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Monitoring well-being in the workplace has become in-
creasingly important as industries transition towards In-
dustry 5.0, where human-centric approaches and sustain-
ability play a central role (Yang et al. (2024)). Assembly
tasks, in particular, pose unique challenges to worker well-
being, with potential impacts on physical and cognitive
load. Traditionally, well-being research in industrial set-
tings has often focused on ergonomics, addressing how
physical strain impacts health and performance. However,
cognitive aspects—such as stress, fatigue, boredom, and
attention—are equally crucial, influencing overall job sat-
isfaction and productivity (Antonaci et al. (2024)). Solu-
tions exist that involve sensor-based methods to monitor
these factors, offering detailed insights into the mental
and emotional states of workers (Park et al. (2020)). Yet,
such technologies are not always feasible for widespread
application due to costs, complexity, and concerns over
privacy (Li et al. (2021)).

This research addresses the need for efficient cognitive
well-being monitoring by measuring mental load and
stress in real production settings. It supports personalized
and adaptive manufacturing models, building on insights
from sensor data (Park et al. (2020)) and process min-
ing (Iriondo Pascual et al. (2022)). To enable effective
personalization, we explore integrating micro-surveys into
work routines by evaluating existing questionnaires to
determine their suitability for subjective cognitive well-
being monitoring. This study examines using single ques-
tions from established tools such as NASA Task Load
Index (NASA-TLX) to assess well-being in assembly con-
texts. While these tools measure cognitive load, workload,
and motivation, their task-level applicability in industry

1. INTRODUCTION

Prior work has explored stress prediction in the work-
place using surrounding stress data, such as colleagues’
stress levels and an individual’s stress history, improving
accuracy (Muñoz et al. (2022)). Other studies have used
physiological measures like heart rate variability (HRV)
and electrodermal activity (EDA). Durantin et al. (2014)
found that HRV and functional near-infrared spectroscopy
(fNIRS) are sensitive to mental workload, while Setz et al.
(2010) distinguished stress from cognitive load using EDA
with up to 82.5% accuracy. However, these methods re-
main invasive and present technological challenges. Thor-
vald et al. (2019) addressed rising cognitive load in com-
plex assembly tasks and developed the Cognitive Load
Assessment for Manufacturing (CLAM), a practical tool
to evaluate cognitive load without expert knowledge. Al-
though CLAM offers a promising approach to cognitive
ergonomics, more efficient interventions are needed to im-
prove productivity and efficiency.

Many questionnaires assess subjective workload and cog-
nitive well-being. A widely used one is the NASA-TLX
(Hart (2006)), which evaluates workload across six di-
mensions: mental demand, physical demand, temporal de-
mand, effort, performance, and frustration. Its simplicity
and adaptability have made it a standard tool. Another is
the Subjective Workload Assessment Technique (SWAT)

2. RELATED WORK

remains underexplored. Leveraging these questionnaires
offers a non-invasive, cost-effective approach suitable for
various industries. To isolate cognitive effects, we con-
ducted a study with 24 participants performing assembly-
like tasks designed to minimize physical strain, ensuring
questionnaire responses reflected cognitive impacts alone.

Keywords: Industry 4.0; Industry 5.0; Well-being; Manufacturing industry; Assembly

Abstract: Recognizing Industry 5.0’s emphasis on human-centric work, we explored the use
of established questionnaires, such as NASA-TLX, SWAT, and IMI, to evaluate cognitive well-
being in assembly-like tasks. While expensive and invasive sensors can provide detailed insights,
our aim was to determine how effectively existing, accessible questionnaires can detect factors
such as boredom, cognitive load, temporal demand, and frustration. This information serves as
a relevant contextual resource, enabling manufacturing companies to identify the root causes
of well-being threats on the workfloor, particularly those linked to specific tasks. The results
demonstrate that these questionnaires can capture key well-being dimensions, making them
valuable for industrial settings. This supports their potential as practical, non-invasive tools
for monitoring work-related well-being, aligning with the goals of a human-centered industrial
future.
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(Reid and Nygren (1988)), which categorizes workload into
time load, mental effort load, and stress load, making it
particularly useful for time-sensitive tasks. The CLAM
tool earlier described also integrates these questionnaires
for cognitive well-being assessment.

