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Abstract

Effective long-term ecological monitoring (LTEM) is critical for monitoring wildlife activity, yet the consequences of the
study design choices on its results are not well established. This study examines how camera trap sampling design influ-
ences activity estimates of roe deer and wild boar in Belgium’s National Park Hoge Kempen. We compared two three-
year designs: a systematic-random (SYS) and a stratified-random (STRAT) design, differing in camera trap (CT) number,
deployment duration, and number of sampled locations. While activity levels were largely consistent across designs, diel
activity patterns varied significantly, especially among years. This suggests that the use of different sampling designs in
LTEM is not the main driver of differences in activity estimations. Hence, even when different camera trap study designs
are applied over time within a long-term monitoring project, wildlife activity patterns can be analysed over the entire
study period without loss of validity.
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Introduction

Wildlife camera traps (CTs) revolutionised wildlife mon-
itoring by enabling cost-efficient, autonomous, non-inva-
sive long-term data collection of wildlife in their natural
habitats (Caravaggi et al. 2017, 2020). Although widely
used, few CT studies are integrated into long-term eco-
logical monitoring (LTEM) frameworks (Harmsen et al.
2017; Swanson et al. 2015; Twining et al. 2024; Zuleger
et al. 2023), and guidelines for studying diel activity
remain underdeveloped compared to other inferences
(Frey et al. 2017; Kays et al. 2020; Rovero and Zimmer-
mann 2016; Vazquez et al. 2019).

Accurate wildlife activity estimates require>100
detections (Lashley et al. 2018). Random CT placement
relative to the diel patterns of movement, especially off-
trail placement for ungulates, provide unbiased activity
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estimations (Rowcliffe et al. 2014; Tanwar et al. 2021).
Despite this, detailed sampling design guidelines remain
limited in activity studies. CT number and deployment
duration may both influence activity estimates as well.
Increasing CT numbers improves sample size (spatial
coverage or local sampling intensity) and precision but
raises financial and labour costs (Duggan et al. 2021;
Kays et al. 2020; Kissling et al. 2024). Similarly, decreas-
ing deployment duration expands spatial coverage, while
longer deployments improve detection rate estimations
(Kays et al. 2021; Si et al. 2014). However, in contrast
to abundance or occupancy, the influence of CT num-
ber and deployment length on activity estimates remains
unknown (Kays et al. 2020, 2021; Si et al. 2014).

This study monitored roe deer (Capreolus capreolus)
and wild boar (Sus scrofa) in the National Park Hoge
Kempen (Belgium) (NPHK) over six years using two
distinct CT sampling designs, each deployed for three
years. These differed in CT number, deployment dura-
tion, and site selection. We analysed diel activity levels
(proportion of time animals are active over a 24-hour
period) and activity patterns (distribution of that activity
across the 24 h). In order to determine the interchange-
ability for LTEM, we tested for differences in the out-
comes of the two sampling designs.
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Methods & materials

Two consecutive CT surveys (May 2017-2020, May 2020—
2023) were used to study medium-sized mammals in the
NPHK, a human-dominated protected area in Belgium.
Reconyx Hyperfire HC600 CTs were mounted 50 cm high,
facing north (Wevers et al. 2020). Upon motion trigger, 10
consecutive images were taken without delay. No bait/lure
was used and opportunistic sampling of trails was avoided.

The first survey employed a systematic-random sam-
pling (SYS) design (Wevers et al. 2020), dividing the area
into 40 compartments (1.5 km? each, respecting inacces-
sible areas, Fig. S1), each overlaid with a 300 x300 m
grid. Every three to four weeks, one randomly selected
grid cell centroid per compartment was selected for CT
placement, resulting in 520 locations each year. Since the
third sampling year was a replicate of the second sam-
pling year, a total of 1040 locations were visited (Fig.
S2A). The second survey used a stratified-random sam-
pling (STRAT) design. Sixty sampling locations were
selected taking into account the proportional abundances
of the main habitats (heathland, coniferous forest, decid-
uous forest, mixed forest, scrubland). These were divided
into two subsets of 30 locations, which were sampled on
an alternating basis every two months (Fig. S2B; Table
S1).

