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Abstract

Background While the COVID-19 pandemic has been burdensome globally, it has fostered extensive data collection
at various spatiotemporal resolutions. These data heightened researchers’interest in investigating multiple facets

of the pandemic. In Europe, key factors shaping disease transmission vary among countries, leading to a gap in
understanding how the epidemic evolved and spread across countries as a whole. We endeavor to understand the
similarities and differences in the spatiotemporal spread of the COVID-19 pandemic across 27 European Union (EU)
countries and 3 European Economic Area (EEA) countries between March 2020 and December 2022.

Method We utilized a multivariate endemic-epidemic model to conduct a space-time analysis across 30 countries,
using weekly aggregated COVID-19 case counts from week 13-2020 to week 50-2022. Our analysis considered the
discrepancies in population size, the primary course and three booster vaccine doses - taking into account waning
immunity, the Stringency Index as a surrogate for non-pharmaceutical interventions adopted in each country, and
the circulation of various viral variants. We employed a power law approximation for spatial interactions between
countries.

Results We found that within-country transmission was dominant across all countries over almost three years

of observation. This work also underscored a basic transmission mechanism, whereby infections introduced by
between-country transmission could be of great importance in subsequent local transmission. Furthermore, there
were indications of the transition to endemicity since the beginning of 2022, particularly in light of the evolving
variants of concern.

Conclusion Our study highlighted the benefit of the endemic-epidemic framework to elucidate the COVID-19
disease spread over a large spatial and temporal scale, using a wide range of epidemiological information. Insights
derived from this study are beneficial for those interested in seeking an overview of the emergency phase of the
COVID-19 pandemic in the EU/EEA region.
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Introduction

SARS-CoV-2 is unlikely to disappear in the near future.
The evolving landscape of the COVID-19 pandemic con-
tinues to pose a significant threat to public health in the
European Region. Over the last five years, this region
has reported an excess of 280 million cases and 2.2 mil-
lion deaths, representing approximately one-third of the
total number of reported cases worldwide [1]. The rapid
accumulation of reported cases, with a caveat that SARS-
CoV-2 infections could manifest in a-/pre-symptomatic
state, led to an urgent call for interventions to suppress
viral transmission and sustain healthcare capacities. To
confront the pandemic, European countries implemented
multiple non-pharmaceutical interventions (NPIs) with
varying degrees of stringency within and between coun-
tries, ranging from social distancing and small gathering
cancellations to large-scale lockdowns and international
travel bans [2]. In addition, since the COVID-19 vac-
cine rollout in December 2020, approximately one billion
vaccine doses have been administered in the European
Union/European Economic Area (EU/EEA) region [3].
It is important to note, however, that these countermea-
sures underwent modifications and adaptations at differ-
ent stages of the emergency, particularly in light of new
variants of concerns (VOCs). Over time, immunity to
the SARS-CoV-2 virus has been developed among the
general population, whether through infection, vaccina-
tion, or a combination of both. While COVID-19 is no
longer a public health emergency of international con-
cern since May 2023, attention has been shifted towards
understanding the situation in the monitoring phase [4].
Given that extensive (health) data became publicly avail-
able, it is important to undertake a comprehensive ret-
rospective examination of how the disease did spread
and what was the effect of interventions throughout the
emergency phase of the pandemic [5]. To our knowledge,
no studies have been conducted to elucidate the disease
transmission mechanism in Europe, which was one of the
world’s epidemic centers [6], as a whole. It can be reason-
ably presumed that the epidemiological characteristics of
SARS-CoV-2 are analogous across European countries,
while these countries exhibit varying degrees of popula-
tion heterogeneity, including social background, human
behaviours, disease susceptibilities, and the implemented
countermeasures and policies to the pandemic. We
hypothesize that these factors would constitute the dis-
parities in the spatiotemporal transmission mechanisms
among these countries.

In Europe, certain works on spatial and spatiotempo-
ral aspects of the COVID-19 disease have been con-
ducted at multi-country level or continent scale [7-11].
For instance, a study by Davis et al. (2021) highlighted
that local transmission probably occurred in several
areas of Europe and the United States during January and
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February 2020, using a global metapopulation epidemic
model to investigate the space-time heterogeneity in the
early stage of the pandemic [10]. However, most of these
studies considered data before the implementation of
stringent containment measures or before the COVID-
19 vaccine became widely available. Fajgenblat et al.
(2024), on the other hand, provided a comprehensive pic-
ture of the negative relationships between the confirmed
COVID-19 cases with the NPIs and vaccination level,
extensively oriented on the first three years of the pan-
demic in 38 European countries, using a Bayesian hierar-
chical distributed lag model [11].

In advancing the investigation of various aspects of a
disease, including spatiotemporal analysis, the coales-
cence of statistical and mathematical modeling with
innovative data sources has become a prominent area
of focus [5]. During the COVID-19 emergency, Nunes
et al. (2020) strongly demonstrated the crucial role of
mathematical methods such as Susceptibles-Infectious-
Recovered-like models to mechanistically reflect the
disease spread, using epidemiological surveillance data
[12]. However, information regarding the number of sus-
ceptibles, which is of importance in such models, is not
frequently obtained from routine public health data [13].
Alternatively, the Endemic-Epidemic (EE) framework,
which was first introduced by Held, Hohle, and Hofmann
in 2005, also known as the hhh4 model [14], is more
pragmatic than the full mechanistic ones [13, 15]. Essen-
tially, the EE model is a time-series model of disease inci-
dence that this model can be extended for spatiotemporal
multivariate analysis and does not require the number
of susceptibles to be available [13]. The model decom-
poses the expected case counts into an endemic and an
epidemic component. While the epidemic component
represents an autoregression on the historical counts,
i.e., “infectiousness’, in the same and other regions, the
endemic component represents the background disease
risk associated with socio-demographic variables, and/or
environmental factors. Although the model can be com-
plex by flexibly incorporating dependencies such as coun-
termeasures and vaccines [16, 17], human social contacts
[18-20], and spatial human movements [21-23], the
model parameters can be estimated via maximum like-
lihood estimation and the complexities can be deduced
from epidemiological aspects. Besides, the model is prac-
tically implemented in the R package surveillance
[24] and its extensions such as hhh4addon [25].

