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Abstract
Background  While the COVID-19 pandemic has been burdensome globally, it has fostered extensive data collection 
at various spatiotemporal resolutions. These data heightened researchers’ interest in investigating multiple facets 
of the pandemic. In Europe, key factors shaping disease transmission vary among countries, leading to a gap in 
understanding how the epidemic evolved and spread across countries as a whole. We endeavor to understand the 
similarities and differences in the spatiotemporal spread of the COVID-19 pandemic across 27 European Union (EU) 
countries and 3 European Economic Area (EEA) countries between March 2020 and December 2022.

Method  We utilized a multivariate endemic-epidemic model to conduct a space-time analysis across 30 countries, 
using weekly aggregated COVID-19 case counts from week 13-2020 to week 50-2022. Our analysis considered the 
discrepancies in population size, the primary course and three booster vaccine doses - taking into account waning 
immunity, the Stringency Index as a surrogate for non-pharmaceutical interventions adopted in each country, and 
the circulation of various viral variants. We employed a power law approximation for spatial interactions between 
countries.

Results  We found that within-country transmission was dominant across all countries over almost three years 
of observation. This work also underscored a basic transmission mechanism, whereby infections introduced by 
between-country transmission could be of great importance in subsequent local transmission. Furthermore, there 
were indications of the transition to endemicity since the beginning of 2022, particularly in light of the evolving 
variants of concern.

Conclusion  Our study highlighted the benefit of the endemic-epidemic framework to elucidate the COVID-19 
disease spread over a large spatial and temporal scale, using a wide range of epidemiological information. Insights 
derived from this study are beneficial for those interested in seeking an overview of the emergency phase of the 
COVID-19 pandemic in the EU/EEA region.
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Introduction
SARS-CoV-2 is unlikely to disappear in the near future. 
The evolving landscape of the COVID-19 pandemic con-
tinues to pose a significant threat to public health in the 
European Region. Over the last five years, this region 
has reported an excess of 280 million cases and 2.2 mil-
lion deaths, representing approximately one-third of the 
total number of reported cases worldwide [1]. The rapid 
accumulation of reported cases, with a caveat that SARS-
CoV-2 infections could manifest in a-/pre-symptomatic 
state, led to an urgent call for interventions to suppress 
viral transmission and sustain healthcare capacities. To 
confront the pandemic, European countries implemented 
multiple non-pharmaceutical interventions (NPIs) with 
varying degrees of stringency within and between coun-
tries, ranging from social distancing and small gathering 
cancellations to large-scale lockdowns and international 
travel bans [2]. In addition, since the COVID-19 vac-
cine rollout in December 2020, approximately one billion 
vaccine doses have been administered in the European 
Union/European Economic Area (EU/EEA) region [3]. 
It is important to note, however, that these countermea-
sures underwent modifications and adaptations at differ-
ent stages of the emergency, particularly in light of new 
variants of concerns (VOCs). Over time, immunity to 
the SARS-CoV-2 virus has been developed among the 
general population, whether through infection, vaccina-
tion, or a combination of both. While COVID-19 is no 
longer a public health emergency of international con-
cern since May 2023, attention has been shifted towards 
understanding the situation in the monitoring phase [4]. 
Given that extensive (health) data became publicly avail-
able, it is important to undertake a comprehensive ret-
rospective examination of how the disease did spread 
and what was the effect of interventions throughout the 
emergency phase of the pandemic [5]. To our knowledge, 
no studies have been conducted to elucidate the disease 
transmission mechanism in Europe, which was one of the 
world’s epidemic centers [6], as a whole. It can be reason-
ably presumed that the epidemiological characteristics of 
SARS-CoV-2 are analogous across European countries, 
while these countries exhibit varying degrees of popula-
tion heterogeneity, including social background, human 
behaviours, disease susceptibilities, and the implemented 
countermeasures and policies to the pandemic. We 
hypothesize that these factors would constitute the dis-
parities in the spatiotemporal transmission mechanisms 
among these countries.

In Europe, certain works on spatial and spatiotempo-
ral aspects of the COVID-19 disease have been con-
ducted at multi-country level or continent scale [7–11]. 
For instance, a study by Davis et al. (2021) highlighted 
that local transmission probably occurred in several 
areas of Europe and the United States during January and 

February 2020, using a global metapopulation epidemic 
model to investigate the space-time heterogeneity in the 
early stage of the pandemic [10]. However, most of these 
studies considered data before the implementation of 
stringent containment measures or before the COVID-
19 vaccine became widely available. Fajgenblat et al. 
(2024), on the other hand, provided a comprehensive pic-
ture of the negative relationships between the confirmed 
COVID-19 cases with the NPIs and vaccination level, 
extensively oriented on the first three years of the pan-
demic in 38 European countries, using a Bayesian hierar-
chical distributed lag model [11].

In advancing the investigation of various aspects of a 
disease, including spatiotemporal analysis, the coales-
cence of statistical and mathematical modeling with 
innovative data sources has become a prominent area 
of focus [5]. During the COVID-19 emergency, Nunes 
et al. (2020) strongly demonstrated the crucial role of 
mathematical methods such as Susceptibles-Infectious-
Recovered-like models to mechanistically reflect the 
disease spread, using epidemiological surveillance data 
[12]. However, information regarding the number of sus-
ceptibles, which is of importance in such models, is not 
frequently obtained from routine public health data [13]. 
Alternatively, the Endemic-Epidemic (EE) framework, 
which was first introduced by Held, Höhle, and Hofmann 
in 2005, also known as the hhh4 model [14], is more 
pragmatic than the full mechanistic ones [13, 15]. Essen-
tially, the EE model is a time-series model of disease inci-
dence that this model can be extended for spatiotemporal 
multivariate analysis and does not require the number 
of susceptibles to be available [13]. The model decom-
poses the expected case counts into an endemic and an 
epidemic component. While the epidemic component 
represents an autoregression on the historical counts, 
i.e., “infectiousness”, in the same and other regions, the 
endemic component represents the background disease 
risk associated with socio-demographic variables, and/or 
environmental factors. Although the model can be com-
plex by flexibly incorporating dependencies such as coun-
termeasures and vaccines [16, 17], human social contacts 
[18–20], and spatial human movements [21–23], the 
model parameters can be estimated via maximum like-
lihood estimation and the complexities can be deduced 
from epidemiological aspects. Besides, the model is prac-
tically implemented in the R package surveillance 
[24] and its extensions such as hhh4addon [25].

