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Abstract

Objectives Fractional flow reserve (FFR) and instantaneous wave-Free Ratio (iFR) pressure measurements during invasive
coronary angiography (ICA) are the gold standard for assessing vessel-specific ischemia. Artificial intelligence has emerged
to compute FFR based on coronary computed tomography angiography (CCTA) images (CT-FFR,). We assessed a CT-
FFR deep learning model for the prediction of vessel-specific ischemia compared to invasive FFR/IFR measurements.

Materials and methods We retrospectively selected 322 vessels from 275 patients at two centers who underwent CCTA
and invasive FFR and/or iFR measurements during ICA within three months. A junior and senior radiologist at each center
supervised vessel centerline-building to generate curvilinear reformats that were processed for CT-FFR,; binary outcomes
(< 0.80 or > 0.80) prediction. Reliability for CT-FFR,; outcomes based on radiologists’ supervision was assessed with Cohen'’s
k. Diagnostic values of CT-FFR,, were calculated using invasive FFR < 0.80 (n = 224) and invasive iFR < 0.89 (n = 238) as the
gold standard. A multinomial logistic regression model, including all false-positive and false-negative cases, assessed the
impact of patient- and CCTA-related factors on diagnostic values of CT-FFR4,.

Results Concordance for CT-FFR, binary outcomes was substantial (k= 0.725, p < 0.001). Sensitivity, specificity, positive

predictive value, negative predictive value, and diagnostic accuracy of CT-FFR, in predicting vessel-specific ischemia on a
per-vessel analysis, based on senior radiologists’ evaluations, were 85% (58/68) and 91% (78/86), 82% (128/156) and 78% (119/
152), 67% (58/86) and 70% (78/111), 93% (128/138) and 94% (119/127), and 83% (186/224) and 83% (197/238), respectively.
Coronary calcifications significantly reduced the diagnostic accuracy of CT-FFR, (p < 0.001; OR, 1.002; 95% ClI 1.001-1.003).

Conclusion CT-FFR, demonstrates high diagnostic performance in predicting vessel-specific coronary ischemia compared
to invasive FFR and iFR. Coronary calcifications negatively affect specificity, suggesting that further improvements in spatial
resolution could enhance accuracy.

Key Points

Question How accurately can a new deep learning model (CT-FFR4) assess vessel-specific ischemia from CCTA non-invasively
compared to two validated pressure measurements during invasive coronary angiography?

Findings CT-FFR,, achieved high diagnostic accuracy in predicting vessel-specific ischemia, with high sensitivity and negative
predictive value, independent of scanner type and radiologists’ experience.

Clinical relevance CT-FFR, provides a non-invasive alternative to Fractional Flow Reserve and instantaneous wave-Free Ratio
measurements during invasive coronary angiography for detecting vessel-specific ischemia, potentially reducing the need for
invasive procedures, lowering healthcare costs, and improving patient safety.
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Introduction

Fractional flow reserve (FFR) during invasive coronary
angiography (ICA) is a guideline-endorsed invasive phy-
siological index to assess vessel-specific coronary ischemia.
It is defined as the ratio of the mean distal coronary pres-
sure to the mean aortic pressure, measured under maximal
hyperemia induced by adenosine, with a threshold of < 0.80
indicating a hemodynamically significant stenosis [1, 2].
Because of the importance of this assessment to guide
treatment strategy, other invasive non-hyperemic physio-
logical indices, such as resting instantaneous wave-Free
Ratio (iFR), which is calculated by measuring the resting
pressure gradient across a coronary lesion during diastole,
has been shown to be a reliable alternative at a threshold
<0.89 compared to invasive FFR <0.80 in recent rando-
mized clinical trials [3, 4].

More recently, emphasis has been placed on the
development of non-invasive methods. FFR estimated
from computational fluid dynamics (CFD) simulations
using coronary computed tomography angiography
(CCTA) (CT-FFR) [5] has become an established alter-
native to invasive FFR and can be considered for the

diagnosis and management of patients with intermediate
risk and stable chest pain according to recent guidelines
[1, 2]. At the same time, artificial intelligence (AI) has
been swiftly advancing within the medical field, particu-
larly in diagnostic imaging [6]. Different full- or semi-
automated machine learning or deep-learning models
(DLMs) were reported to predict invasive FFR from
CCTA datasets (CT-FFR,;) with an accuracy ranging
from 66% to 93%, usually on small single-center cohorts
[7]. A new CT-FFR,; model (CorEx, SPIMED-AI) showed
a similar diagnostic value to a CFD-based CT-FFR in
predicting invasive FFR<0.80 on a small cohort of
patients with coronary stenoses of intermediate severity
(40-70% diameter reduction) [8]. In contrast to CFD, a
physical model solving the Navier-Stokes equations, this
CT-FFR,; model was trained on segmented curved mul-
tiplanar reconstruction (cMPR) images integrating a
Coronary Artery Disease-Reporting and Data System
(CAD-RADS) classification and a binary prediction model
(CT-FFRA1<0.80 or >0.80) with invasive FFR as ground
truth [8, 9]. The purpose of this retrospective multicenter
study was to assess the diagnostic performance and
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reliability of CorEx, Spimed-Al, as CT-FFR,; for the
assessment of vessel-specific ischemia as defined by two
validated invasive pressure measurements during ICA, in
a larger population.