Using the EE model, the objective of our study is to
understand the similarities and differences in the spa-
tiotemporal spread of COVID-19 epidemics in 30 EU/
EEA countries between March 2020 to December 2022.
We conducted an additional simulation study to investi-
gate how well the contribution of each model component
from the additive model approach can be estimated in
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different counterfactual trajectories of the pandemic. We
targeted the EU/EEA countries due to their shared com-
petencies, including public health, from which they ben-
efit from European organizations such as the European
Center for Disease Control and Prevention (ECDC). We
leveraged the weekly-aggregated COVID-19 case counts
in 30 countries from Week 13-2020 to Week 50-2022. We
also considered the discrepancies in the population size,
vaccination coverage taking into account waning immu-
nity of the primary course and three booster doses, the
Stringency Index from the Oxford COVID-19 Govern-
ment Response Tracker (OxCGRT) [26], and the circula-
tion of various virus variants of concerns (VOCs) while
the power law approximation for spatial interaction
between countries was applied. From this study, we want
to provide the authorities and scientists with a compre-
hensive review of the pandemic in the European region
during the emergency phase.

The paper is organized as follows. We begin by
describing our various data sources and their adapta-
tion to be used in our study in Study materials section.
The endemic-epidemic spatiotemporal model section
describes the proposed modeling approach, and Simula-
tion study section demonstrates how we conducted the
simulation study. While Results section shows results of
the fitted models to the data and results from the simu-
lation study, Discussion and Conclusion sections discuss
and conclude.

Study materials

This study was designed as a spatiotemporal time series
analysis with country and week as the main space-time
resolution. All data from twenty-seven EU countries and
three EEA countries were collected and transformed into
weekly intervals from Week 13-2020 (23 March 2020) to

Table 1 Overview of the different datasets used in the study
with details on the available time resolution at the country level

Data Source Time Time range Date
resolution obtained
COVID-19 OurWorld  Daily 23 March 2020 20
cases in Data - 18 December  February
[27] 2022 2023
The Strin- OxCGRT'  Daily 23 March 2020 20
gency Index  [26] - 18 December  February
2022 2023
Data of ECDC? Weekly Week 13-2020t0 09
variants [28] Week 20-2022 October
2024
Data of ECDC?[3] Weekly Week 50-2020to 09
vaccination Week 50-2022 October
2024
Population World Yearly 2020 - 2022 04 July
data Bank [29] 2024

'The Oxford COVID-19 Government Response Tracker 2European Centre for
Disease Prevention and Control
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Week 50-2022 (18 December 2022) (143 weeks in total).
Table 1 summarizes the datasets used in our study.

The COVID-19 reported cases

The daily reported COVID-19 case counts across 30 EU/
EEA countries were retrieved from the Our World in
Data website [27] on 20 February 2023. We analyzed a
total of 182,342,684 cases, ranging from 21,128 cases in
Liechtenstein to 39,278,544 cases in France. Figure 1A
presents the temporal evolution of the total number of
reported cases from all countries. Overall, the epidemic
curve demonstrates numerous fluctuations in its trajec-
tory. After the initial spread in March - April 2020, there
was a decline in new cases during the summer months of
the same year. Thereafter, the number of cases started to
increase in October 2020, followed by subsequent waves
with peaks and troughs, including significant spikes
between late 2021 and early 2022. The highest peak was
observed in Week 4-2022 (January 2022) with the total
number of reported cases approaching 9 million cases in
that week. Figure 2 shows the variability in the distribu-
tion of cases per 1,000 population across countries by
year. In 2022, countries such as Austria, Germany, and
France exhibited the highest number of cases per one
1,000 population.

The Stringency Index

The Stringency Index was extracted from OxCGRT, a
dataset that documented the government policies against
the COVID-19 pandemic [26]. The Stringency Index pro-
vides a summary picture of the NPIs at the national level.
It comprises nine metrics, including school and work-
place closures, the cancellation of public events, restric-
tions on public gatherings, closure of public transport,
stay-at-home requirements, public awareness campaigns,
and restrictions on internal and international mobil-
ity. The index was originally calculated on a daily basis
and ranges from 0 to 100, with higher values indicating
a greater level of stringency of NPIs imposed at certain
points in time. In each included country, we computed
the weekly mean of this index. Figure 1B summarizes the
weekly means across 30 countries from Week 11-2020 to
Week 50-2022, which encompasses two weeks before our
study period. While the solid line represents the median
of weekly means, light-colored ribbons show 2.5% to
97.5% quantiles across countries, depicting cross-sec-
tional heterogeneity. Overall, this index demonstrated a
rapid increase in March - April 2020, when more strin-
gent measures were implemented in most countries. Sub-
sequently, it exhibited significant fluctuations in late 2020
and 2021 before decreasing in 2022.



Nguyen et al. BMC Public Health (2025) 25:3547 Page 4 of 19

(A) Number of reported cases, aggregated over all 30 EU/EEA countries, W13/2020 - W50/2022

8e+06
o 6e+06-
[0]
(2]
©
o
2 4e+06
[
z
2e+06 -
0e+00- T !
Feb-20 May-20 Aug-20 Nov-20 Feb-21 May-21 Aug-21 Nov-21 Feb-22 May-22 Aug-22 Nov-22 Feb-23
Week of report
(B) Weekly mean of the Stringency Index, across 30 EU/EEA countries, W11/2020 - W50/2022
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Fig.1 Overview of the data used in our study: The total number of cases aggregated over all 30 EU/EEA countries (A), the weekly mean of the Stringency
Index (B) and the raw vaccination coverage (C) across countries, and the circulation of the Alpha, Delta, Omicron, and other variants aggregated over all
countries (D), between Week 13-2020 to Week 50-2022. Note that in (B) and (C), the solid lines present the median and bands are the 95% quantiles of
the weekly means of the Stringency Index and the vaccination coverage, respectively
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Fig. 2 Number of reported COVID-19 cases per 1,000 population by year and by country within the EU/EEA region. Country names have been assigned
a two-letter country code: Austria (AT), Belgium (BE), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czechia (CZ), Denmark (DK), Estonia (EE), Finland (FI), France
(FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Italy (IT), Latvia (LV), Liechtenstein (LI), Lithuania (LT), Luxembourg (LU), Malta (MT),
Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Slovakia (SK), Slovenia (Sl), Spain (ES), Sweden (SE). Countries not part of the EU/

EEA are shown in grey as background

COVID-19 vaccination data
The number of vaccine doses administered in each EU/
EEA country, including the primary course and three
booster doses, were extracted from the ECDC Dashboard
for COVID-19 Vaccine Tracker from Week 50-2020 to
Week 50-2022 [3]. The raw vaccination coverages of
the primary course and booster doses in a given coun-
try were calculated as the cumulative number of people
receiving the respective vaccine dose at week ¢ relative to
that country-specific population (Fig. 1C).