Using the EE model, the objective of our study is to 
understand the similarities and differences in the spa-
tiotemporal spread of COVID-19 epidemics in 30 EU/
EEA countries between March 2020 to December 2022. 
We conducted an additional simulation study to investi-
gate how well the contribution of each model component 
from the additive model approach can be estimated in 



Page 3 of 19Nguyen et al. BMC Public Health         (2025) 25:3547 

different counterfactual trajectories of the pandemic. We 
targeted the EU/EEA countries due to their shared com-
petencies, including public health, from which they ben-
efit from European organizations such as the European 
Center for Disease Control and Prevention (ECDC). We 
leveraged the weekly-aggregated COVID-19 case counts 
in 30 countries from Week 13-2020 to Week 50-2022. We 
also considered the discrepancies in the population size, 
vaccination coverage taking into account waning immu-
nity of the primary course and three booster doses, the 
Stringency Index from the Oxford COVID-19 Govern-
ment Response Tracker (OxCGRT) [26], and the circula-
tion of various virus variants of concerns (VOCs) while 
the power law approximation for spatial interaction 
between countries was applied. From this study, we want 
to provide the authorities and scientists with a compre-
hensive review of the pandemic in the European region 
during the emergency phase.

The paper is organized as follows. We begin by 
describing our various data sources and their adapta-
tion to be used in our study in Study materials  section. 
The endemic-epidemic spatiotemporal model  section 
describes the proposed modeling approach, and Simula-
tion study  section demonstrates how we conducted the 
simulation study. While Results section shows results of 
the fitted models to the data and results from the simu-
lation study, Discussion and Conclusion sections discuss 
and conclude.

Study materials
This study was designed as a spatiotemporal time series 
analysis with country and week as the main space-time 
resolution. All data from twenty-seven EU countries and 
three EEA countries were collected and transformed into 
weekly intervals from Week 13-2020 (23 March 2020) to 

Week 50-2022 (18 December 2022) (143 weeks in total). 
Table 1 summarizes the datasets used in our study.

The COVID-19 reported cases
The daily reported COVID-19 case counts across 30 EU/
EEA countries were retrieved from the Our World in 
Data website [27] on 20 February 2023. We analyzed a 
total of 182,342,684 cases, ranging from 21,128 cases in 
Liechtenstein to 39,278,544 cases in France. Figure 1A 
presents the temporal evolution of the total number of 
reported cases from all countries. Overall, the epidemic 
curve demonstrates numerous fluctuations in its trajec-
tory. After the initial spread in March - April 2020, there 
was a decline in new cases during the summer months of 
the same year. Thereafter, the number of cases started to 
increase in October 2020, followed by subsequent waves 
with peaks and troughs, including significant spikes 
between late 2021 and early 2022. The highest peak was 
observed in Week 4-2022 (January 2022) with the total 
number of reported cases approaching 9 million cases in 
that week. Figure 2 shows the variability in the distribu-
tion of cases per 1,000 population across countries by 
year. In 2022, countries such as Austria, Germany, and 
France exhibited the highest number of cases per one 
1,000 population.

The Stringency Index
The Stringency Index was extracted from OxCGRT, a 
dataset that documented the government policies against 
the COVID-19 pandemic [26]. The Stringency Index pro-
vides a summary picture of the NPIs at the national level. 
It comprises nine metrics, including school and work-
place closures, the cancellation of public events, restric-
tions on public gatherings, closure of public transport, 
stay-at-home requirements, public awareness campaigns, 
and restrictions on internal and international mobil-
ity. The index was originally calculated on a daily basis 
and ranges from 0 to 100, with higher values indicating 
a greater level of stringency of NPIs imposed at certain 
points in time. In each included country, we computed 
the weekly mean of this index. Figure 1B summarizes the 
weekly means across 30 countries from Week 11-2020 to 
Week 50-2022, which encompasses two weeks before our 
study period. While the solid line represents the median 
of weekly means, light-colored ribbons show 2.5% to 
97.5% quantiles across countries, depicting cross-sec-
tional heterogeneity. Overall, this index demonstrated a 
rapid increase in March - April 2020, when more strin-
gent measures were implemented in most countries. Sub-
sequently, it exhibited significant fluctuations in late 2020 
and 2021 before decreasing in 2022.

Table 1  Overview of the different datasets used in the study 
with details on the available time resolution at the country level
Data Source Time 

resolution
Time range Date 

obtained
COVID-19 
cases

Our World 
in Data 
[27]

Daily 23 March 2020 
– 18 December 
2022

20 
February 
2023

The Strin-
gency Index

OxCGRT1 
[26]

Daily 23 March 2020 
– 18 December 
2022

20 
February 
2023

Data of 
variants

ECDC2 
[28]

Weekly Week 13-2020 to 
Week 20-2022

09 
October 
2024

Data of 
vaccination

ECDC2 [3] Weekly Week 50-2020 to 
Week 50-2022

09 
October 
2024

Population 
data

World 
Bank [29]

Yearly 2020 – 2022 04 July 
2024

1The Oxford COVID-19 Government Response Tracker 2European Centre for 
Disease Prevention and Control
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Fig. 1  Overview of the data used in our study: The total number of cases aggregated over all 30 EU/EEA countries (A), the weekly mean of the Stringency 
Index (B) and the raw vaccination coverage (C) across countries, and the circulation of the Alpha, Delta, Omicron, and other variants aggregated over all 
countries (D), between Week 13-2020 to Week 50-2022. Note that in (B) and (C), the solid lines present the median and bands are the 95% quantiles of 
the weekly means of the Stringency Index and the vaccination coverage, respectively
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COVID-19 vaccination data
The number of vaccine doses administered in each EU/
EEA country, including the primary course and three 
booster doses, were extracted from the ECDC Dashboard 
for COVID-19 Vaccine Tracker from Week 50-2020 to 
Week 50-2022 [3]. The raw vaccination coverages of 
the primary course and booster doses in a given coun-
try were calculated as the cumulative number of people 
receiving the respective vaccine dose at week t relative to 
that country-specific population (Fig. 1C).

During our study period, most of the COVID-19 vac-
cine products authorized for use in the EU/EEA countries 
were the Comirnaty – Pfizer BioNTech (73% of the total 
doses administered), Spikevax – Moderna (17.3%), and 
Vaxzervria – AstraZeneca (7.3%) vaccines (see Appendix 
Figure A4, sourced from Our World in Data [27]). Given 
that the immunity against COVID-19 induced by vac-
cines wanes over time, accounting for waning immunity 
is essential in the analysis. In our study, several assump-
tions were made: (i) the immunity begins after the com-
pletion of the primary course; (ii) full establishment of 
the immunity starts at two weeks after administration 
of any dose; and (iii) the waning occurs after six months 
post-vaccination [30, 31]. Following the approach pro-
posed by Dunbar et al., (2024) [19], we determined the 
overall vaccination coverage with waning immunity, 
vacit, at each week for each country as follows:

	

vacit =
∑
(·)

cov
(·)
it , where cov

(·)
it

=
∑

d≤t(pt−d × x
(·)
id )

popit
.

� (1)

Specifically, the overall coverage vacit for each country at 
each time point is the sum of the coverage with waning of 
different dose types, cov

(·)
it , where (·) can be the primary 

course, the first, second, or third booster, in country i 
at week t. cov

(·)
it  is expressed as a fraction, of which the 

numerator is the product of the number of new doses x(·)
id  

of the dose type (·) administered at week d ≤ t in coun-
try i and the waning rate p at time t − d that takes two 
weeks to establish immunity and wanes after six months 
(see Appendix Figure A5, adapted from [19]), and the 
denominator is the population size popit of country i in 
week t. Figure 3 depicts the vaccination coverage across 
countries, where the solid lines are the median, and the 
ribbons are the 95% quantiles of the weekly percentages. 
For country-specific coverages, see Appendix Figure A7. 
Among 3,180 data points (106 weeks × 30 countries), 16 
values were greater than one, and thus, we truncated to 
0.9999 for numerical reasons.

