

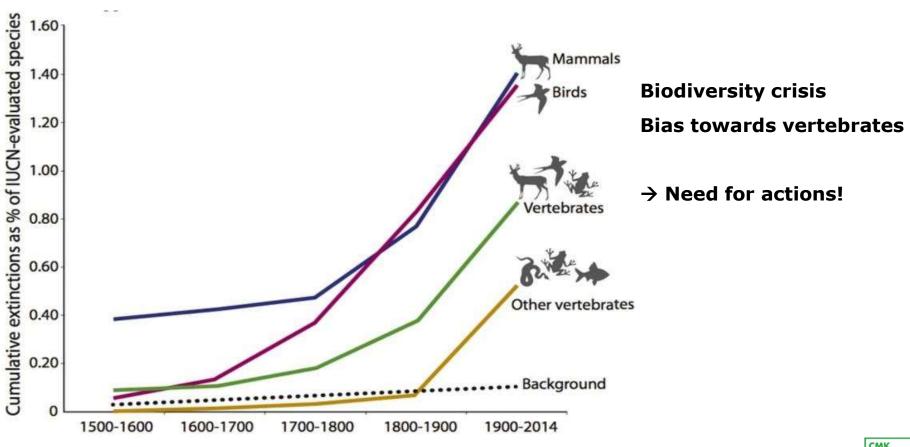






Breeding critically endangered European weatherfish in captivity in Flanders (Belgium): a holistic approach also conserves threatened parasitic flatworms




September 2, 2025

Tiziana Gobbin, Nikol Kmentová, Johan Auwerx, An Martel, Alex Nelson, Naomi Terriere, Jeroen Van Wichelen, <u>Maarten Vanhove</u>





## **Biodiversity crisis**



CMK
CENTRE FOR
ENVIRONMENTAL SCIENCES

2015) >> UHASSELT

### **Conservation action**

#### Among possible conservation action:

- Breeding and reintroduction
- Relocation / Translocation



Gopher tortoise (Gopherus polyphemus)



Black rhinoceros (Diceros bicornis)



Californian condor (*Gymnogyps californianus*)





#### **Conservation action**

## Commonly, (species-specific) parasites are intentionally removed during conservation actions targeting their hosts

Gophertortoise tick Amblyomma personatum (Amblyomma tuberculatum) Dermacentor rhinocerinus

→ increases the extinction risk of parasites
 → conservation-induced extinction

Gopher tortoise (Gopherus polyphemus)

Black rhinoceros (Diceros bicornis)

Californian condor (*Gymnogyps californianus*)



CMK
CENTRE FOR
ENVIRONMENTAL SCIENCE

**VHASSELT** 

California condor louse

(Colpocephalum

#### **Parasite extinction**

#### **Extinction of parasite species is not good news!**

#### **Parasites**

Provide many ecosystem services

linking food webs regulating host populations reducing impact of toxic pollutants developing immunity

...

Have an intrinsic value

part of genetic and species diversity a (large) portion of evolutionary history









## Does conserving parasites lead to a dilemma?



Protect endangered free-living species at the risk of causing parasite decline/extinction?

OR

Protect endangered parasite species at the risk of decreasing host fitness?



Conservation of one species should NOT hamper the conservation of other species!

→ a case study showcasing this



CMK
CENTRE FOR
ENVIRONMENTAL SCIENCES

>> UHASSELT

## **European weatherfish**

#### **European weatherfish (Misgurnus fossilis)**

#### **Decreased in large parts of its native range**

(habitat loss, pollution, invasion of 2 Asian congeners)







## **European weatherfish**

Flanders: critically endangered (few small populations left)

**Since 2021: protection plan in Flanders** 



#### **Ex-situ breeding**

- to restock existing Flemish populations
- to establish new ones in suitable habitats