Materials and methods

Study population

Our study protocol was approved by the institutional
Ethical Review Boards of the participating centers (Center
1: 2022/130, 2022; Center 2: 13/06/2023) and waived the
need for informed patient consent in compliance with the
law on retrospective analyses of de-identified health data.
We retrospectively selected all consecutive patients who
underwent CCTA and had a coronary stenosis = 50% on
the initial reading, followed by ICA with invasive FFR and/
or iFR pressure measurement during ICA within three
months, between 2017 and 2022, at two centers. The per-
vessel analysis included only coronary arteries with at
least one invasive pressure measurement (FFR, iFR, or
both) and accounted for patients with multiple vessels
showing > 50% stenosis. Vessels without invasive pressure
measurement were not included for analysis. CCTA was
performed based on the clinical indication of stable chest
pain or equivalent symptoms in patients with moderate
clinical pre-test likelihood of obstructive coronary artery
disease [2]. Exclusion criteria were missing data of ICA
assessments (n=1), non-diagnostic imaging quality
(n=17), and previous coronary revascularization or
bypass grafting on the affected vessel (n = 14) (Fig. 1). All
eligible patients meeting these criteria were included.

CT-FFR,, model

The Al-based CCTA FFR prediction model is a DLM that
uses nine cMPR images as input and classifies coronary
lesions as either CT-FFR; < 0.80 or > 0.80. The model is
trained on CCTA images that have been labeled with FFR
values measured during ICA. The model processes nine
c¢MPR images, which were obtained at 40° intervals along
the full 360° circumference surrounding the coronary
artery centerline, to capture detailed, multi-angle views of
the coronary arteries while preserving their natural tor-
tuosity. This 40° interval was determined to provide an
optimal balance between accuracy in detecting and
quantifying the degree of stenosis in eccentric or calcified
lesions, and computational efficiency for Al-based eva-
luation. At its core, the system employs a convolutional
network inspired by the InceptionV3 architecture to
extract key image features directly from the data [10].
Instead of relying on a single model, the approach is
structured around several intermediate models, each
dedicated to a specific function. These models help refine
the analysis by detecting calcification, evaluating a CAD-
RADS 6-class classification score, which indicates the
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degree of stenosis, and assessing overall image quality [9,
11]. Their outputs provide additional context that
strengthens the final classification, particularly since
clinical evidence demonstrates a strong correlation
between CAD-RADS and invasive FFR [12]. To optimize
performance, these intermediate models are initialized
with weights from a pre-trained single-image model,
streamlining and accelerating the training process while
ensuring consistency across the different tasks. Unlike
traditional methods that depend on solving the partial
differential equations of CFD to model blood flow and
pressure, our model learns the relationship between cor-
onary anatomy and FFR directly from the images. This
direct learning method eliminates the need for complex
simulations, thereby enabling fast, real-time analysis in a
clinical setting. To further enhance transparency, the
model uses integrated gradients to highlight the specific
regions in the CCTA images that most influence its pre-
dictions for CAD-RADS, which clarifies the decision-
making process. Unlike other Al models focusing on 3D
volumetric analysis or CFD alone, CT-FFR,; integrates
anatomical and functional data through advanced deep-
learning techniques, enhancing prediction robustness.

CT acquisition and image processing

Patients underwent CCTA with a 320-detector-row CT
scanner (Aquilion One Vision Edition, Canon Medical
System Corporation) in Center 1 and a 96-detector-row
dual source CT scanner (Somatom Force, Siemens Heal-
thineers) in Center 2. Scanning and contrast administration
parameters of both centers are given in Table 1. Non-
contrast imaging was performed to calculate the Agatston
score at 120 kV and 3-mm slice thickness in Center 1 and
Sn100kV and 3-mm slice thickness with virtual 120 kV
reconstructions in Center 2. The Agatston score was
computed on non-contrast-enhanced CT images using
dedicated software (Syngo via B60, Siemens Healthineers).
Calcified lesions were identified as areas with attenuation
values > 130 Hounsfield units (HUs) and an area > 1 mm®.
Calcifications were automatically detected and manually
verified by senior radiologists. The Agatston score for each
coronary vessel was derived by summing the calcifications
of the coronary artery. Subsequent CCTA acquisition was
performed with prospective or retrospective electro-
cardiographic gating, according to the Society of Cardio-
vascular Computed Tomography guidelines [13]. The best
diastolic or systolic phase was selected by the local inves-
tigator and sent to a dedicated software (Syngo via B60,
Siemens Healthineers) for analysis by a senior (B.P., 10
years’ experience and R.S., 11 years’ experience in Centers 1
and 2, respectively) and a junior (S.0.,3 years in-training
and A.VB,, 2 years in-training in Centers 1 and 2, respec-
tively) radiologist, blinded to patients” information, clinical
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Fig. 1 STARD diagram

