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Abstract

Accessibility is a key dimension for sustainable transport network management and plan-
ning. However, conventional location-based accessibility measures typically rely on average
travel times as the sole temporal metric, neglecting detailed travel time distributions. Con-
sequently, these methods yield identical accessibility values for study zones with the same
mean travel time but different travel time variations. To overcome this limitation, we de-
veloped a novel approach that explicitly integrates the probability density distributions of
travel times, modelling the impact of travel time variability on accessibility. We applied the
proposed method using GPS data collected from taxis in Harbin, China, and compared its
outcomes with those from existing potential accessibility calculations. Across all 103 study
zones in Harbin, the existing method underestimated the accessibility by 6–28%, with
an average underestimation of 17% when benchmarked against the new method. These
inaccuracies also impaired the identification of urban areas with the lowest accessibility
levels, leading to the misclassification of 20% of problematic zones. The findings highlight
the limitations of existing methods, which produce biassed accessibility estimations and
misleading results. In contrast, the proposed travel time variability-integrated accessibility
measure demonstrates greater sensitivity to actual traffic conditions, providing a more
accurate and objective assessment of network performance.

Keywords: location-based accessibility; impedance function; travel time distribution;
GPS data

1. Introduction
1.1. Problem Statement

With the continuing urbanisation of the world’s population and economic growth of
cities, spatial urban areas are expanding, and new communities and activity locations are
becoming decentralised. However, existing transport networks have not developed at the
same pace as urban growth, generating isolated pockets of areas that are difficult to reach
by the transport systems [1]. It is thus important to conduct a timely examination of the
changing land-use structure and travel conditions and accurately evaluate accessibility.
This helps identify poorly reachable areas and informs efforts to improve the accessibility
of these places as well as the accessibility of the city as a whole [2].
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Location-based potential measures have been widely applied to analyse the acces-
sibility of an urban area [3–5]. These measures use an impedance function, typically the
negative exponential function (NEF) (i.e., ft = e−kt, where t is the travel time and k is a
controlling parameter), to characterise the declining attractiveness of activities in a zone to
a destination as the average travel time between these two places increases, in order to take
into account the effects of travel times on people’s perceptions of activity attractiveness.

Nevertheless, the potential measures only consider a single time point (i.e., the aver-
age travel time) while neglecting detailed travel time distributions, resulting in the same
measure to an activity place for two study zones that share identical mean travel times
but differ in travel time distributions (e.g., the standard deviations). According to NEF,
for individual trips, the number of changes in the attractiveness of activities resulting
from the changes in travel times is non-linearly distributed; the longer the time, the more
diminishing the attractiveness and the lower the accessibility. This non-linear relationship
implies that the actual value of accessibility is more decided by trips with shorter travel
times than those featuring longer times. The zones displaying varied travel time distri-
butions should thus be assigned different measures. For zones with smaller deviations,
the distribution of travel times is more centred around the mean travel time, generating
fewer trips with shorter times, leading to a relatively higher level of diminishing activity
attractiveness and, consequently, a lower level of accessibility. In contrast, regarding zones
with larger deviations, travel times are more dispersed, causing more trips with shorter
times, resulting in a lower level of reduction in attractiveness and, consequently, a higher
level of accessibility (see further elaboration in the Section The New Measure).

In order to characterise the differences in accessibility for varied travel time dis-
tributions, in this study, we extended the potential measure to incorporate travel time
distributions into the impedance function based on GPS data of urban vehicles. Compared
with existing location-based measures (LBMs), the new method offers several key advantages:

1. It constructs a new impedance function by integrating the probability distribution
of travel times, considering both the mean and variation in individual travel times.
By combining travel time distributions, the new measure accommodates the effect of
each individual trip, whereas existing measures only consider the effect of the mean
travel time.

2. Given that traffic conditions in an urban road network are highly divergent and travel
times are stochastic (even within the same period of the day), the proposed method
captures the statistical fluctuations of travel times and provides a more accurate and
realistic assessment of network accessibility.

3. In many cities worldwide, GPS devices are installed in taxis and in many other
urban vehicles—such as private cars, buses and trucks, generating massive GPS data
and enabling the extraction of travel time distributions. This makes the approach
cost-effective, timely-updated and easily transferrable to other cities.

The remainder of this paper is organised as follows. Section 1.2 describes the state-
of-the-art accessibility research, while Section 2 introduces the data and explains the
proposed method. Section 3 presents a case study, and Section 4 ends this paper with major
discussions and conclusions.

1.2. State-of-the-Art Accessibility Research
1.2.1. Accessibility

Accessibility is defined as the ease and extent to which land-use and transport systems
enable individuals to reach activities and destinations using certain transport modes, e.g.,
the number of jobs accessible within 30 min by car [6]. It not only considers travel conditions
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(e.g., travel times or distances) but also the distribution of land-use and activity locations
across the transport network [7].

Various methods have been developed for measuring accessibility, including
infrastructure-based [6], person-based [8], location-based [9], and utility-based [10] ap-
proaches. Particularly, location-based measures (LBMs) analyse accessibility from a lo-
cational perspective, and are mostly applied owning to their good operability and inter-
pretation [11]. Three major categories of LBMs exist, consisting of contour (cumulative
opportunity), potential (gravity), and 2-step floating catchment area (2SFCA) measures.
A contour measure represents the total number of activities that can be reached from the
study zone within a predefined travel time threshold [4]. In contrast, a potential measure
uses an impedance function to reduce the attractiveness of activities to the study zone, as
the travel time between the study and activity zones increases [5]. Furthermore, 2SFCA
incorporates the competitive relationship between activity supply and demand, accounting
for the fact that access to opportunities is affected not only by geographical proximity
and travel times, but also by the competition of many people trying to access the same
opportunity [12,13].

Traditionally, all the above measures are derived through a static analysis; travel time
is calculated as the average travel time per day, obtained from travel surveys or static
sensors, while the attractiveness of activities is quantified as the total number or size of
activities within activity zones [6,14]. Consequently, the resulting measures remain fixed
throughout the day and fail to capture the dynamic nature of accessibility, which fluctuates
across different time periods due to variations in human activity patterns, traffic conditions
and activity availability (e.g., shop opening and closing hours). This lack of temporal
differentiation renders the measures inadequate for reflecting actual accessibility at varied
times of the day.