CMK
CENTRE FOR
ENVIRONMENTAL SCIENCES

>> UHASSELT

#### Parasites of the European weatherfish: extinction risk in Czech Republic & Slovakia

| HELMINTH CLASS/IUCN CATEGORY<br>Helminth species | Host species | River basin <sup>1</sup> | Proposed IUCN category<br>for Czech / Slovak Rep. <sup>2</sup> |
|--------------------------------------------------|--------------|--------------------------|----------------------------------------------------------------|
| MONOGENEA/CRITICAL                               |              |                          |                                                                |
| Ancyrocephalus cruciatus (Wedl, 1857)            | M. fossilis  | F. O. D                  | EN / CR                                                        |
| Dactylogyrus chondrostomi Malevitskaja, 19413    | C. nasus     | D                        | CR / SU                                                        |
| Dactylogyrus dirigerus Gusev, 1966               | C. nasus     | D                        | CR/SU                                                          |
| Dactylogyrus ergensi Molnár, 1964                | C. nasus     | D                        | CR/SU                                                          |
| Dactylogyrus nybelini Markevitch, 19333          | C. nasus     | D                        | CR / SU                                                        |
| Dactylogyrus simplicimalleata Bychowsky, 19613   | P. cultratus | D                        | CR / VU                                                        |
| Gyrodactylus fossilis Lupu et Roman, 1956        | M. fossilis  | E. O. D                  | EN / CR                                                        |
| Gyrodactylus macrocornis Ergens, 1963            | C. nasus     | D                        | CR / SU                                                        |
| Gyrodactylus misgurni, Ling Mo-en 1962           | M. fossilis  | D                        | helminth not recorded / CR                                     |
| Gyrodactylus paraminimus Ergens, 1966            | C. nasus     | D                        | CR / SU                                                        |
| Paradiplozoon vojteki (Pejčoch, 1968)            | P. cultratus | D                        | CR / VU                                                        |

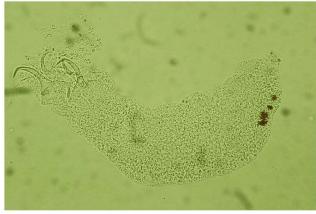


## **Parasites on European weatherfish! Now what?**

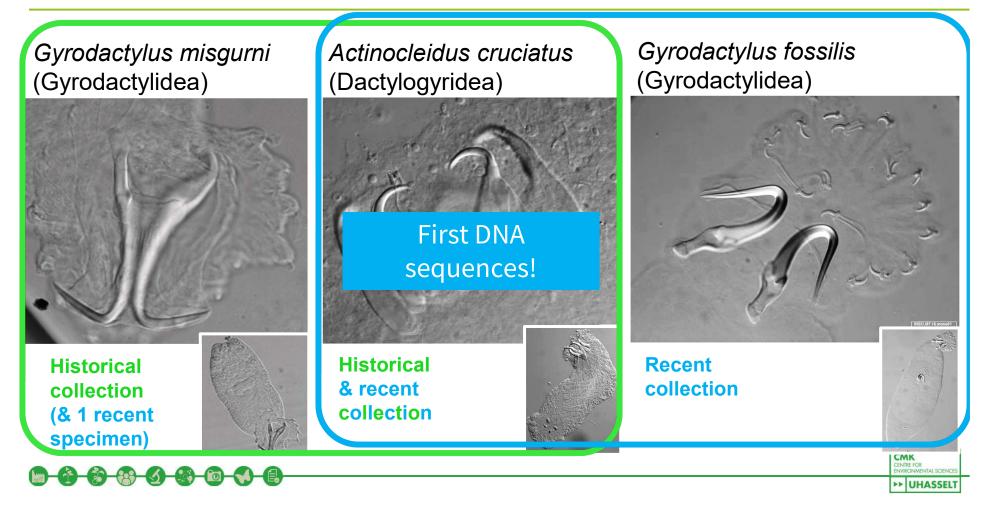
18 fish from 2024 (9 adults + 9 juveniles)

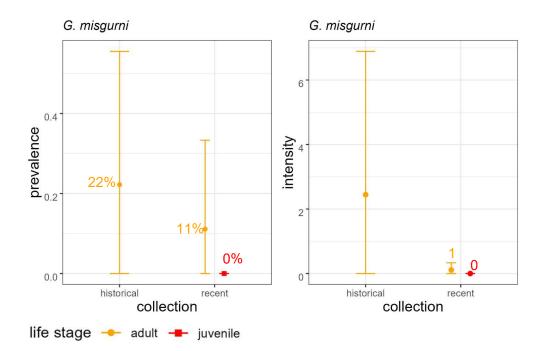






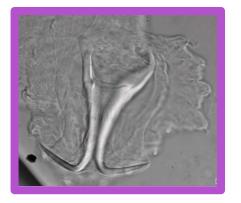




## **Parasites on European weatherfish! Now what?**


18 fish from 2024 (9 adults + 9 juveniles) 9 fish from 1881-1973 (9 adults)

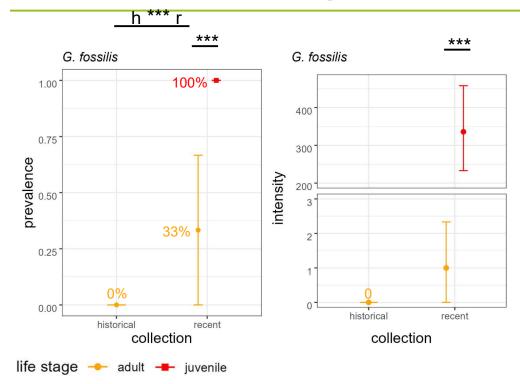












#### G. misgurni

On historical (adult) host specimens, except 1 individual on a recent fish (no stats)