During our study period, most of the COVID-19 vac-
cine products authorized for use in the EU/EEA countries
were the Comirnaty — Pfizer BioNTech (73% of the total
doses administered), Spikevax — Moderna (17.3%), and
Vaxzervria — AstraZeneca (7.3%) vaccines (see Appendix
Figure A4, sourced from Our World in Data [27]). Given
that the immunity against COVID-19 induced by vac-
cines wanes over time, accounting for waning immunity
is essential in the analysis. In our study, several assump-
tions were made: (i) the immunity begins after the com-
pletion of the primary course; (ii) full establishment of
the immunity starts at two weeks after administration
of any dose; and (iii) the waning occurs after six months
post-vaccination [30, 31]. Following the approach pro-
posed by Dunbar et al.,, (2024) [19], we determined the
overall vaccination coverage with waning immunity,
vac;t, at each week for each country as follows:

vacy = Z covl(.;f), where cov%)
) . 1)
_ D a<t(Pt—a X ;)

bopit

Specifically, the overall coverage vac;, for each country at
each time point is the sum of the coverage with waning of

different dose types, COUE;:), where (-) can be the primary
course, the first, second, or third booster, in country i
)

at week £. cov;,” is expressed as a fraction, of which the

numerator is the product of the number of new doses xgd)
of the dose type (-) administered at week d < t in coun-
try i and the waning rate p at time ¢ — d that takes two
weeks to establish immunity and wanes after six months
(see Appendix Figure A5, adapted from [19]), and the
denominator is the population size pop;; of country i in
week ¢. Figure 3 depicts the vaccination coverage across
countries, where the solid lines are the median, and the
ribbons are the 95% quantiles of the weekly percentages.
For country-specific coverages, see Appendix Figure A7.
Among 3,180 data points (106 weeks x 30 countries), 16
values were greater than one, and thus, we truncated to
0.9999 for numerical reasons.

COVID-19 variants data

The SARS-CoV-2 variants circulating during our study
period were obtained from the GISAID database [28] and
classified into four categories: the Alpha, Delta, Omicron,
and other variants. In each week of observation, the per-
centage of each variant group was determined by divid-
ing the number of positive sequences associated with
that group by the total number of sequenced samples
with known variants in that week. In countries with miss-
ing data, the percentage of a certain variant was imputed
by the overall percentage of that variant in all 30 EU/
EEA countries. Figure 1D demonstrates the significant
shifts of each variant group: the Alpha variant was the
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(A) Vaccination coverage with immunity waning across countries
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Fig. 3 The COVID-19 vaccination coverage taking into account waning immunity across 30 EU/EEA countries. In panel (A), the solid line is the median of
weekly percentages, and band is 95% quantiles across 30 EU/EEA countries. Panel (B) is the overall coverage by country

predominant strain in the first half of 2021, followed by
the Delta variant, which became prevalent until Novem-
ber 2021, and subsequently the Omicron variant, which
surged globally since December 2021.

The population data
To ensure that our models accounted for demographic
changes over the study period, we referenced the annual
population data from the World Bank for the years 2020
to 2022 [29].

For details of the data included, please see Appendix
Figure A1 to Appendix Figure A10.

The neighbourhood structure
The connectivity between countries is presented by a
neighbourhood matrix, where countries are defined as
neighbours if they share a boundary. Formally, we denote
0j; as the neighbourhood order from country j to coun-
try 4 # j, such that oj; = 0;; = r, where 7 > 0 is defined
as the shortest path between each pair of countries, with
r steps taken on each journey [21]. Conventionally, this
features a symmetric neighbourhood matrix with zeroes
on the diagonal.

From the original neighbourhood matrix (Appendix
Figure Al1), several countries (Iceland, Cyprus, Malta,
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Ireland) or groups of countries (Norway, Sweden, Fin-
land) are not connected with other countries because
they do not share any boundaries with the other coun-
tries. Since this does not realistically reflect the social
connectivity amongst countries, the original matrix was
adjusted to form a new matrix (aka the maritime neigh-
bourhood matrix, Fig. 4B). Specifically, with regard to the
maritime boundaries between countries, first-order con-
nections were established between Finland and Estonia;
Sweden and Denmark, Norway, and Estonia; Iceland and
Norway; Cyprus and Greece; Malta and Italy. In addi-
tion, second-order connections were added between
Ireland and France, Belgium, and the Netherlands, given
that these countries share maritime neighbours in com-
mon with the United Kingdom. These new connections
are shown in Fig. 4A’s red lines. The adjusted matrix
will be used in our spatiotemporal model, which will be
described in detail in the following Section.

The endemic-epidemic spatiotemporal model
We generated a multivariate time-series model for the
COVID-19 reported cases Y;; in country ¢+ =1,...,I
during week ¢t =1,...,T. Depending on past observa-
tions Y; ;—1,...,Y; K, we assumed that Y;; has a nega-
tive binomial distribution with conditional mean p;;, an
overdispersion parameter ¢ > 0, and conditional vari-
ance fu;¢ (1 + i) [14, 25]:

YilYie—1,...,Yii—k ~ NegBin(p, ¢). (2)
Note that when ¥ =0, Y;; is Poisson distributed. The
conditional mean f;; in (2) is given by:

(A) The 1st-order neighbor (maritime matrix)
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In Eq. (3), the first and the second terms are the autore-
gressive and the neighbourhood components (also called
as the spatiotemporal component), respectively. These
are sometimes referred to as the observation-driven epi-
demic component, as they are modeled based on histori-
cal counts. The autoregressive component captures local
disease dynamics when new cases arise from infectious
individuals in the same country, whereas the neighbour-
hood component describes the link between the cases in
country i being infected by the previous cases in coun-
try j # i. The remaining term in Eq. (3) is the endemic
component to reflect the background disease incidence
in country i. The endemic component was modeled pro-
portionally to an offset of expected counts, which is typi-
cally considered as an approximation of the population
at risk N;;. The three non-negative unknown predictors
Ait> @it, and vy in the three components were modeled as
log-linear structures as follows:

log(Air) =a™ + blo‘) + 5;(331)7 log(Nyz)
+ B log(1 — vacye) + B5)SLi—s  (4)

A
+ B98¢, VOCpai ity

(B) Maritime neighbourhood matrix

R LS
3

Fig. 4 The first order neighbours (A) and the maritime neighbourhood matrix (B)
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log(¢i) = a'® + b 4 B log(Nyy)