data, and invasive pressure measurement values during
ICA. CMPR images along the main coronary arteries were
automatically reconstructed using standardized window
settings (width: 1000 HU, level 300 HU). The initial cen-
terline placement and windowing parameters were gener-
ated by the software but were subject to manual
adjustments by either senior or junior radiologists as
deemed necessary. Notably, no additional training was
provided for these manual modifications, which could
potentially influence the results of CT-FFR,;. Subse-
quently, a total of nine cMPR images of each coronary
artery were uploaded to a server-based module, CorEx, for
CT-FFRy; prediction (Fig. 2). These images were subse-
quently analyzed to assess the diagnostic performance of
CT-FFRyj, as per-vessel centerline-building supervised by
either senior or junior radiologists. Senior radiologists
evaluated the influence of several patient- and CCTA
image-related parameters on the diagnostic accuracy of

CT-FFRy; in predicting vessel-specific ischemia. A region
of interest was placed in the ascending aorta and the right
main bronchus, such that it included the maximum vessel
or bronchial lumen, carefully avoiding its limits, to measure
the mean attenuation and standard deviation (SD). The
CCTA signal-to-noise ratio (SNR) was calculated as the
ratio between the mean attenuation in the ascending aorta
and the SD of the attenuation in the right main bronchus.
The minimal cross-sectional diameter of all coronary
arteries was obtained at the origin of each vessel in a cross-
sectional reformation along the long axis of the vessel
through the software’s automatic measuring function, as
previously reported [14].

Invasive coronary angiography assessments

The luminal stenosis of coronary disease on ICA was
evaluated by two senior interventional cardiologists (P.K.,
13 years’ experience and Y.B., 12 years’ experience in
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Table 1 Technological and acquisition parameters for calcium score and CCTA imaging in both centers

Center 1 Center 2
Number of X-ray tubes 1 2
Number of detectors 320 96
Gantry rotation speed 275ms 250 ms
Calcium score Tube voltage 120 kV Sn100 kvVp
Slice thickness 3mm 3mm
Reconstruction algorithm AIDR3D ADMIRE 2
Reconstruction kernel FC12 Sa3ef
CCTA Tube voltage 100-120 kv 80-120kVp
Slice thickness 0,5mm 0,6 mm
Acquisition Prospective Prospective/retrospective
DLP 140 (91.6-194.8) (mGy.cm) 549 (37.5-106.2) (MGy.cm)

Contrast administration:

Reconstruction algorithm
Reconstruction kernel
Reconstruction matrix
Pitch

AIDR3D

ADMIRE 2

FCO3 Bv40 or Bv49
512 512 matrix 512 512 matrix
N/A 0.2-3.2

Ultravist 370 Xenetix 350

Injection rate and volumes

2100 kV, <450 mA: 45mL @ 5mL/s
4100 kV, 450-900 mA: 55 mL @ 6 mL/s
120 kV: 65mL @ 7 mL/s

280-100 kVp: 67 mL @ 3.7 mL/s
2110-120 KVp: 76 mL @ 4.5 mL/s
2130-140 kVp: 85 mL @ 5.0 mL/s

Data are expressed as median and interquartile range (IQR)

CCTA coronary computed tomography angiography, kV tube voltage, kVp tube peak voltage, mA milliampere, AIDR3D adaptive iterative dose reduction, Canon
Medical System Corporation, ADMIRE 2 advanced modeled iterative reconstruction, Siemens Healthineers, FC filter convolution, Sa36f calcium-aware kernel, Siemens
Healthineers, Bv bone viewing, DLP dose length product, FOV field of view, N/A not applicable

2 Injection rate (3.7-7 mL/s) and volumes (45-85 mL) were optimized on a patient basis, according to the tube voltage and current determined by the automatic
exposure control (SUREexposure3D, Canon Medical Systems and Care Dose4D, Siemens Healthineers) using the subject’s body surface area