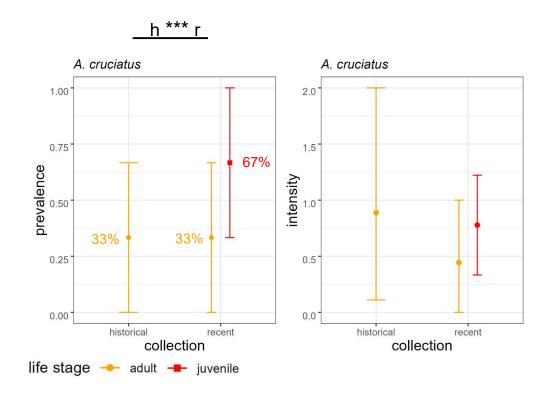








#### G. fossilis


Only on recent host specimens
All juveniles were infected and by much higher numbers than adults (mean 336 vs 1)

→ It may not have been present in Belgium in the past

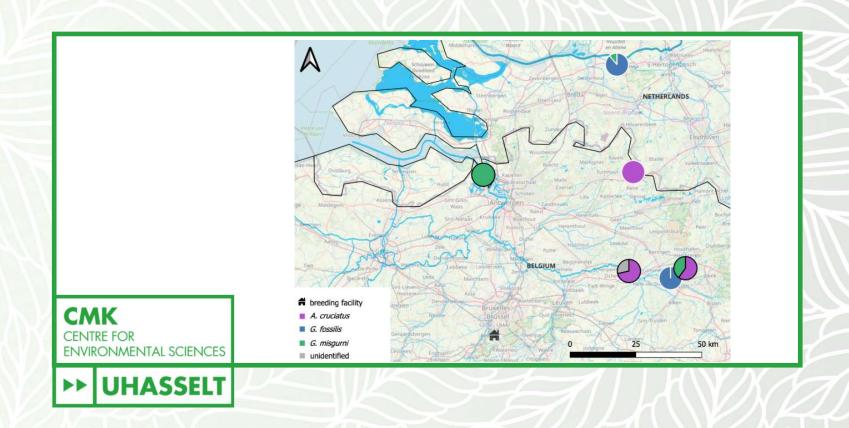
→ Juvenile/adult difference in infection may be explained by their different diet

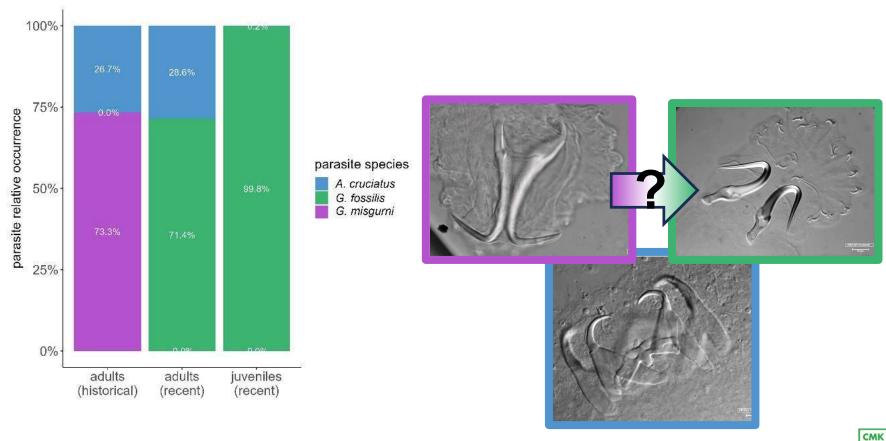






#### A. cruciatus


Despite similar prevalence, recent specimens had higher numbers than historical ones.