1.2.2. Dynamic Accessibility

With advancements in information and communication technologies, it has become
technically and economically feasible to collect and process large amounts of mobility
data (e.g., GPS, mobile phone and social media data) and activity data (e.g., crowdsourced
information on business establishment) [15]. These data facilitate the extraction of detailed
insights into human activity patterns, service demand and traffic conditions, presenting
great opportunities to refine conventional accessibility measures. Based on such data,
time-dependent dynamic location-based measures (D-LBMs) have been developed to capture
temporal variations in accessibility across different time periods of the day [3,5]. For ex-
ample, Järv et al. [16] incorporated the temporal dynamics of activities and travel—such
as grocery store opening hours, time-dependent traffic conditions and travel times—to
compute hourly food accessibility. By comparing these hourly measures with conventional
static analyses (e.g., using average daily travel times), they found that static measures typi-
cally overestimate people’s access to potential opportunities. Similarly, Hu and Downs [17]
presented a framework for measuring and visualising hourly job accessibility, accounting
for temporal fluctuations in job supply, worker demand and travel times. Furthermore,
Cuervo et al. [18] classified traffic congestion into nine levels, from free-flow (level 1) to
peak traffic (level 9), and examined accessibility to medical services at each level. Their
results revealed substantial variations; accessibility during peak traffic was 53% lower than
under free-flow conditions.

Nevertheless, although D-LBMs account for inter-period variability (e.g., each hour
or each congestion level), they still assume that travel times within each period are deter-
ministic, and use the average travel time for accessibility calculation. However, given the
stochastic nature of travel demand and traffic conditions in urban road networks, travel
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times even within the same period are not consistent but subject to variability [19,20]. Travel
time variability has been particularly addressed in reliability-based location-based measures
(R-LBMs), which integrate travel time reliability—the probability of reaching an activity
location within a specified time budget—into accessibility analysis [21]. The rationality is
that, variability, as a form of travel-time uncertainty, affects how people perceives facilities
and therefore should be included in accessibility studies [22]. However, despite the integra-
tion of variability, R-LBMs basically still rely on a single time point (e.g., a specific percentile
of the travel time distribution) for accessibility estimations, without fully considering the
entire distribution of travel times across the study period.

1.2.3. Limitations of Current Accessibility Measures

Both D-LBMs and R-LBMs have proven their value and feasibility in capturing tem-
poral variations, providing deeper insights and more advanced approaches for accessi-
bility analysis [23–25]. Nevertheless, these measures compute accessibility using either
the mean or a specific percentile of travel time distributions between study and activity
zones, assuming that all the travellers experience the same travel time during the analysed
period. Neither measure considers the detailed travel time distribution. According to
literature [4,6,9], different travel times influence activity attractiveness to varied degrees.
For instance, based on NEF, a negative non-linear relationship exists; the longer the (av-
erage) travel time, the more the activity attractiveness and accessibility diminish. Thus,
accessibility should be differentiated not only across locations and time periods but also
among individuals’ trips and perceptions shaped by the varied travel times. Researchers
have indeed questioned the underlying assumption of LBMs that all individuals at a given
location have equal awareness of activity destinations [26–28]. This assumption overlooks
the diverse experiences and perceptions of individual travellers. Existing measures, partic-
ularly D-LBMs, strive to overcome this weakness by splitting a day into short periods and
use average travel times for each period. However, they still assume homogeneous travel
times and accessibility within each period and therefore only partially resolve the problem.
Consequently, a method that models individual trips and explicitly accounts for travellers’
heterogeneous experiences remains lacking.

The growing availability of GPS data provides accurate routes and travel times for
many people, offering detailed spatial and temporal information and near real-time traffic
conditions [29]. This makes it possible to analyse accessibility at the level of individual
trips. In this study, we incorporate travel time distributions into the calculation of LBMs
and derive accessibility based on individual travel times (trips), using taxi GPS data. The
key differences between the new and existing measures lie in how they utilise travel times
and model the effects of these times. The new measure aggregates the effect of every trip
and duration across a period, while existing measures typically analyse the effect of the
average duration or another single percentile of the travel time distribution. As a result,
the new approach produces accessibility estimates that are more sensitive to individuals’
diverse views and practices, even for the same zone pairs within the same time period.

2. Materials and Methods
2.1. Data

The GPS data were collected from all licenced taxis in Harbin, the capital of Hei-
longjiang province in China, totalling 16,000 vehicles. Data were recorded every 30 s during
the day and every 2 min at night, generating 1.6 GB of data and 24 million GPS points each
day. According to the data, each taxi completes an average of 30 passenger trips per day,
resulting in a total of 0.48 m passenger trips. By comparison, Harbin has approximately
1 million private cars, which collectively produce an estimated 2.41 million trips daily,
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assuming that each car generates an average of 2.41 trips per day [30]. Consequently,
taxi passenger trips account for 17% of the total personal travel undertaken in the urban
area daily. This highlights the significant role of taxis in meeting urban travel demand for
private trips. Further information on the data can be referred to in the paper [30].

For this study, GPS data collected between July and September 2016 were used. The
dataset includes variables such as taxi vehicle IDs, GPS coordinates, recording times and
status messages indicating whether passengers were on board. A digital map of the road
network, obtained from the Baidu Map Open Platform [31], was also utilised. This dataset
provides the coordinates and classifications of all activity locations (16,625 in total, spanning
16 types) across the urban area. The classification of activity types is described in Table A1
in Appendix A, and this study performs accessibility analysis regarding the integration of
all these types.

2.2. Methodology

The proposed method consists of four main steps (See Figure 1): (i) pre-processing
GPS data and extracting passenger trips, (ii) constructing passenger travel patterns and
identifying high-density residential zones, (iii) calculating accessibility for each residential
zone using both the new and conventional measures, and (iv) identifying zones with the
lowest levels of accessibility.

Figure 1. Overall structure of the proposed method. Note: OD (zi, zj, TimeP, Day, DayT) denotes the
passenger travel pattern matrix, where zi and zj are the origin and destination zones and TimeP, Day
and DayT specify the temporal attributes (time period, calendar day, and day type). ANi, APi and
ACi denote the new, existing potential, and contour measures for study zone zi, while LowZoneAP,
LowZoneAP and LowZoneAC indicate the zones with the lowest ANi, APi and ACi values, respectively.

