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estimations (Rowcliffe et al. 2014; Tanwar et al. 2021). 
Despite this, detailed sampling design guidelines remain 
limited in activity studies. CT number and deployment 
duration may both influence activity estimates as well. 
Increasing CT numbers improves sample size (spatial 
coverage or local sampling intensity) and precision but 
raises financial and labour costs (Duggan et al. 2021; 
Kays et al. 2020; Kissling et al. 2024). Similarly, decreas-
ing deployment duration expands spatial coverage, while 
longer deployments improve detection rate estimations 
(Kays et al. 2021; Si et al. 2014). However, in contrast 
to abundance or occupancy, the influence of CT num-
ber and deployment length on activity estimates remains 
unknown (Kays et al. 2020, 2021; Si et al. 2014).

This study monitored roe deer (Capreolus capreolus) 
and wild boar (Sus scrofa) in the National Park Hoge 
Kempen (Belgium) (NPHK) over six years using two 
distinct CT sampling designs, each deployed for three 
years. These differed in CT number, deployment dura-
tion, and site selection. We analysed diel activity levels 
(proportion of time animals are active over a 24-hour 
period) and activity patterns (distribution of that activity 
across the 24 h). In order to determine the interchange-
ability for LTEM, we tested for differences in the out-
comes of the two sampling designs.

Introduction

Wildlife camera traps (CTs) revolutionised wildlife mon-
itoring by enabling cost-efficient, autonomous, non-inva-
sive long-term data collection of wildlife in their natural 
habitats (Caravaggi et al. 2017, 2020). Although widely 
used, few CT studies are integrated into long-term eco-
logical monitoring (LTEM) frameworks (Harmsen et al. 
2017; Swanson et al. 2015; Twining et al. 2024; Zuleger 
et al. 2023), and guidelines for studying diel activity 
remain underdeveloped compared to other inferences 
(Frey et al. 2017; Kays et al. 2020; Rovero and Zimmer-
mann 2016; Vazquez et al. 2019).

Accurate wildlife activity estimates require ≥ 100 
detections (Lashley et al. 2018). Random CT placement 
relative to the diel patterns of movement, especially off-
trail placement for ungulates, provide unbiased activity 
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Methods & materials

Two consecutive CT surveys (May 2017–2020, May 2020–
2023) were used to study medium-sized mammals in the 
NPHK, a human-dominated protected area in Belgium. 
Reconyx Hyperfire HC600 CTs were mounted 50 cm high, 
facing north (Wevers et al. 2020). Upon motion trigger, 10 
consecutive images were taken without delay. No bait/lure 
was used and opportunistic sampling of trails was avoided.

The first survey employed a systematic-random sam-
pling (SYS) design (Wevers et al. 2020), dividing the area 
into 40 compartments (1.5 km² each, respecting inacces-
sible areas, Fig. S1), each overlaid with a 300 × 300  m 
grid. Every three to four weeks, one randomly selected 
grid cell centroid per compartment was selected for CT 
placement, resulting in 520 locations each year. Since the 
third sampling year was a replicate of the second sam-
pling year, a total of 1040 locations were visited (Fig. 
S2A). The second survey used a stratified-random sam-
pling (STRAT) design. Sixty sampling locations were 
selected taking into account the proportional abundances 
of the main habitats (heathland, coniferous forest, decid-
uous forest, mixed forest, scrubland). These were divided 
into two subsets of 30 locations, which were sampled on 
an alternating basis every two months (Fig. S2B; Table 
S1).

Images were processed in Agouti (agouti.eu), grouped 
into events, and classified (Wevers et al. 2020). Roe deer 
and wild boar activity were analysed using the R-pack-
age ‘activity’ (Rowcliffe et al. 2014) and daily variation 
in daylength was corrected for using double anchor-
ing (Nouvellet et al. 2012). Detection frequencies were 
compared using Poisson tests, accounting for trap days. 
Activity levels were compared using Wald tests, overlap 
in activity patterns using both Watson-Wheeler-tests and 

a randomisation test based on overlap indices (Ridout 
and Linkie 2009). The Watson-Wheeler-test evaluates 
differences in either variance or means of two samples, 
whereas the randomisation test determines statistical sig-
nificance by comparing the observed overlap indices to a 
randomized distribution (Ridout and Linkie 2009). Both 
tests were applied, as the Watson-Wheeler-test is com-
monly used in wildlife activity studies but has a tendency 
to detect significance more readily (Landler et al. 2021). 
Activity was compared between sampling designs season-
ally (following the astronomical calendar), and between 
all sampling years. A significance level of 0.05 was used, 
and the Bonferroni correction adjusted for multiple com-
parisons (Dunn 1961). Analyses were conducted in R (R 
Core Team 2023) via Rstudio (RStudio team 2024).