Center 1; W.D., 18 years’ experience and K.D., 8 years’
experience in Center 2) at each center blinded to patients’
information, clinical data and CT-FFR,; assessment, and
was classically categorized into 4 degrees on the basis of
the cross-sectional stenosis severity: 0-25%, 26-50%,
51-75%, and 76—100% [15]. Discrepancies in categorizing
were assessed by consensus. Invasive FFR and iFR mea-
surements during ICA were performed by a local inter-
ventional cardiologist, according to recent guidelines
[1, 2]. Resting full-cycle ratio measurements were con-
sidered similar to invasive iFR at a 0.89 threshold,
according to Svanerud | et al [16]. Patients presenting
with chronic coronary syndrome or equivalent symptoms
and uncertainty regarding the hemodynamic significance
of coronary stenosis were considered for invasive phy-
siological assessment using invasive FFR, iFR, or both.
While these indices often yield concordant results, dis-
crepancies can occur due to factors such as microvascular
obstruction, microvascular dysfunction, or aortic stenosis,
which may influence both measurements. The combined
use of invasive FFR and iFR facilitates the identification of
such cases, particularly in complex or borderline stenoses.
In instances where FFR and iFR results were
discordant, treatment decisions were based on a com-
prehensive evaluation of the patient’s clinical history,

presenting symptoms, and any available non-invasive test
results [3, 4].

Statistical analysis

Statistical analyses were performed (W.MA.F.) using SPSS
v 29.0. The sample size calculation was performed using R
version 4.4.1 (The R project for Statistical Computing)
and based on a study of Coenen et al, who showed an
accuracy of 78%, a sensitivity of 82% and a specificity of
76% [17]. Assuming a statistical power > 0.8, a two-sided
alpha of 0.0,5 and a 0.35 proportion of patients with
vessel-specific coronary ischemia, a total of at least 309
vessel measurements had to be included in the present
study. Continuous data with a normal distribution (based
on Shapiro—Wilk tests) are expressed as the means + SD,
whereas data with a non-normal distribution are expres-
sed as median and interquartile range (IQR), and cate-
gorical variables are presented as frequency and
percentage.

Each senior and junior radiologist evaluated the cases
from their own center, and statistical analyses were per-
formed on pooled data. Concordance between junior and
senior evaluations of CT-FFR; binary outcomes (< 0.80
or >0.80) resulting from their respective centerline-
building supervision was calculated using Cohen’s x as



Peters et al. European Radiology

Patients with CCTA followed by ICA
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Fig. 2 Study workflow. All coronary computed tomography angiography
(CCTA) examinations were evaluated by a senior and junior radiologist at
each center for centerline-building supervision on all stenotic segments. A
total of nine curved multiplanar reconstruction images of each coronary
artery were uploaded to CorEx (Spimed-Al), a CCTA-based deep-learning
model for invasive Fractional Flow Reserve prediction (CT-FFR,). These
images were subsequently analyzed to assess the diagnostic performance
of CT-FFRy, with invasive Fractional Flow Reserve < 0.8 and invasive
instantaneous wave-Free Ratio < 0.89 as ground truth

follows: values < 0 as indicating no reliability, 0.01-0.20 as
none to slight, 0.21-0.40 as fair, 0.41-0.60 as moderate,
0.61-0.80 as substantial, and 0.81-1.00 as almost perfect.

The diagnostic values of CT-FFR,; evaluated by both
junior and senior radiologists, using invasive FFR or iFR as
the standard of reference for vessel-specific ischemia,
were expressed as sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV),
and calculated with 95% confidence intervals (CIs). When
both invasive FFR and iFR values were obtained, they were
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first analyzed independently. A subgroup analysis was
performed on vessels with both invasive FFR and iFR
measurements (n = 140). The diagnostic accuracy of CT-
FFR4; between senior and junior radiologists was com-
pared by applying the chi-square test. The final reported
diagnostic CT-FFRy; values in the Results and Discussion
section will pertain to senior radiologists unless otherwise
stated.

Patient- and CCTA image-related parameters asso-
ciated with false-positive and false-negative CT-FFRy;
analyses were evaluated using a multinomial logistic
regression model. A backward stepwise logistic regression
was performed to identify significant predictors of false-
positive and false-negative outcomes while controlling for
potential confounders. The model initially included all
independent variables. Non-significant variables were
systematically removed based on the likelihood ratio test,
using a removal criterion of p > 0.05. Selection was based
on odds ratios (ORs) for patient-related factors (age,
gender, body mass index (BMI), heart rate during acqui-
sition, calcium score of the stenotic vessel, and ostial
diameter of the stenotic coronary artery) and technical
factors (SNR, CT scanner type, and time between CCTA
and invasive FFR/iFR). A two-tailed p-value of <0.05
indicated statistical significance.