COVID-19 variants data
The SARS-CoV-2 variants circulating during our study 
period were obtained from the GISAID database [28] and 
classified into four categories: the Alpha, Delta, Omicron, 
and other variants. In each week of observation, the per-
centage of each variant group was determined by divid-
ing the number of positive sequences associated with 
that group by the total number of sequenced samples 
with known variants in that week. In countries with miss-
ing data, the percentage of a certain variant was imputed 
by the overall percentage of that variant in all 30 EU/
EEA countries. Figure 1D demonstrates the significant 
shifts of each variant group: the Alpha variant was the 

Fig. 2  Number of reported COVID-19 cases per 1,000 population by year and by country within the EU/EEA region. Country names have been assigned 
a two-letter country code: Austria (AT), Belgium (BE), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czechia (CZ), Denmark (DK), Estonia (EE), Finland (FI), France 
(FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Italy (IT), Latvia (LV), Liechtenstein (LI), Lithuania (LT), Luxembourg (LU), Malta (MT), 
Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE). Countries not part of the EU/
EEA are shown in grey as background
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predominant strain in the first half of 2021, followed by 
the Delta variant, which became prevalent until Novem-
ber 2021, and subsequently the Omicron variant, which 
surged globally since December 2021.

The population data
To ensure that our models accounted for demographic 
changes over the study period, we referenced the annual 
population data from the World Bank for the years 2020 
to 2022 [29].

For details of the data included, please see Appendix 
Figure A1 to Appendix Figure A10.

The neighbourhood structure
The connectivity between countries is presented by a 
neighbourhood matrix, where countries are defined as 
neighbours if they share a boundary. Formally, we denote 
oji as the neighbourhood order from country j to coun-
try i ̸= j, such that oji = oij = r, where r > 0 is defined 
as the shortest path between each pair of countries, with 
r steps taken on each journey [21]. Conventionally, this 
features a symmetric neighbourhood matrix with zeroes 
on the diagonal.

From the original neighbourhood matrix (Appendix 
Figure A11), several countries (Iceland, Cyprus, Malta, 

Fig. 3  The COVID-19 vaccination coverage taking into account waning immunity across 30 EU/EEA countries. In panel (A), the solid line is the median of 
weekly percentages, and band is 95% quantiles across 30 EU/EEA countries. Panel (B) is the overall coverage by country
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Ireland) or groups of countries (Norway, Sweden, Fin-
land) are not connected with other countries because 
they do not share any boundaries with the other coun-
tries. Since this does not realistically reflect the social 
connectivity amongst countries, the original matrix was 
adjusted to form a new matrix (aka the maritime neigh-
bourhood matrix, Fig. 4B). Specifically, with regard to the 
maritime boundaries between countries, first-order con-
nections were established between Finland and Estonia; 
Sweden and Denmark, Norway, and Estonia; Iceland and 
Norway; Cyprus and Greece; Malta and Italy. In addi-
tion, second-order connections were added between 
Ireland and France, Belgium, and the Netherlands, given 
that these countries share maritime neighbours in com-
mon with the United Kingdom. These new connections 
are shown in Fig. 4A’s red lines. The adjusted matrix 
will be used in our spatiotemporal model, which will be 
described in detail in the following Section.

The endemic-epidemic spatiotemporal model
We generated a multivariate time-series model for the 
COVID-19 reported cases Yit in country i = 1, . . . , I  
during week t = 1, . . . , T . Depending on past observa-
tions Yi,t−1, . . . , Yi,t−K , we assumed that Yit has a nega-
tive binomial distribution with conditional mean µit, an 
overdispersion parameter ψ > 0, and conditional vari-
ance µit(1 + ψµit) [14, 25]:

	 Yit|Yi,t−1, . . . , Yi,t−K ∼ NegBin(µit, ψ).� (2)

Note that when ψ ≡ 0, Yit is Poisson distributed. The 
conditional mean µit in (2) is given by:

	

µit =λit

K∑
k=1

ukYi(t−k)

+ ϕit




K∑
k=1

∑
j ̸=i

ukwjiYj(t−k)




+ Nitνit.

� (3)

In Eq. (3), the first and the second terms are the autore-
gressive and the neighbourhood components (also called 
as the spatiotemporal component), respectively. These 
are sometimes referred to as the observation-driven epi-
demic component, as they are modeled based on histori-
cal counts. The autoregressive component captures local 
disease dynamics when new cases arise from infectious 
individuals in the same country, whereas the neighbour-
hood component describes the link between the cases in 
country i being infected by the previous cases in coun-
try j ̸= i. The remaining term in Eq. (3) is the endemic 
component to reflect the background disease incidence 
in country i. The endemic component was modeled pro-
portionally to an offset of expected counts, which is typi-
cally considered as an approximation of the population 
at risk Nit. The three non-negative unknown predictors 
λit, ϕit, and νit in the three components were modeled as 
log-linear structures as follows:

	

log(λit) =α(λ) + b
(λ)
i + β(λ)

pop log(Nit)

+ β(λ)
sus log(1 − vacit) + β

(λ)
SI SIt−2

+ β
(λ)
VOC[x]

VOC[x],it,

� (4)

Fig. 4  The first order neighbours (A) and the maritime neighbourhood matrix (B)
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log(ϕit) = α(ϕ) + b
(ϕ)
i + β(ϕ)

pop log(Nit)

+ β
(ϕ)
SI SIt−2 + β

(ϕ)
VOC[x]

VOC[x],it,
� (5)

	

log(νit) = α(ν) + b
(ν)
i + β(ν)

sus log(1 − vacit)

+ β
(ν)
VOC[x]

VOC[x],it.
� (6)

In Eqs. (4), (5), (6), α(λ), α(ϕ), α(ν) are the component-
specific fixed intercepts. We also introduced the coun-
try-specific random intercepts, b(λ)

i , b(ϕ)
i , and b(ν)

i  to the 
model to account for the heterogeneity in incidence level 
that is not explained by the covariates [32]. These random 
effects were assumed to be independent and normally 
distributed with mean zero and variance σ2

ν , σ2
λ, and σ2

ϕ, 
respectively, to be estimated from the data. In addition, 
multiple dynamic covariates were incorporated in the 
model. First, the two epidemic components were scaled 
with the population size by including the logarithm of 
the population counts, log(Nit), to reflect that popu-
lous countries have higher number of people thus higher 
level of infectivity (the autoregressive component), and a 
greater potential to import cases from their neighbour-
ing countries (the spatiotemporal component) [21]. Next, 
it is assumed that the proportion of the population that 
had not been vaccinated (1 − vacit) can be used as a sur-
rogate for the susceptible population (sus) [16, 19, 22]. In 
our model, log(1 − vacit) was embedded in the endemic 
and autoregressive components with the correspond-
ing parameters β(ν)

sus and β(λ)
sus. Moreover, the NPIs were 

found to have the greatest influence on the change in 
daily incidence at a lag of 14 days after implementation 
[11]. Accordingly, we integrated the two-week lag of the 
Stringency Index (SIt−2) in the two epidemic compo-
nents to reflect the delayed impact of NPIs on disease 
transmission dynamics. While different VOCs may sug-
gest different transmission risks [33, 34], the proportion 
of the VOC[x], where [x] represents the Alpha, Delta, and 
Omicron variants circulating in each country during the 
study period, were integrated into the model.