While many technological solutions exist for detecting
cognitive well-being factors like mental load, we aim to
explore whether existing surveys can provide a low-cost,
accessible solution for monitoring cognitive well-being in
an assembly-like context.

3. METHODOLOGY

To simulate an assembly-like process while minimizing
physical strain, we used Happy Cubes puzzles with six
interlocking pieces that vary in complexity (András et al.
(2013)). This ensured accessibility without requiring prior
assembly knowledge. Two researchers tested all puzzles,
recording the completion time to confirm significant com-
plexity differences and select suitable tasks. Using Happy
Cubes, we designed six distinct assembly tasks that target
cognitive well-being factors such as frustration, satisfac-
tion, boredom, cognitive load, and temporal demand. Each
task explored how puzzle complexity and conditions influ-
ence these parameters. Figure 1 illustrates an assembled
and disassembled puzzle (4cm x 4cm).

(a) Assembled varia-
tion of the puzzle

(b) Disassembled vari-
ation of the puzzle

Fig. 1. Example of an assembled and disassembled varia-
tion of the Happy Cubes puzzle.

3.1 Hypotheses

We put forward the following hypotheses to investigate
parameters related to well-being that can be evaluated
through subjective assessment (i.e. questionnaires):

H1: Questions related to mental/cognitive demand
are suitable for detecting more complex tasks, as com-
plex tasks require more cognitive demand.

H2: Questions related to temporal demand are suitable
for detecting time pressure in assembly tasks, given that
tasks with a time constraint lead to time pressure.

H3: Questions related to frustration are suitable for
detecting assembly tasks that are unsolvable, as people
struggle when they cannot complete a task.

H4: Questions related to satisfaction are suitable for
detecting complex tasks, assuming that completing com-
plex tasks leads to higher satisfaction levels than easy
tasks.

H5: Questions related to boredom are suitable for de-
tecting repetitiveness in assembly tasks, since repetitive
tasks may lead to attention loss and boredom.

3.2 Study Apparatus

We defined six tasks to investigate our hypotheses:

Task A consists of two assignments that involve solving
puzzles of varying difficulty. Task A1 features an easy
puzzle, intended to provide a straightforward and engaging
challenge that participants can complete with minimal
cognitive effort. Task A2 ramps up the difficulty by pre-
senting a more complex puzzle. Both tasks do not include
instructions to guide participants or time constraints.

Task B involves another puzzle from a difficult level with
time pressure introduced. A visible stopwatch is placed
in front of the participants, and they are instructed to com-
plete the puzzle as quickly as possible. The introduction of
time pressure seeks to simulate a real-world environment
where speed might be critical.

Task C is identical to Task B except that participants are
given explicit paper instructions that illustrate step
by step how to solve the puzzle. The puzzle contained the
same complexity level as in Task B.

Task D is intended to be a frustrating experience, as par-
ticipants are tasked with solving a puzzle that is inherently
unsolvable due to the inclusion of one incorrect piece.
Participants were instructed to stop attempting to solve
the puzzle after 15 minutes (based on pilot studies), or
earlier if they explicitly expressed, with reasons, that they
had recognized the puzzle’s unsolvability. No time pressure
or instructions were present.

Task E involves an easy yet repetitive puzzle task with a
specific variation: each puzzle piece has a figure printed on
one side. Participants are instructed to first assemble the
puzzle with all the figures facing inward. After completing
this configuration, they must fully disassemble the puzzle
before reassembling it with all the figures facing outward.
This sequence—building the puzzle with figures inside,
then outside—is repeated ten times in total, with a full
disassembly required between each variation. The task
aims to explore the impact of easy, but repetitive work.

Task F is intentionally designed to be cognitively chal-
lenging, requiring participants to tackle a complex puz-
zle while also estimating a two-minute duration without
any external cues. This setup creates a multi-tasking
scenario, demanding participants to split their attention
between spatial problem-solving and time estimation.

