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Abstract
Trajectory sample databases store finite sequences of measured space-time locations of moving
objects, along with a speed bound for each object. These databases can be seen as uncertain
databases. We propose a language that allows the formulation of queries about the uncertainty
in trajectory sample databases. As part of that language, we introduce the notion of visit events,
which are used to describe certain constraints on the movement of an object. In our language, an
atomic query asks whether a moving object can, given its limitations, realise such an event. We give
complexity results for this realisability problem, in various settings.
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1 Introduction

Due to the proliferation of location-aware devices (such as GPS receivers) in the past two
decades, one of the use-cases of moving object databases [8] is the storage of time-stamped
measured locations of moving objects [7]. Such a sequence of spatio-temporal measurements of
a single moving object is called a trajectory sample. Given this type of partial information on
a moving object, we do not know the precise space-time path (or trajectory) which the object
has followed, but we do know that the trajectory must have passed these measured spatio-
temporal locations. However, without making further assumptions, there are no theoretical
limits to the movement of the object in between two measurements. An assumption that
originates from the area of time geography, where the moving object’s accessibility to an
environment is studied, is that we know a bound on the speed of the moving object [5, 9, 13].
Therefore, it is common to associate a maximal speed to each moving object, alongside a
trajectory sample. With this additional knowledge, the actual trajectory of a moving object
is guaranteed to be contained in a spatio-temporal region known as a “lifeline necklace” in
spatio-temporal and moving object databases [6, 10, 18], or simply as a “chain of space-
time prisms” in the fields of time geography [9] and Geographical Information Systems
(GIS) [15, 12, 14].
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12:2 On the Complexity of the Realisability Problem for Visit Events

We refer to a moving object database with the specific purpose of storing trajectory
samples and speed bounds as a trajectory sample database. A trajectory sample database can
be seen as an uncertain (or incomplete) database [1, 11]. In general, an uncertain database
represents a set of “possible worlds”, where each possible world is a concrete instantiation
of the data. In our setting, a possible world corresponds to an assignment of a trajectory
to every object, satisfying the known limitations of that object. In this paper, we propose
a query language for trajectory sample databases that is based on events that are possibly
semantically interesting for some application and that may occur during a trajectory of
a moving object. We introduce visit events as part of our language, which are used to
describe constraints on trajectories. The most basic visit event expresses that a trajectory
visits a particular region during a particular period of time. To allow for composition, the
class of visit events is closed under Boolean combinations (using negation, conjunction and
disjunction). For example, we could express the complex event that states that an object has
visited a museum in the morning, some restaurant at lunch and has not been in a particular
church in the afternoon. For a dataset of tourists visiting some city, this event may have
occurred during the movement of some of the tourists. This example shows that our proposed
query language is related to the field of semantic trajectories and places of interest (POIs)
in such trajectories and could be used to match trajectories with event patterns [4, 17, 21].
The queries appearing in [20], where a cylinder model of uncertainty is used, are similar to
what our languages can express.

The atomic query in our language asks whether a given visit event is realisable by the
trajectory of some moving object, that is, whether there exists a trajectory that satisfies
the constraints described by that event. We call the evaluation of this atomic query the
realisability problem. To allow for composition on the query level, the query expressions are
also closed under Boolean combinations. An important detail is that our query language is
defined relative to two parameters: R, denoting the class of spatial regions that can occur in
visit events, and T , denoting the periods of time that can occur in visit events. We study the
complexity of the realisability problem for different choices of R and T . For R, we consider
the class of singleton points (Point) and of semi-algebraic sets (SemiAlg). For T , on the other
hand, we consider the class of singleton moments (Moment) and intervals of time (Interval).
Because the realisability problem already becomes NP-hard for very restrictive classes of
events, and because we believe it is of interest to measure the influence that the size of
the database has on the complexity of query evaluation, we distinguish between combined
complexity, data complexity and query complexity [1]. A summary of our complexity results
is displayed in Table 1.

Table 1 A summary of the complexity results: data, query, and combined complexity.

Class of events Data Query Combined
(Point, Moment)-event in DNF linear polynomial polynomial
Positive (Point, Moment)-events linear NP-hard NP-hard
(SemiAlg, Moment)-events linear NP-hard NP-hard
Conjunctive (Point, Interval)-events polynomial NP-hard NP-hard
Positive (SemiAlg, Interval)-events polynomial NP-hard NP-hard

The paper is organised as follows. In Section 2, we give the definitions that are necessary
to formalize the notion of a trajectory sample database. In Section 3, we define the syntax
and the semantics of our query languages. In Section 4, we study the complexity of the
realisability problem in different settings. Finally, we conclude the paper with Section 5.
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2 Definitions and preliminaries on trajectory sample databases

In this section, we give definitions of the concepts needed to introduce the notion of a
trajectory sample database.