2.2.1. GPS Data Pre-Processing and Passenger Trip Extraction

Let p1 (l1, t1, s1)-. . .-pn (ln, tn, sn) represent a GPS trajectory from a taxi on a day, where
each point pk (k = 1, . . ., n) consists of a coordinate set lk = {xk, yk}, a time stamp tk, and a
status message sk, which equals 1 when the taxi is occupied by passengers and 0 when the
vehicle is idle and the driver is searching for clients. Let EDk (lk+1, lk) denote the geographic
distance between pk and pk+1, calculated using the Haversine formula [32]. The speed
Speedk at pk is then computed as

Speedk =
ED(lk+1, lk)

tk+1 − tk
(1)
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From the GPS trajectories, points with zero coordinates or Speedk exceeding the
threshold THSpeed are first deleted. Passenger trips, where taxis are occupied by clients,
are then extracted based on changes in sk between consecutive points. Specifically, let
Trip = po (lo, to, so)-. . .-pd (ld, td, sd) represent a passenger trip, where po and pd are the first
and last points, such that sk = 1 (k = o, . . ., d) and so−1 = sd+1 = 0. This study focuses solely
on passenger trips, as taxis with passengers on board are better suited to reflect actual traffic
conditions, such as driving speeds and travel times. For each passenger trip, the travel time t,
travel distance d and route directness (circuity) cir are computed according to Formula (2).

t = td − to

d =
d−1
∑

i=o
[ED(li, li+1)]

cir =
d

ED(lo, ld)

(2)

2.2.2. Travel Pattern Construction and High-Density Residential Zone Identification

The entire urban area is divided into GridX × GridY disjoint zones using a grid-based
method. Each zone is denoted as zi (i = 1,. . ., GridX × GridY) or z(ix, iy) (ix = 1,. . ., GridX;
iy = 1,. . ., GridY), and each zone pair from zi to zj is referred to as zij or zi- > zj. The temporal
dimension of trips is classified into different time periods (i.e., TimeP) within a day (i.e.,
Day) and further distinguished by day type (i.e., DayT). Based on this spatial and temporal
division, a passenger travel pattern matrix OD(zi, zj, TimeP, Day, DayT) is constructed, with
each matrix element representing all the trips that originate from zi, end in zj, and start
within TimeP on Day of type DayT.

From the matrix OD, the average number of trips per day that either originate in zi in
the morning (moi) or end in zj at night (mdj) is calculated for all days of type DayT. Zones
with both moi and mdj exceeding a threshold THM are identified as high-density residential
areas and used as the study zones. Simultaneously, all activity locations in the city are
assigned to zones based on their geographic positions, with zones containing at least one
activity location forming the activity zones.

To ensure accurate passenger travel times, two parameters THr and THt are defined to
filter trips that may involve spatial detours (e.g., due to taxi sharing) or temporal extensions
(e.g., when taxis stop for an extended period during a trip). Trips with circuity exceeding
THr or travel times longer than THt are considered to involve potential spatial detours or
temporal extensions and are removed from OD. The travel times of the remaining trips are
then used for subsequent accessibility computation.

2.2.3. Accessibility Computation

Based on the obtained study and activity zones as well as passenger travel times, acces-
sibility is computed using both the new and traditional measures. Table A2 in Appendix A
summarises all the major variables used in the computation process.

The Traditional Measures

The traditional contour measures ACij and ACi for zone pair zij and study zone zi, and
potential measures APij for zij and APi for zi are computed according to Formula (3) [6] and
Formula (4) [9], respectively.

hij =

{
1, i f uij ≤ T
0, i f uij > T

ACij = ∑
c
(acj·hij)

ACi = ∑
j

ACij

(3)
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fij = e−(k·uij)

APij = ∑
c
(acj· fij)

APi = ∑
j

APij

(4)

where uij is the mean travel time from zi to activity zone zj, T is the travel time threshold,
acj is the total number of activities of type c in zj, hij is the binary function, and fij is the
impedance function with k being the controlling parameter.

The New Measure

Assume that across all observed trips for zij, there are n discrete travel times (t1, . . .,
tn) with corresponding probabilities (p1, . . .,pn), such that p1 + . . . + pn = 1. Based on
Formula (4), the impedance function f’ij, describing the average effect across all the times,
is given as

f ′ ij = p1e−(k·t1) + p2e−(k·t2) . . . + pne−(k·tn) (5)

The discrete distribution of travel times can be replaced with a continuous probability
density function Pij(t). Using ft = e−kt, the new impedance function gij for zij, measures ANij

for zij and ANi for zi are defined as

gij =

tmax∫
tmin

Pij(t)· ft·d(t)

tmax∫
tmin

Pij(t)·d(t)
=

tmax∫
tmin

Pij(t)·e−kt·d(t)

tmax∫
tmin

Pij(t)·d(t)

ANij = ∑
c
(acj·gij)

ANi = ∑
j

ANij

(6)

Here, tmin and tmax represent the minimum and maximum travel times for zij, respec-
tively, and ft reflects the impact of travel times t. The new measure ANi integrates the
existing measure APi with the probability distribution Pij(t) of travel times for all trips
between each pair of study and activity zones. The key difference lies in the impedance
function; for APi, fij only accounts for the effect (and accessibility) of the mean travel time
uij, ignoring individual times. In contrast, ANi calculates the effect ft for each individual
travel time and uses gij to represent the average of ft across all the times.

Figure 2 illustrates the difference between gij and fij. In this figure, z1 and z2 represent
two study zones, and zj is an activity zone. The travel time t from z1 to zj (i.e., z1j) (Figure 2a),
and from z2 to zj (i.e., z2j) (Figure 2c) follows normal distributions with identical mean
values (uij = 30 min) but different standard deviations (stdij = 5 and stdij = 10, respectively).
Compared with z1j, z2j exhibits a more dispersed travel time distribution, resulting in more
trips with shorter (e.g., t < 10 min) and longer (e.g., t > 50 min) times.

Given that ft = e−kt (Figure 3) yields higher values for shorter times, z2 achieves a
higher accessibility level than z1. This is evidenced by the average of ft = e−kt (i.e., ft, equal
to gij) over all trips, calculated as 0.06 for z1 (Figure 2b) and 0.08 for z2 (Figure 2d), with
k = 0.1. This demonstrates that, under the NEF framework, accessibility is more influenced
by trips with shorter travel times, as shorter times lead to less diminishing attractiveness
and higher accessibility.

