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Abstract
Multiple sclerosis (MS) remains a complex and costly neurological condition characterised by progressive disability, 
making early detection and accurate prognosis of disease progression imperative. While artificial intelligence (AI) 
combined with big data promises transformative advances in personalised MS care, integration of multimodal, 
real-world datasets, including clinical records, magnetic resonance imaging (MRI), and digital biomarkers, remains 
limited. This perspective paper identifies a critical gap between technical innovation and clinical implementation, 
driven by methodological constraints, evolving regulatory frameworks, and ethical concerns related to bias, privacy, 
and equity. We explore this gap through three interconnected lenses: the underuse of integrated real-world 
data, the barriers posed by regulation and ethics, and emerging solutions. Promising strategies such as federated 
learning, regulatory initiatives like DARWIN-EU and the European Health Data Space, and patient-led frameworks 
including PROMS and CLAIMS, offer structured pathways forward. Additionally, we highlight the growing relevance 
of foundation models for interpreting complex MS data and supporting clinical decision-making. We advocate for 
harmonised data infrastructures, patient-centred design, explainable AI, and real-world validation as core pillars 
for future implementation. By aligning technical, regulatory, and ethical domains, stakeholders can unlock the full 
potential of AI to enhance prognosis, personalise care, and improve outcomes for people with MS.
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Introduction
Multiple sclerosis (MS) is an autoimmune disease of 
the central nervous system with a complex pathogen-
esis involving inflammatory and neurodegenerative pro-
cesses. The global prevalence of MS has increased from 
2.1  million in 2008 to 2.9  million in 2023 [1]. The total 
yearly cost of MS management, estimated at €15.5 billion 
in Europe alone, is largely driven by progressive disabil-
ity, related productivity losses and informal care costs [2]. 
Conventionally, MS is classified into ‘relapsing-remitting’ 
and ‘progressive’ MS. The latter is further divided into 
primary and secondary progressive MS, based on the 
presence or absence of a preceding relapsing-remitting 
phase. ‘Progressive MS’ is characterised by a gradual, 
continuous worsening of neurological disability over 
time, usually without relapses. However, recent evidence 
suggests that the clinical course of MS is better viewed as 
a continuum, with different pathophysiological processes 
affecting individuals at different times and to differing 
extents [3].

Early detection of MS progression is imperative 
because progressive MS has limited treatment options 
[4]. Moreover, accurate prognostic information might 
improve the quality of life of people with MS (PwMS) [5]. 
Identifying and quantifying progression in MS remains a 
challenge due to differing patient demographics, hetero-
geneity in lesion location and disease mechanisms [3]. 
Diagnosis of progression is currently based on worsening 
of the physical examination and persistent symptoms [6]. 
While many biomarkers have been proposed to detect 
progression, they often lack sufficient sensitivity or speci-
ficity at the individual patient level, limiting their clinical 

usefulness. As a result, they are rarely adopted in daily 
practice. Consequently, progression is often diagnosed 
retrospectively with an average delay of 2–3 years [7].

Big data and artificial intelligence (AI) have the poten-
tial to play a role in overcoming the complexity of MS 
progression [8]. AI can be defined as processes that 
allow machines or computers to exhibit intelligent 
behaviour. AI is typically classified into different types, 
such as machine learning (ML) and deep learning (DL). 
ML gives computers the ability to learn without being 
explicitly programmed and refers to computational 
algorithms for gathering and making sense of evidence 
derived from large volumes of data, thereby allowing or 
facilitating human judgment and decision-making. DL 
consists of ML algorithms with a brain-like algorithmic 
structure called artificial neural networks [9]. To date, AI 
has already shown promise in improving diagnostic and 
prognostic performances, workflow, and cost-effective-
ness in various fields such as oncology [10], Parkinson’s 
disease [11], depression [12], and epilepsy [13]. Given the 
increased use of AI tools assisting in medical care, the 
European Union (EU) has broadly classified such tools 
as high-risk software-as-a-medical-device (SaMD) under 
the EU MDR 2017/745 [14]. To clarify which frameworks 
govern AI when used on medical data, Table 1 contrasts 
the main European regulations/guidelines, indicating 
whether they are mandatory in clinical research, in rou-
tine care, or both.