3.3 Questionnaires

We selected the NASA-TLX (Hart (2006)), a subset
of questions from the Intrinsic Motivation Inventory
(IMI) (McAuley et al. (1989)), and the SWAT (Reid and
Nygren (1988)) to assess cognitive well-being in relation
to the tasks. The NASA-TLX (21-point scale) evaluates
workload across six dimensions: mental demand, physi-
cal demand, temporal demand, performance, effort, and
frustration. The IMI (7-point scale) includes subscales on
interest, competence, effort, value, pressure, and perceived
choice, with only relevant subscales and questions included
in our study: This activity was fun to do, I thought this
was a boring activity, This activity did not hold my at-
tention at all, I think I am pretty good at this activity,
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I am satisfied with my performance at this task, I tried
very hard on this activity, I did not feel nervous at all
while doing this activity, I was very relaxed while doing
this activity, I felt pressured while doing this activity. The
SWAT (3-point scale) measures time load, mental effort,
and psychological stress. In addition, we developed a set of
custom questions to explore alternative ways of assessing
well-being: Performing this activity was satisfying, The
end result of this activity was satisfying, This activity was
boring, This activity was frustrating, This activity was fun,
I had to be focused to do this activity, I felt time pressure
during this activity, I felt stressed regardless of the activity,
This assembly activity was stressful.

3.4 Protocol & Participants

Participants were individually invited and gave their in-
formed consent before completing demographic questions
and receiving a brief study explanation. We used a within-
subject design with balanced Latin square randomization
to counterbalance task order. For Task A, which included
an easy (A1) and complex puzzle (A2), we randomized
their order, but kept them under the same task to examine
their relationship while avoiding distribution across all
tasks. After each task, including A1 and A2, participants
completed a set of questionnaires. Data for both A1 and
A2 are analyzed separately. The experiment involved 24
participants (5 female, 19 male), recruited from a pool
of students and researchers in our university, with an
average age of 24 years (SD = 2.14) (Caine (2016)). The
study was approved by the ethical committee. None of the
participants were familiar with the Happy Cubes puzzles,
and they all completed the six tasks.

4. RESULTS

This section presents the results and discusses them in
relation to the proposed hypotheses.

We evaluated the normality of the data using appropriate
statistical tests. Given the ordinal nature of the data,
we used the Friedman test for multiple comparisons and
the Wilcoxon signed-rank test for pairwise comparisons.
Where applicable, Bonferroni corrections were applied to
adjust for multiple testing. Before presenting the results
related to the hypotheses, we report on the overall per-
formance of all tasks through the task duration that we
measured during the experiment, and the perceived suc-
cessfulness reported in the NASA-TLX for each task. Fig-
ure 2a shows an overview of the average duration per task
and its standard deviation. Figure 2b shows the results
for the perceived successfulness score as reported in the
NASA-TLX per task.

4.1 Mental/Cognitive demand

H1: Questions related to mental/cognitive demand are
suitable for detecting more complex tasks.

We investigated the two tasks of Task A to investigate
this hypothesis given their difference in expected complex-
ity, and investigated the outcomes related to NASA-TLX
Mental demand and SWAT Mental load. The results of the
Wilcoxon signed-rank tests show that Task A1 induces sig-
nificantly lower subjective mental load compared to Task

(a) Task duration (b) NASA-TLX Performance

Fig. 2. Overall performance measures

A2. For the NASA-TLX mental demand category, Task A1
(median = 10.0) showed a significantly lower score than
Task A2 (median = 13.0), W=18.0, p=0.0007. Similarly,
for the SWAT mental load measure, Task A1 (median =
2.0) also demonstrated a significantly lower score com-
pared to Task A2 (median = 2.0, but with noticeable
individual differences), W=7.0, p=0.0016. These findings
highlight the increased perceived mental load for Task
A2, suggesting that it requires greater cognitive resources
or effort compared to Task A1. The consistency across
both the NASA-TLX and SWAT measures strengthens the
evidence for this conclusion.

Similarly, we performed the same analysis for Task B and
C since they only differ in the presence of instructions,
making Task C significantly easier (as also visible in
Figure 2a for the average completion time). The results
of the Wilcoxon signed-rank tests support the hypothesis
that Task C induces a significantly lower subjective mental
load compared to Task B. For the NASA-TLX Mental
Demand measure, Task B (median = 12.5) showed a
significantly higher score than Task C (median = 5.0),
W = 3.0, p < 0.001. Similarly, for the SWAT Mental
Load measure, Task B (median = 2.0) demonstrated a
significantly higher score compared to Task C (median
= 1.0), W = 7.5, p = 0.001. The consistency across
both the NASA-TLX Mental Demand and SWAT Mental
Load measures highlights the evidence for this result.
This aligns with the expectations that Task C, where
instructions are present, places a significantly lower strain
on participants’ cognitive capacities. Given these results,
we support hypothesis H1.