Figure 2e depicts the travel time distribution from a third zone z3 to zj, with the same
mean (uij = 30 min) but an even larger standard deviation (stdij = 15). This generates even
more trips with shorter times, further increasing accessibility to 0.12 (Figure 2f).
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Figure 2. An example of varied accessibility for zone pairs with different travel time distributions.
Note: In (a,c,e), the x-axis denotes travel times, std is the standard deviation, and the blue curves
and red lines represent the fitted normal distributions and values of uij. In (b,d,f), the x-axis denotes
values of ft = e−kt, and the red and orange lines indicate fu = fij and ft, respectively.

 

Figure 3. The negative exponential function ft = e−kt. Note: k = 0.1.

For all the three zones, the existing measure fij = 0.05, which is smaller than gij for
each zone. The differences are −0.01, −0.03, and −0.07, corresponding to underestimations
of accessibility of these zone (pairs) by 17%, 38%, and 58%, respectively. This highlights
that fij underestimates accessibility more significantly as stdij increases, revealing that
greater variability in travel times results in higher accessibility underestimated by the
existing measure.

2.2.4. Zones with the Lowest Level of Accessibility Detection

Using ANi, all study zones are sorted in ascending order, generating a rank ANRi

for each zone. A percentage THPer of zones with the lowest ranks is identified as the set
LowZoneAN, representing areas with the lowest accessibility. For comparison, the zones
are also ranked by APi and ACi, forming ranks APRi and ACRi, and corresponding sets
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LowZoneAP and LowZoneAC of low accessibility zones. Variations between these rankings
and sets are analysed, highlighting the added value of ANi.

3. Results
3.1. Passenger Trips

The speed threshold was set at THSpeed = 120 km/h (the maximum speed limit in
China) to extract passenger trips, yielding 478,026 trips per day. Figure 4 illustrates the
distribution of average speeds (Speedk) for trips over half-hour intervals across weekdays,
showing clear variations in driving speeds throughout the day. Based on this distribution,
we divided a day into four periods: morning (7–9 AM), daytime (9 AM–16 PM), evening
(16–18 PM) (evening), and night (18 PM–7 AM), with corresponding average speeds of 18.4,
21.4, 18.8, and 27.3 km/h, respectively.

Figure 4. Distribution of average speeds in each half an hour of a weekday. Note: the x-axis denotes
the time of the day, and the y-axis is the average speed of trips over half-hour intervals.

3.2. Travel Pattern Matrices and Study Zones

The city was divided into GridX × GridY zones for the travel pattern matrix,
where larger grid dimensions improve spatial resolution but reduce the number of ob-
served trips between zones. In order to achieve statistically sound results, we specified
GridX = GridY = 40, resulting in a total of 1600 zones, each being 1.87 km2 in size. For com-
parison, grid sizes in other studies range from 0.15 km2 in Denizli, Turkey, for public transit
studies [10] to 2.14 km2 in Twin Cities, MN, USA, for car-based accessibility analysis [9].

The travel pattern matrix OD (zi, zj, TimeP, Day, DayT) was constructed using this spa-
tial partitioning and the four temporal periods, with i, j = 1600, TimeP = 4, Day = 66 (Week-
days) and 26 (Weekends) and DayT = Weekdays and Weekends. This study focused on
weekday mornings, but the methodology can be extended to other periods and weekends.

Study zones and passenger travel times were extracted using thresholds THM = 20,
THr = 3.32 (i.e., the 95th percentile of circuity of all trips over the zone pairs) and
THt = uij + 3stdij (uij and stdij being the mean and standard deviation of each pair zij).
Trips with t > uij + 3stdij, which only occur at the probability of 0.003, were excluded as
abnormal trips. This process identified 103 study zones and 152 activity zones, representing
6.4% and 9.5% of the total grids. Each study zone recorded at least 20 trips departing in
the morning and arriving at night, while each activity zone contained at least one activity
location. The minimum number of trips between the study and activity zones was 78.

3.3. Accessibility Computation

Two parameters were used to compute accessibility measures: the probability density
function Pij(t) of travel times and the controlling parameter k in the impedance function
NEF. Statistical tests were conducted using the Kolmogorov–Smirnov method [33], which
confirmed that Pij(t) follows a normal distribution, with p-values for all the concerned zone
pairs ranging from 0.8 to 0.99 (well above the 0.05 threshold). In addition, different values
of k have been employed in the literature [15,19,21,34], subject to the study area and type
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of activities. In this experiment, we adopted the commonly used value of k = 0.1 for the
integrated analysis of all the activity types [19,21]. Activity attractiveness in each activity
zone is quantified based on the total number of activities of all types in the zone.

3.4. Comparison Between ANi and APi

3.4.1. Impedance Functions gij and fij
The correlation coefficient between the new impedance function gij and the tradi-

tional impedance function fij is 0.97, indicating a strong overall positive relationship.
Nevertheless, significant variations exist between individual pairs. On average, fij un-
derestimates accessibility by an absolute value of 0.02 and a relative percentage of 28%
(∆fij = fij − gij; әfij = ∆fij/gij).

To investigate the factors contributing to the varying degrees of underestimations, we
analysed the relationship between ∆fij and the travel time distributions of the corresponding
zone pairs using stepwise regression modelling techniques [35]. In this process, each of the
variables including uij, stdij and skewness skewij, or each combination of these variables was
added to the model at each step, and the variable (or variable combination) that led to the
least mean squared error (MSE) was chosen. Figure 5 presents MSE of the obtained models
at each major step, showing that MSE decreases sharply from Model1–Model3 but declines
slowly over Model4–Model6. Model3 was thus selected as the final model. Its equation
is given in Formula (7), and it achieves an MSE of 0.006. MSE and skewij are computed
according to Formula (8).

Figure 5. MSE of the models at major steps. Note: The x-axis represents the models (Model1–Model6)
at each step (1–6), and the y-axis denotes MSE. The variables contained in Model1–Model6 are rij,
(rij, uij), (rij, uij, skewij), (rij, uij, skewij, skewij/uij), (rij, uij, skewij, skewij/uij, stdij·skewij), (rij, uij, skewij,
skewij/uij, stdij·skewij, skewij·uij , stdij, uij·stdij, stdij/skewij), respectively, where rij = stdij/uij.