Results

Patient and coronary stenosis characteristics

In total, 275 patients (mean age 66 + 9; range 37—91 years)
met the criteria for inclusion in this retrospective study,
including 187 males and 88 females. Thirty-two patients
were excluded due to missing ICA pressure measurement
data (n=1), poor CCTA imaging quality (n=17), and
previous coronary revascularization (n=14) of the
affected vessel (Fig. 1). Median BMI was 269 (IQR
23.9-29.4) kg/m®, and median heart rate during CCTA
acquisition was 60 (IQR 55-66) bpm. Demographics and
cardiovascular risk factors are given in Table 2. The mean
time interval between CCTA and invasive FFR and/or iFR
measurements during ICA was 26 + 20 (range 0-91) days.
In total, 462 pressure measurements performed during
ICA, including 224 invasive FFR measurements (median
FFR value 0.85; IQR 0.79-0.89) and 238 invasive iFR
measurements (median iFR value 0.91; IQR 0.86-0.95)
evaluations in 322 stenotic vessels, were available for
comparison with CT-FFR,;. Forty-three percent (140/
322) of coronary stenoses were evaluated both with
invasive FFR and invasive iFR. Upon consensus reading of
ICA, there were 25 stenoses in the 0-25% range, 185 in
the 26-50% range, 207 in the 51-75% range, and 37 in the
76—100% range. Data were missing for the grading of 8
coronary stenoses.
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Diagnostic value of CT-FFRy,

The concordance for CT-FFR,; binary outcomes (< 0.80
or > 0.80) between senior and junior radiologists’ evalua-
tions was substantial (x = 0,725; p < 0.001). The accuracy
of CT-FFR,; in predicting invasive FFR <0.80 and inva-
sive iIFR <0.89 as per senior radiologists’ centerline-
building supervision was 83% (186/224) and 83% (197/
238), respectively, slightly higher than79% (177/224) and
78% (186/238), respectively, per junior radiologists’
supervision. The difference in diagnostic accuracy of CT-
FFRA; between senior and junior radiologists’ supervision
was not significant (p =0.327). All diagnostic values are
listed in Table 3. However, the diagnostic accuracy of
unsupervised CT-FFR,; dropped to 61% (136/224) and

Table 2 Patient characteristics and cardiovascular risk factors

Number (%) Mean *SD (range)/

median [IQR]
Patients (n) 275
Male (n) 187 (68)
Female (n) 88 (32)
Age (years) 66 +9 [37-91]

BMI (kg/m?) 26.9 (23.9-29.4)

Systemic hypertension 174 (63)
Current tobacco smoker 78 (28)
Diabetes mellitus 44 (16)
Family history of coronary 114 (41)
disease

Prior coronary treatment 10 (4)

HR during acquisition 60 (55-66)
(bpm)
Agatston coronary calcium 356.8 (122.7-658.8)

score

SD standard deviation, IQR interquartile range, BMI body mass index, HR heart
rate, bpm beats per minute
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62% (148/238) compared to invasive FFR and iFR,
respectively (p <0.001). There was notably lower specifi-
city and PPV due to the increase in false-positive cases.
All diagnostic values without radiologists’ supervision are
provided in a Supplementary Table A.

In lesions assessed with both invasive FFR and iFR
(n=140), senior radiologist-supervised CT-FFRy;
demonstrated similar diagnostic accuracies of 85% (119/
140) and 80.7% (113/140), respectively, comparable to
those observed in the overall cohort. Discordance
between invasive FFR and iFR measurements, defined as
FFR <0.80 and iFR >0.89 (#=7) or FFR > 0.80 and iFR
<0.89 (n=9), was observed in 11% of cases (16/140). In
this discordant subgroup, senior radiologist-supervised
CT-FFRy; agreed with FFR in 69% (11/16) and with iFR in
31% (5/16).

Value of CT-FFRy, in relation to morphological stenosis
severity

The case-by-case contingency table for the accuracy of
CT-FFRy; prediction of vessel-specific ischemia, as per
senior radiologists’ centerline-building supervision and
according to stenosis severity on ICA, is provided in
Table 4. Figure 3 illustrates a representative example of a
true-negative case. All <25% stenosis were classified as
CT-FFR,; > 0.80, while only three coronary stenoses
>75% on ICA had a false-positive CT-FFR,; analysis,
which had a high calcium score of the stenotic vessel
(Agatston scores of respectively 357, 317, and 317). The
remaining 58 false-positive cases were in the 26-75% ICA
stenosis range (Fig. 4). A total of 18 cases had a false-
negative CT-FFR,; prediction, all in the 26-75% ICA
stenosis range. 16/18 of these false-negatives were also
within the gray-zone ranges for invasive FFR 0.75-0.80
(n=9) and invasive iFR 0.86-0.89 (n=7); while one
stenotic vessel had an invasive FFR measurement of 0.71
and an iFR measurement of 0.81 during ICA.