Images were processed in Agouti (agouti.eu), grouped
into events, and classified (Wevers et al. 2020). Roe deer
and wild boar activity were analysed using the R-pack-
age ‘activity’ (Rowcliffe et al. 2014) and daily variation
in daylength was corrected for using double anchor-
ing (Nouvellet et al. 2012). Detection frequencies were
compared using Poisson tests, accounting for trap days.
Activity levels were compared using Wald tests, overlap
in activity patterns using both Watson-Wheeler-tests and

a randomisation test based on overlap indices (Ridout
and Linkie 2009). The Watson-Wheeler-test evaluates
differences in either variance or means of two samples,
whereas the randomisation test determines statistical sig-
nificance by comparing the observed overlap indices to a
randomized distribution (Ridout and Linkie 2009). Both
tests were applied, as the Watson-Wheeler-test is com-
monly used in wildlife activity studies but has a tendency
to detect significance more readily (Landler et al. 2021).
Activity was compared between sampling designs season-
ally (following the astronomical calendar), and between
all sampling years. A significance level of 0.05 was used,
and the Bonferroni correction adjusted for multiple com-
parisons (Dunn 1961). Analyses were conducted in R (R
Core Team 2023) via Rstudio (RStudio team 2024).

Results

The SYS design resulted in 38,730 trap days across
1,013 sites, yielding 15,820 roe deer and 3,916 wild boar
detections. The estimated 1,040 sampling locations were
reduced to 1,013 throughout the period of three years due
to CT malfunctions and theft. The STRAT design resulted
in 25,305 trap days at 60 sites, recording 8,234 roe deer
and 2,459 wild boar detections. Roe deer detection fre-
quencies were significantly higher under the SYS design
(rate ratio=1.2553, CI = [1.2222;1.2894], p<0.0001),
whereas wild boar showed no statistical difference (rate
ratio=1.0405, CI=[0.9891;1.0948], p=0.1243). Activity
levels were similar across sampling designs for both spe-
cies and every seasonal classification (Table 1). Between
SYS and STRAT design, the only significant difference in
activity level was for year-round wild boar data (Table 1).
However, activity patterns differed significantly across

Table 1 Comparison of activity estimates derived from systematic-random sampling design (SY'S) and stratified-random sampling design (STRAT)
used sequentially in the National park Hoge Kempen (Belgium). Wald test p-value tests differences in activity levels. Watson-Wheeler test and
randomisation test both assess differences in activity patterns inferred between sampling designs. Watson-Wheeler test is based on a difference in
variance or means of two circular samples; the randomisation test is based on the probability of the overlap indices from a randomized distribution.

Significant values are shown in bold

Species Timeframe Activity level difference (Wald  Activity pattern difference Activity pat-
test p-value) (Watson-Wheeler test p-value) tern difference
(Randomisation
test p-value)
Roe deer Year-round 0.2522 <0.0001 <0.0001
Spring 0.9198 <0.0001 <0.0001
Summer 0.3618 <0.0001 <0.0001
Autumn 0.5802 0.0028 <0.0001
Winter 0.6323 <0.0001 <0.0001
Wild boar Year-round 0.0160 <0.0001 <0.0001
Spring 0.8287 0.0151 0.1061
Summer 0.9386 <0.0001 <0.0001
Autumn 0.0886 0.0725 0.0891
Winter 0.5807 <0.0001 <0.0001
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Fig. 1 Significances of pairwise comparison tests of year-round
activity levels and patterns between sampling years. Sampling years
2017-2018, 2018-2019, and 2019-2020 used the systematic-random
sampling design (SYS); sampling years 2020-2021, 2021-2022, and
2022-2023 used the stratified-random sampling design (STRAT).
Pairwise comparison significance is indicated using a gradient from
highly significant to just significant, from red to blue respectively.
Non-significant differences are indicated in dark-blue. (a) Activity lev-

most comparisons using both statistical tests (Table S2,
Fig. S3-5). Only the summer activity pattern of wild boar
was not significant using the randomisation test, and wild
boar activity pattern in autumn was not significant using
both statistical tests (Table 1).