According to Model3, the mean (uij), the skewness of the distribution (skewij) and
the ratio of the standard deviation to the mean (rij = stdij/uij) are key factors. Specifically,
shorter times uij, higher skewness skewij, and larger ratios rij are associated with greater
differences between fij and gij, leading to a more significant underestimation of accessibility
by fij.

∆ f ij ∼ −0.001 + 0.0003·uij − 0.0009·skewij − 0.0889·rij (7)

skewij =

1
mij

·∑
t
(t − uij)

3

[
1

mij
·∑

t
(t − uij)

2]
3/2

MSE =

∑
i,j
(∆ f ij − ∆ f̂ij)

2

Npair

(8)
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Here, mij denotes the number of trips for zij, while Npair and ∆ f̂ij are the numbers of
all the pairs and the predicted value of ∆fij, respectively.

To further characterise the distinctions between gij and fij, we introduced an additional
variable propij for each pair zij, as defined in Formula (9).

propij =
N(t ≥ teq)

N(tmin ≤ t ≤ tmax)
, with

tmax∫
teq

Pij(t)· ft·d(t)

tmax∫
teq

Pij(t)·d(t)
=

tmax∫
teq

Pij(t)·e−kt·d(t)

tmax∫
teq

Pij(t)·d(t)
= fij

(9)

Here, tmin and tmax are the shortest and longest travel times for zij, respectively,
teq (tmin < teq < tmax) is the time point at which the mean of NEF (ft) over t ϵ [teq, tmax]
equals fij, and N(t ≥ teq) and N(tmin ≤ t ≤ tmax) are the numbers of trips with t ≥ teq and
tmin ≤ t ≤ tmax. Propij represents the proportion of trips with the longest travel times for
which the mean value of ft equals fij. This implies that fij effectively accounts for the accessi-
bility of only a subset of trips for each zone pair. Further statistics reveal that propij varies
between 0.61–0.98, averaging 0.76, indicating that traditional measures accommodate only
76% of trips (on average) with the longest travel times.

Figure 6 presents two actual zone pairs, z(21,20)−→z(20,19) and z(23,15)−→z(23,24),
which exhibit the largest (∆fij = −0.1) and a relatively smaller (∆fij = −0.003) difference,
respectively. The first pair (Figure 6a) has a relatively short mean travel time (23.3 min)
but a large deviation (14.4), generating large values of rij (0.62) and skewness (0.82). This
leads to fij underestimating the accessibility by 51%, covering only 74% of trips (Figure 6b).
In contrast, the second pair (Figure 6c) have comparatively long travel times (an average
of 30.8 min) but smaller deviations (3.6), yielding lower values of rij (0.12) and skewness
(−0.32). Consequently, fij underestimates the accessibility only by 6% while encompassing
94% of trips (Figure 6d).

3.4.2. Accessibility Measures ANi and APi

Let ∆APi = APi − ANi and әAPi = ∆APi/ANi. The values of ∆APi and әAPi range
between −42 and −505 and between −0.06 and −0.28, respectively, with averages of
−273 and −0.17. This indicates that, due to the underestimation by fij, APi underestimates
the accessibility of each zone zi by an absolute average value of 273 and a relative proportion
of 17% when compared to ANi. Moreover, for each zi, the average of propij over all the
activity zones ranges from 82% to 89%, showing that APi accounts for only 82–89% of trips
(with the longest travel times) between the study zone and each activity zone.

3.4.3. Accessibility Ranks ANRi and APRi

Despite APi (and fij) underestimating accessibility across all study zones (and zone
pairs), the degrees of underestimations vary, leading to differences between the existing
rank APRi and the new rank ANRi. Specifically, let ∆APRi = APRi − ANRi. Among all
zones, 40% have an APRi rank lower than the corresponding ANRi rank, 42% have a higher
APRi rank, and the remaining 18% have equal ranks (∆APRi = 0). The minimum and
maximum values of ∆APRi are −10 and 12, respectively.

To identify zones suffering from the lowest accessibility, a threshold THPer was defined,
tailored to the urban area’s specific conditions (e.g., general accessibility levels and the
severity of accessibility issues under investigation) [30]. In this study, THPer = 20% was
set, resulting in 20 zones with the lowest ranks (i.e., ANRi ≤ 20 or APRi ≤ 20). These
zones form the sets LowZoneAN and LowZoneAP, referred to as the problematic zones. The
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mean accessibility measures ANi and APi per study zone are 1534 and 1423, respectively,
while the largest values of ANi and APi in LowZoneAN and LowZoneAP are 643 and 590,
constituting only 41.9% and 41.5% of the corresponding mean measures.

   

   

Figure 6. Travel time distributions and values of fij and gij of two actual zone pairs. Note: In (a,c), the
x-axis denotes travel times, std is the standard deviation, and the blue curves and red lines represent
the fitted normal distributions and values of uij. In (b,d), the x-axis denotes values of ft = e−kt, and
the red and orange lines indicate fij and gij, respectively.

Figure 7a,b illustrate the geographic distributions of all study zones, where large filled
red, small filled yellow and green circles represent zones with ANRi and APRi ranks of
1–20, 21–50 and 51–103, respectively. Comparing problematic zones identified by the two
measures reveals that two zones (z(25,17) and z(28,26), enclosed in purple rectangles) are
included in LowZoneAP (with APRi = 18 and 17) but not in LowZoneAN (ANRi = 28 and 26).
Conversely, two other zones, (z(20,15) and z(25,15), enclosed in orange rectangles), are
found in LowZoneAN (ANRi = 20 and 18) but not in LowZoneAP (APRi = 22 and 23). Thus, of
the 20 problematic zones, 16 (80%) are identified by both measures, while the remaining
4 (20%) are assessed differently.