We consider the space in which objects move to be the plane R2, and we use the letters
p, q, . . . (with or without indices) to denote locations in space. Time is modelled as the real
line R, and we use t (with or without indices) to refer to the temporal points (or moments).
We also use x and y to refer to the real coordinates of spatial locations. A spatio-temporal
point (p, t) is then an element of R2 × R and if p = (x, y), we also write (x, y, t) for the
spatio-temporal point (p, t). Furthermore, we use d to denote the Euclidean distance in R2.

The movement of an object is captured by the notion of “trajectory” and it corresponds
to a function mapping (all possible) moments in time to locations in space, as is expressed
by the following definition.

▶ Definition 1. A trajectory is a continuous function from R to R2.

We use the Greek letter γ (with or without indices) to refer to trajectories. In practice
trajectories are only observed or measured at discrete moments in time and we call these
partial views on trajectories “trajectory samples”.

▶ Definition 2. A trajectory sample (or sample, for short) is a finite sequence of space-time
points ⟨(p1, t1), . . . , (pn, tn)⟩ that is ordered by the temporal component (that is, t1 < · · · < tn).

We use the letter S (with or without indices) to refer to trajectory samples. The following
definition captures the notion of trajectories matching trajectory samples.

▶ Definition 3. We say a trajectory γ visits a space-time point (p, t) when γ(t) = p and we
say that a trajectory γ visits a subset of space-time if γ visits one of its elements.

A trajectory sample ⟨(p1, t1), . . . , (pn, tn)⟩ matches the trajectory γ if γ visits all the
space-time points (pi, ti), for i = 1, . . . , n.

Trajectory sample databases do not only store a trajectory sample for each moving
object, but also a maximal speed for each moving object. Because we assume that every
moving object has such speed bound, these bounds further restrict trajectories (as trajectory
samples do). This is capured in the following definition.

▶ Definition 4. A trajectory γ is called vmax-bounded when for all t, t′ ∈ R we have
d(γ(t), γ(t′)) ≤ vmax · |t− t′|.

We use Γ(S,vmax) to denote the set of all vmax-bounded trajectories matching the sample S.
Obviously, some trajectory samples have no vmax-bounded trajectories that match them.
The consistency of a sample with a speed bound vmax is expressed in the following definition.

▶ Definition 5. A trajectory sample ⟨(p1, t1), . . . , (pn, tn)⟩ is called vmax-consistent when
d(pi, pi+1) ≤ vmax · (ti+1 − ti), for i = 1, . . . , n− 1.

In the remainder of this paper, we assume, when given a trajectory sample S and a speed
bound vmax, that S is vmax-consistent.

▶ Definition 6. The linear interpolation trajectory of a trajectory sample S = ⟨(p1, t1), . . . ,
(pn, tn)⟩, denoted by LIT(S), is defined as the trajectory γ, with

γ(t) =


p1 if t ≤ t1
ti+1−t
ti+1−ti

· pi + t−ti

ti+1−ti
· pi+1 if ti < t ≤ ti+1 (for 1 ≤ i < n)

pn if tn < t.

TIME 2025



12:4 On the Complexity of the Realisability Problem for Visit Events

We note that if S is vmax-consistent, then LIT(S) is a vmax-bounded trajectory.
In trajectory sample databases, we use natural numbers as identifiers for moving objects.

Therefore, such database is defined relative to a finite subset Obj of N, called the object
identifiers.

▶ Definition 7. A trajectory sample database D over object identifiers Obj ⊂ N is a function
mapping each identifier i ∈ Obj to a pair D(i) = (SD(i), vD(i)), where SD(i) is a trajectory
sample and vD(i) is a speed bound.

This means that, given a database D, the set ΓD(i) = Γ(SD(i),vD(i)) contains all trajectories
that the object with identifier i may have followed (given the sample and the speed bound).

3 Syntax, semantics and evaluation of (R, T )-queries

In this section, we describe a family of query languages for trajectory sample databases.
Our languages consists of two “tiers”: in the inner tier, we have the events, which are used
as subexpressions in the outer tier, where we have the query expressions. We define the
language relative to two parameters, R and T , where R is a collection of spatial regions (or
subsets of R2), and T is a collection of temporal periods (or subsets of R).

In the following subsections, we define the syntax of the query languages, their semantics,
and we end with a remark on the evaluation of query expressions.

3.1 The syntax of (R, T )-queries
We start by defining the inner tier of our language, which is a calculus of events. These
events occur as subexpressions in the query expressions defined later on. Events express
visits that may occur during the movement of an object.

▶ Definition 8. We define the (R, T )-events as follows:
1. visits(R, T ), with R ∈ R and T ∈ T , is an atomic (R, T )-event;
2. If e, e1 and e2 are (R, T )-events, then so are (¬e), (e1 ∧ e2) and (e1 ∨ e2).

In other words, (R, T )-events can be considered as propositional formulas over the pro-
positional symbols visits(R, T ), for every R ∈ R and T ∈ T . Now, we are ready to define
(R, T )-queries. Their expression is given in the following definition.