When studying daily case counts, it is reasonable to 
posit that the number of cases recorded on a given day 
is not only dependent upon relevant observations on the 
previous day but also observations further back in time. 
In the EE models, the lag weight uk assigned in the two 
observation-driven components can be perceived as the 
probability of a discrete-time serial interval distribu-
tion (i.e., the distribution of the average number of days 
between the symptom onset of two consecutive cases) 
[25]. Some EE studies indicated that the lags for COVID-
19 disease were likely to be in the range of seven days [17, 
22]. However, as we modeled weekly aggregated COVID-
19 case counts, we considered the maximum length of k 

to be K = 2 weeks. This was done to minimize potential 
biases in the assumption of serial intervals due to, for 
example, the use of aggregated data [25], or the impact 
of the VOCs [35] or the control measures [36]. The lag 
weight uk, which was constrained to be positive, was nor-
malized and defined in accordance with a shifted Poisson 
weighting scheme [25].

In order to describe the disease spread from country 
j to country i, a spatial weight wji, which is a function 
of the neighbourhood order oji with decay parameter 
d > 0, was entered in the spatiotemporal component in 
Eq. (3). This is referred to as a power law model, which is 
inspired by human movement behaviour [21]. The spatial 
weight is expressed as follows :

	 wji = o−d
ji ,� (7)

for (j ̸= i) and wjj = 0. The weight wji was row-normal-

ized wji =
o−d

ji∑I
m=1 o−d

jm

, such that the sum of all rows j 

is equal to one (
∑I

m=1 wjm = 1) to make sure that the 
cases Yj,t−k are distributed among the countries in a 
manner that is proportional to the jth row vector of the 
weight matrix wji [24]. To ensure positivity, the decay 
parameter was estimated on a logarithmic scale.

We fitted the EE models with and without random 
effects to check whether or not the heterogeneity in dis-
ease incidence can be adequately captured by the ran-
dom effects. In mixed models, Paul and Held (2011) 
showed that commonly used goodness-of-fit criteria, 
such as the Akaike Information Criterion, may intro-
duce bias, particularly when deciding on the inclusion of 
random effects [32]. Czado, Gneiting, and Held (2009) 
proposed proper scoring rules, a more natural approach 
for model selection [37]. This score quantifies the dif-
ference between a predictive distribution from a fitted 
model and the observed value [32, 37]. A scoring rule 
is considered proper if its expected score is minimized 
when the prediction is ideal [38], that is, when the obser-
vation is drawn from the predictive distribution. Lower 
scores indicate better goodness-of-fit. In this paper, we 
advocated the logarithmic score (logS), and the ranked 
probability score (RPS) as these two scoring rules simul-
taneously demonstrate the calibration - “the statistical 
consistency between the probabilistic forecasts and the 
observations” and sharpness - “the concentration of the 
predictive distributions of the predictive distribution” [37]. 
The discrepancy between the mean scores was examined 
through the use of a permutation test with a statisti-
cal significance of the differences set at 0.05. For further 
details regarding the calculation of the aforementioned 
scores, we refer to [32, 37].
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All the analysis was performed in R version 4.4.1, using 
the open software R packages surveillance version 
1.23.0 [24], and hhh4addon version 0.0.0.0.9014 [25].

Simulation study
A simulation study was implemented to investigate how 
well the contribution of each of the model components 
can be estimated in different counterfactual trajecto-
ries of the epidemic. In particular, a total of 800 simula-
tions were generated across eight pandemic scenarios, 
with 100 simulations per scenario. These epidemic sce-
narios were built from eight sets of parameters originat-
ing from the fitted model with component-specific fixed 
effects (hereinafter referred to as the original model). In 
Scenario 0, the simulated data were generated from the 
original model, with all parameters maintained at their 
original estimated values. In Scenarios 1 through 7, the 
three component-specific intercepts were adjusted while 
the impact of VOCs in all three components were either 
preserved (Scenarios 1 & 2), i.e., the estimates from the 
original model were upheld, or removed (Scenarios 3 to 
7), i.e., set them to zeros. The values of the three inter-
cepts were selected arbitrarily so that the mean total 
number of cases in 100 simulated datasets would be 
close to the original total number of cases (Scenarios 1 
to 5), or that was half (Scenario 6), or double (Scenario 
7) the original total number of cases. Subsequently, all 
simulated datasets were fitted using the model in Eq. 
(3) without the random effects. The estimated param-
eters were summarized by medians, means, and standard 
deviations, and were then compared with the true val-
ues. The coverage probabilities of the true values, i.e., the 
proportion of models in which the true values fell within 
the confidence intervals (CIs) for each parameter, were 
described. The contribution in proportion of each of the 
three components was also calculated. The eight sets of 
the parameters and the resulting estimates are presented 
in detail in Subsection 5.2.

Results
Spatio-temporal transmission of COVID-19 in 30 EU/EEA 
countries
Table 2 presents the parameter estimates obtained from 
the models fitted with and without random effects and 
model assessment using proper scoring rules. The model 
fitted with random effects demonstrates a better good-
ness-of-fit as evidenced by lower logS and RPS scores 
compared to the fixed effects version. Ascribed to the 
random effects, the estimated overdispersion was also 
lower, suggesting a reduction in residual heterogeneity. 
Thus, in this subsection, we concentrate on the findings 
of the random effects model. Figure 5A depicts the fitted 
values aggregated across countries. Overall, the model 
provided a good fit to the observed disease dynamics 

between 2020 - 2022. The decomposition of the contribu-
tion in proportion attributed to each of the three compo-
nents over time is illustrated in Fig. 5B. Panels (C), (D), 
and (E) in the same figure summarize the fractions of 
conditional means explained by each component across 
30 EU/EEA countries. The solid lines are the medians 
of the weekly proportions, and the ribbons illustrate the 
2.5% and 97.5% quantiles. A country-specific aggregated 
overview of the component contribution is also pre-
sented in Fig. 6. The results for individual countries can 
be found in the Appendix Figures A12 & A13.