Table 3 The diagnostic values of CT-FFR,, based on binary outcome analysis compared to invasive FFR and iFR measurements

Senior reader

Junior reader

Diagnostic value% (95% Cl) FFR (n=224) iFR (n =238) FFR (n=224) iFR (n=238)
Sensitivity 5 (58/68) [75-93] 91 (78/86) [82-95] 9 (54/68) [68-88] 0 (69/86) [70-88]
Specificity 2 (128/156) [75-88] 78 (119/152) [71-85] 9 (123/156) [72-85] (117/152)[69 83]
PPV 7 (58/86) [59-75] 70 (78/111) [63-76] 2 (54/87) [54-69] 6 (69/104) [59-73]
NPV 3 (128/138) [88-96] 94 (119/127) [88-97] 0 (123/137) [85-93] (117/134) [82-91]
Accuracy 3 (186/224) [77-88] 83 (197/238) [77-87] 9 (177/224) [73-84] 8 (186/238) [72-83]

The table shows the diagnostic values of CT-FFR,, evaluated by both junior and senior radiologists and using invasive FFR and/or iFR as the standard of reference for
vessel-specific ischemia. When both invasive FFR and iFR values were obtained, they were analyzed independently. Diagnostic values for senior and junior radiologists

are given separately

CT-FFR, coronary computed tomography angiography-based artificial intelligence deep-learning model for the prediction of invasive Fractional Flow Reserve, FFR
Fractional Flow Reserve, iFR instantaneous wave-Free Ratio, 95% Cl 95% confidence interval, PPV positive predictive value, NPV negative predictive value
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Effect of patient- and CCTA image-related factors

Only the calcium score of the stenotic vessel had a sig-
nificant detrimental effect on the diagnostic accuracy of
CT-FFRy; prediction of vessel-specific ischemia. This was
demonstrated using a multinomial logistic regression
analysis based on all false-positive and false-negative cases
(p <0.001; OR, 1.002; 95% CI 1.001-1.003), and based on
all false-positive cases alone (p < 0.001; OR, 1.002; 95% CI
1.001-1.003). Scanner type and all other patient-related
factors, such as age, gender, BMI, HR during acquisition,

Table 4 CT-FFR, case-by-case assignment relative to vessel-
specific ischemia based on senior radiologists' supervision and
invasive coronary angiography stenosis severity

Stenosis severity on the ICA  Number (%) TP TN FP FN

0-25% 25 (5) 0 25 0 0
26-50% 185 (40) 19 128 30 8
51-75% 207 (45) 89 80 28 10
76-100% 37 (8) 28 6 3 0
Unknown?® 8 (2) 0 8 0 0
Total 462 136 247 61 18

CT-FFR, coronary computed tomography angiography-based artificial intelli-
gence deep-learning model for the prediction of invasive Fractional Flow
Reserve, TP true positive, TN true negative, FP false-positive, FN false-negative
@ Unknown: missing images of invasive coronary angiography for re-evaluation
of coronary artery stenosis severity by two interventional cardiologists

The total number of cases includes invasive FFR and iFR measurement when
both were used

Patient

Status Awaiting Review
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and ostial diameter of the stenotic coronary artery, had no
significant influence on the diagnostic accuracy of CT-
FFRAI (Table 5).

Discussion

In this large cohort multicenter study, CT-FFRa;
demonstrated an 83% diagnostic accuracy for the pre-
diction of vessel-specific coronary ischemia as defined by
two validated methods of pressure measurements during
ICA, namely invasive FFR and iFR [3, 4]. The model’s
reliability was demonstrated by a similar diagnostic per-
formance using datasets from 2 different CT scanners,
encompassing both prospective and retrospective scan-
ning modes, and by substantial observer concordance
between supervisors of different levels of experience. The
diagnostic accuracy of our CT-FFR,; aligns with that of
an established CFD-based CT-FFR (71-92%) [5, 18-21]
and with a recent quantitative CCTA-based Al model
reporting 72-82% accuracy [22]. Importantly, in
intermediate-grade stenoses, a clinical subset where
decision-making is most challenging, CFD-based CT-FFR
accuracy in estimating vessel-specific ischemia dropped to
69% on a per-vessel basis and to 73% on a per-patient
basis [21]. In contrast, our CT-FFR,; maintained a diag-
nostic accuracy between 77-88% (95% CI), which is
consistent with the results from a proof-of-concept study
using the same AI model on intermediate-grade stenosis
[8]. However, the diagnostic accuracy of CT-FFRy;