When comparing activity levels across all sampling
years, roe deer exhibited considerable inter-annual varia-
tion (Fig. 1A, Fig. S6A), whereas wild boar activity lev-
els remained relatively consistent throughout (Fig. 1B,
Fig. S6B). Regarding diel activity patterns, most pair-
wise comparisons were statistically significant for both
species. For roe deer, the Watson-Wheeler test showed
significant differences between all sampling years,
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els of roe deer (Capreolus capreolus), assessed using the Wald test. (b)
Activity levels of wild boar (Sus scrofa), assessed using the Wald test.
(¢) Activity patterns of roe deer, assessed using the Watson-Wheeler
test. (d) Activity patterns of wild boar, assessed using the Watson-
Wheeler test. (e) Activity patterns of roe deer, assessed using the ran-
domisation test. (f) Activity patterns for wild boar, assessed using the
randomisation test

except between 2017-2018 vs. 2018-2019, 2017-2018
vs. 2019-2020, 2018-2019 vs. 2019-2020, and 2021-
2022 vs. 2022-2023 (Fig. 1C). In contrast, the ran-
domisation test identified significant differences for all
year-pairs, except 2021-2022 vs. 2022-2023 (Fig. 1E).
For wild boar activity patterns, the Watson-Wheeler test
detected significant differences in all but three com-
parisons: 2017-2018 wvs. 2020-2021, 2017-2018 wvs.
2021-2022, and 2018-2019 vs. 2019-2020 (Fig. 1D).
However, the randomisation test yielded non-significant
results between 2017-2018 vs. 2020-2021 and 2017-
2018 vs. 2021-2022 only (Fig. 1F).
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Discussion

Within the context of using data collected with different
sampling designs as part of the same LTEM, we investi-
gated the differences in estimated wildlife activity based
on inferences made from two different sampling designs
used consecutively in the same natural area. One sampling
design (SYS) was specifically designed to study the drivers
influencing the distribution and activity of medium-sized
mammals, while the other (STRAT) was tailored towards
long-term monitoring of medium-sized mammals in the
NPHK. They differed in number of CTs used, number of
locations sampled and deployment length. We found differ-
ences in inferred activity patterns between both sampling
designs and within each sampling design.

Detection rates differed between sampling designs for
roe deer but not wild boar, yet both species had sufficient
detections (>100) to ensure reliable activity estimates
of the activity level and activity patterns, with associ-
ated confidence intervals from bootstrapping (Lashley et
al. 2018). In general, activity levels were relatively con-
stant across sampling years and designs, particularly for
wild boar. However, activity patterns were remarkably
different between both set-ups, indicating different sen-
sitivities of activity level and pattern estimates to design
differences. Although both designs sample the habitats
proportionally, potential differences in local landscape
features and resource availability — on a finer scale
than habitat — in the microsite of the CT may introduce
unknown species-specific detection biases, which could
translate into variable activity estimations (Hofmeester
et al. 2019). To our knowledge, this has not yet been
shown in a LTEM study (Buchholz et al. 2021). Other
estimates have shown similar temporal variation in
LTEM (Barlow et al. 2009; Harmsen et al. 2017; Krebs
et al. 2023; Lincoln et al. 2020).

However, since differences occur between and within
sampling years and designs, it is unlikely that the
observed differences can be attributed to the change of
sampling design. Known sources of small-scale variation
for activity analyses, such as individual- and day-level
behavioural variations, are not expected to influence
long-term population-level estimates (Cederlund 1989;
Krop-Benesch et al. 2013). Ecological factors, such as
behavioural and environmental variation, may have con-
tributed to the observed patterns (Podgorski et al. 2013;
Stache et al. 2013).

Yet, the sequential (and not parallel) implementation
of the two sampling designs is a limiting factor. Since
observations were not made simultaneously, all of our
conclusions comprise inherent uncertainty as to whether
observed differences reflect ecological or methodological
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effects. Hence, future studies should evaluate ecological
inferences from comparing two sampling designs that are
implemented simultaneously and in the same study site.
Furthermore, those studies should then verify whether
other ecological estimators, such as species richness
and population density, show comparable results, and
ascertain how design characteristics can be considered
as model covariates to allow incorporation of design dif-
ferences in the models. In brief, our investigation on the
consistency of wildlife activity estimates across two CT
sampling designs supports the idea that data derived from
projects with different sampling designs can be combined
for LTEM.

Recommendations for practice

Practitioners deciding between designs or integrating multi-
project data should take several recommendations at heart:
(1) When studying activity levels, SYS and STRAT designs
appear robust, hence resource availability and logistical fea-
sibility can guide design choice; (2) When studying activity
patterns, which show higher variability than activity levels,
therefore one should avoid design alterations during the
project (except when overlap/calibration is possible).

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s10344-0
25-02013-3.
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