Throughout the study period, within-country transmis-
sion constituted the predominant mode of transmission 
and this observation was consistent across countries. 
Overall, the COVID-19 cases attributable to the autore-
gressive component accounted for 93.3% of the estimated 
total number of cases. In each country, this component 
was responsible for explaining between 68.5% (Greece) 
and 98.4% (Norway) of the total expected mean (Fig. 
6A). At certain time points, the overall contribution of 
this component was estimated approximately between 
70% (September & November 2022) and 99% (February 
- June 2021) (Fig. 5B & C). The within-country trans-
mission persisted until the end of December 2022. To 
this point, we believe that the local transmission chains 
within the country were established at the time this study 
commenced (i.e., March - April 2020). However, in cer-
tain countries, such as Liechtenstein, Iceland, and Malta, 
the contributions of the autoregressive component were 
quantified to be below 50% during the summer months 
of 2020 (Appendix Figure A13). This was likely due to the 
relatively low number of reported cases in relation to the 
size of the population (Fig. 7).

In contrast to the significant influence of the autore-
gressive component, the overall impact of the neighbour-
hood component on the epidemic curve was limited, 
accounting for 1.3% of the estimated number of cases 
accumulated over all countries and all time points. The 
spatiotemporal component was also a relatively minor 
contributor to the expected number of new infections 
in each investigated country. Approximately half of the 
countries exhibited minimal neighbourhood effects (< 1
%), whereas only a few countries, such as Croatia, Bel-
gium, and Luxembourg, demonstrated a higher impact 
of between-country transmission than the overall value 
(Fig. 6B). On average, the between-country transmission 
was significantly pronounced between June and Novem-
ber 2020 but it had a high degree of temporal heteroge-
neity across nations until the end of 2021 (Fig. 5B & D). 
Compared to the within-country transmission, this result 
indicates a basic transmission process: once a sufficient 
number of infected individuals accumulated via between-
locality transmission, the risk of within-locality transmis-
sion was likely to increase, especially in the early periods 
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(see more in Appendix Figures A14 & A15). From late 
2021 onward, even though the contribution of the neigh-
bourhood component was remarkably small, this spatio-
temporal effect could not be disregarded. It is possible 
that sources of infections originating from outside the 
country could serve as a catalyst for the emergence of 
new community outbreaks within the country (Table 3).

In addition, the evolution of the COVID-19 pan-
demic in the EU/EEA region was found to have approxi-
mately 5.4% of its aggregated number of new infections 
attributable to the endemic component. However, a 
notable discrepancy was observed in the temporal and 
spatial contribution of this component between coun-
tries. Approximately two-thirds of the analyzed countries 
exhibited a lower percentage of endemic transmission 
compared to the overall estimate. Conversely, in Greece 
and Finland, for instance, the magnitude of the endemic 
behaviour was large: they contributed to approximately 
31.3% and 19.6% of the estimated total number of cases 
in each country, respectively (Fig. 6C). The endemic 

effects, on average, became more pronounced since late 
2021 and the fraction of the endemic component peaked 
at approximately 30% in September 2022 (Fig. 5B, Appen-
dix Figure A16). In some countries, there were gradually 
elevated contributions to infections originating from 
the endemic component from the second half of 2021 
onward (Fig. 5E and Appendix Figure A13). This suggests 
the preliminary indications of a shift from epidemic to 
endemic disease activity. It remains uncertain, however, 
whether these endemic waves were merely transient or if 
they were a start of a more prolonged, stationary phase of 
the disease.

From the parameter estimates in Table 2, the Stringency 
Index was found to be significantly associated with fewer 
cases in the neighbourhood component (βϕ

SI = −0.090, 
95% CI: (-0.104) – (-0.075)). More specifically, one unit 
increase in the Stringency Index would result in a reduc-
tion of approximately 1 − exp(−0.090) = 8.6% of the 
incidence in the neighbourhood component. In the 

Table 2  The parameter estimates and 95% confidence intervals (95% CIs) from the models fitted with and without random effects 
and model assessment using proper scoring rules
Component Parameter Notation Model with random effects Model without random effects

Estimate 2.5 % 97.5 % Estimate 2.5 % 97.5 %
Endemic Intercept α(ν) -21.384 -27.693 -15.075 -19.107 -23.779 -14.435

Variance of random intercept σ2
ν 1.514

Log susceptible β
(ν)
sus

0.160 -0.155 0.475 -0.172 -0.352 0.008

Variant Alpha β
(ν)
VOC[Alpha]

5.558 -4.093 15.209 -2.307 -15.129 10.514

Variant Delta β
(ν)
VOC[Delta]

10.641 4.051 17.230 8.444 3.642 13.245

Variant Omicron β
(ν)
VOC[Omicron]

13.252 6.898 19.606 10.882 6.179 15.585

Autoregressive Intercept α(λ) -0.166 -0.392 0.060 -0.038 -0.223 0.146

Variance of random intercept σ2
λ

0.0012

Log population β
(λ)
pop

0.0011 -0.014 0.016 0.002 -0.009 0.013

The Stringency Index β
(λ)
SI

0.0013 -0.0001 0.003 0.0005 -0.0009 0.002

Log susceptible β
(λ)
sus

-0.060 -0.082 -0.037 -0.053 -0.079 -0.026

Variant Alpha β
(λ)
VOC[Alpha]

-0.013 -0.079 0.053 -0.129 -0.197 -0.061

Variant Delta β
(λ)
VOC[Delta]

0.146 0.071 0.221 0.077 0.006 0.148

Variant Omicron β
(λ)
VOC[Omicron]

-0.083 -0.166 -0.00002 -0.180 -0.261 -0.099

Neighbourhood Intercept α(ϕ) -18.226 -21.870 -14.581 -13.094 -15.233 -10.955

Variance of random intercept σ2
ϕ

0.899

Log population β
(ϕ)
pop

1.073 0.854 1.293 0.701 0.587 0.815

The Stringency Index β
(ϕ)
SI

-0.090 -0.104 -0.075 -0.087 -0.107 -0.066

Variant Alpha β
(ϕ)
VOC[Alpha]

-4.573 -7.728 -1.418 -3.492 -5.689 -1.295

Variant Delta β
(ϕ)
VOC[Delta]

-2.393 -3.024 -1.761 -1.968 -2.711 -1.225

Variant Omicron β
(ϕ)
VOC[Omicron]

-7.441 -10.204 -4.679 -8.539 -12.484 -4.593

Log decay parameter d -0.627 -1.731 0.477 0.018 -0.544 0.579
Overdispersion ψ 0.182 0.174 0.190 0.238 0.228 0.248

Proper scoring rules The logarithmic score logS 9.121 9.256
The ranked probability score RPS 7930.063 8554.054
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autoregressive component, the level of strictness of NPIs 
as measured by the Stringency Index appeared to have 
minimal impact on lowering incidence albeit that the 
corresponding parameter estimate was found to be statis-
tically insignificant. With regard to the impact of vaccina-
tion, incorporating a log proportion of the unvaccinated 

population into the autoregressive component did not 
substantiate the hypothesis of a negative association 
between vaccination coverage and the disease incidence 
resulting from within-country transmission. Conversely, 
the proportions of unvaccinated individuals seemed to 
have a positive effect in increasing the disease incidence 