Results

The SYS design resulted in 38,730 trap days across 
1,013 sites, yielding 15,820 roe deer and 3,916 wild boar 
detections. The estimated 1,040 sampling locations were 
reduced to 1,013 throughout the period of three years due 
to CT malfunctions and theft. The STRAT design resulted 
in 25,305 trap days at 60 sites, recording 8,234 roe deer 
and 2,459 wild boar detections. Roe deer detection fre-
quencies were significantly higher under the SYS design 
(rate ratio = 1.2553, CI = [1.2222;1.2894], p < 0.0001), 
whereas wild boar showed no statistical difference (rate 
ratio = 1.0405, CI = [0.9891;1.0948], p = 0.1243). Activity 
levels were similar across sampling designs for both spe-
cies and every seasonal classification (Table 1). Between 
SYS and STRAT design, the only significant difference in 
activity level was for year-round wild boar data (Table 1). 
However, activity patterns differed significantly across 

Table 1  Comparison of activity estimates derived from systematic-random sampling design (SYS) and stratified-random sampling design (STRAT) 
used sequentially in the National park Hoge Kempen (Belgium). Wald test p-value tests differences in activity levels. Watson-Wheeler test and 
randomisation test both assess differences in activity patterns inferred between sampling designs. Watson-Wheeler test is based on a difference in 
variance or means of two circular samples; the randomisation test is based on the probability of the overlap indices from a randomized distribution. 
Significant values are shown in bold
Species Timeframe Activity level difference (Wald 

test p-value)
Activity pattern difference 
(Watson-Wheeler test p-value)

Activity pat-
tern difference 
(Randomisation 
test p-value)

Roe deer Year-round 0.2522 < 0.0001 < 0.0001
Spring 0.9198 < 0.0001 < 0.0001
Summer 0.3618 < 0.0001 < 0.0001
Autumn 0.5802 0.0028 < 0.0001
Winter 0.6323 < 0.0001 < 0.0001

Wild boar Year-round 0.0160 < 0.0001 < 0.0001
Spring 0.8287 0.0151 0.1061
Summer 0.9386 < 0.0001 < 0.0001
Autumn 0.0886 0.0725 0.0891
Winter 0.5807 < 0.0001 < 0.0001
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most comparisons using both statistical tests (Table S2, 
Fig. S3-5). Only the summer activity pattern of wild boar 
was not significant using the randomisation test, and wild 
boar activity pattern in autumn was not significant using 
both statistical tests (Table 1).

When comparing activity levels across all sampling 
years, roe deer exhibited considerable inter-annual varia-
tion (Fig. 1A, Fig. S6A), whereas wild boar activity lev-
els remained relatively consistent throughout (Fig.  1B, 
Fig. S6B). Regarding diel activity patterns, most pair-
wise comparisons were statistically significant for both 
species. For roe deer, the Watson-Wheeler test showed 
significant differences between all sampling years, 

except between 2017–2018 vs. 2018–2019, 2017–2018 
vs. 2019–2020, 2018–2019 vs. 2019–2020, and 2021–
2022 vs. 2022–2023 (Fig.  1C). In contrast, the ran-
domisation test identified significant differences for all 
year-pairs, except 2021–2022 vs. 2022–2023 (Fig. 1E). 
For wild boar activity patterns, the Watson-Wheeler test 
detected significant differences in all but three com-
parisons: 2017–2018 vs. 2020–2021, 2017–2018 vs. 
2021–2022, and 2018–2019 vs. 2019–2020 (Fig.  1D). 
However, the randomisation test yielded non-significant 
results between 2017–2018 vs. 2020–2021 and 2017–
2018 vs. 2021–2022 only (Fig. 1F).