▶ Definition 9. Let Var be a set of object identifier variables (or variables, for short). The
(R, T )-query expressions are defined as follows:
1. If e is an (R, T )-event, i a natural number and x ∈ Var, then realisable(i, e) and

realisable(x, e) are atomic (R, T )-query expressions;
2. If q, q1 and q2 are (R, T )-query expression, then so are (¬q), (q1 ∧ q2) and (q1 ∨ q2).

3.2 The semantics of (R, T )-queries
To define the semantics of query expressions, we first define what it means for an event to be
realised by a trajectory.

▶ Definition 10. Let e be an (R, T )-event and let γ be a trajectory.
1. If e is the atomic event visits(R, T ), then e is realised by γ if γ(t) ∈ R for some t ∈ T

(that is, γ visits R× T ).
2. If e is of the form (¬e1), then e is realised by γ when e1 is not realised by γ.
3. If e is of the form (e1 ∧ e2), then e is realised by γ when e1 and e2 are realised by γ.
4. If e is of the form (e1 ∨ e2), then e is realised by γ when e1 or e2 is realised by γ.
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In our definition of the semantics of (R, T )-queries, we distinguish between Boolean and
non-Boolean queries. The first type of queries contain no variables and they evaluate to true
or false. The second type of queries contain variables and they define a relations over Obj.

▶ Definition 11. Let D be a trajectory sample database over object identifiers Obj. We write
D |= q to express that a variable-free (R, T )-query expression q evaluates to true on D. This
relation is defined as follows:
1. D |= realisable(i, e) if i ∈ Obj and there exists a trajectory in ΓD(i) that realises e.
2. D |= ¬q if D |= q does not hold.
3. D |= q1 ∧ q2 if D |= q1 and D |= q2.
4. D |= q1 ∨ q2 if D |= q1 or D |= q2.

▶ Definition 12. Let D be a trajectory sample database over object identifiers Obj. If q is an
(R, T )-query expression containing variables x1, . . . , xk ∈ Var, then the result of q evaluated
in D is

q(D) =
{

(i1, . . . , ik) ∈ ObjkD | D |= q[i1/x1, . . . , ik/xk]
}
,

where q[i1/x1, . . . , ik/xk] is obtained from q by instantiating the variable xj in q by ij, for
j = 1, ..., k.

3.3 Evaluation of (R, T )-queries
Having defined the semantics of our (R, T )-query languages, there is a “standard” way of
evaluating query expressions with variables: given a query expression with k variables, we
enumerate all k-tuples of object identifiers, consider all the instantiations associated with
them and then evaluate the variable-free expression obtained by substituting the variable
occurrences by the concrete object identifiers from this tuple.

However, it is not immediately clear from the definition of the semantics how an atomic
query of the form realisable(i, e) can be evaluated. In what follows, we restrict our attention
to this decision problem.

▶ Definition 13. We define the (R, T )-realisability problem to be the following decision
problem: given (R, T )-event e, sample S and speed bound v, does there exist a trajectory in
Γ(S,v) that realises e?

From now on, we use the notation (S, v) |= e to express that there exists a trajectory in
Γ(S,v) that realises the event e.

4 The complexity of the (R, T )-realisability problem

In this section, we give a number of complexity results on the above realisability problem.
We recall that the input to this problem is a trajectory sample, a speed bound and an
(R, T )-event. In order for the realisability problem to be a proper computational decision
problem, these inputs must have finite representations. This means, for example, that
we cannot take arbitrary real numbers as input and that we need to assume some finite
encoding of our inputs. Here, we assume that the spatio-temporal points occurring in the
trajectory sample have rational coordinates, and that the speed bound is rational. As for the
(R, T )-event, its representation depends on the choice for R and T and the representation of
their elements. The choices for R that we consider are Point, the collection of all singletons
in Q2; and SemiAlg, the collection of all semi-algebraic sets in the plane. A semi-algebraic set
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in the plane is a subset of R2 that can be defined using a Boolean combination of polynomial
(in)equalities over two real variables (where the polynomials have integer coefficients) [3].
Elements of Point are simply represented by the coordinates of the point in question, while
an element of SemiAlg is represented by some encoding of its defining formula. The choices
for T we consider are Moment, containing all singletons in Q, and Interval, containing all
closed intervals of R with rational endpoints.

For notational convenience, the atomic (Point, T )-event visits({p}, T ) will be written
as visits(p, T ). And similarly, we will write visits(R, t) for the atomic (R,Moment)-event
visits(R, {t}).

As we show below, the realisability problem is already NP-hard for quite restricted classes
of events. Similar to the evaluation of queries in relational databases, the hardness of the
realisability problem is caused by the size of the event, and not by the size of the trajectory
sample. Therefore, we study the complexity of the realisability problem in three different
settings [1], being:

the data complexity, where we measure the complexity in terms of the size of the sample,
and consider the event to be fixed,
the query complexity, where we measure the complexity in terms of the size of event, and
consider the sample to be fixed, and
the combined complexity, where we measure the complexity in terms of both the size of
the sample, and the size of the event.