3.4.4. Geographic Features

To examine the geographic features influencing ranking differences, we classified
all study zones into three categories based on ∆APRi: ∆APRi ≤ −3, −2 ≤ ∆APRi ≤ 2,
and ∆APRi ≥ 3. These categories are represented in Figure 7c, which shows that most
zones with a lower APRi rank (∆APRi ≤ −3, represented by large filled purple circles) are
located in or around the urban centre (Areacen) where a high concentration of activities
is established. In contrast, zones with a higher APRi rank (∆APRi ≥ 3, represented by
large filled orange circles) are predominantly found in suburban areas away from Areacen.
This geographic pattern can be attributed to the differences in traffic conditions and travel
time distributions. For zones zi near Areacen, travel times between zi and activity zones
zj—particularly those within Areacen—are generally short (e.g., due to proximity) but exhibit
significant variability (e.g., due to congestion). This results in small mean travel times (uij)
but large values of deviations (stdij), ratios (rij), and skewness (skewij) [21]. Consequently,
fij < gij and APi < ANi to a greater extent, leading to zi being assigned a lower APRi rank
compared to its corresponding ANRi rank. Conversely, zones located far from Areacen
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typically experience longer travel times between zi and zj (especially to activity zones
within Areacen) but with less variability (e.g., due to reduced congestion in suburban areas).
These conditions produce travel time distributions with larger uij but relatively smaller
stdij, rij, and skewij. As a result, fij < gij and APi < ANi to a lesser extent, causing zi to receive
a higher APRi rank relative to its ANRi rank).

 

Figure 7. Geographic distributions of study zones with ANRi (a), APRi (b) and ∆APRi (c), respectively.
Note: In (a,b), the large filled red, small filled yellow and green circles represent zones with ANRi

and APRi ranks of 1–20, 21–50 and 51–103, respectively. In (c), the large filled purple, small filled blue
and large filled orange circles represent zones with ∆APRi ≤ −3, −2 ≤ ∆APRi ≤ 2, and ∆APRi ≥ 3,
respectively. In all the figures, the zones enclosed in purple rectangles are included in LowZoneAP but
not in LowZoneAN; while those enclosed in orange rectangles are in LowZoneAN but not in LowZoneAP.
The large unfilled purple oval outlines Areacen.

3.5. Comparison Between ANi and ACi

In addition to APi, another widely used location-based measures is the contour mea-
sure ACi. In this subsection, we conducted a final comparison between ANi and ACi. To
this end, ACi was computed for each study zone (according to Formula (3)) with the typical
threshold value of T = 30 min [9]. The corresponding ranks ACRi were then derived, and a
set LowZoneAC, containing 20 zones with the lowest ACRi ranks, was identified.
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3.5.1. ANi and ACi

In relation to gij, the binary function hij (used in ACi) either overestimates or under-
estimates the accessibility of a zone pair, whereas fij consistently underestimates all pairs.
Specifically, for 49% of zone pairs where uij ≤ 30 min, hij = 1, leading to an overestimation
of accessibility by 22–2610%, with an average of 670% (0.22 ≤ әhij ≤ 26.1, әhij = (hij-gij)/gij).
Conversely, for the remaining 51% of pairs where uij > 30 min, hij = 0, resulting in an
underestimation of accessibility by 100% (әhij = −1). The overall correlation between gij

and hij across all pairs is 0.66, displaying a much lower correlation than between gij and
fij (0.97).

Despite the over- or underestimation, ACi overestimates the accessibility of each zone
by 68–509%, with an average of 360% (0.68 ≤ әACi ≤ 5.09, әACi = (ACi − ANi)/ANi).
This demonstrates a distinct feature of ACi, contrasting with APi, which underestimates
accessibility for all zones.

3.5.2. ANRi and ACRi

Significant variations also exist in the accessibility rankings. Specifically, 50% of
zones have a lower ACRi rank than the corresponding ANRi, 44% have a higher ACRi

rank, and only 7% have equal ranks. The differences between these two rankings
(∆ACRi = ACRi − ANRi) range from −18 to 18, which is greater than the range observed
for ∆APRi (−10 to 12).

When comparing problematic zones in LowZoneAC (Figure 8a) with those in LowZoneAN

(Figure 7a), four zones (z(19,17), z(20,18), z(23,16), and z(24,15), highlighted by large filled
red circles in purple rectangles) are included in LowZoneAC but not in LowZoneAN (ACRi = 12,
19, 20 and 18, while ANRi = 22, 33, 29 and 21, respectively). Conversely, four other zones
(z(25,14), z(25,15), z(25,16), and z(30,20), highlighted by small filled yellow circles in orange
rectangles) are present in LowZoneAN but excluded from LowZoneAC (ANRi = 8, 18, 15 and
12, while ACRi = 26, 36, 25 and 27, respectively). Thus, only 12 (60%) are identified as
problematic by both measures, while the remaining 8 (40%) are evaluated differently. The
level of detection consistency (i.e., 60%) is lower than that identified by ANRi and APRi

(i.e., 80%).

3.5.3. Geographic Features

Figure 8b visualises the geographic distribution of zones classified into three categories
based on ∆ACRi: ∆ACRi ≤ −3, −2 ≤ ∆ACRi ≤ 2, and ∆ACRi ≥ 3. Zones with lower ACRi

ranks (represented by purple circles) are predominantly located in the western part of
the city. In contrast, those featuring a higher ACRi rank (represented by orange circles)
are mostly found in the eastern part. Further investigations reveal that this geographic
tendency is closely linked to the distributions of activities in the urban area, as shown in
Figure 8c, where filled red circles represent activity zones with the radius being proportional
to the number of activities. Of these activity zones, 94.6% are established in Areacen and
its surrounding area, while the remaining 1.6%, 2.9% and 0.9% are built in the northwest,
southwest and south of the city (i.e., in the purple polygons), respectively. Notably, no
activities are found in the eastern part. This uneven distribution explains the observed
ranking differences. A zone in the west (e.g., z(23,25), enclosed by the purple rectangle)
has more activities within the neighbourhood of the area Area(zi,T) (i.e., places reached
from zi within the travel time T). Conversely, a zone in the east (e.g., z(30,20), enclosed
by the orange rectangle) has fewer activities within or outside Area(zi,T), leading to a
higher ACRi rank. The dashed black circles in Figure 8c represent Area(zi,T) for z(23,25) and
z(30,20), respectively.



Sensors 2025, 25, 6274 15 of 21

   

 

Figure 8. Geographic distributions of study zones with ACRi (a), ∆ACRi (b) and activity zones (c).
Note: In (a), the large filled red, small filled yellow and green circles represent zones with ACRi

ranks of 1–20, 21–50 and 51–103, respectively. The zones enclosed in purple rectangles are included
in LowZoneAC but not in LowZoneAN; while those enclosed in orange rectangles are in LowZoneAN

but not in LowZoneAC. In (b), the large filled purple, small filled blue and large filled orange circles
represent zones with ∆ACRi ≤ −3, −2 ≤ ∆ACRi ≤ 2, and ∆ACRi ≥ 3, respectively. In (c), the filled
red circles denote activity zones, with the radius being proportional to the number of activities. Red
circles enclosed by purple polygons outline activities in the northwest, southwest and south. The two
black dash circles represent Area(zi,T) for z(23,25) and z(30,20). In (b,c), the zones enclosed by purple
and orange rectangles are the exemplified zones z(23,25) and z(30,20), featuring a lower and higher
ACRi rank, respectively. In all the figures, the large unfilled purple oval outlines Areacen.