Fig. 5  Panel (A) is the fitted components of the random effects model, aggregated across all 30 EU/EEA countries. The dots indicate the observed num-
ber of weekly infections. Panel (B) shows the contribution in percentage during the observed period from Week 15-2020 to Week 50-2022 (excluding 
the first two weeks). Panels (C), (D), (E) summarize the contribution in percentage (%) of each of the three components in the weekly cases across 30 EU/
EEA countries over time. The solid lines are the medians, and bands are the 95% percentile of the weekly percentages across 30 EU/EEA countries. The 
autoregressive, the spatiotemporal, and the endemic components are illustrated by blue, pink, and cyan, respectively

 



Page 12 of 19Nguyen et al. BMC Public Health         (2025) 25:3547 

in the endemic component, although this effect was not 
statistically significant. In addition, countries character-
ized by larger numbers of inhabitants were more likely 
to have higher risks of importing a number of cases from 
the neighbouring countries. The corresponding estimate 
of this commuter-driven effect was found to be signifi-
cant (i.e., β(ϕ)

pop = 1.073, 95% CI: 0.854 – 1.293), thereby 
substantiating this association. The spatial interaction 
between countries, as shaped by the power law model, 
displayed a relatively slow decay across neighbourhood 
orders (Fig. 8). The decay parameter was estimated at 
d = exp(−0.627) = 0.534 (95% CI: 0.177 – 1.611). This 

result revealed that all included countries may share a 
strong interconnectivity, with long-distance transmission 
events occurring beyond their immediate geographic 
proximity. Concerning the impact of VOCs, our results 
demonstrated that the endemic level of the disease was 
significantly influenced by the circulation of variants, 
particularly the Delta and Omicron variants.

Furthermore, the analysis encompassed a large number 
of countries, and incorporating the random intercepts 
in all three components appeared to be a reasonable 
approach to address the heterogeneity in incidence lev-
els across countries [32]. Our results show that the 

Fig. 6  The contribution in percentage (%) of each of the three components in the total cases estimated from the random effects model in each country
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autoregressive random effect exhibited minimal varia-
tion (σ2

λ = 0.001). In contrast, the estimated variance 
of the neighbourhood component was larger with 

σ2
ϕ = 0.807, suggesting that there was considerable vari-

ability in between-country transmission that could not 
be explained by covariates. In Fig. 7, the neighbourhood 
random intercepts in the Western and Southern coun-
tries were relatively higher, implying a greater likelihood 
of cross-country transmission compared to the overall 
transmission rate. The endemic random effects exhibited 
the greatest variance with σ2

ν = 1.514. It may present a 
substantial amount of residual variability, which was not 
absorbed by covariates in the endemic component due to, 
e.g., introduction events from outside the study region. 
Nevertheless, the fixed intercepts in the spatiotemporal 
and endemic components were found to be remarkably 
small, which explains why the endemic and neighbour-
hood components contributed minimally to the overall 
fit.

Simulation results
All the models fitted on the 800 simulated time series 
converged. On average, the median values of all esti-
mated parameter values were found to be in close prox-
imity to their true values. The coverage frequency of 
how often the true value falls within the 95% confidence 
interval ranged from 77% to 100%. To compare the con-
tribution of each component in explaining the simulated 
observed data, we plugged the true values into each sim-
ulated dataset in each scenario. Subsequently, the fitted 

hhh4 models were capable of separately identifying the 
three components, even though the impact of the spatio-
temporal component may have been relatively small. For 
the summary of simulation results, see Fig. 9, the Appen-
dix Tables A1 to A4, and Appendix Figures A17 to A19.

Discussion
We utilized a multivariate endemic-epidemic model to 
gain insights into the spatiotemporal spread of COVID-
19 epidemics in 30 EU/EEA countries between 2020 
- 2022. By facilitating an analysis of weekly aggregated 
COVID-19 case counts while extensively incorporating 
other data such as the population data, vaccination cov-
erage taking into account waning immunity, the circu-
lation of the main VOCs, the Stringency Index, and the 
assumption of a power-law decay of the spatial interac-
tion between EU/EEA countries, we could character-
ize and quantify the transmission of COVID-19 across 
multiple countries in the EU/EEA region during the first 
three years of the pandemic. Insights from our study are 
beneficial for scientists and public health authorities in 
seeking a global overview with regard to the emergency 
phase of the COVID-19 pandemic. The employed meth-
odological approach therein proves its advantages in 
investigating epidemiological issues through the use of a 
statistically-sound instrument with a minimal computa-
tional cost.

Before discussing the results, it is important to recall 
that, in reality, “endemic” refers to the constant or 
expected level of an infectious disease within a popula-
tion, while an “epidemic” indicates a sudden increase in 

Austria

Belgium

Bulgaria

Cyprus

Czechia
Germany

Denmark

Spain

Estonia

Finland

France

Greece

Croatia

Hungary

Ireland

Iceland

Italy

Liechtenstein

Lithuania

Luxembourg

Latvia

Malta

Netherlands

Norway

Poland

Portugal

Romania

Slovakia

Slovenia

Sweden

Austria

Belgium

Bulgaria

Cyprus

Czechia
Germany

Denmark

Spain

Estonia

Finland

France

Greece

Croatia

Hungary

Ireland

Iceland

Italy

Liechtenstein

Lithuania

Luxembourg

Latvia

Malta

Netherlands

Norway

Poland

Portugal

Romania

Slovakia

Slovenia

Sweden

Austria

Belgium

Bulgaria

Cyprus

Czechia
Germany

Denmark

Spain

Estonia

Finland

France

Greece

Croatia

Hungary

Ireland

Iceland

Italy

Liechtenstein

Lithuania

Luxembourg

Latvia

Malta

Netherlands

Norway

Poland

Portugal

Romania

Slovakia

Slovenia

Sweden

Autoregressive random intercepts Endemic random intercepts Neighbourhood random intercepts

20�W 10�W  0� 10�E 20�E 30�E 20�W 10�W  0� 10�E 20�E 30�E 20�W 10�W  0� 10�E 20�E 30�E

40�N

50�N

60�N

70�N

80�N

value

−3
−2
−1
0
1
2
3

Fig. 7  The estimated country-specific random intercepts in the random effects model. The random intercepts b(λ)
i , b(ϕ)

i , and b(ν)
i  of the autoregressive, 

spatiotemporal, and endemic components, respectively, are visualized in maps. In the left panel, the color cannot be visually displayed because the esti-
mated random intercepts in the autoregressive component are very small compared to the estimated random intercepts in the other two components
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cases above this expected level [39]. The EE model deter-
mines the risk of each susceptible being infected from 
external sources such as environmental reservoirs or 
cases imported from outside the study region (endemic 
component) and from infectives within the same or 

neighbouring areas (epidemic component) [40, 41]. Thus, 
this decomposition is a pragmatic simplification, provid-
ing an interpretable framework to distinguish baseline 
incidence from excess transmission in reality.