We also consider several restrictions to the class of input events, such as positive events,
containing no negations, conjunctive events, being conjunctions of atoms (or, not containing
disjunctions and negations), and events in disjunctive normal form (DNF).

In the remainder of this section, we give various results on the complexity of the (R, T )-
realisability problem, for different choices of R and T and in the three different settings.

For the complexity results mentioned below, we use a computational model in which
operations (addition, multiplication, ...) and comparison relations (=, <, ...) on rational
numbers are assumed to take unit time. That is, we measure the time complexity in terms
of the number of spatio-temporal points in a trajectory sample and in terms of number of
atoms (and their length) in an event-expression.

4.1 The query complexity of the (R, T )-realisability problem
Our first result shows that the realisability problem is already NP-hard for a relatively
restricted class of events, namely the positive (Point,Moment)-events.

▶ Theorem 14. In terms of query complexity, the (Point,Moment)-realisability problem for
positive events is NP-hard.

Proof. To prove NP-hardness, we describe a reduction from SAT, the satisfiability problem
of propositional formulas. Because the statement concerns query complexity, we reduce SAT
to the (Point,Moment)-realisability problem with fixed sample and speed bound. In this
case, we choose the sample S = ⟨((0, 0), 0), ((0, 0), 1)⟩ and the speed bound v = 1. The input
of the reduction is a propositional formula ϕ. We can assume that ϕ is in negation normal
form2, because the satisfiability problem remains NP-hard under this restriction. The output
is a positive (Point,Moment)-event eϕ such that the formula ϕ is satisfiable iff there exists a
trajectory γ in Γ(S,v) that realises the event eϕ.

2 A formula is said to be in negation normal form if negation operators are only applied to atoms.



A. Jansen and B. Kuijpers 12:7

Let P1, . . . Pk be the propositional symbols occuring in ϕ. For 1 ≤ i ≤ k, we define
ti = i+1

k+2 , pi = ( 1
2(k+2) , 0) and p′

i = (− 1
2(k+2) , 0). Now, we take eϕ to be the result

of substituting occurences of ¬Pi by visits(p′
i, ti) and non-negated occurrences of Pi by

visits(pi, ti) in ϕ. Clearly, eϕ is a (Point,Moment)-event, not containing negations.
Finally, we show that ϕ is satisfiable if and only if there exists a γ in Γ(S,v) that realises eϕ.

The “if”-direction is straightforward. If there is some γ that realises eϕ, then ϕ must certainly
be satisfiable. To be precise, the assignment that assigns Pi to true if and only if γ(ti) = pi

satisfies ϕ. For the “only if”-direction, assume that ϕ is satisfiable. Then there exists a truth
assignment α that makes ϕ true. Now, we extend the sample S to a sample S′ such that
it contains (pi, ti) if Pi is assigned true by α, and otherwise contains (p′

i, ti). It is easily
verified that S′ is v-consistent, which means LIT(S′) is a v-bounded trajectory. Now, we
have that LIT(S′) realises visits(pi, ti) if Pi is true under α, and realises visits(p′

i, ti) if ¬Pi is
true under α. It follows from the way we constructed the event, that LIT(S′) realises eϕ. ◀

While the above result shows that the (Point,Moment)-realisability problem is NP-hard
for positive events (not containing negations), the problem for (Point, Interval)-events already
becomes NP-hard for conjunctions of atoms, as shown below.

▶ Theorem 15. In terms of query complexity, the (Point, Interval)-realisability problem for
conjunctive events is NP-hard.

Proof. We give a reduction from the Euclidean travelling saleman problem (E-TSP for short),
shown to be NP-hard in [16] (the problem we refer to here is called the Euclidean tour-TSP
there). The Euclidean travelling saleman problem asks, given a finite set of locations P ⊆ Q2

and a positive number ℓ ∈ Q, whether there is a cycle through all locations of P whose
length is at most ℓ. Formally, this means there is a permutation p1, . . . , pn of the locations
in P such that

∑n−1
i=1 d(pi, pi+1) + d(pn, p1) ≤ ℓ. Without loss of generality, we assume that

P always contains the origin (0, 0).
Again, we work with a fixed sample S = ⟨((0, 0), 0)⟩ and speed bound v = 1. From

an instance P, ℓ of E-TSP, we give a conjunction of (Point, Interval)-atoms C, such that
(S, v) |= C if and only if there is cycle through P of length at most ℓ. We define C as

visits((0, 0), [ℓ, ℓ]) ∧
∧

p∈P \{(0,0)}

visits(p, [0, ℓ]).