While there have been advancements in AI [15], its 
use in MS clinical settings to predict disability progres-
sion remains limited, representing a significant gap [16]. 
This limited adoption stems largely from the lack of 

Table 1  Key regulatory frameworks for AI applied to medical data
Framework Jurisdiction/Issuer Relevance to 

research
Relevance 
to clinical 
routine

Core relevance for AI on 
datasets

Typical validation/oversight 
requirements

General Data Pro-
tection Regulation 
GDPR (2016/679) 
[70]

European Union Yes Yes Lawful processing of 
personal health data; data 
minimisation; cross-border 
transfer rules

Data-protection impact 
assessment, informed 
consent, pseudonymisation/
anonymisation

EU Medical Device 
Regulation MDR 
(2017/745) [14]

European Union +/- Yes Classifies diagnostic/
prognostic AI software as 
Software-as-a-Medical-
Device (SaMD)

CE-marking (European Confor-
mity marking), clinical evalua-
tion, post-market surveillance, 
quality-management system

EU AI Act (2024) 
[17]

European Union Exempt for AI 
systems and models 
developed and 
used only for the 
purpose of the sci-
entific research and 
developments

Yes All “high-risk” clinical AI must 
meet horizontal lifecycle 
rules

Risk-management system, 
data/algorithm transparency, 
human oversight, conformity 
assessment

European Health 
Data Space (EHDS) 
[62]

European Union Yes Yes Legal & technical infrastruc-
ture for secure cross-border 
health-data exchange

Common data models, man-
datory metadata, secondary-
use permits

+/- MDR obligations apply to research prototypes only if they are used to support clinical decision-making in patient care; pure exploratory research is usually 
exempt but must still follow GDPR and ethics rules
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availability of multimodal, diverse datasets and longitu-
dinal validations, which are essential for clinically reliable 
AI algorithms. Furthermore, the 2024 EU AI Act imposes 
rigorous conformity assessments for SaMD, requiring 
evidence of data quality, risk mitigation, and robust post-
market surveillance [17, 18]. In this perspective paper, we 
examine this gap and propose a structured way forward. 
Specifically, we argue that, although AI applications in 
MS are advancing, their potential to predict disabil-
ity progression remains underutilised due to barriers in 
multimodal data integration and data harmonisation, 
leading to insufficient clinical implementation. Figure  1 
summarises our perspective, highlighting three intercon-
nected areas that will structure our argument: first, we 
identify the key gaps in how real-world data and AI are 
currently used in MS prognostication; second, we explore 
why these innovations have yet to be implemented at 
scale, focusing on regulatory, ethical, and methodological 
hurdles; and third, we propose a practical path forward, 
outlining strategies to bridge these barriers and enable 
meaningful clinical adoption.

The current gap: integrating real-world data and AI for MS 
prognosis
Despite rapid developments in AI applications across 
MS, the integration of high-dimensional, real-world 
data (RWD) streams remains scarce. Data from clinical 

records, MRI scans, laboratory tests, paraclinical tests 
(e.g., evoked potentials), and digital monitoring are typi-
cally analysed in isolation, limiting the full potential of AI 
to reveal MS progression patterns. Nevertheless, the role 
of RWD in MS research can not be understated.

The term ‘Real-World Data’ is used with various defini-
tions across the literature. In this paper, RWD is pragmat-
ically defined as any data gathered within the context of 
standard care, distinct from experimental data obtained 
from randomised clinical trials (RCT). RWD is increas-
ingly used to address clinical questions related to MS 
disease diagnosis, prognosis, and treatment [19]. Some 
large-scale initiatives have begun to demonstrate the 
potential of well-integrated RWD. Examples that stand 
out include the COVID-19 in MS Global Data Sharing 
Initiative (GDSI) [20] and the Big MS Data Network [21]. 
The latter, initiated in 2014, comprises data from over 
350,000 PwMS across multiple European countries and 
has significantly advanced our understanding of disease 
progression and treatment effectiveness [22]. Similarly, 
the GDSI also illustrates a successful international data 
collaboration that has the potential to effectively utilise 
large-scale, multicentric data [20]. However, such efforts 
are resource-intensive and often emerge reactively during 
crises. To enable routine clinical AI, foundational invest-
ments and efforts in data standardisation and integration 
are required.