7 pop

(5)
+ B0 STa + B\, VOChay it

log(vi) = a™ + bgy) + B log(1 — vaci)

sus

v (6)
+ ﬂ\(/(:))C[m] VOC[x] yite

In Egs. (4), (5), (6), a®, al®), o) are the component-
specific fixed intercepts. We also introduced the coun-
try-specific random intercepts, bl(-A), b§¢), and bgy) to the
model to account for the heterogeneity in incidence level
that is not explained by the covariates [32]. These random
effects were assumed to be independent and normally
distributed with mean zero and variance o2, 0%, and a;,

respectively, to be estimated from the data. In addition,
multiple dynamic covariates were incorporated in the
model. First, the two epidemic components were scaled
with the population size by including the logarithm of
the population counts, log(N;:), to reflect that popu-
lous countries have higher number of people thus higher
level of infectivity (the autoregressive component), and a
greater potential to import cases from their neighbour-
ing countries (the spatiotemporal component) [21]. Next,
it is assumed that the proportion of the population that
had not been vaccinated (1 — vac;;) can be used as a sur-
rogate for the susceptible population (sus) [16, 19, 22]. In
our model, log(1 — vac;;) was embedded in the endemic
and autoregressive components with the correspond-

ing parameters ﬁgﬁl and ﬁgﬁl Moreover, the NPIs were
found to have the greatest influence on the change in
daily incidence at a lag of 14 days after implementation
[11]. Accordingly, we integrated the two-week lag of the
Stringency Index (SI;_2) in the two epidemic compo-
nents to reflect the delayed impact of NPIs on disease
transmission dynamics. While different VOCs may sug-
gest different transmission risks [33, 34], the proportion
of the VOCy,), where [x] represents the Alpha, Delta, and
Omicron variants circulating in each country during the
study period, were integrated into the model.

When studying daily case counts, it is reasonable to
posit that the number of cases recorded on a given day
is not only dependent upon relevant observations on the
previous day but also observations further back in time.
In the EE models, the lag weight u;, assigned in the two
observation-driven components can be perceived as the
probability of a discrete-time serial interval distribu-
tion (i.e., the distribution of the average number of days
between the symptom onset of two consecutive cases)
[25]. Some EE studies indicated that the lags for COVID-
19 disease were likely to be in the range of seven days [17,
22]. However, as we modeled weekly aggregated COVID-
19 case counts, we considered the maximum length of k
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to be K = 2 weeks. This was done to minimize potential
biases in the assumption of serial intervals due to, for
example, the use of aggregated data [25], or the impact
of the VOCs [35] or the control measures [36]. The lag
weight 1y, which was constrained to be positive, was nor-
malized and defined in accordance with a shifted Poisson
weighting scheme [25].

In order to describe the disease spread from country
j to country i, a spatial weight w;;, which is a function
of the neighbourhood order oj; with decay parameter
d > 0, was entered in the spatiotemporal component in
Eq. (3). This is referred to as a power law model, which is
inspired by human movement behaviour [21]. The spatial
weight is expressed as follows :

wji = 03¢, (7)

for (j # i) and w;; = 0. The weight w;; was row-normal-

o-.
1]71751’ such that the sum of all rows j
Zm:l ij

is equal to one (an:l Wjm = 1) to make sure that the

ized wj; =

cases Y, are distributed among the countries in a
manner that is proportional to the j™ row vector of the
weight matrix wj; [24]. To ensure positivity, the decay
parameter was estimated on a logarithmic scale.

We fitted the EE models with and without random
effects to check whether or not the heterogeneity in dis-
ease incidence can be adequately captured by the ran-
dom effects. In mixed models, Paul and Held (2011)
showed that commonly used goodness-of-fit criteria,
such as the Akaike Information Criterion, may intro-
duce bias, particularly when deciding on the inclusion of
random effects [32]. Czado, Gneiting, and Held (2009)
proposed proper scoring rules, a more natural approach
for model selection [37]. This score quantifies the dif-
ference between a predictive distribution from a fitted
model and the observed value [32, 37]. A scoring rule
is considered proper if its expected score is minimized
when the prediction is ideal [38], that is, when the obser-
vation is drawn from the predictive distribution. Lower
scores indicate better goodness-of-fit. In this paper, we
advocated the logarithmic score (logS), and the ranked
probability score (RPS) as these two scoring rules simul-
taneously demonstrate the calibration - “the statistical
consistency between the probabilistic forecasts and the
observations” and sharpness - “the concentration of the
predictive distributions of the predictive distribution” [37].
The discrepancy between the mean scores was examined
through the use of a permutation test with a statisti-
cal significance of the differences set at 0.05. For further
details regarding the calculation of the aforementioned
scores, we refer to [32, 37].
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All the analysis was performed in R version 4.4.1, using
the open software R packages surveillance version
1.23.0 [24], and hhh4addon version 0.0.0.0.9014 [25].

Simulation study

A simulation study was implemented to investigate how
well the contribution of each of the model components
can be estimated in different counterfactual trajecto-
ries of the epidemic. In particular, a total of 800 simula-
tions were generated across eight pandemic scenarios,
with 100 simulations per scenario. These epidemic sce-
narios were built from eight sets of parameters originat-
ing from the fitted model with component-specific fixed
effects (hereinafter referred to as the original model). In
Scenario 0, the simulated data were generated from the
original model, with all parameters maintained at their
original estimated values. In Scenarios 1 through 7, the
three component-specific intercepts were adjusted while
the impact of VOCs in all three components were either
preserved (Scenarios 1 & 2), i.e., the estimates from the
original model were upheld, or removed (Scenarios 3 to
7), i.e., set them to zeros. The values of the three inter-
cepts were selected arbitrarily so that the mean total
number of cases in 100 simulated datasets would be
close to the original total number of cases (Scenarios 1
to 5), or that was half (Scenario 6), or double (Scenario
7) the original total number of cases. Subsequently, all
simulated datasets were fitted using the model in Eq.
(3) without the random effects. The estimated param-
eters were summarized by medians, means, and standard
deviations, and were then compared with the true val-
ues. The coverage probabilities of the true values, i.e., the
proportion of models in which the true values fell within
the confidence intervals (CIs) for each parameter, were
described. The contribution in proportion of each of the
three components was also calculated. The eight sets of
the parameters and the resulting estimates are presented
in detail in Subsection 5.2.