To prove that this reduction is correct, we first show that if (S, v) |= C, then there is
cycle through P of length at most ℓ. Let γ be a v-bounded trajectory matching S and
realising C. Because γ matches S, we have γ(0) = (0, 0). And, because γ realises C, it
reaches every location in P at some moment in [0, ℓ], and γ(ℓ) = (0, 0). This induces an
order p1, . . . , pn of the locations in P , where γ first reaches p1, then p2, and so on (we
note that p1 is always (0, 0)). Thus, if we let ti be the first moment where γ(ti) = pi for
i = 1, . . . , n, then 0 = t1 < · · · < tn ≤ ℓ. We claim the cycle p1, . . . , pn, p1 has length at most
ℓ. The length of this cycle is

∑n−1
i=1 d(pi, pi+1) + d(pn, p1). For every i, γ visits (pi, ti), and

because γ is v-bounded, we have d(pi, pi+1) ≤ v · |ti − ti+1| = ti+1 − ti. Similarly, γ visits
(pn, tn) and (p1, ℓ), thus d(pn, p1) ≤ ℓ− tn. It follows that the length of the cycle is at most∑n−1

i=1 (ti+1 − ti) + ℓ− tn = tn − t1 + ℓ− tn = ℓ.
Finally, we show that if there is cycle through P of length at most ℓ, then (S, v) |= C.

Let p1, . . . , pn, p1 be such cycle, where we choose p1 to be (0, 0). Now, let t1 = 0 and for
i = 2, . . . , n, take ti = ti−1 + d(pi−1, pi). Then, tn =

∑n−1
i=1 d(pi, pi+1), which, by assumption,

is at most ℓ− d(pn, p1). Define the trajectory sample S′ = ⟨(p1, t1), . . . , (pn, tn), (p1, ℓ)⟩. It
is clear from the definition of ti that the part of S′ excluding (p1, ℓ) is v-consistent. We have
seen that tn ≤ ℓ−d(pn, p1), and thus d(pn, p1) ≤ ℓ− tn, which implies that S′ is v-consistent.
From this follows that LIT(S′) is v-bounded, and it clearly matches S and realises C. ◀

TIME 2025
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4.2 The data complexity of the (R, T )-realisability problem
In this section, we show that the (SemiAlg,Moment)-realisability problem has linear-time
data complexity, and the (SemiAlg, Interval)-realisability problem has polynomial-time data
complexity

We start with the result on (SemiAlg,Moment)-queries, but first we introduce some
notation and we give two lemmas. Every region in SemiAlg is of the form {(x, y) ∈ R2 |
φ(x, y)}, where φ = φ(x, y) is a quantifier-free formula over the vocabulary (+,×, <, 0, 1),
with x and y as free variables. The set {(x, y) ∈ R2 | φ(x, y)} is called the region defined
by φ, and we denote it by R(φ).

▶ Definition 16. If C = visits(R1, t1) ∧ · · · ∧ visits(Rk, tk) is a conjunction of atomic
(R,Moment)-events, and I ⊆ R is an interval, the formula CI is the conjunction of those
visits(Ri, ti), with 1 ≤ i ≤ k, for which ti ∈ I.

▶ Lemma 17. Let C be a conjunction of atomic (R,Moment)-events, let S be a trajectory
sample ⟨(p1, t1), . . . , (pn, tn)⟩ and let v be a speed bound. Then, (S, v) |= C if and only if all
of the following are true:
(1) (⟨(p1, t1)⟩, v) |= C(−∞,t1],
(2) for i = 1, . . . , n− 1, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1], and
(3) (⟨(pn, tn)⟩, v) |= C[tn,+∞).

Proof. The “only if”-direction is obvious. We prove the “if”-direction. Assume (1), (2)
and (3) are true. By (1), there exists a v-bounded trajectory γ0 matching ⟨(p1, t1)⟩ that
realises C(−∞,t1]. By (2), for i = 1, . . . , n−1, there exists a v-bounded trajectory γi matching
⟨(pi, ti), (pi+1, ti+1)⟩ that realises C[ti,ti+1]. And by (3), there exists a v-bounded trajectory
γn matching ⟨(pn, tn)⟩ that realises C[tn,+∞). We define the trajectory γ as follows:

γ(t) =


γ0(t) if t ∈ (−∞, t1],
γi(t) if t ∈ [ti, ti+1] and
γn(t) if t ∈ [tn,+∞).

We note that the intervals [ti−1, ti] and [ti, ti+1] both contain ti. However, this does not
pose a problem for the definition of γ, because both γi−1 and γi visit (pi, ti), which means
γi−1(ti) = γi(ti) = pi. It only requires a simple application of the triangle inequality (of
Euclidean distance) to show that γ is a v-bounded trajectory. For i = 1, . . . , n, we have
γ(ti) = pi, thus γ matches S. The only thing left to prove is that γ realises C. Let
A = visits(R, t) be an arbitrary conjunct of C. Depending on t, there are three cases to be
considered. First, if t ∈ (−∞, t1], then A is a conjunct of C(−∞,t1]. This implies γ0 realises A,
so γ(t) = γ0(t) ∈ R, which means γ realises A. The other two cases, when t is contained in
[ti, ti+1] or in [tn,+∞), are similar. Because γ realises all the conjuncts of C, it also realises
C itself. ◀

▶ Lemma 18. If C = visits(R1, t1)∧· · ·∧visits(Rk, tk) is a conjunction of atomic (R,Moment)-
events, S is a trajectory sample and v a speed bound, then (S, v) |= C if and only if there
exist k spatial locations p1, . . . , pk such that
(1) for i = 1, . . . , k we have pi ∈ Ri, and
(2) the sample containing the points (p1, t1), . . . , (pk, tk), as well as the ones in S, is v-

consistent.
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We remark that we consider condition (2) from the lemma to be false when some space-
time point among (p1, t1), . . . (pk, tk) shares its temporal component with a point in S, while
their spatial component differs.