Fig. 1  A Path Forward for Artificial Intelligence in Multiple Sclerosis Progression Prediction. The figure illustrates three interlinked challenges and enablers: 
the current gap in multimodal data integration, persistent regulatory barriers, and actionable solutions such as federated learning, inclusive design, and 
ethical oversight to support real-world clinical implementation for predicting disability progression in people with Multiple Sclerosis
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MS registries represent one of the most immedi-
ate opportunities to build this foundation. Existing for 
over 70 years, they have recently proliferated, with over 
500,000 PwMS globally contributing data globally to 
varying registries [23], which can contribute to the devel-
opment of prognostic models in MS [24]. There is exten-
sive literature on prognostic MS models, summarised 
in several recent reviews [25, 26]. However, none have 
been widely adopted in clinical practice. Before introduc-
ing solutions, it is important to understand why current 
AI-based prognostic models in MS struggle. Despite the 
scale of data collection, fragmentation persists. Regis-
tries often vary in structure, granularity, and data stan-
dards, making integration across systems difficult [18]. 
Moreover, these registries typically collect clinical out-
comes, while imaging, digital monitoring, or paraclinical 
test results are stored elsewhere. As a result, AI mod-
els trained on such data are constrained in scope and 
generalisability.

Another reason why most prognostic studies are lim-
ited is a small sample size, typically fewer than 200 sub-
jects, restricted data sources, and limited accuracy, rarely 
surpassing 90% area under the receiver operating charac-
teristic curve (AUROC) [27]. Methodological challenges 
such as poor calibration, selection bias, limited use of 
high-dimensional data, and insufficient external valida-
tion remain barriers to clinical implementation [25, 26]. 
Moreover, these weaknesses also reflect the limitations 
of relying on narrow or poorly harmonised data sources. 
In this paper, we mainly explore magnetic resonance 
imaging (MRI), which is the clinical cornerstone of MS 
diagnosis and monitoring [28], and patient-reported 
outcome measures in MS (PROMS), given their poten-
tial to incorporate patient perspectives. AI models that 
take into account patient-reported outcomes (PROs) and 
clinician-assessed outcomes (CAOs) have shown prom-
ise in one proof-of-concept study, where an AI algorithm 
using PROs and CAOs data correctly classified current 
MS disease course with ~ 86% accuracy and predicted 
progression to a secondary phase with ~ 82% accuracy, 
supporting the idea that PROs and CAOs can meaning-
fully aid prognostication and thus might be useful in a 
multimodal setting [29].

While multimodal data integration is ideal, many ML 
and DL applications continue to rely heavily on single 
modalities, particularly MRI. One of the reasons why 
MRI remains the central modality of neuroradiology 
research in MS is due to its ability to capture spatial and 
temporal dissemination of lesions [28]. Considerable 
work using MRI has been done in the field of MS diagno-
sis, predicting disease course and disability progression, 
and disease-modifying therapy (DMT) response [30–32]. 
Yet, traditional MRI approaches face critical limitations, 
encapsulated in the “clinico-radiological paradox,” where 

clinical symptoms do not always align with visible MRI 
lesions [33, 34].

Recent studies suggest that quantitative MRI features, 
such as radiomics, combined with AI algorithms, have 
the capability to overcome some of these limitations by 
detecting subtle structural changes and microstructural 
damages not visible to conventional radiological assess-
ments [35, 36]. Radiomics is a computational technique 
for extracting large amounts of quantifiable features from 
medical images [37]. The features extracted from the 
images comprise features related to size, shape, intensity, 
texture etc., that can be correlated with biological fac-
tors or clinical outcomes and help identify potential fast 
responders to DMTs [38]. A recent study conducted in 
2024 identified a radiomic “warning sign” on brain MRI. 
By analysing normal-appearing white matter (NAWM) 
on a prior scan, their ML model (XGBoost) could dis-
tinguish regions where new MS lesions would later form​
. The model showed high internal performance with an 
accuracy of 0.91 and reasonable external validity achiev-
ing 0.74 accuracy on an independent dataset​. The most 
important radiomic features reflected tissue heterogene-
ity and suggested that radiomics features from NAWM 
could serve as an imaging biomarker for MS progression 
[39]​.