 $\rightarrow$  it thrives in aquaculture













CMK
CENTRE FOR
ENVIRONMENTAL SCIENCES

HUHASSELT

## Molecular characterization: resources for barcoding and eDNA detection

#### A. cruciatus

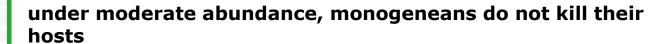
18S-ITS1: 3 haplotypes

28S: 3 haplotypes

COI: 2 haplotypes

#### G. fossilis

ITS1: 4 haplotypes


28S: 3 haplotypes

COI: 3 haplotypes

| 1. INBO MF 13 mono 08 Ac  | Т   | T | G | Т | Т | Т | G | т | C | Δ | C | Т | Δ | Δ | G | Δ | Δ | Δ | т | Δ | Δ | Т | Δ | Δ | Δ | G | Δ | Δ | C | - |
|---------------------------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2. INBO.MF.13.mono.09.Ac  | -01 | T |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 3. INBO.MF.27.mono.01.Ac  | Т   | Т | G | Т | Т | Т | G | Т | С | Α | С | Т | A | A | G | Α | Α | Α | Т | A | Α | Т | Α | Α | A | G | Α | Α | С | C |
| 4. INBO.MF.14.mono.05.Ac  | Т   | Т | G | Т | Т | T | G | Т | С | Α | С | Т | Α | Α | G | Α | Α | Α | Т | Α | Α | Т | Α | Α | Α | G | Α | Α | С | C |
| 5. INBO.MF.15.mono.12.Ac  | Т   | Т | G | Т | Т | Т | G | Т | С | A | С | Т | A | A | G | Α | A | Α | Т | A | Α | Т | Α | A | Α | G | Α | Α | С | C |
| 6. INBO.MF.21.mono.01.Gf  | Т   | Т | G | Т | T | Т | G | Т | С | A | С | Т | Α | A | G | A | A | Α | Т | Α | Α | Т | Α | A | A | G | Α | A | С | C |
| 7. INBO.MF.16.mono.05.Ac  | Т   | Т | G | Т | Т | Т | G | Т | С | A | С | Т | Α | A | G | A | Α | Α | Т | Α | Α | Т | Α | A | A | G | Α | Α | С | C |
| 8. INBO.MF.27.mono.02.Ac  | Т   | Т | G | Т | Т | T | G | Т | С | A | С | T | Α | A | G | A | A | Α | Т | Α | A | Т | A | A | A | G | A | A | С | C |
| 9. INBO.MF.11.mono.15.Ac  | Т   | T | G | Т | T | T | G | Т | С | Α | С | Т | A | A | G | G | A | Α | Т | A | A | Т | A | A | A | G | Α | A | С | C |
| 10. INBO.MF.17.mono.05.Ac | T   | T | G | Т | Т | Т | G | Т | С | A | С | Т | Α | A | G | G | A | Α | Т | A | A | Т | A | A | A | G | Α | A | С | C |
| 11. INBO.MF.25.mono.01.Ac | T   | Т | G | Т | Т | Т | G | Т | С | Α | С | Т | Α | A | G | G | Α | Α | Т | Α | Α | Т | A | A | A | G | Α | A | С | C |
| 12. INBO.MF.12.mono.07.Gf | Т   | Α | G | Т | Α | Т | Т | Α | С | Α | Т | T | Α | A | G | T | Α | Α | Т | G | G | G | G | A | A | С | Α | Α | С | C |
| 13. INBO.MF.13.mono.10.Gf | T   | Α | G | Т | Α | Т | Т | Α | С | Α | Т | Т | Α | A | G | Т | Α | Α | Т | G | G | G | G | Α | Α | С | A | A | С | C |
| 14. INBO.MF.22.mono.01.Gf | Т   | Α | G | Т | Α | Т | Т | Α | С | Α | Т | Т | Α | A | G | Т | Α | Α | Т | G | G | G | G | Α | Α | С | Α | Α | С | C |
| 15. INBO.MF.23.mono.03.Gf | T   | Α | G | T | Α | Т | Т | Α | С | A | Т | T | A | A | G | Т | A | Α | Т | G | G | G | G | Α | A | С | A | A | С | C |
| 16. INBO.MF.14.mono.06.Gf | T   | Α | G | T | A | Т | Т | Α | С | Α | Т | Т | A | A | G | T | Α | Α | Т | G | G | G | G | Α | A | С | A | Α | С | C |



#### A winning combination: saving more than one



- → not necessary to actively remove them during conservation actions
- → conservation actions for hosts can benefit parasites, too!
- ightarrow integrate parasitological assessments into conservation good practices and reintroduction

# CMK CENTRE FOR ENVIRONMENTAL SCIENCES





## **Perception of parasites**

World Archives of Species Perception, spin-off on parasites



https://tinyurl.com/wasp-parasite



Stinking corpse lily (Rafflesia arnoldii), a plant parasite



How do you rate this species in terms of:

 Ugly
 O
 O
 Beautiful

 Disgusting
 O
 O
 Cute

 Scary
 O
 O
 Benign

 Boring
 O
 O
 Interesting

 Harmful for ecosystem
 O
 O
 Important for ecosystem