Proof. The “only if”-direction is obvious. We prove the “if”-direction. Assume there are
locations p1, . . . , pk satisfying (1) and (2). Now take the trajectory γ to be the linear
interpolation trajectory of the sample containing the points (p1, t1), . . . , (pk, tk), as well as
the ones in S. It is clear that γ matches S and assumption (2) implies it is a v-bounded
trajectory. Finally, assumption (1) implies that γ realises C. ◀

▶ Definition 19. We say two (R, T )-events A and B are equivalent if for every sample S
and speed bound v, we have (S, v) |= A if and only if (S, v) |= B.

The following proposition follows directly from the fact that, for p ∈ R2, we have p /∈ R(φ)
if and only if p ∈ R(¬φ).

▶ Proposition 20. A (SemiAlg,Moment)-event of the form ¬visits(R(φ), t) is equivalent to
the event visits(R(¬φ), t).

Given an arbitrary (SemiAlg,Moment)-event, we can convert it into negation normal form
and use Proposition 20 to remove all negations. The result of this process is a positive
(SemiAlg,Moment)-event that is equivalent to the original. Because this process can be
performed in linear time (with respect to the length of the event), we can assume that any
given (SemiAlg,Moment)-event is positive, without loss of generality.

▶ Theorem 21. In terms of data complexity, the (SemiAlg,Moment)-realisability problem is
decidable in linear time.

Proof. We describe an algorithm to decide the realisability problem of a (SemiAlg,Moment)-
event e for input sample S = ⟨(p1, t1), . . . , (pn, tn)⟩, where pi = (xi, yi), and speed bound v.
Noting the remark made above, we assume that e is positive. The first step is to convert e
into its disjunctive normal form ē. Since we are dealing with data complexity, the possibly
increased size of ē, compared to e, has no impact on the running time of our method. In fact,
because the number of disjuncts of ē is constant, it is sufficient to show that the realisability
problem for a single disjunct can be decided in linear time.

Consider a disjunct C of ē. Because ē is positive and in DNF, the event C must be a
conjunction of atomic events. This means we can apply Lemma 17, and we can determine
whether (S, v) |= C by testing whether each of the following conditions are met:
(1) (⟨(p1, t1)⟩, v) |= C(−∞,t1],
(2) for i = 1, . . . , n− 1, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1], and
(3) (⟨(pn, tn)⟩, v) |= C[tn,+∞).
We focus our attention to condition (2). For every value of i, we want to decide whether
C[ti,ti+1] is realisable for sample ⟨(pi, ti), (pi+1, ti+1)⟩ and speed bound v. Let us write the
conjunction C[ti,ti+1] as visits(R(φ1), t′1) ∧ · · · ∧ visits(R(φk), t′k), with t′1 ≤ · · · ≤ t′k. We
remark that this implies ti ≤ t′1 ≤ · · · ≤ t′k ≤ ti+1. From Lemma 18, we know that
(⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1] if and only if there exist locations q1, . . . , qk ∈ R2, with
qi = (x′

i, y
′
i), such that

(a) for j = 1, . . . , k we have qj ∈ R(φj), and
(b) the sample ⟨(pi, ti), (q1, t

′
1), . . . , (qk, t

′
k), (pi+1, ti+1)⟩ is v-consistent.
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In other words, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1] if and only if the formula
ψ = ∃x′

1∃y′
1∃ . . . ∃x′

k∃y′
k(ψa ∧ψb) is true, where ψa is φ1(x′

1, y
′
1) ∧ · · · ∧φk(x′

k, y
′
k), expressing

condition (a), and to express condition (b), we take ψb to be the conjunction of k+ 1 distance
inequalities.

Because ψ is a first-order logic sentence over the ordered field of real numbers, its truth
can be determined by a decision procedure for the theory of real closed fields (first described
by Tarski [19], we refer to Basu et al. [2] for a modern exposition). We note that the size
of ψ is independent of n, and thus has constant size in the data complexity setting (k is
bounded by the length of C). The time needed to determine the truth of ψ is thus also
constant. To test for condition (2), we have to perform the above steps for n− 1 values of i.
Conditions (1) and (3) can both be tested in constant time, in a manner similar to the above,
the only difference is that the constructed sentence requires one less inequality for expressing
v-consistency. We have thus shown that the realisability problem for a single disjunct of ē
can be answered in O(n) time. This concludes the proof. ◀

Our next result concerns the data complexity of the (SemiAlg, Interval)-realisability prob-
lem for positive events.