Similarly, a review conducted by Yousef et al. (2024) 
found that a multimodal approach with quantitative MRI 
features, in most cases, improves prognostic accuracy 
compared to approaches without MRI [26]. Moreover, 
DL models that incorporate longitudinal MRI or multi-
modal health data have further improved prediction per-
formance. For example, a study conducted in 2024 used 
innovative DL models with incorporated longitudinal 
MRI sequences to enhance long-term predictions. A con-
volutional neural network with long short-term memory 
(CNN-LSTM) using sequential spinal cord MRI achieved 
an AUROC of approximately 0.74 over a six-year predic-
tion horizon, while a Vision Transformer-based model 
notably outperformed this, reaching an AUROC of 
around 0.84 [40]. Additionally, another study integrated 
longitudinal electronic health records (EHR), MRI fea-
tures, and clinical notes using a deep neural network, and 
reported up to a 19% higher AUROC compared to mod-
els using any single modality​ [41].

All these studies point to a shift to explore options 
that go beyond conventional lesion-based assessments, 
and consequently, it has indeed sparked interest among 
the scientific community to explore radiomics-based AI 
algorithms to predict MS disease progression [42–45]. 
However, despite promising results [35, 36, 46, 47], the 
use of radiomics currently faces challenges in its integra-
tion into MS clinical practice. For instance, the lack of 
harmonisation of MRI protocols and multi-centre stud-
ies poses significant challenges that must be addressed 
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in order to validate its clinical utility [48], which further 
led to a non-recommendation in 2021 MAGNIMS-
CMSC-NAIMS guidelines [49]. Moreover, even state-
of-the-art ML models may struggle with the inherent 
unpredictability of MS in unseen cases. For example, one 
multi-cohort study found that while ML could classify 
subjects with existing high disability with good accuracy 
(area under the curve (AUC) ~ 0.83), it failed to signifi-
cantly predict which subjects would worsen over 2–5 
years​ [50]. The study further points towards the need for 
continued research in refining these MRI-based models 
and addressing issues such as limited longitudinal data, 
cohort bias, and overfitting, with an eye towards improv-
ing robustness and clinical utility [50].

Ultimately, while MRI offers valuable snapshots of dis-
ease burden and holds significant promise when com-
bined with AI, it remains inherently limited by its scanner 
variability and resource demands. Additionally, comple-
mentary approaches are required to capture the everyday 
health status of PwMS and enable real-time progression 
monitoring. One avenue could be the use of smartphone 
applications and wearables, which are capable of record-
ing continuous functional and mental assessments; such 
tools hold promise given recent evidence that patient-
reported outcomes, particularly fatigue and depression 
scores, can independently predict disability progression 
in relapsing MS, even in the absence of relapses [51].

Smartphones and wearable monitoring devices are 
increasingly available, opening possibilities for individ-
ual monitoring in daily life. A recent online survey [52] 
of healthcare professionals working in the care of people 
with epilepsy, MS and depression showed that the major-
ity of healthcare professionals are positive about imple-
menting remote monitoring in patient care plans. Most 
PwMS have no experience using mobile health applica-
tions for their MS, with only a minority being current 
users of this technology [53]. Although compliance with 
remote monitoring remains a challenge [54], continu-
ous, passive data collection can capture disease-related 
changes earlier and more consistently than episodic clini-
cal assessments [55, 56].

Wearables and smartphones are also equipped with 
multiple sensor types (e.g., accelerometer, touchscreen, 
microphone), and therefore provide the opportunity to 
extract digital biomarkers for cognitive function, dex-
terity, gait, and balance through both active tests and 
passive monitoring. Recent scientific publications have 
showcased the use of AI and digital tools for remote 
monitoring of people with MS, highlighting the poten-
tial importance of these devices and softwares in MS care 
[57–60].

Indeed, digital health tools have recently shown their 
value in capturing the clinical manifestation of MS in 
PwMS. Multiple medical device smartphone apps for the 

telemonitoring of PwMS have already been developed - 
e.g., Floodlight [58] and iCompanion [53]. However, rig-
orous clinical validation and strategic oversight remain 
limited. Furthermore, most digital monitoring tools are 
being developed independently of clinical and imaging 
datasets. This fragmentation impairs efforts to build inte-
grated prediction models that reflect the full disease bur-
den, incorporating the perspective of PwMS. Therefore 
to bridge the gap, a truly multimodal approach is needed 
linking real-world clinical data, MRI, and digital moni-
toring tools.

