaque “black-box”
predictions [61, 85]. Clear regulatory frameworks, such
as FUTURE-AL further promote the clinical integration
of trustworthy and understandable Al models.

Regular and transparent evaluation of Al tools within
real-world clinical settings is crucial. Structured monitor-
ing and post-market surveillance, aligned with regulatory
guidelines, will ensure that Al remains effective, robust,
and safe in routine care [61]. Establishing continuous
evaluation as a standard practice can promptly identify
biases or unintended consequences, safeguarding patient
care and maintaining clinical trust in AI solutions.

Emerging opportunities and unexplored avenues pres-
ent additional pathways to strengthen Al integration
in MS care. For example, combining multimodal data,
including advanced MRI and computed tomography, dig-
ital biomarkers from wearables, and EHR, could enhance
predictive accuracy and personalisation but remains
underutilised. Similarly, adaptive AI systems capable
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of dynamically updating predictions based on continu-
ous, real-time patient data hold significant promise,
albeit their practical realisation remains limited. Foun-
dation models (FMs), including vision-language models
(VLMs), represent another promising direction. Recent
studies demonstrate their ability to interpret MRI scans
without task-specific training, achieving accuracy lev-
els comparable to specialised models, though clinical-
grade performance currently requires fine-tuning [86,
87]. Transformer-based imaging models, such as Video
Vision Transformers (ViViT), have effectively predicted
long-term disability progression from longitudinal MRI
sequences, highlighting their potential to capture subtle
temporal disease dynamics [40]. However, critical chal-
lenges such as explainability, data diversity, regulatory
approval, and embedded biases must be addressed to
enable practical clinical adoption of these powerful tools
[61].

Furthermore, a need for a shift from episodic, clinic-
centred follow-ups to continuous, home-based disease
management is an avenue that should be explored. In
this model, PROs, wearable-derived metrics for gait and
cognition, and cloud-hosted imaging data are seamlessly
integrated into Al-powered dashboards accessible to
both clinicians and PwMS. This vision of a “digital hos-
pital-at-home,” discussed in recent literature [88], holds
the potential to transform long-term MS care. However,
patient adoption will be critical, as continuous monitor-
ing may be perceived as intrusive without clear consent
and transparent governance. Real-world implementation
will depend on enabling factors such as national reim-
bursement frameworks, equitable broadband access, and
sustained political investment in digital health infrastruc-
ture. Without these enablers, high-income healthcare
systems are likely to adopt such innovations first, exac-
erbating the existing “digital divide” in MS care. To avoid
new international disparities, we advocate for publicly
funded open-source toolkits, multilateral financing, and
global minimum-dataset standards that ensure Al solu-
tions remain affordable and technically interoperable
across diverse economic settings.

While various complementary approaches to Al imple-
mentation in MS exist, prioritising data harmonisation,
patient-centred explainability, continuous real-world val-
idation, and exploration of emerging innovative avenues
provide a structured and ethically sound path forward.
Addressing these critical themes proactively will enable
Al to contribute meaningfully to MS management, deliv-
ering clinically relevant improvements that enhance the
quality of life for PwMS.
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