▶ Lemma 22. If e is a positive (R, Interval)-event containing k distinct atoms A1, . . . , Ak,
where Ai = visits(Ri, Ti), then (S, v) |= e if and only if there exist k space-time points
(p1, t1), . . . , (pk, tk) such that
(1) the sample containing the points (p1, t1), . . . , (pk, tk), as well as the ones in S, is v-

consistent, and
(2) the Boolean expression obtained by replacing Ai in e by true if (pi, ti) ∈ Ri × Ti, and by

false otherwise, evaluates to true.

Proof. We first prove the “if”-direction. Assume that there exist (p1, t1), . . . , (pk, tk) satisfy-
ing (1) and (2). Let S′ be the sample containing the points (p1, t1), . . . , (pk, tk), as well as
the ones in S. Assumption (1) says S′ is v-consistent, which means LIT(S′) is v-bounded.
Because S′ is an extension of S, and γ matches S′, it must also match S. The trajectory
LIT(S′) realises all the atoms Ai for which (pi, ti) ∈ Ri × Ti, and potentially others. Because
of assumption (2) and the fact that e is positive, LIT(S′) realises e, and thus (S, v) |= e.

For the “only if”-direction, we assume that (S, v) |= e. That means that there exists
a v-bounded γ realising e and matching S. We choose (p1, t1), . . . , (pk, tk) as follows. For
every atom Ai which γ realises, we know that γ visits some point in Ri × Ti, and take (pi, ti)
to be such point. For an atom Ai not realised by γ, we take (quite arbitrarily) (pi, ti) to
be the first anchor point of S. Then, (pi, ti) /∈ Ri × Ti, since otherwise γ would realise Ai.
All points of (p1, t1), . . . , (pk, tk) and S are visited by γ, so the sample containing all those
points must be v-consistent, satisfying condition (1). Because γ realises Ai if and only if
(pi, ti) ∈ Ri × Ti and γ realises e, condition (2) is also satisfied. ◀

The following proposition follows directly from the definition of v-consistency and the
fact that the distance function d obeys the triangle inequality.

▶ Proposition 23. If M is an (unordered) finite set of space-time points, then the sample
containing all points in M is v-consistent if and only if for every pair of points (p1, t1) and
(p2, t2) from M , we have d(p1, p2) ≤ v · |t1 − t2|.

It will be of interest later that the condition d(p1, p2) ≤ v · |t1 − t2| from the above
proposition is equivalent to d(p1, p2)2 ≤ v2 ·(t1 −t2)2, which, if p1 = (x1, y1) and p2 = (x2, y2),
is a polynomial inequality with variables x1, y1, t1, x2, y2, , t2, v.
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▶ Theorem 24. In terms of data complexity, the (SemiAlg, Interval)-realisability problem for
positive events can be decided in polynomial time.

Proof. We describe an algorithm to decide the realisability of a positive (SemiAlg, Interval)-
event e for input sample S, of length n, and speed bound v. Lemma 22 gives a condition
equivalent to (S, v) |= e. We can express this condition using a first-order logic sentence over
the ordered field of real numbers ψ = ∃x1∃y1∃t1 . . . ∃xk∃yk∃tk(ψ1 ∧ ψ2), where ψ1 expresses
part (1) of Lemma 22, and ψ2 expresses part (2). To express part (1), stating that the sample
containing (x1, y1, t1), . . . , (xk, yk, tk) as well as the points from S is v-consistent, we can take
ψ1 to be a conjunction of (n+ k)2 distance inequalities, as per Proposition 23. To express
the second part, we construct ψ2 by taking e and replacing every atom visits(R(φi), [t−i , t

+
i ])

by the formula φi(xi, yi) ∧ t−i ≤ ti ∧ ti ≤ t+i .
We have now constructed a formula ψ which is true if and only if (S, v) |= e. Thus, if there

is a method to determine the truth ψ, we can decide the realisability problem for positive
(SemiAlg, Interval)-events. Because ψ is an existantial sentence, we can apply known decision
procedures for the existential theory of the reals. Of course, the time complexity required to
decide the realisability of positive (SemiAlg, Interval)-events in the described manner, depends
on the time complexity of the existential theory of the reals. In [2] (see theorem 13.14), an
upper bound of sm+1dO(m) is given, where s is the number of polynomials occuring in the
formula, m the number of variables, and d the maximum degree of the polynomials. Because
we are considering data complexity, the number of polynomials in the φi’s, as well as their
maximum degree, is constant, and so is k. This implies that ψ contains O(n2) polynomials
of constant degree, and 3k variables. Thus, by Theorem 13.14 from [2], the truth of ψ can
be decided in O((n2)3k+1) = O(n6k+2) time, which is polynomial in n. It is also clear that ψ
can be constructed in polynomial time. ◀

4.3 A class of events for which the realisability problem has polynomial
time combined complexity

Until now, we have only seen hardness results in the query (and thus, combined) complexity
setting. In this section, we give an example of a class of events for which the realisability
problem has polynomial-time combined complexity.