Table 3  Different simulated scenarios of the COVID-19 epidemics after changing the parameter estimates from the original fitted 
model without random effects
Scenario Scenario 0 Sce-

nario 1
Sce-
nario 2

Scenario 
3

Scenario 
4

Scenario 
5

Sce-
nario 6

Sce-
nario 7

Mean total cases over 100 simulated datasets vs. the 
original observed data

145.53% 99.78% 96.99% 100.50% 101.39% 103.36% 49.91% 202.76%

Number of models that converged 100 100 100 100 100 100 100 100
Component Parameter Notation Point estimates
Endemic Intercept α(ν) -19.107 -16.1 -16.6 -6.4 -6.5 -7.1 -6.9 -6.1

Log susceptible β
(ν)
sus

-0.172 -0.172 -0.172 -0.172 -0.172 -0.172 -0.172 -0.172

Variant Alpha β
(ν)
VOC[Alpha]

-2.307 -2.307 -2.307 0 0 0 0 0

Variant Delta β
(ν)
VOC[Delta]

8.444 8.444 8.444 0 0 0 0 0

Variant Omicron β
(ν)
VOC[Omicron]

10.882 10.882 10.882 0 0 0 0 0

Autoregressive Intercept α(λ) -0.038 -1.5 -0.8 -3 -2.9 -1.1 -2.6 -1

Log population β
(λ)
pop

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

The Stringency 
Index

β
(λ)
SI

0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Log susceptible β
(λ)
sus

-0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053

Variant Alpha β
(λ)
VOC[Alpha]

-0.129 -0.129 -0.129 0 0 0 0 0

Variant Delta β
(λ)
VOC[Delta]

0.077 0.077 0.077 0 0 0 0 0

Variant Omicron β
(λ)
VOC[Omicron]

-0.180 -0.180 -0.180 0 0 0 0 0

Neighbourhood Intercept α(ϕ) -13.094 -11.9 -10 -13.3 -13.2 -13.4 -13.9 -13.8

Log population β
(ϕ)
pop

0.701 0.701 0.701 0.701 0.701 0.701 0.701 0.701

The Stringency 
Index

β
(ϕ)
SI

-0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087

Variant Alpha β
(ϕ)
VOC[Alpha]

-3.492 -3.492 -3.492 0 0 0 0 0

Variant Delta β
(ϕ)
VOC[Delta]

-1.968 -1.968 -1.968 0 0 0 0 0

Variant Omicron β
(ϕ)
VOC[Omicron]

-8.539 -8.539 -8.539 0 0 0 0 0

Log decay 
parameter

d 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018

Overdispersion ψ 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238
Numbers in bold indicate that the parameter estimates are modified differently than in Scenario 0

Fig. 8  The non-normalized spatial power law weights wji = o−d
ji  and the normalized version of the maritime weight matrix [21]
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Fig. 9  The first column depicts various simulated scenarios of the epidemic, while the second illustrates the contribution of each of the three compo-
nents in percentage over time, estimated from fitted models with simulated data. The third column presents the contribution of each component over 
time when the true parameter estimates from Table 3 are plugged into the simulated datasets. The autoregressive, the spatiotemporal, and the endemic 
components are illustrated by blue, pink, and cyan, respectively
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From the study findings, we conclude that within-
country transmission was the dominant transmission 
mode across EU/EEA countries during 2020 - 2022 as 
shown in the high fraction of cases attributable to the 
autoregressive component in each country. This suggests 
that domestic transmission was already established at the 
time this study commenced (i.e., March - April 2020) and 
probably even occurred before this time period [10, 42]. 
In fact, Davis et al. (2020) proved that the onset of local 
transmission in European countries was very likely in 
January and February 2020, a period during which testing 
capacity was limited, by using a stochastic, spatial, age-
structured metapopulation epidemic model [10]. Besides, 
in many European countries, the elevated contribution of 
the neighbourhood component during June - November 
2020 and the escalation of the autoregressive compo-
nent contribution from November 2020 onward indicate 
that SARS-CoV-2 seeding events originating from Euro-
pean countries could have played a major role in succes-
sive local epidemic waves. We believe that this could be 
mainly due to the modest relaxation of NPIs from April 
to September 2020 [2] after the initial pandemic peak, as 
also shown in the slight reduction of the Stringency Index 
(Fig. 1B) in the corresponding period. This exemplifies 
the rationale behind one of the transmission mecha-
nisms, which posits that introduction events at the out-
set of the outbreaks, for example via human travel, were 
instrumental in initiating localized spread. Nevertheless, 
those introduction events could also provide a means for 
the independent introduction of virus lineages despite 
the establishment of local spread [43]. Thus, the influ-
ence of spatiotemporal effects is nontrivial in our study, 
especially from late 2021 onward, when the contribution 
of the spatiotemporal component was remarkably small.

Importantly, our results showed that there was an early 
sign of the transition from epidemic to endemic states of 
the COVID-19 disease from late 2021 onward. The ten-
dency to endemicity is contingent on two key factors: 
firstly, the evolution of immune-escape and/or more 
transmissible variants, and secondly, the presence of 
immunity in the population [44, 45]. In the present study, 
the former was favored by the strong effects of the Delta 
and Omicron variants, which are known to be associ-
ated with increased transmissibility and immune evasion 
properties [34, 46]. The timing of the dominance of Delta 
and Omicron variants was in accordance with the onset 
of an elevated endemic level of disease. Likely, the geo-
graphic variation in the prevalence of VOCs may explain 
the temporal heterogeneity in the endemic fractions 
across countries. Regarding the latter, the build-up of 
immunity in the population through vaccination or natu-
ral infection subsides in the number of infections. In cir-
cumstances where the persistence of SARS-CoV-2 within 
the population is attributable to infections arising from 

susceptible individuals, whether fueled by birth or wan-
ing immunity, endemicity is present [45, 47]. This means 
that the endemic level is marked by the stability in the 
number of infections in the population [45]. Neverthe-
less, although the transition can be anticipated, whether 
the endemicity observed in our study is temporary or 
becomes more stationary remains uncertain for two rea-
sons. First, SARS-CoV-2, e.g., the Omicron variant and 
its descendants, continues to evolve and evade immunity 
[34, 44]. The emergence of a more immune-evasive vari-
ant poses a significant challenge to individuals who are 
partially protected against the virus, as it may fail to elicit 
variant-specific antibodies in their immune systems. 
Moreover, given that SARS-CoV-2 immunity is leaky, 
either through vaccination or previous infection, the 
likelihood of (re-)infection is increased, especially when 
more transmissible variants circulate in the community 
[44]. This results in an increase in the endemic level of the 
disease, thereby exposing the risk of new endemic waves. 
Second, the endemic level is also influenced by the poten-
tial of introducing new cases from outside the study set-
tings. New infections from external sources not directly 
related to the observed epidemic history, for example, 
by immigration, could enter the endemic component. In 
our study, this immigration effect was captured by the 
random effects b(ν)

i  into the endemic component. How-
ever, it would be preferable to account for the immigra-
tion effect by explicitly incorporating immigration and 
tourism inflow data when it is available [22]. Genetic data 
could provide valuable insights into cross-border viral 
introductions and help disentangle local transmission 
from imported cases, highlighting a promising avenue 
for future research of inclusion in the EE framework. 
Country-specific clade patterns may reveal spatiotem-
poral clusters of importation and refine the assumptions 
of the endemic component. For example, phylogenomic 
studies in France and West Africa have traced geographi-
cal sources of introduction events and illuminated early 
transmission dynamics and variant circulation across 
regions [42, 48]. In sum, the endemic level of disease may 
increase over time, but this escalation can be countered 
by implementing protective measures, both pharmaceu-
tical and non-pharmaceutical interventions [44].