This geographic pattern is further influenced by the modelling methods. ACi calculates
accessibility using a discrete and binary manner; each activity zone zj is classified as either
uij ≤ T or uij > T. Zones with uij ≤ T form Area(zi,T), and ACi estimates accessibility based
solely on the total number (or size) of activities within Area(zi,T), disregarding activities
outside this area. This makes ACi only dependent on the value of T and activity situations
inside Area(zi,T). In comparison, ANi (or APi) treats travel times as a continuous variable
and models the effects of the times in a continuous way. Particularly, ANi (or APi) computes
accessibility by considering all activities in the urban area and using k to control the weights
of travel times on activity attractiveness. Thus, ANi (or APi) is not only related to the
activity conditions in Area(zi,T), but also influenced by the activity distributions outside this
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region. This underlines the above ranking differences between ANRi and ACRi. For a zone
(e.g., z(23,25)), if more activities are located outside Area(zi,T), ANi tends to be larger and
ANRi be higher, resulting in ACRi being lower than the corresponding ANRi. Conversely,
for a zone like z(30,20), which has fewer activities outside Area(zi,T), ANi is smaller, leading
to a lower ANRi rank and a higher ACRi rank.

4. Discussion
Achieving equitable transport accessibility and a balanced distribution of urban ser-

vices is one of the primary objectives of transport managers and urban planners [5]. As
cities grow and populations expand, accessibility challenges become increasingly critical,
necessitating more advanced and accurate analysis methods [1]. To address this challenge,
we have developed a novel approach to measure accessibility to various urban services
by car. Compared to traditional methods, this new approach is more sensitive to traffic
conditions and travel time distributions, providing a more objective representation of
accessibility. Additionally, the continuous generation of GPS data from urban vehicles
enables timely updates of the derived results, allowing these results to keep pace with
rapid urban land-use changes, population growth, and evolving mobility patterns.

4.1. Major Differences Between the New and Existing Measures

When the proposed method was applied to the study city, a certain level of devia-
tion was observed between the new measure, ANi, and existing measures, APi and ACi.
Specifically, compared to ANi, APi underestimates accessibility across all the study zones
by an average of 17%, whereas ACi overestimates accessibility by 360%. Moreover, under-
or overestimation varies across zones, leading to discrepancies between the new rank-
ing, ANRi, and existing rankings, APRi and ACRi. The geographic characteristics and
underlying causes for these discrepancies also differ. The differences between ANRi and
APRi are primarily influenced by traffic conditions and travel time variations. Most zones
with a lower APRi rank are located in or around the urban centre, Areacen, where a high
concertation of activities is established (See Figure 7c). In these zones (e.g., zi), travel times
between zi and activity zones zj—particularly those within Areacen—are generally short
due to proximity but exhibit high variability due to congestion. As a result, travel time
distributions show large deviations (stdij), skewness (skewij), and/or ratios (rij = stdij/uij).
The larger travel time deviations in zi result in more trips with shorter times (relative to
the mean), leading to a lower reduction in attractiveness and, therefore, a higher level of
accessibility represented by ANi and a higher rank by ANRi (compared to APi and APRi).
In contrast, zones with a higher APRi rank are predominantly found in suburban areas
farther from Areacen. These zones (e.g., zi) typically experience longer travel times between
zi and zj (especially within Areacen) but with less variability (e.g., due to reduced congestion
in suburban areas). Under such conditions, travel time distributions have larger uij values
but relatively smaller stdij, skewij and rij, meaning that travel times are more concentrated
around the mean travel time. This results in fewer trips with shorter travel times, leading to
a greater reduction in activity attractiveness and, consequently, a lower level of accessibility
as reflected by ANi and a lower rank by ANRi (compared to APi and APRi).

The differences between ANRi and ACRi are more closely related to the spatial dis-
tribution of activities within and outside the Area(zi,T) (places reached from zi within T)
(See Figure 8c). In zones with a larger number of activities located outside Area(zi,T), ANi

tends to be larger, resulting in a higher ANRi and a lower ACRi. Conversely, in zones with
fewer activities outside Area(zi,T), ANi is relatively smaller, leading to a lower ANRi and a
correspondingly higher ACRi.
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The above discrepancies highlight the inaccuracies of the existing measures APi and
ACi and underscore the advantages of adopting the new measure ANi, particularly in urban
environments characterised by heavy congestion surrounding Areacen and uneven activity
distributions outside Areacen. The higher the congestion levels and the more uneven the
activity distributions, the larger the disparities between the existing and new measures.
In the experimental city, the minimum and maximum differences between APRi and
ANRi range from −10 to 12, while those between ACRi and ANRi span from −18 to 18.
Across all the 103 study zones, this ranking variation translates into relative percentage
changes: a shift of −10% to +12% between APRi and ANRi, and −17% to +17% between
ACRi and ANRi.

4.2. Potential Applications of the New Method

The proposed method facilitates systematic analysis of accessibility across urban
road networks and the identification of zones experiencing significant (vehicle-based)
accessibility problems. It can also be applied to assess the impact of implemented land-
use or transport policies on accessibility by comparing GPS-derived measures before and
after their adoption. Across these applications, the new measure ANi provides a more
accurate reflection of actual network performance by considering average travel times and
detailed travel time distributions. This allows for more precise accessibility evaluations
and problem identification, aiding in the design of policies better aligned with real-world
traffic conditions, thereby enhancing network reachability and reducing inequities.

This is particularly relevant in the post-COVID era. During and after the pandemic,
the rise in remote work has reduced commuting trips while increasing home-centred ac-
tivities and travel [36,37]. Mobility patterns have shifted from work-centric destinations
to local areas near homes, making the re-evaluation of road network accessibility, partic-
ularly in local areas, an essential step [38]. In this context, the proposed ANi measure is
especially valuable for identifying areas with poor accessibility and assisting governments
in addressing these shifts, ultimately improving reachability for local communities.