Stenosis Severity

CAD-RADS 2
100%
50%

¥ @ O I
A —
l FFR+ %
FFR- %
RCA ~ [
3P
Stenosis 25% @
FFR-AI Prediction >0.8

Fig. 3 True-negative case. A representative case of a 60-year-old female patient with a recent onset of stable chest pain. Curved multiplanar

reconstruction coronary computed tomography angiography A shows a soft plaque at the middle portion of the right coronary artery with obstructive
stenosis (white arrow). Invasive coronary angiography B confirms a 26-50% stenosis (white arrow). The Fractional Flow Reserve measurement was 0.94,
which is above the 0.8 threshold. Instantaneous wave-Free Ratio measurement was 0.95, which is above the 0.89 threshold. The CT-FFR4, prediction was

>08 (0)
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Review

™| @) 0 "
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.rrR
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FFR Prediction <038 >038
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Fig. 4 False-positive case. A representative case of an 81-year-old male patient with a recent onset of stable chest pain. Curved multiplanar
reconstruction coronary computed tomography angiography A shows a heavily calcified plaque with blooming artifacts (white arrow) in the proximal
left anterior descending artery with obstructive stenosis. Invasive coronary angiography B demonstrates a 26-50% stenosis, and Fractional Flow Reserve
was 0.89, in contrast to the report of CT-FFR,, that predicts FFR < 0.8 (C). Of note, the patient also had an obstructive stenosis on the left circumflex artery
with CT-FFR4 > 0.8 prediction and invasive Fractional Flow Reserve > 0.8 (FFR=091)

Table 5 Multinomial logistic regression model with backward variable selection to identify patient- and CCTA image-related factors
influencing the diagnostic performance of CT-FFRy,

Parameters Mean + SD (range)/median (IQR) OR 95% ClI p-value
Age 67 (60-74) years 0.995 0.979-1.010 0496
Gender 312 males 0.850 0.480-1.507 0.579
BMI 26.6 (24.28-29.4) kg/m2 1.048 0.982-1.118 0.159
Time between CCTA and intracoronary measurement 22 (12-37) days 1.000 0.988-1.012 0.944
CT scanner (147 AQ and 315 SF) 0.588 0.273-1.266 0.175

HR during CT acquisition 59 (54-65) bpm 0.985 0.956-1.015 0.325

Image SNR 21.11 (1641-27.48) 1.009 0.972-1.048 0.628
Calcium score (Agatston) of the stenotic vessel 169.1 (42.8-348.1) 1.002 1.001-1.003 <0.001

Minimal diameter 36 (3.2-4.1) mm 0711 0451-1.118 0.140

CCTA coronary computed tomography angiography, CT-FFR,, coronary computed tomography angiography-based artificial intelligence deep-learning model for the
prediction of invasive Fractional Flow Reserve, SD standard deviation, QR interquartile range, SNR signal to noise ratio, BMI body mass index, HR heart rate, AQ 320-
detector-row CT scanner Aquilion One Vision Edition, Canon Medical System Corporation, SF 96-detector-row dual source CT scanner Somatom Force, Siemens
Healthineers, bpm beats per minute

Odd ratios are computed based on all false-positives and false-negatives (n = 79)

dropped significantly without radiologist supervision,
primarily due to an increased rate of false-positive cases.
This highlights the current need for supervised CT-FFRx;
analysis. Other Al models reported 66—79% accuracy in
predicting ischemia using 3D volumetric heart images, a
fully automated 3D DLM, or even different invasive FFR
thresholds [19, 23, 24]. All these models had different
underlying algorithms to evaluate vessel-specific coronary
ischemia with a continuous or binary outcome. Coenen
et al combined machine learning with CFD, achieving 78%
accuracy per-vessel in a multicenter study of 351 patients

[17]. The higher accuracy of our CT-FFR4; compared to
other models might be due to the integration of two
DLMs, including anatomical and functional information.
One was trained to provide stenosis CAD-RADS 6-class
classification, and the second to predict the 0.8 FFR
threshold, considering the known nonlinear relationship
between invasive FFR values and stenosis severity [8, 11].
Using this combined approach could help prioritize high-
risk examinations in daily clinical practice and potentially
increase efficiency and workload [25-27]. Although CFD-
based CT-FER is becoming more established, its clinical
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adoption remains limited because of the substantial time
required to simulate hemodynamic changes, with repor-
ted processing times ranging from 10 min to several hours
depending on computational resources [5, 17]. In con-
trast, CT-FFR,; utilizes a local server-based DLM
enabling nearly real-time analysis in clinical settings,
although direct timing comparisons were not performed
(8, 27].