Regulatory and ethical barriers beyond data fragmentation
While we emphasise the importance of big data and AI in 
MS, it is important to know why it is not merely a techni-
cal problem. In our opinion, it reflects deeper challenges 
at the intersection of regulation and ethics. In this sec-
tion, we examine two key components that contribute 
to the persistence of the gap: evolving regulatory frame-
works and ethical concerns around bias.

In Europe, a comprehensive regulatory shift is under-
way with the proposed European AI Act, which is in force 
as of 2025. This legislation classifies all AI systems used 
in healthcare as “high risk,” mandating strict require-
ments for quality, transparency, and oversight [61]. AI 
tools for MS must demonstrate conformity and robust 
safety evidence, ensuring AI-driven decision support is 
reliable and unbiased before use [61]. Similarly, updates 
to the EU Medical Device Regulation (MDR) [14] also 
impact AI software and require post-market surveillance 
and risk management.

Complementing these regulatory changes, major EU-
level initiatives, such as the European Health Data Space 
(EHDS) and DARWIN-EU (Data Analysis and Real 
World Interrogation Network), have emerged to facilitate 
the integration and harmonisation of health data. EHDS 
aims to standardise data collection, improve interoper-
ability, and enable secure cross-border data exchange 
across Europe [62]. Specifically, the DARWIN-EU ini-
tiative by the European Medicines Agency (EMA) aims 
to create a sustainable platform to access and analyse 
healthcare data across Europe. DARWIN-EU focuses on 
using RWD to assess the safety, effectiveness, and post-
marketing surveillance of medicines. It promotes meth-
odological rigour, transparency, and harmonisation in 
RWD analytics, providing practical guidance to ensure 
high-quality evidence generation [62–64].

Even though these initiatives represent major progress 
and aim to protect subjects and ensure trust in AI, they 
also create additional complexity that slows down the 
adoption of AI models in clinical MS care. Researchers 
who are often at the forefront of developing these tools 
lack the regulatory expertise, technical infrastructure, or 
financial resources to meet such stringent certification 
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demands. For example, demonstrating real-world safety 
and performance across heterogeneous populations often 
requires multi-site validation studies, long-term moni-
toring, and formal quality management systems that are 
rarely feasible outside large industry-sponsored trials 
[65].

Furthermore, while the EHDS and DARWIN-EU initia-
tives aim to promote data interoperability and reuse, their 
implementation is still at an early stage. Many clinical 
centres are not yet integrated into these infrastructures, 
and cross-border sharing remains limited by governance 
and consent constraints. Thus, the intended benefits of 
these frameworks, while promising, are not yet accessible 
to most AI developers or clinical users.

To sum it up, although regulation is essential for 
responsible AI, it currently operates as a barrier for many 
early-stage innovations, especially in the context of MS 
where multimodal data and patient variability introduce 
additional complexity. Without clearer operational guid-
ance and aligned incentives [65], the regulatory burden 
risks reinforcing the gap between research and real-world 
implementation.

As AI becomes embedded in MS care, careful atten-
tion must be paid to ethics, bias, and equity to ensure 
AI-driven healthcare benefits all subjects fairly. Bias pri-
marily arises from underrepresented or unrepresentative 
training data. In an AI pipeline, the training dataset is the 
subset of data on which the algorithm actually “learns” 
its parameters, whereas the validation dataset is kept 
separate and used only to measure how well the trained 
model generalises to unseen cases. A bias in the training 
data would translate into a biased model, leading to per-
formance disparities across diverse populations [66].

Additional ethical barriers include limited explain-
ability, unclear accountability, privacy risks and unequal 
access to AI augmented health care [67–69]. The 
FUTURE-AI guidelines attempt to address this, recom-
mending early identification of bias, diversified dataset 
inclusion, and transparent evaluation of model fairness. 
They recommend techniques such as data augmentation, 
re-sampling, or algorithmic adjustments that can help 
reduce bias, but they must be transparently reported and 
validated [61].