In this work, we found that the NPIs measured by the 
Stringency Index were associated with lowering case 
counts in the neighbourhood component after account-
ing for its delayed effects, but this association was not 
observed in the autoregressive component. We attributed 
this mixed finding to factors such as population com-
pliance, which is not captured by the SI, and its inabil-
ity to assess the effectiveness or interaction of individual 
NPIs [11]. Despite these limitations, we chose the SI as 
a reasonable proxy for evaluating government responses 
because of its public availability, standardized structure, 
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and interpretability across time and countries. Inter-
estingly, higher levels of susceptibility derived from 
un-vaccinated individuals seem to have a positive (but 
insignificant) impact on the endemic level of disease. 
Similarly, the vaccination coverage and the occurrence 
of epidemics within the country did not yield a signifi-
cant association. When fitting the EE model with highly 
multivariate time series and multiple covariates, a high 
level of complexity is introduced, and thus, identifiabil-
ity problems during the estimation procedure are likely 
[16, 19]. However, the results from the simulation study 
posit that this issue is not responsible for the insignifi-
cant estimates of the log of susceptible proportions in the 
endemic and autoregressive components. Instead, a more 
epidemiological explanation was proposed: the time-
varying susceptibility level in each country was assumed 
to be proportionate to the proportion of unvaccinated 
individuals over time [22]; however, while the immunity 
level, which was solely based on the vaccination cov-
erage with waning immunity, may be underestimated 
given that it failed to consider the immunity resulting 
from prior infection with SARS-CoV-2. Furthermore, the 
conjecture that immunity declines after six months for 
all vaccine products authorized for use during the study 
period seems to be a strong assumption [30, 31, 34], 
given the availability of more refined waning models [49]. 
The duration of effectiveness of vaccines against SARS-
CoV-2 infection may exhibit variation between differ-
ent vaccine products [30, 31] and the assumed 6-month 
protection of the vaccines may be less applicable in the 
presence of Omicron variants [34]. These factors would 
imply an overestimation of the vaccination coverage in 
the population, thus imposing biases in the estimation 
of the true level of vaccine-induced immunity in the 
population. A population’s immunity profile can be col-
lectively enhanced through vaccination and/or previous 
infection and this phenomenon likely occurs at the local 
level, rather than the global scale. This collective immu-
nity state does not mean that herd immunity has been 
achieved; it may be transient and fragile. However, its 
contribution to the suppression of individual epidemic 
waves is non-negligible, but subsequent waves may 
emerge as a consequence of changes in human behaviour, 
such as human travel and contact behaviour [50].

One of the main drivers of spatial disease diffusion is 
human mobility. As evidenced in other EE studies [15, 
20–22], our study once again verified the existence of an 
agglomeration phenomenon. When scaling the country 
susceptibility level by population size in the spatiotem-
poral component, countries with a higher population 
density resulted in a greater likelihood of attracting cases 
from their neighbours. However, it seems naive to assume 
that the epidemic can only come from their shared-
bordered countries. Long-range transmission of cases 

was addressed by imposing a power law relationship 
between countries with respect to the neighbourhood 
order adjacency matrix. It was intuitive that individuals 
typically travel to locations in closer proximity to their 
residence, whereas travel to more distant destinations is 
less frequent. Accordingly, closer neighbouring countries 
were assigned for greater influence, i.e., more power law 
weight, while those situated at higher-order neighbours 
were assigned less weight. However, the estimated slow 
decay across neighbourhood orders in this work indi-
cated that countries further apart were of importance in 
spatial disease dispersion. This forms a coarse implica-
tion of a pronounced interconnection between countries 
in the global spread of COVID-19 disease. From a macro-
scopic perspective, the spatiotemporal spread of the pan-
demic is not random but rather typically patterned by a 
human movement network that can be modeled as either 
constant or time-varying. Examples of such networks are 
airline transportation data [10], mobile network [22, 23], 
movement pattern approximation based on generated 
data sets from Meta-Facebook or Google [9, 17]. Given 
the interconnected nature of the modern world, a multi-
dimensional network paradigm beyond the typical trans-
portation network may provide a superior approach to 
elucidating the spatiotemporal patterns of the global dis-
semination of the novel coronavirus [51].

The strength of our study lies in the utilization of the 
endemic-epidemic modeling framework to project the 
transmission mechanism of COVID-19 disease at a global 
scale. Specifically, the hhh4 model allows us to examine 
the spatiotemporal transmission process in a granular 
manner using multiple highly structured data that vary 
in both in time and space, while requiring a minimal 
computational burden as compared to other parameter-
driven methodologies. Nevertheless, several limitations 
need to be recorded. The lack of information on a-/pre-
symptomatic community incidence is our first limita-
tion when monitoring the COVID-19 pandemic. There 
is compelling evidence suggesting the importance of a-/
pre-symptomatic transmission of SARS-CoV-2. Serologi-
cal survey data can be used to estimate the fractions of 
asymptomatic in the population [52]. However, this type 
of data is not often universally available, and the question 
remains as to whether these data can be extrapolated to 
represent the entire country. Secondly, the study did not 
consider information on testing strategies, which evolved 
during the emergency phase. This testing information 
may prove useful in assessing the reporting bias in the 
model [53]. Finally, the strength of inter-country con-
nectivity, as modeled by the power law, was kept constant 
over time. This constancy is not likely realistic in the con-
text of the pandemic, given there must be significant fluc-
tuations in mobility patterns in our study setting [54, 55].
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Conclusion
From a statistical and evolutionary perspective, we pre-
sented a comprehensive view of the spatiotemporal 
dynamics of SARS-CoV-2 in the EU/EEA region during 
2020 – 2022. We found that within-country transmis-
sion was the main mode of transmission across all coun-
tries over the three years. This work also emphasized a 
basic transmission mechanism: infections introduced by 
between-country transmission could be of great impor-
tance for subsequent domestic outbreaks. Furthermore, 
early signs of the transition to endemicity since the 
beginning of 2022 were conceivable, particularly in light 
of the evolving VOCs. Our study highlighted the benefits 
of the endemic-epidemic framework, to cover many epi-
demiological aspects of COVID-19 diseases at a vast spa-
tial and temporal scale. This is of great interest to those 
seeking to examine public health questions with multiple 
data sources available at the time while maintaining the 
flexibility to update the results when more information 
becomes available in the future.
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