Fig. 1  Significances of pairwise comparison tests of year-round 
activity levels and patterns between sampling years. Sampling years 
2017–2018, 2018–2019, and 2019–2020 used the systematic-random 
sampling design (SYS); sampling years 2020–2021, 2021–2022, and 
2022–2023 used the stratified-random sampling design (STRAT). 
Pairwise comparison significance is indicated using a gradient from 
highly significant to just significant, from red to blue respectively. 
Non-significant differences are indicated in dark-blue. (a) Activity lev-

els of roe deer (Capreolus capreolus), assessed using the Wald test. (b) 
Activity levels of wild boar (Sus scrofa), assessed using the Wald test. 
(c) Activity patterns of roe deer, assessed using the Watson-Wheeler 
test. (d) Activity patterns of wild boar, assessed using the Watson-
Wheeler test. (e) Activity patterns of roe deer, assessed using the ran-
domisation test. (f) Activity patterns for wild boar, assessed using the 
randomisation test
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effects. Hence, future studies should evaluate ecological 
inferences from comparing two sampling designs that are 
implemented simultaneously and in the same study site. 
Furthermore, those studies should then verify whether 
other ecological estimators, such as species richness 
and population density, show comparable results, and 
ascertain how design characteristics can be considered 
as model covariates to allow incorporation of design dif-
ferences in the models. In brief, our investigation on the 
consistency of wildlife activity estimates across two CT 
sampling designs supports the idea that data derived from 
projects with different sampling designs can be combined 
for LTEM.

Recommendations for practice

Practitioners deciding between designs or integrating multi-
project data should take several recommendations at heart: 
(1) When studying activity levels, SYS and STRAT designs 
appear robust, hence resource availability and logistical fea-
sibility can guide design choice; (2) When studying activity 
patterns, which show higher variability than activity levels, 
therefore one should avoid design alterations during the 
project (except when overlap/calibration is possible).

Supplementary Information  The online version contains 
supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​0​3​4​4​-​0​
2​5​-​0​2​0​1​3​-​3.
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Discussion

Within the context of using data collected with different 
sampling designs as part of the same LTEM, we investi-
gated the differences in estimated wildlife activity based 
on inferences made from two different sampling designs 
used consecutively in the same natural area. One sampling 
design (SYS) was specifically designed to study the drivers 
influencing the distribution and activity of medium-sized 
mammals, while the other (STRAT) was tailored towards 
long-term monitoring of medium-sized mammals in the 
NPHK. They differed in number of CTs used, number of 
locations sampled and deployment length. We found differ-
ences in inferred activity patterns between both sampling 
designs and within each sampling design.

Detection rates differed between sampling designs for 
roe deer but not wild boar, yet both species had sufficient 
detections (≥ 100) to ensure reliable activity estimates 
of the activity level and activity patterns, with associ-
ated confidence intervals from bootstrapping (Lashley et 
al. 2018). In general, activity levels were relatively con-
stant across sampling years and designs, particularly for 
wild boar. However, activity patterns were remarkably 
different between both set-ups, indicating different sen-
sitivities of activity level and pattern estimates to design 
differences. Although both designs sample the habitats 
proportionally, potential differences in local landscape 
features and resource availability – on a finer scale 
than habitat – in the microsite of the CT may introduce 
unknown species-specific detection biases, which could 
translate into variable activity estimations (Hofmeester 
et al. 2019). To our knowledge, this has not yet been 
shown in a LTEM study (Buchholz et al. 2021). Other 
estimates have shown similar temporal variation in 
LTEM (Barlow et al. 2009; Harmsen et al. 2017; Krebs 
et al. 2023; Lincoln et al. 2020).

However, since differences occur between and within 
sampling years and designs, it is unlikely that the 
observed differences can be attributed to the change of 
sampling design. Known sources of small-scale variation 
for activity analyses, such as individual- and day-level 
behavioural variations, are not expected to influence 
long-term population-level estimates (Cederlund 1989; 
Krop-Benesch et al. 2013). Ecological factors, such as 
behavioural and environmental variation, may have con-
tributed to the observed patterns (Podgórski et al. 2013; 
Stache et al. 2013).

Yet, the sequential (and not parallel) implementation 
of the two sampling designs is a limiting factor. Since 
observations were not made simultaneously, all of our 
conclusions comprise inherent uncertainty as to whether 
observed differences reflect ecological or methodological 
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