However, implementing these safeguards again intro-
duces practical challenges. AI-driven MS care often 
relies on pooling large amounts of personal health data. 
Strong safeguards are needed to protect this sensitive 
information. European regulators have closely aligned AI 
requirements with the General Data Protection Regula-
tion (GDPR) [70] to ensure data protection by design, 
requiring informed consent and transparency around 
how patient data is used, especially in continuous moni-
toring scenarios. In practice, GDPR compliance can 
delay multi-site data integration, particularly when local 

interpretations differ or when institutional review boards 
lack AI-specific guidance. This slows down model devel-
opment and restricts access to diverse, representative 
training datasets.

An often overlooked aspect is the risk of AI-induced 
disparities in access to care. Advanced AI tools and dig-
ital platforms might not be equally available to all clin-
ics or subjects. This can lead to inequitable access to 
AI-guided MS care. Furthermore, equity concerns also 
demand that AI systems be validated in underrepre-
sented subgroups yet such datasets are often unavailable, 
or require costly oversampling and annotation. Policies 
promoting AI integration into public healthcare systems, 
subsidisation of validated digital tools, and explicit incor-
poration of social determinants of health into AI algo-
rithms are essential strategies to ensure equity [61, 71].

Taken together, ethical, privacy, and equity concerns 
are necessary safeguards, but they also raise the thresh-
old for real-world implementation. Without institutional 
support, funding, or dedicated guidance, these concerns 
may unintentionally stall or prevent AI deployment in 
clinical MS care.

How we can move forward: bridging barriers with practical 
strategies
In recent years, several emerging frameworks and initia-
tives have pointed the way forward. These approaches, 
ranging from technical architectures to regulatory sand-
boxes and patient-led design, demonstrate practical 
methods for implementation while addressing the ethi-
cal, methodological, and operational complexities out-
lined previously.

The era of big data has enabled the training of more 
generalisable AI models, despite the limited availability 
of RWD in MS [16]. One example is a 2023 international 
study using the MSBase registry (15,240 PwMS from 
146 MS centres) to predict 2-year disability progression​
. Using only routinely collected clinical variables (EDSS 
scores, relapses, treatments, etc.), machine-learning 
models achieved an external validation AUC of ~ 0.71 
for predicting confirmed progression. An external vali-
dation AUC of 0.71 means that, for 71% of randomly 
selected pairs consisting of one progressive and one non-
progressive patient, the model assigns a higher risk score 
to the progressive patient (counting ties as half correct). 
Given the arguably modest discriminative capability, the 
authors of the study concluded that these models are 
ready for clinical impact evaluation [72]. This real-world 
evidence signals that AI tools could be ready to assist 
clinicians in prognosis using data available in everyday 
practice.

However, sharing patient-level data across borders 
remains a major obstacle to AI development. To fur-
ther scale data-driven discovery, federated learning 
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approaches have gained traction. Federated models refer 
to AI models training on distributed datasets across 
multiple hospitals or countries without pooling patient-
level data. Thus, each site keeps its data locally and only 
model updates or learned parameters are shared, thereby 
addressing privacy and data-sharing barriers. Pirmani et 
al. (2023) describe a 3-layer federated analysis pipeline 
for global MS research, enabling multi-site collabora-
tion via shared model updates instead of raw data​ [73]. 
Such frameworks have already demonstrated the ability 
to train lesion segmentation algorithms across differ-
ent centres while preserving data confidentiality​ [74]. By 
incorporating data from diverse populations and scan-
ners, federated learning can produce more robust AI 
models and reduce biases caused by single-centre train-
ing. However, federated learning, while solving the chal-
lenge of centralised data sharing, does not inherently 
resolve the deeper issue of data interoperability. Without 
standardised data schemas, ontologies, and harmon-
ised semantic structures, AI models trained via feder-
ated methods risk learning institution-specific biases or 
missing key clinical nuances. Data standardisation initia-
tives like Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM), and interna-
tional MS-specific minimum datasets offer promising 
blueprints for semantic alignment across sites and should 
be considered as essential complements to any federated 
AI pipeline [75–78]. These methods offer a technical path 
forward that is inherently aligned with regulatory and 
ethical demands. In addition to RWD, RCT datasets can 
also serve as valuable complementary resources. While 
RCTs provide high-quality evidence under controlled 
conditions, combining them with RWD could enhance 
AI-based predictions of MS progression by merging the 
internal validity of trial data with the broader population 
relevance of real-world evidence. Although the primary 
focus of this paper remains on RWD, future implementa-
tion strategies could explore such hybrid approaches to 
strengthen both model robustness and generalisability.