The high NPV of CT-FFR,; suggests its potential to
reduce the need for further ICA measurements, thereby
lowering costs and avoiding the risks associated with
invasive procedures [28]. The high NPV of CT-FFRy; is
further supported by the fact that nearly 90% (16/18) of
false-negative cases in our study had either invasive FFR
values in between 0.75 and 0.80 or invasive iFR values in
between 0.86 and 0.89. These ranges fall within recog-
nized “gray-zones”, in which determining the appro-
priateness of revascularization versus conservative
medical treatment remains debatable [29]. A subgroup of
16 cases showed discordance between invasive FFR and
iFR measurements, highlighting the difficulty of estab-
lishing an absolute reference standard, even with invasive
techniques. In this discordant subgroup, CT-FFRy;
showed greater concordance with invasive FFR than with
iFR, which may reflect the fact that CT-FFRa; was trained
using FFR as the reference standard. Given the clinical
implications of false-negative findings and the diagnostic
uncertainty in cases with discordant invasive measure-
ments, outcome-based studies are warranted to further
evaluate the clinical reliability of CT-FFR,; [30].

As image quality may theoretically affect CT-FFR4;, we
sought to evaluate the influence of patient-related and
technical CCTA parameters on CT-FFRa;’s accuracy in
predicting vessel-specific ischemia. The diagnostic per-
formance of CT-FFR,; was influenced by coronary calci-
fications, which may lead to underperformance in cases of
heavily calcified coronary stenoses. However, in the
intermediate stenosis range (26-75%), 53% of stenoses
were correctly classified as true-negative, emphasizing the
added value of CT-FFR,;. Since quantitative CCTA and
ICA assessments poorly correlate with lesion-specific
ischemia [31-33], CT-FFRy; could play a significant role
in ruling out ischemia and avoiding further invasive
testing in this subgroup.

In a previous study, image quality was mainly influenced
by the coronary diameter, while a higher heart rate and
calcium score had a less negative impact [14]. The fact
that other patient-related factors had no significant
influence on the accuracy of CT-FFR,; in our study may
be related to a different selection process. The median
vessel diameter was much higher (3.6 mm versus 2.8 mm),
and the upper range of the heart rate during CCTA
acquisition was lower (78 versus 110 bpm) in the present
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study, reducing the impact of motion effects on the image
quality [14]. Novel techniques such as photon-counting
CT, with higher spatial resolution, potentially reducing
blooming artefacts, could reduce false-positive cases and
improve the performance of CT-FFRy; [34]. A promising
first study reported excellent accuracy for predicting
coronary artery disease from CT-FFR,; in a setup of
photon-counting imaging [26].

Limitations

There are a few limitations to our study, first, its retro-
spective design and the inherent limitations of such stu-
dies. A prospective study with a similar sample size is
required to confirm our results. Second, the CT-FFRy;
model relies on manually adjusted cMPR images, intro-
ducing susceptibility to the user, particularly in instances
of centerline adjustment challenges, such as in examina-
tions of poor quality or with heavily calcified lesions. An
Al model incorporating automatic contouring and seg-
mentation could mitigate operator dependency in FFR
prediction. Third, our CT-FFR,; model currently utilizes
a dichotomous outcome with a threshold of 0.80, which
overlooks clinical information pertaining to lesions in the
gray zone. A continuous CT-FFR,; outcome would be
more clinically relevant. Fourth, CT-FFR,; may not be
valuable for assessing diffuse lesions. Fifth, the black-box
nature of DLMs like CT-FFRy; limits the interpretability;
future developments could use heatmaps to highlight key
features (e.g., lumen narrowing or calcification) driving
predictions and thus offering more insight into their
decision-making [9]. Lastly, our study did not investigate
clinical outcomes, which is crucial information in the
assessment of a new technique and should be evaluated in
further studies.

Conclusion

As compared to two validated pressure measurements
during ICA, CT-FFR4; has a high diagnostic accuracy in
predicting vessel-specific coronary ischemia that was
independent of the scanner type and supervisor’s level of
experience. The extent of coronary calcifications sig-
nificantly reduces the accuracy of CT-FFR,j, suggesting
further developments in spatial resolution are needed to
improve diagnostic precision, particularly in calcified
vessels. The high sensitivity and NPV indicate that CT-
FFR,; may be particularly valuable in excluding ischemia-
inducing lesions prior to invasive procedures.

Abbreviations

Al Artificial intelligence

BMI Body mass index

CAD-RADS  Coronary Artery Disease-Reporting and Data System
CCTA Coronary computed tomography angiography

CFD Computed fluid dynamics
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a Confidence interval
cMPR Curved multiplanar reconstruction

CT-FFR FFR estimated from computational fluid dynamics simulations
using coronary computed tomography angiography

CT-FFRp Coronary computed tomography angiography-based artificial
intelligence deep-learning model for the prediction of invasive
fractional flow reserve

DLM Deep learning model

FFR Fractional flow reserve

HU Hounsfield units

ICA Invasive coronary angiography

iFR Instantaneous wave-Free Ratio

IQR Interquartile range

NPV Negative predictive value

OR Odds ratio

PPV Positive predictive value

) Standard deviation

SNR Signal-to-noise ratio
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