Results

Spatio-temporal transmission of COVID-19 in 30 EU/EEA
countries

Table 2 presents the parameter estimates obtained from
the models fitted with and without random effects and
model assessment using proper scoring rules. The model
fitted with random effects demonstrates a better good-
ness-of-fit as evidenced by lower logS and RPS scores
compared to the fixed effects version. Ascribed to the
random effects, the estimated overdispersion was also
lower, suggesting a reduction in residual heterogeneity.
Thus, in this subsection, we concentrate on the findings
of the random effects model. Figure 5A depicts the fitted
values aggregated across countries. Overall, the model
provided a good fit to the observed disease dynamics
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between 2020 - 2022. The decomposition of the contribu-
tion in proportion attributed to each of the three compo-
nents over time is illustrated in Fig. 5B. Panels (C), (D),
and (E) in the same figure summarize the fractions of
conditional means explained by each component across
30 EU/EEA countries. The solid lines are the medians
of the weekly proportions, and the ribbons illustrate the
2.5% and 97.5% quantiles. A country-specific aggregated
overview of the component contribution is also pre-
sented in Fig. 6. The results for individual countries can
be found in the Appendix Figures A12 & A13.

Throughout the study period, within-country transmis-
sion constituted the predominant mode of transmission
and this observation was consistent across countries.
Overall, the COVID-19 cases attributable to the autore-
gressive component accounted for 93.3% of the estimated
total number of cases. In each country, this component
was responsible for explaining between 68.5% (Greece)
and 98.4% (Norway) of the total expected mean (Fig.
6A). At certain time points, the overall contribution of
this component was estimated approximately between
70% (September & November 2022) and 99% (February
- June 2021) (Fig. 5B & C). The within-country trans-
mission persisted until the end of December 2022. To
this point, we believe that the local transmission chains
within the country were established at the time this study
commenced (i.e., March - April 2020). However, in cer-
tain countries, such as Liechtenstein, Iceland, and Malta,
the contributions of the autoregressive component were
quantified to be below 50% during the summer months
of 2020 (Appendix Figure A13). This was likely due to the
relatively low number of reported cases in relation to the
size of the population (Fig. 7).

In contrast to the significant influence of the autore-
gressive component, the overall impact of the neighbour-
hood component on the epidemic curve was limited,
accounting for 1.3% of the estimated number of cases
accumulated over all countries and all time points. The
spatiotemporal component was also a relatively minor
contributor to the expected number of new infections
in each investigated country. Approximately half of the
countries exhibited minimal neighbourhood effects (< 1
%), whereas only a few countries, such as Croatia, Bel-
gium, and Luxembourg, demonstrated a higher impact
of between-country transmission than the overall value
(Fig. 6B). On average, the between-country transmission
was significantly pronounced between June and Novem-
ber 2020 but it had a high degree of temporal heteroge-
neity across nations until the end of 2021 (Fig. 5B & D).
Compared to the within-country transmission, this result
indicates a basic transmission process: once a sufficient
number of infected individuals accumulated via between-
locality transmission, the risk of within-locality transmis-
sion was likely to increase, especially in the early periods
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Table 2 The parameter estimates and 95% confidence intervals (95% Cls) from the models fitted with and without random effects
and model assessment using proper scoring rules

Component Parameter Notation Model with random effects Model without random effects
Estimate 2.5% 97.5 % Estimate 2.5% 97.5%
Endemic Intercept a®) -21.384 -27.693 -15.075 -19.107 -23.779 -14.435
Variance of random intercept a2 1.514
Log susceptible gz)s 0.160 -0.155 0475 -0.172 -0.352 0.008
Variant Alpha B(V) 5.558 -4.093 15.209 -2.307 -15.129 10514
VOC|aipha)
Variant Delta 6(1/) 10.641 4.051 17.230 8444 3.642 13.245
VOC|peita]
Variant Omicron B(V) 13.252 6.898 19.606 10.882 6.179 15.585
VOC 0micron]
Autoregressive Intercept a™) -0.166 -0.392 0.060 -0.038 -0.223 0.146
Variance of random intercept o'i 0.0012
Log population 1(0?\);) 0.0011 -0.014 0.016 0.002 -0.009 0.013
The Stringency Index 5&) 0.0013 -0.0001 0.003 0.0005 -0.0009 0.002
Log susceptible 23)3 -0.060 -0.082 -0.037 -0.053 -0.079 -0.026
Variant Alpha B(X) -0.013 -0.079 0.053 -0.129 -0.197 -0.061
VOC|aipha)
Variant Delta ﬁ(k) 0.146 0.071 0.221 0.077 0.006 0.148
VOC|peita)
Variant Omicron 50\) -0.083 -0.166 -0.00002 -0.180 -0.261 -0.099
VOC[Omicron]
Neighbourhood Intercept al®) -18.226 -21.870 -14.581 -13.094 -15.233 -10.955
Variance of random intercept gi 0.899
Log population 1(7?; 1.073 0.854 1.293 0.701 0.587 0.815
The Stringency Index 5é¢) -0.090 -0.104 -0.075 -0.087 -0.107 -0.066
I
Variant Alpha 5(¢) -4.573 -7.728 -1418 -3.492 -5.689 -1.295
VOC|aipha)
Variant Delta ﬁ(qﬁ) -2.393 -3.024 -1.761 -1.968 =271 -1.225
VOC|peita)
Variant Omicron ﬂ(¢) -7.441 -10.204 -4.679 -8.539 -12.484 -4.593
VOC[OnLLcrOn]
Log decay parameter d -0.627 -1.731 0477 0.018 -0.544 0.579
Overdispersion P 0.182 0.174 0.190 0.238 0.228 0.248
Proper scoring rules The logarithmic score logS 9.121 9.256
The ranked probability score RPS 7930.063 8554.054

(see more in Appendix Figures Al4 & A15). From late
2021 onward, even though the contribution of the neigh-
bourhood component was remarkably small, this spatio-
temporal effect could not be disregarded. It is possible
that sources of infections originating from outside the
country could serve as a catalyst for the emergence of
new community outbreaks within the country (Table 3).
In addition, the evolution of the COVID-19 pan-
demic in the EU/EEA region was found to have approxi-
mately 5.4% of its aggregated number of new infections
attributable to the endemic component. However, a
notable discrepancy was observed in the temporal and
spatial contribution of this component between coun-
tries. Approximately two-thirds of the analyzed countries
exhibited a lower percentage of endemic transmission
compared to the overall estimate. Conversely, in Greece
and Finland, for instance, the magnitude of the endemic
behaviour was large: they contributed to approximately
31.3% and 19.6% of the estimated total number of cases
in each country, respectively (Fig. 6C). The endemic

effects, on average, became more pronounced since late
2021 and the fraction of the endemic component peaked
at approximately 30% in September 2022 (Fig. 5B, Appen-
dix Figure A16). In some countries, there were gradually
elevated contributions to infections originating from
the endemic component from the second half of 2021
onward (Fig. 5E and Appendix Figure A13). This suggests
the preliminary indications of a shift from epidemic to
endemic disease activity. It remains uncertain, however,
whether these endemic waves were merely transient or if
they were a start of a more prolonged, stationary phase of
the disease.