To address the disconnect between innovation and 
regulation, regulatory sandboxes, which are essentially 
safe spaces for supervised testing of AI tools, can serve 
as vital bridges between research and clinical practice. 
These frameworks provide a controlled environment 
where AI developers, clinicians, and regulators can co-
design and test high-risk AI tools before formal deploy-
ment. The European AI Act explicitly encourages such 
frameworks as part of its high-risk classification process 
[79]. By providing provisional pathways and early feed-
back, sandboxes reduce the risk of costly redesigns after 
full development.

Building on their aforementioned contributions, EHDS 
and DARWIN-EU provide blueprints for methodologi-
cal rigour, with the former aiming to standardise data 

structures and secure cross-border sharing, and the lat-
ter focusing on post-marketing safety, effectiveness, 
and RWD analysis for healthcare interventions. More-
over, DARWIN-EU supports a federated infrastructure, 
enabling the reuse of healthcare data from across the EU 
for better evidence-generation [62–64]. These projects 
not only provide guidance, but they model what sustain-
able, GDPR-compliant, multicentre AI research could 
look like. Their value lies not only in guidance, but in 
building the infrastructure and legal framework needed 
for AI to move safely from research to clinic.

It is also important to note that AI systems for MS must 
not only be technically performant but also clinically rel-
evant and patient-centred. Professional and scientific 
organisations have stepped up with practical guidance. 
An international consortium of experts published the 
FUTURE-AI guidelines in 2025, articulating good prac-
tices for trustworthy AI in healthcare [61].

Moreover, patient-centric initiatives such as PROMS, 
which is a global multi-stakeholder collaboration aim-
ing to address these gaps by mapping and standardis-
ing patient-reported outcomes, can provide structured, 
meaningful data on the patient’s lived experiences. 
Similarly, another initiative called IMPROVE, which is 
short for “Framework to IMPROVE the Integration of 
Patient-Generated Health Data to Facilitate Value-Based 
Healthcare”, is an EU project on patient-generated health 
data, which also aims to use PROs, patient experience 
measures and other patient-generated health data [80]. 
These initiatives allow AI to prioritise what matters most: 
patient outcomes. Engaging PwMS in the co-design 
of algorithms, feature selection, and usability testing 
ensures greater trust and adoption of AI solutions [81].

Bridging the final mile from prototype to clinical real-
ity, initiatives like the Clinical Impact through AI-assisted 
MS Care (CLAIMS) represent efforts to bridge the gap 
between research prototypes and clinical workflows. 
CLAIMS integrates regulatory, technical, and clinical 
stakeholders to identify and validate AI tools that are 
ready for impact assessment and deployment in MS 
clinics [82]. These types of programmes illustrate how a 
coordinated, cross-disciplinary approach can expedite 
the safe and effective integration of AI into routine care.

Together, these frameworks and initiatives demon-
strate that the technical feasibility of AI for MS progres-
sion is no longer in question. What is needed now is a 
structured, multi-layered implementation with sustained 
investment in ethical oversight, patient engagement, data 
harmonisation, and real-world evaluation.

Conclusion - towards clinical implementation
To meaningfully translate the promise of Big Data and AI 
into clinical value for PwMS, a shift is required from frag-
mented, siloed efforts to coordinated, patient-driven, and 
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ethically sound integration strategies. This paper high-
lights three interlinked imperatives: acknowledging the 
persistent gap in multimodal integration; understanding 
why this gap persists; and identifying practical, collabora-
tive pathways to overcome it.

Standardisation and interoperability remain founda-
tional hurdles for integrating AI into clinical practice. 
Initiatives such as EHDS and DARWIN-EU facilitate 
cross-border data sharing, but harmonising RWD col-
lection methods across institutions is equally critical. For 
example, hospitals EHR systems can adopt a consistent 
structure by incorporating “Fast Health Interoperabil-
ity Resources” (FHIR) [83] and/or OMOP common data 
models, which can standardise MS data collection across 
sites and lead to robust interoperability. Projects such 
as PROMS and CLAIMS advocate for effective strate-
gies leading to the creation of common data frameworks, 
resulting in consistent, reliable, and generalisable AI 
models [81, 82]. However, despite their potential, practi-
cal challenges such as inconsistent coding practices, lack 
of semantic alignment, and vendor lock-in can hinder the 
broader goal of achieving true interoperability. Therefore, 
a continued international collaboration in harmonising 
clinical, imaging, and digital data will be instrumental in 
advancing AI towards widespread clinical adoption.