An (R, T )-literal is either an atomic (R, T )-event, or the negation of an atomic (R, T )-
event. Conjunctions of (Point,Moment)-literals provide a class of events for which the
realisability problem has an efficient solution in terms of combined complexity. Before giving
our result, we first prove a lemma.

▶ Lemma 25. If S1 and S2 are trajectory samples, then there exists a v-bounded trajectory
matching S1 and not visiting any point in S2 if and only if
(1) S1 does not contain a point in S2,
(2) S1 is v-consistent, and
(3) if LIT(S1) visits a point from S2, on the line segment between points (pi, ti) and (pi+1, ti+1)

from S1, then d(pi, pi+1) < v · (ti+1 − ti).

Proof. It is obvious that the conditions (1), (2) and (3) are necessary for the existence of a
v-bounded trajectory matching S1 and not visiting points in S2. To show that they are also
sufficient, we assume that all three conditions are met. Consider the trajectory LIT(S1). By
condition (2), it is v-bounded. In case LIT(S1) visits one or more points from S2, we show
that we can extend (by adding points) S1 to a sample S∗, such that LIT(S∗) is v-bounded,
matches S1 and does not visit points from S2. Because S∗ is obtained by adding points to S1,
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it is obvious that LIT(S∗) matches S1. Let us say that LIT(S1) visits a point (q, t) from S2
on the line segment between (pi, ti) and (pi+1, ti+1). From (1) we know that ti < t < ti+1,
and from (3) we have d(pi, pi+1) < v · (ti+1 − ti). Together, these observations imply there
must be a small disk around q, such that for every p in this disk, the extension of S1 with
the point (p, t) remains v-consistent. Informally, this means we can deviate LIT(S1) slightly
between ti and ti+1, while the trajectory remains v-bounded. Now, for every point (q′, t′) of
S2 with ti < t′ < ti+1, there is at most one choice for p inside the disk that makes the linear
interpolation trajectory of the extended sample visit (q′, t′). Because there are infinitely
many points in the disks, we can choose p such that, between ti and ti+1, none of the points
from S2 are visited. We can repeat this process for each line segment of LIT(S1) that visits a
point from S2. The linear interpolation trajectory of the resulting sample S∗ then matches
S1, is v-bounded and does not visit points from S2, as desired. ◀

▶ Theorem 26. In terms of combined complexity, the (Point,Moment)-realisability problem
for a conjunction of k literals and a trajectory sample of length n is decidable in O(n+k log k)
time.

Proof. We assume that we are given a conjunction C of k (Point,Moment)-literals, a sample S
of length n and a speed bound v as input. Let P1, . . . , Pm be the positive atoms occuring
in C and let N1, . . . , Nℓ be the atoms occuring negated in C. First we compute the sample
S1 = ⟨(p1, t1), . . . (pn+m, tn+m)⟩, containing both the points in S and the ones occuring
in the atoms P1, . . . , Pm. Computing this sample requires ordering the points occuring in
P1, . . . , Pm by time, and merging these with those from S (which are already ordered by
time). This can be done in O(n+ k log k) time. We also compute a sample S2, containing
the points from N1, . . . , Nℓ, in O(k log k) time. Now we have (S, v) |= C if and only if
there exists a v-bounded trajectory matching S1 and not visiting any point in S2. This
can be determined by testing for the conditions of Lemma 25 in O(|S1| + |S2|) time, where
|S1| + |S2| = n+m+ ℓ = n+ k. Thus, the total time required by the described procedure is
O(n+ k log k). ◀

▶ Corollary 27. In terms of combined complexity, the (Point,Moment)-realisability problem
for an event in disjunctive normal form, of length k, and a trajectory sample of length n is
decidable in O(kn+ k log k) time.

Proof. We assume that we are given a (Point,Moment)-event e in disjunctive normal form,
of length k, a sample S of length n and a speed bound v as input. Then, e is of the form
C1 ∨ · · · ∨ Cℓ, where every disjunct Ci is a conjunction of literals. Let us say that the event
Ci contains ki literals. Because e is realisable if and only if one of the Ci’s is realisable, we
can use Theorem 26 to determine the realisability of e, by determining it for each of the
disjuncts. This takes

∑ℓ
i=1 O(n+ ki log ki) time, which is O(kn+ k log k). ◀

5 Conclusion

We have proposed a family of query languages for trajectory sample databases. Query
expressions in these languages contain events, which are used to describe constraints on
trajectories. When performing query evaluation, an essential problem required to be solved
is that of the realisability of an event. We studied the complexity of this realisability
problem in terms of data, query and combined complexity. These results are summarised in
Table 1. These complexity results are given in a computational model wherein (arithmetic
and comparison) operations on rational numbers take unit time. It is not clear whether our
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results remain true in a model in which we measure the cost of these operations in terms of
the length of the bit-representation of rational numbers. Also, we did not give much attention
to the evaluation of query expressions outside of the realisability problem. We assumed that
query expressions are evaluated in some standard way, but more efficient strategies might
exist.
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