4.2 Time pressure/Temporal demand

H2: Questions related to time pressure or temporal de-
mand are suitable for detecting time pressure in assembly
tasks.

We used the three questions (“SWAT Time Load”,
“NASA-TLX Temporal Demand,” and “Custom question:
Time Pressure”) to assess time pressure among the tasks.
We compare Task B, C and F against A, D and E since
they differ in the presence of time constraints. The median
for each task per question is demonstrated in Figure 3, and
reveals that there is a noticeable difference in NASA-TLX
Temporal Demand and our custom question.

We performed Friedman tests, resulting in significant
differences for each question:

NASA-TLX: Temp. Demand: χ2(3) = 41.18, p < 0.001
SWAT: Time Load: χ2(3) = 39.08, p < 0.001
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Fig. 3. Comparison of SWAT, NASA, and custom Time
pressure medians

Custom: Time Pressure: χ2(3) = 58.24, p < 0.001

We conducted post-hoc pairwise comparisons using the
Wilcoxon signed-rank test with Bonferroni correction (p =
0.002). The significant results of these pairwise compar-
isons are summarized in Table 1.

Table 1. Pairwise Wilcoxon signed-rank test
results for NASA-TLX, SWAT, and custom
question. (Task T = task with time pressure,

Task NT = no time pressure)

Task T Task NT P-Value Significant W

NASA-TLX

B A1 p < 0.001 True 0.0
B A2 p < 0.001 True 3.0
B D p < 0.001 True 16.0
B E p < 0.001 True 6.5
C A1 0.002 True 29.5
F A1 0.001 True 14.0

SWAT

B A1 0.004 True 0.0
F A1 p < 0.001 True 5.5
F A2 0.001 True 5.0
F E p < 0.001 True 0.0

Custom Question

B A1 p < 0.001 True 0.0
B A2 p < 0.001 True 10.5
B E p < 0.001 True 3.5
C A1 p < 0.001 True 4.0
C A2 0.002 True 22.5
C E p < 0.001 True 19.5
F A1 p < 0.001 True 16.0
F A2 p < 0.001 True 2.5
F D 0.001 True 14.5
F E p < 0.001 True 19.5

The post-hoc comparisons reveal that Task B shows a
significant difference with every other task that does not
have time constraints. The results for C and F show
less encouraging results, which may indicate that limited
complexity of task (Task C) and the ‘unsolvability’ of the
task (Task F) impacts the findings. The SWAT time load
reveals less promising results with nearly no significant
differences among the tasks with and without time pres-
sure, making it a less effective candidate for measuring
temporal demand. The most significant differences can be
found in our custom question related to time pressure. We
only encountered no significant difference when comparing
Task B and C to Task D. Our custom question shows to
be a good candidate to capture time pressure in tasks (B,
C, F) with a clear time constraint versus a solvable task
without time constraints (A1, A2, and E). Since we did
not encounter a significant difference in all comparisons,
we do not support H2.

4.3 Frustration

H3: Questions related to frustration are suitable for de-
tecting assembly tasks that are unsolvable or cannot be
successfully performed.

We compare Task D with the other tasks since this task
contains a wrong puzzle piece that makes it impossible
to finish the puzzle. The duration of this task is also
significantly longer than the other tasks (see Figure 2a).
We performed a Friedman test for each to assess differences
between tasks for the three questions related to frustration
and psychological stress. The results showed significant
differences for all three questions:

NASA-TLX: Frustration: χ2(3) = 61.42, p < 0.001
SWAT: Psychological stress: χ2(3) = 50.35, p < 0.001
Custom: This activity was frustrating: χ2(3) = 65.07,

p < 0.001

Given the significant results, we conducted post-hoc pair-
wise comparisons using the Wilcoxon signed-rank test with
Bonferroni correction (p = 0.002). The significant results
of these pairwise comparisons are summarized in Table 2.

Table 2. Post-hoc Wilcoxon signed-rank test
results for questions related to frustration.