From the parameter estimates in Table 2, the Stringency
Index was found to be significantly associated with fewer
cases in the neighbourhood component (ﬁgl = —0.090,
95% CI: (-0.104) — (-0.075)). More specifically, one unit
increase in the Stringency Index would result in a reduc-
tion of approximately 1 — exp(—0.090) = 8.6% of the
incidence in the neighbourhood component. In the
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(A) The overall fitted model
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Fig. 5 Panel (A) is the fitted components of the random effects model, aggregated across all 30 EU/EEA countries. The dots indicate the observed num-
ber of weekly infections. Panel (B) shows the contribution in percentage during the observed period from Week 15-2020 to Week 50-2022 (excluding
the first two weeks). Panels (C), (D), (E) summarize the contribution in percentage (%) of each of the three components in the weekly cases across 30 EU/
EEA countries over time. The solid lines are the medians, and bands are the 95% percentile of the weekly percentages across 30 EU/EEA countries. The
autoregressive, the spatiotemporal, and the endemic components are illustrated by blue, pink, and cyan, respectively

autoregressive component, the level of strictness of NPIs
as measured by the Stringency Index appeared to have
minimal impact on lowering incidence albeit that the
corresponding parameter estimate was found to be statis-
tically insignificant. With regard to the impact of vaccina-
tion, incorporating a log proportion of the unvaccinated

population into the autoregressive component did not
substantiate the hypothesis of a negative association
between vaccination coverage and the disease incidence
resulting from within-country transmission. Conversely,
the proportions of unvaccinated individuals seemed to
have a positive effect in increasing the disease incidence
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Fig. 6 The contribution in percentage (%) of each of the three components in the total cases estimated from the random effects model in each country

in the endemic component, although this effect was not
statistically significant. In addition, countries character-
ized by larger numbers of inhabitants were more likely
to have higher risks of importing a number of cases from
the neighbouring countries. The corresponding estimate
of this commuter-driven effect was found to be signifi-

cant (i.e., 85%) = 1.073, 95% CI: 0.854 — 1.293), thereby
substantiating this association. The spatial interaction
between countries, as shaped by the power law model,
displayed a relatively slow decay across neighbourhood
orders (Fig. 8). The decay parameter was estimated at
d = exp(~0-627) = 0,534 (95% CI: 0.177 — 1.611). This

result revealed that all included countries may share a
strong interconnectivity, with long-distance transmission
events occurring beyond their immediate geographic
proximity. Concerning the impact of VOCs, our results
demonstrated that the endemic level of the disease was
significantly influenced by the circulation of variants,
particularly the Delta and Omicron variants.

Furthermore, the analysis encompassed a large number
of countries, and incorporating the random intercepts
in all three components appeared to be a reasonable
approach to address the heterogeneity in incidence lev-
els across countries [32]. Our results show that the
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Fig. 7 The estimated country-specific random intercepts in the random effects model. The random intercepts bgM, b

5.(1)), and bz(.y) of the autoregressive,

spatiotemporal, and endemic components, respectively, are visualized in maps. In the left panel, the color cannot be visually displayed because the esti-
mated random intercepts in the autoregressive component are very small compared to the estimated random intercepts in the other two components

autoregressive random effect exhibited minimal varia-
tion (0% = 0.001). In contrast, the estimated variance
of the neighbourhood component was larger with

035 = 0.807, suggesting that there was considerable vari-

ability in between-country transmission that could not
be explained by covariates. In Fig. 7, the neighbourhood
random intercepts in the Western and Southern coun-
tries were relatively higher, implying a greater likelihood
of cross-country transmission compared to the overall
transmission rate. The endemic random effects exhibited
the greatest variance with o2 = 1.514. It may present a
substantial amount of residual variability, which was not
absorbed by covariates in the endemic component due to,
e.g., introduction events from outside the study region.
Nevertheless, the fixed intercepts in the spatiotemporal
and endemic components were found to be remarkably
small, which explains why the endemic and neighbour-
hood components contributed minimally to the overall
fit.

Simulation results

All the models fitted on the 800 simulated time series
converged. On average, the median values of all esti-
mated parameter values were found to be in close prox-
imity to their true values. The coverage frequency of
how often the true value falls within the 95% confidence
interval ranged from 77% to 100%. To compare the con-
tribution of each component in explaining the simulated
observed data, we plugged the true values into each sim-
ulated dataset in each scenario. Subsequently, the fitted

hhh4 models were capable of separately identifying the
three components, even though the impact of the spatio-
temporal component may have been relatively small. For
the summary of simulation results, see Fig. 9, the Appen-
dix Tables A1 to A4, and Appendix Figures A17 to A19.

Discussion

We utilized a multivariate endemic-epidemic model to
gain insights into the spatiotemporal spread of COVID-
19 epidemics in 30 EU/EEA countries between 2020
- 2022. By facilitating an analysis of weekly aggregated
COVID-19 case counts while extensively incorporating
other data such as the population data, vaccination cov-
erage taking into account waning immunity, the circu-
lation of the main VOCs, the Stringency Index, and the
assumption of a power-law decay of the spatial interac-
tion between EU/EEA countries, we could character-
ize and quantify the transmission of COVID-19 across
multiple countries in the EU/EEA region during the first
three years of the pandemic. Insights from our study are
beneficial for scientists and public health authorities in
seeking a global overview with regard to the emergency
phase of the COVID-19 pandemic. The employed meth-
odological approach therein proves its advantages in
investigating epidemiological issues through the use of a
statistically-sound instrument with a minimal computa-
tional cost.