AI tools must be developed through active patient 
involvement, ensuring they meaningfully address the pri-
orities of PwMS. Engaging patients and advocacy groups 
in defining relevant outcomes, dataset priorities, and 
design decisions enhance the relevance and acceptance 
of AI systems. The global PROMS initiative exemplifies 
such patient-led collaboration by embedding patient-
reported outcomes into digital health technologies [81, 
84]. Furthermore, explainable AI (XAI) principles foster 
transparency, enabling clinicians to make informed deci-
sions rather than relying solely on opaque “black-box” 
predictions [61, 85]. Clear regulatory frameworks, such 
as FUTURE-AI, further promote the clinical integration 
of trustworthy and understandable AI models.

Regular and transparent evaluation of AI tools within 
real-world clinical settings is crucial. Structured monitor-
ing and post-market surveillance, aligned with regulatory 
guidelines, will ensure that AI remains effective, robust, 
and safe in routine care [61]. Establishing continuous 
evaluation as a standard practice can promptly identify 
biases or unintended consequences, safeguarding patient 
care and maintaining clinical trust in AI solutions.

Emerging opportunities and unexplored avenues pres-
ent additional pathways to strengthen AI integration 
in MS care. For example, combining multimodal data, 
including advanced MRI and computed tomography, dig-
ital biomarkers from wearables, and EHR, could enhance 
predictive accuracy and personalisation but remains 
underutilised. Similarly, adaptive AI systems capable 

of dynamically updating predictions based on continu-
ous, real-time patient data hold significant promise, 
albeit their practical realisation remains limited. Foun-
dation models (FMs), including vision-language models 
(VLMs), represent another promising direction. Recent 
studies demonstrate their ability to interpret MRI scans 
without task-specific training, achieving accuracy lev-
els comparable to specialised models, though clinical-
grade performance currently requires fine-tuning [86, 
87]. Transformer-based imaging models, such as Video 
Vision Transformers (ViViT), have effectively predicted 
long-term disability progression from longitudinal MRI 
sequences, highlighting their potential to capture subtle 
temporal disease dynamics [40]. However, critical chal-
lenges such as explainability, data diversity, regulatory 
approval, and embedded biases must be addressed to 
enable practical clinical adoption of these powerful tools 
[61].

Furthermore, a need for a shift from episodic, clinic-
centred follow-ups to continuous, home-based disease 
management is an avenue that should be explored. In 
this model, PROs, wearable-derived metrics for gait and 
cognition, and cloud-hosted imaging data are seamlessly 
integrated into AI-powered dashboards accessible to 
both clinicians and PwMS. This vision of a “digital hos-
pital-at-home,” discussed in recent literature [88], holds 
the potential to transform long-term MS care. However, 
patient adoption will be critical, as continuous monitor-
ing may be perceived as intrusive without clear consent 
and transparent governance. Real-world implementation 
will depend on enabling factors such as national reim-
bursement frameworks, equitable broadband access, and 
sustained political investment in digital health infrastruc-
ture. Without these enablers, high-income healthcare 
systems are likely to adopt such innovations first, exac-
erbating the existing “digital divide” in MS care. To avoid 
new international disparities, we advocate for publicly 
funded open-source toolkits, multilateral financing, and 
global minimum-dataset standards that ensure AI solu-
tions remain affordable and technically interoperable 
across diverse economic settings.

While various complementary approaches to AI imple-
mentation in MS exist, prioritising data harmonisation, 
patient-centred explainability, continuous real-world val-
idation, and exploration of emerging innovative avenues 
provide a structured and ethically sound path forward. 
Addressing these critical themes proactively will enable 
AI to contribute meaningfully to MS management, deliv-
ering clinically relevant improvements that enhance the 
quality of life for PwMS.
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