4.3. Future Research Avenues

Several avenues for future research remain open. The first concerns parameter sen-
sitivity analysis. This method relies on a set of parameters, and the experimental results
are influenced by their specified values. Future research should systematically explore
how variations in these parameter values would affect the results in order to provide more
precise guidance on optimal parameter selection. Particularly, for this analysis, we simply
adopted a fixed threshold (THPer = 20%) to identify zones with the lowest accessibility and
compared these zones detected by the new and existing measures. For subsequent research,
applying more refined data analysis techniques—such as clustering [30]—would allow for
a multi-level classification of zones by accessibility, enabling more precise identification of
the lowest-ranking zones. We also recommend externally validating these lowest-ranking
zones against observed accessibility conditions and examining the policy implications of
any identified problems.

Additionally, the parameter k captures the effect of travel times between zones on
people’s behaviour [11]; the higher the value, the greater the decreasing effect of travel
times. Future work could explore alternative values of k beyond the current setting. While
varying k changes the absolute accessibility measures of each zone pair and zone, it may
also alter zone rankings. Increasing k generally reduces overall attractiveness across all
zones, but the reduction in ANi is smaller for zones with larger deviations. Those zones
tend to generate more short trips, and a higher k amplifies the influence of short trips, which
mitigates their attractiveness loss. As a result, as k increases, ANi decreases for all zones,
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but zones with larger deviations experience a relatively smaller decrease and therefore rise
in zone rankings (ANRi).

Second, future research should examine alternative probability distributions. In the
case study, travel times for each zone pair were assumed to follow a normal distribution.
However, in a more congested urban network, travel time distributions can be more right-
skewed; functions such as lognormal or gamma distributions may better represent these
conditions. These skewed distributions tend to increase the average travel time (uij), which
would likely amplify the underestimation of accessibility by the traditional function (fij)
relative to the new function (gij).

Third, activity attractiveness in each activity zone was quantified based solely on the
total number of activities of all types, without considering other attributes such as sizes
or specific activity types. Since the primary differences between the new and existing
measures stem from the impedance functions (gij and fij), this study focused on examining
the differences resulted from these functions. The method to quantify activity attractiveness
is unlikely to significantly impact the compared results, as all the accessibility measures use
the same attractiveness values. Nevertheless, this quantification method could be refined
by including additional attributes (e.g., sizes or types) or by weighting attributes to reflect
activities’ relative importance [15].

Fourth, when deriving Formula (7) to characterise the relationship between ∆fij and
travel time distributions, we used three key variables: uij, stdij and skewij. However, other
factors—such as the difference between the mean and median—likely also affect this
relationship. Future work could explore these additional variables to create a more precise
regression model.

Fifth, our analysis concentrated in the weekday morning rush hour (7:00–9:00 AM),
and compared ANi against two established dynamic measures—APi and ACi—all derived
from this same period. Future research could shrink the temporal period to a shorter
(e.g., one-hour) interval, instead of the full two-hour window used here. Given that traffic
conditions remain relatively consistent throughout the rush hour and travel time variability
exists within each shorter interval, we expect any differences between the new and existing
measures to mirror the trends observed in our current findings. Beyond adjusting the time
window, the proposed method offers broader applicability to other periods like afternoons,
evenings, or weekends. However—given the large differences in travel patterns and traffic
conditions—applying it to these periods would yield distinct accessibility values and zonal
rankings compared to our current results.

Lastly, future research should explore the use of expanded data sources. This study
demonstrates the utility and benefits of the new approach using GPS data from taxis.
However, this data source has inherent limitations; for example, high-density residential
areas with accessibility issues may be overlooked if they receive limited taxi trips. This
limitation could be mitigated by incorporating GPS data from other urban vehicles, such as
ride-hailing services, private cars, buses and trucks [39], and from smartphones carried by
individuals while walking or using public transport. Given the heavy reliance on public
transit in major cities, applying the proposed method to bus GPS data is particularly crucial
for accurately assessing and improving accessibility gaps. Additionally, for this proof of
concept, we used the 2016 taxi dataset. Urban land-use and population have changed
considerably since then—especially after the COVID-19 pandemic—so future work should
apply this method to more recent data and compare the results. Combining these varied
data sources will strengthen the model’s robustness, enabling more precise identification
of contemporary accessibility challenges—not just across road networks, but also within
public transit and pedestrian pathways [40]. Alongside expanding the data, we also plan
to improve visualisation in future work. Using a more geographically oriented tool—such
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as ColorBrewer 2 (https://colorbrewer2.org/) (accessed on 4 May 2025)—would better
display zones and their accessibility variations.
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Appendix A

Table A1. Classification of activity types.

ID Activity Type ID Activity Type ID Activity Type ID Activity Type

1 Hotel 5 financial centre 9 tourism site 13 news media

2 Restaurant 6 transportation hub 10 shop 14 leisure

3 Government 7 school and university 11 social service 15 hospital

4 Police station 8 filling station 12 communication 16 factory and company

Table A2. Major variables used in the computation process.

General Variables

zi, zj and zij The study and activity zones and the zone pair from zi to zj.
acj and Aj The total number of activities of type c and activities of all types in zj.
T The travel time threshold.
ft The negative exponential function (NEF) ft = e−kt.
Variables for each zone pair
uij, stdij and skewij The mean, standard deviation and skewness of travel time distributions for zij.
ft The average effect over the effect of each individual travel time t for zij.
Pij(t) The probability density function of t for zij.
ACij, APij and ANij The existing contour, potential and new measures for zij, respectively.
hij, fij and gij The existing binary, impedance and new functions for zij, respectively.
∆fij, әfij, ∆hij and әhij The absolute and relative differences between fij and gij as well as between hij and gij.

propij
The ratio between the number of trips over which the mean of ft is equal to fij and the
number of all trips from zij.

Variables for each zone
ACi, APi and ANi The existing contour, potential and new measures for zi, respectively.
ACRi, APRi and ANRi The ranks of zi sorted by ACi, APi and ANi, respectively.

∆APi, әAPi, ∆ACi and әACi
The absolute and relative differences between APi and ANi as well as between ACi
and ANi.

∆APRi and ∆ACRi The ranking differences between APRi and ANRi as well as between ACRi and ANRi.
LowZoneAC, LowZoneAP and LowZoneAN The zones with the lowest ranks of ACRi, APRi and ANRi, respectively.
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