Before discussing the results, it is important to recall
that, in reality, “endemic” refers to the constant or
expected level of an infectious disease within a popula-
tion, while an “epidemic” indicates a sudden increase in



Nguyen et al. BMC Public Health (2025) 25:3547

Page 14 of 19

Table 3 Different simulated scenarios of the COVID-19 epidemics after changing the parameter estimates from the original fitted

model without random effects

Scenario Scenario 0

Sce- Sce- Scenario Scenario Scenario Sce- Sce-
nario1l nario2 3 4 5 nario6 nario7

Mean total cases over 100 simulated datasets vs. the 145.53%
original observed data

99.78%  96.99%  100.50%  101.39%  103.36% 4991% 202.76%

Number of models that converged 100 100 100 100 100 100 100 100
Component Parameter Notation Point estimates
Endemic Intercept a®) -19.107 -16.1 -16.6 -6.4 -6.5 -7.1 -6.9 -6.1
Log susceptible /Bsus -0.172 -0.172 -0.172 -0.172 -0.172 -0.172 -0.172 -0.172
Variant Alpha B(V) -2.307 -2.307 -2.307 0 0 0 0 0
VOC(aiphal
Variant Delta ,B<V) 8.444 8.444 8.444 0 0 0 0 0
VOC|peita)
Variant Omicron ﬁ(V) 10.882 10882 10882 0 0 0 0 0
. VOC[omicron]
Autoregressive Intercept a -0.038 -1.5 -0.8 -3 -2.9 -1.1 -2.6 -1
Log population 1(}2])0 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
The Stringency ,6’()‘) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Index St
Log susceptible ng)s -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053
Variant Alpha /3 -0.129 -0.129 -0.129 0 0 0 0 0
VOC [Alpha]
Variant Delta B(A) 0.077 0.077 0.077 0 0 0 0 0
VOC [Deltal
Variant Omicron /3 -0.180 -0.180 -0.180 0 0 0 0 0
. VOC[OnL'L'm'on]
Neighbourhood Intercept al® -13.094 -11.9 -10 -13.3 -13.2 -13.4 -13.9 -13.8
Log population 1(;5?5:27 0.701 0.701 0.701 0.701 0.701 0.701 0.701 0.701
The Stringency ﬁ(dJ) -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087
Index St
Variant Alpha ﬂ(d’) -3492 -3492 -3492 0 0 0 0 0
VOC|aipha)
Variant Delta ﬁ(ah -1.968 -1.968 -1.968 0 0 0 0 0
VOC|peita)
Variant Omicron B8 -8.539 -8.539 -8.539 0 0 0 0 0
VOC[O77l’iCTO7l]
Log decay d 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
parameter
Overdispersion P 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238

Numbers in bold indicate that the parameter estimates are modified differently than in Scenario 0
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Fig. 8 The non-normalized spatial power law weights w;; = o 4 and the normalized version of the maritime weight matrix [21]

cases above this expected level [39]. The EE model deter-
mines the risk of each susceptible being infected from
external sources such as environmental reservoirs or
cases imported from outside the study region (endemic
component) and from infectives within the same or

neighbouring areas (epidemic component) [40, 41]. Thus,
this decomposition is a pragmatic simplification, provid-
ing an interpretable framework to distinguish baseline
incidence from excess transmission in reality.
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Fig. 9 The first column depicts various simulated scenarios of the epidemic, while the second illustrates the contribution of each of the three compo-
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From the study findings, we conclude that within-
country transmission was the dominant transmission
mode across EU/EEA countries during 2020 - 2022 as
shown in the high fraction of cases attributable to the
autoregressive component in each country. This suggests
that domestic transmission was already established at the
time this study commenced (i.e., March - April 2020) and
probably even occurred before this time period [10, 42].
In fact, Davis et al. (2020) proved that the onset of local
transmission in European countries was very likely in
January and February 2020, a period during which testing
capacity was limited, by using a stochastic, spatial, age-
structured metapopulation epidemic model [10]. Besides,
in many European countries, the elevated contribution of
the neighbourhood component during June - November
2020 and the escalation of the autoregressive compo-
nent contribution from November 2020 onward indicate
that SARS-CoV-2 seeding events originating from Euro-
pean countries could have played a major role in succes-
sive local epidemic waves. We believe that this could be
mainly due to the modest relaxation of NPIs from April
to September 2020 [2] after the initial pandemic peak, as
also shown in the slight reduction of the Stringency Index
(Fig. 1B) in the corresponding period. This exemplifies
the rationale behind one of the transmission mecha-
nisms, which posits that introduction events at the out-
set of the outbreaks, for example via human travel, were
instrumental in initiating localized spread. Nevertheless,
those introduction events could also provide a means for
the independent introduction of virus lineages despite
the establishment of local spread [43]. Thus, the influ-
ence of spatiotemporal effects is nontrivial in our study,
especially from late 2021 onward, when the contribution
of the spatiotemporal component was remarkably small.

Importantly, our results showed that there was an early
sign of the transition from epidemic to endemic states of
the COVID-19 disease from late 2021 onward. The ten-
dency to endemicity is contingent on two key factors:
firstly, the evolution of immune-escape and/or more
transmissible variants, and secondly, the presence of
immunity in the population [44, 45]. In the present study,
the former was favored by the strong effects of the Delta
and Omicron variants, which are known to be associ-
ated with increased transmissibility and immune evasion
properties [34, 46]. The timing of the dominance of Delta
and Omicron variants was in accordance with the onset
of an elevated endemic level of disease. Likely, the geo-
graphic variation in the prevalence of VOCs may explain
the temporal heterogeneity in the endemic fractions
across countries. Regarding the latter, the build-up of
immunity in the population through vaccination or natu-
ral infection subsides in the number of infections. In cir-
cumstances where the persistence of SARS-CoV-2 within
the population is attributable to infections arising from
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susceptible individuals, whether fueled by birth or wan-
ing immunity, endemicity is present [45, 47]. This means
that the endemic level is marked by the stability in the
number of infections in the population [45]. Neverthe-
less, although the transition can be anticipated, whether
the endemicity observed in our study is temporary or
becomes more stationary remains uncertain for two rea-
sons. First, SARS-CoV-2, e.g., the Omicron variant and
its descendants, continues to evolve and evade immunity
[34, 44]. The emergence of a more immune-evasive vari-
ant poses a significant challenge to individuals who are
partially protected against the virus, as it may fail to elicit
variant-specific antibodies in their immune systems.
Moreover, given that SARS-CoV-2 immunity is leaky,
either through vaccination or previous infection, the
likelihood of (re-)infection is increased, especially when
more transmissible variants circulate in the community
[44]. This results in an increase in the endemic level of the
disease, thereby exposing the risk of new endemic waves.
Second, the endemic level is also influenced by the poten-
tial of introducing new cases from outside the study set-
tings. New infections from external sources not directly
related to the observed epidemic history, for example,
by immigration, could enter the endemic component. In

our study, this immigration effect was captured by the
2
ever, it would be preferable to account for the immigra-
tion effect by explicitly incorporating immigration and
tourism inflow data when it is available [22]. Genetic data
could provide valuable insights into cross-border viral
introductions and help disentangle local transmission
from imported cases, highlighting a promising avenue
for future research of inclusion in the EE framework.
Country-specific clade patterns may reveal spatiotem-
poral clusters of importation and refine the assumptions
of the endemic component. For example, phylogenomic
studies in France and West Africa have traced geographi-
cal sources of introduction events and illuminated early
transmission dynamics and variant circulation across
regions [42, 48]. In sum, the endemic level of disease may
increase over time, but this escalation can be countered
by implementing protective measures, both pharmaceu-
tical and non-pharmaceutical interventions [44].