Task 1 Task 2 p-value Significant W

NASA-TLX - Frustration

A1 D p < 0.001 True 8.5
B D 0.001 True 30.5
C D p < 0.001 True 1.5
D E p < 0.001 True 0.0
D F p < 0.001 True 1.5

SWAT - Psychological stress

A1 D p < 0.001 True 10.0
C D p < 0.001 True 5.0
D E p < 0.001 True 2.0

Custom: This activity was frustrating

A1 D p < 0.001 True 8.0
B D 0.001 True 25.0
C D p < 0.001 True 0.0
D E p < 0.001 True 0.0

The findings reveal that Task D generally resulted in
higher levels of frustration and psychological stress across
the measures (see Figure 4). However, the comparison with
Task A2 did not reveal a significant difference. During our
observations and looking at the performance reported in
NASA-TLX (see Figure 2b), we also noticed that people
struggled more to finish Task A2 compared to other tasks,
probably also causing frustration. Given these findings,
we cannot support H3, although the other tasks showed
promising results. The NASA-TLX Frustation question
seems to be most suitable to use for detecting frustration.

4.4 Satisfaction

H4: Questions related to satisfaction are suitable for de-
tecting complex tasks.

We used the IMI - Satisfaction question and two of our
custom questions related to satisfaction to investigate this
hypothesis. We performed a Friedman test for each ques-
tion to assess differences between tasks for satisfaction-
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Fig. 4. Comparison of NASA, SWAT and Custom Frustra-
tion medians

related questions from the IMI and the custom question-
naire. The results showed significant differences for all
three questions:

IMI: Satisfaction: χ2(3) = 59.91, p < 0.001
Custom: Performing this activity was satisfying: χ2(3) =

32.85, p < 0.001
Custom: The end result of this activity was satisfying:
χ2(3) = 47.53, p < 0.001

Given the significant results, we conducted post-hoc pair-
wise comparisons using the Wilcoxon signed-rank test with
Bonferroni correction (p = 0.003). The significant results
of these pairwise comparisons are summarized in Table 3.
We focus on comparing Task D (unsolvable puzzle) to Task
A, B, C, and E since they were clearly solvable. Task F is
left out, as it is doubtful whether this is perceived as a
solvable task or not.

Table 3. Post-hoc Wilcoxon signed-rank test
results - Questions related to satisfaction

Task 1 Task 2 p-value Significant W

IMI: I am satisfied with my performance

A1 D p < 0.001 True 2.0
A2 D p < 0.001 True 28.5
B D p < 0.001 True 25.0
C D p < 0.001 True 0.0
D E p < 0.001 True 0.0

Performing this activity was satisfying

A1 D p < 0.001 True 12.0
B D 0.001 True 16.5
C D p < 0.001 True 2.5
D E p < 0.001 True 14.0

The end result of this activity was satisfying

A1 D p < 0.001 True 7.5
A2 D p = 0.003 True 22.0
B D p < 0.001 True 23.5
C D p < 0.001 True 6.0
D E p < 0.001 True 23.5

The findings demonstrate that Task D generally led to
lower satisfaction across the measures (see Figure 5). Both
I am satisfied with my performance and The end result of
this activity was satisfying showed significant differences
across all tasks, suggesting that these measures are more
sensitive indicators of satisfaction than Performing this ac-
tivity was satisfying. These results support the hypothesis
that Task D induces lower satisfaction compared to the
other tasks, leading us to confirm Hypothesis H4. How-
ever, as satisfaction may follow a U-shaped relationship
with cognitive demand or complexity, this effect should be
interpreted with caution (van Steenbergen et al. (2015)).

(a) IMI (b) Custom: Activity (c) Custom: Result

Fig. 5. Comparison of IMI and custom questions (activity,
end result) medians for Satisfaction

4.5 Boredom

H5: Questions related to boredom are suitable for detecting
repetitiveness in assembly tasks.

To assess differences across tasks for the boredom-related
questions from the IMI and the custom question ’This
activity was boring’, we performed a Friedman test for
each question, which revealed only a significant difference
for the custom question;

IMI: Boring activity: χ2(3) = 10.85, p = 0.093
Custom: This activity was boring: χ2(3) = 13.38, p =
0.037.