In this work, we found that the NPIs measured by the
Stringency Index were associated with lowering case
counts in the neighbourhood component after account-
ing for its delayed effects, but this association was not
observed in the autoregressive component. We attributed
this mixed finding to factors such as population com-
pliance, which is not captured by the SI, and its inabil-
ity to assess the effectiveness or interaction of individual
NPIs [11]. Despite these limitations, we chose the SI as
a reasonable proxy for evaluating government responses
because of its public availability, standardized structure,

random effects b; ’ into the endemic component. How-
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and interpretability across time and countries. Inter-
estingly, higher levels of susceptibility derived from
un-vaccinated individuals seem to have a positive (but
insignificant) impact on the endemic level of disease.
Similarly, the vaccination coverage and the occurrence
of epidemics within the country did not yield a signifi-
cant association. When fitting the EE model with highly
multivariate time series and multiple covariates, a high
level of complexity is introduced, and thus, identifiabil-
ity problems during the estimation procedure are likely
[16, 19]. However, the results from the simulation study
posit that this issue is not responsible for the insignifi-
cant estimates of the log of susceptible proportions in the
endemic and autoregressive components. Instead, a more
epidemiological explanation was proposed: the time-
varying susceptibility level in each country was assumed
to be proportionate to the proportion of unvaccinated
individuals over time [22]; however, while the immunity
level, which was solely based on the vaccination cov-
erage with waning immunity, may be underestimated
given that it failed to consider the immunity resulting
from prior infection with SARS-CoV-2. Furthermore, the
conjecture that immunity declines after six months for
all vaccine products authorized for use during the study
period seems to be a strong assumption [30, 31, 34],
given the availability of more refined waning models [49].
The duration of effectiveness of vaccines against SARS-
CoV-2 infection may exhibit variation between differ-
ent vaccine products [30, 31] and the assumed 6-month
protection of the vaccines may be less applicable in the
presence of Omicron variants [34]. These factors would
imply an overestimation of the vaccination coverage in
the population, thus imposing biases in the estimation
of the true level of vaccine-induced immunity in the
population. A population’s immunity profile can be col-
lectively enhanced through vaccination and/or previous
infection and this phenomenon likely occurs at the local
level, rather than the global scale. This collective immu-
nity state does not mean that herd immunity has been
achieved; it may be transient and fragile. However, its
contribution to the suppression of individual epidemic
waves is non-negligible, but subsequent waves may
emerge as a consequence of changes in human behaviour,
such as human travel and contact behaviour [50].

One of the main drivers of spatial disease diffusion is
human mobility. As evidenced in other EE studies [15,
20-22], our study once again verified the existence of an
agglomeration phenomenon. When scaling the country
susceptibility level by population size in the spatiotem-
poral component, countries with a higher population
density resulted in a greater likelihood of attracting cases
from their neighbours. However, it seems naive to assume
that the epidemic can only come from their shared-
bordered countries. Long-range transmission of cases
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was addressed by imposing a power law relationship
between countries with respect to the neighbourhood
order adjacency matrix. It was intuitive that individuals
typically travel to locations in closer proximity to their
residence, whereas travel to more distant destinations is
less frequent. Accordingly, closer neighbouring countries
were assigned for greater influence, i.e., more power law
weight, while those situated at higher-order neighbours
were assigned less weight. However, the estimated slow
decay across neighbourhood orders in this work indi-
cated that countries further apart were of importance in
spatial disease dispersion. This forms a coarse implica-
tion of a pronounced interconnection between countries
in the global spread of COVID-19 disease. From a macro-
scopic perspective, the spatiotemporal spread of the pan-
demic is not random but rather typically patterned by a
human movement network that can be modeled as either
constant or time-varying. Examples of such networks are
airline transportation data [10], mobile network [22, 23],
movement pattern approximation based on generated
data sets from Meta-Facebook or Google [9, 17]. Given
the interconnected nature of the modern world, a multi-
dimensional network paradigm beyond the typical trans-
portation network may provide a superior approach to
elucidating the spatiotemporal patterns of the global dis-
semination of the novel coronavirus [51].

The strength of our study lies in the utilization of the
endemic-epidemic modeling framework to project the
transmission mechanism of COVID-19 disease at a global
scale. Specifically, the hhh4 model allows us to examine
the spatiotemporal transmission process in a granular
manner using multiple highly structured data that vary
in both in time and space, while requiring a minimal
computational burden as compared to other parameter-
driven methodologies. Nevertheless, several limitations
need to be recorded. The lack of information on a-/pre-
symptomatic community incidence is our first limita-
tion when monitoring the COVID-19 pandemic. There
is compelling evidence suggesting the importance of a-/
pre-symptomatic transmission of SARS-CoV-2. Serologi-
cal survey data can be used to estimate the fractions of
asymptomatic in the population [52]. However, this type
of data is not often universally available, and the question
remains as to whether these data can be extrapolated to
represent the entire country. Secondly, the study did not
consider information on testing strategies, which evolved
during the emergency phase. This testing information
may prove useful in assessing the reporting bias in the
model [53]. Finally, the strength of inter-country con-
nectivity, as modeled by the power law, was kept constant
over time. This constancy is not likely realistic in the con-
text of the pandemic, given there must be significant fluc-
tuations in mobility patterns in our study setting [54, 55].
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Conclusion

From a statistical and evolutionary perspective, we pre-
sented a comprehensive view of the spatiotemporal
dynamics of SARS-CoV-2 in the EU/EEA region during
2020 — 2022. We found that within-country transmis-
sion was the main mode of transmission across all coun-
tries over the three years. This work also emphasized a
basic transmission mechanism: infections introduced by
between-country transmission could be of great impor-
tance for subsequent domestic outbreaks. Furthermore,
early signs of the transition to endemicity since the
beginning of 2022 were conceivable, particularly in light
of the evolving VOCs. Our study highlighted the benefits
of the endemic-epidemic framework, to cover many epi-
demiological aspects of COVID-19 diseases at a vast spa-
tial and temporal scale. This is of great interest to those
seeking to examine public health questions with multiple
data sources available at the time while maintaining the
flexibility to update the results when more information
becomes available in the future.
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