However, no significant differences were found when con-
ducting post-hoc pairwise comparisons using the Wilcoxon
signed-rank test with Bonferroni correction. These results
do not support Hypothesis H5, and therefore, we reject
it. Boredom-related questions were not effective indicators
for detecting repetitiveness in tasks. However, it is impor-
tant to exercise caution in interpreting these results, as the
tasks were new to participants. Thus, to more effectively
investigate the repetitiveness of tasks, it may be necessary
to include a greater variety of tasks in future studies.

4.6 Summary of Findings

Based on our findings, we recommend the following mea-
sures for assessing cognitive well-being in assembly tasks:

Mental Demand: NASA-TLX Mental Demand scale or
SWAT Mental Load as a simpler alternative.

Temporal Demand: Custom question: ”I felt time pres-
sure during this activity.”

Frustration: NASA-TLX Frustration scale.
Satisfaction: IMI Satisfaction scale or custom question:
”The end result of this activity was satisfying.”

Boredom: Further investigation needed.

5. DISCUSSION

Our experiment showed that both standardized and cus-
tomized questionnaire items effectively detect cognitive
well-being aspects in assembly tasks. These subjective
measures complement objective data (e.g., sensor data),
providing insights into operator experiences that affect
performance. This demonstrates the potential of tailored
questionnaires for well-being monitoring in industrial set-
tings. The SWAT questionnaire, with its simple 3-point
scales, is well-suited for micro-surveys on compact devices
like smartwatches. However, it has limitations, and work-
station screens could offer a better medium for more de-
tailed questionnaires at appropriate times. The experiment
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used an assembly-like task designed to assess cognitive
well-being while minimizing physical strain, enhancing the
generalizability of our findings. Future studies should val-
idate these results with a broader range of assembly tasks
that include physical strain and focus more on objective
performance metrics, ensuring the translation of findings
to real industrial assembly settings.

Subjective data provides valuable context while also of-
fering certain advantages and presenting challenges. One
key advantage is privacy, as questionnaires can be man-
aged locally, unlike sensor-based systems that often rely
on cloud storage. However, data misrepresentation may
occur if operators provide inaccurate responses due to job
security concerns (Holden et al. (2015)), making trust-
building essential for honest feedback. Additionally, time
constraints pose a challenge, as collecting subjective re-
sponses can disrupt workflows; thus, identifying optimal
moments and keeping questionnaires concise is crucial.

Future research directions include investigating the op-
timal timing and frequency for deploying micro-surveys
to avoid overwhelming operators while ensuring sufficient
data collection. Additionally, exploring correlations be-
tween factors such as perceived stress, performance, and ef-
fort by examining additional standardized questions could
provide deeper insights. Also, developing methods to ag-
gregate well-being data collected at the task level would
enable analysis at the daily or job level and across multiple
tasks, offering a more comprehensive understanding of
cognitive well-being at work.

6. CONCLUSION

We performed an experiment (n=24) to investigate whether
single questions from subjective questionnaires can be
used to measure cognitive well-being in assembly tasks.
The study revealed that customized and standardized
questions provide valuable insights into cognitive well-
being factors such as mental demand and time pressure
which are critical for understanding factors influencing
work performance. While challenges like data misrepresen-
tation and time constraints exist, these can be mitigated
through careful design and privacy-conscious implementa-
tion strategies. Future research should explore integrating
these questions into micro-surveys and examining the rela-
tionship between subjective and objective well-being data.
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G., and Ehlert, U. (2010). Discriminating stress from
cognitive load using a wearable eda device. IEEE Trans-
actions on Information Technology in Biomedicine,
14(2), 410–417. doi:10.1109/TITB.2009.2036164.

Thorvald, P., Lindblom, J., and Andreasson, R. (2019).
On the development of a method for cognitive
load assessment in manufacturing. Robotics and
Computer-Integrated Manufacturing, 59, 252–266. doi:
https://doi.org/10.1016/j.rcim.2019.04.012.

van Steenbergen, H., Band, G.P., and Hommel, B. (2015).
Does conflict help or hurt cognitive control? initial evi-
dence for an inverted u-shape relationship between per-
ceived task difficulty and conflict adaptation. Frontiers
in Psychology, 6, 974.

Yang, J., Liu, Y., and Morgan, P.L. (2024). Human-
machine interaction towards industry 5.0: Human-
centric smart manufacturing. Digital Engineering,
100013.


