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ABSTRACT

Cancer cachexia causes skeletal muscle wasting and metabolic dysfunction, worsening clinical outcomes
in colorectal cancer (CRC). This study examines microscopic and macroscopic skeletal muscle fiber
characteristics, and muscle volume in cachectic and non-cachectic CRC patients compared to healthy
controls (HCs), and explores how these factors relate to physical performance. In total, 12 cachectic CRC
patients, 25 non-cachectic CRC patients, and 25 HCs were included. Cachexia was determined by weight

loss and Cachexia Staging Score. Biopsies from the vastus lateralis and erector spinae muscles were
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analyzed using immunohistochemistry for muscle fiber type cross-sectional area (CSA) and distribution,
myonuclear content, and capillary density. Muscle volume was assessed using three-dimensional
ultrasound, and CSA and density by computerized tomography scans. Physical function was evaluated
with the Short Physical Performance Battery test, handgrip strength, and the Physical Activity Scale for
Individuals with Physical Disabilities. Quality of life was assessed using the 36-item Short Form Survey.
Cachectic CRC patients showed reduced type Il muscle fiber cross-sectional area in the vastus lateralis
compared to HCs and non-cachectic CRC patients. Non-cachectic CRC patients exhibited a slow-to-fast
muscle fiber shift compared to HCs. Myonuclear content was lower in both cancer groups. Muscle
volume and density were reduced in cachectic CRC patients. Positive correlations were found between
microscopic and macroscopic skeletal muscle characteristics, muscle strength, physical performance,
and quality of life, respectively. CRC patients, especially those with cachexia, showed type Il muscle fiber
atrophy, reduced myonuclear content, and impaired physical function, emphasizing the need for

targeted prehabilitation interventions.

NEW & NOTEWORTHY

This study reveals skeletal muscle alterations in cachectic colorectal cancer patients, at microscopic
(fiber-type specific atrophy, myonuclear content, and capillarization) and macroscopic levels (muscle
volume and quality). These alterations were associated with clinically important measures of physical
functioning and quality of life. Collectively, these findings establish clinically relevant links between
structural muscle alterations and physical outcomes, highlighting the potential value of targeted

(p)rehabilitation interventions in these patient populations.

Keywords: Cachexia; Colorectal cancer; Cross-sectional area; Muscle atrophy; Muscle fiber typing

INTRODUCTION

Cancer cachexia (CC) is a multifactorial syndrome characterized by severe, unintentional weight loss,
comprising both adipose tissue and muscle mass loss, significantly impacting patients' quality of life,
response to therapy, and prognosis (1-5). In CC, a persistent negative protein and energy balance, which
is driven by tumor-derived factors and systemic inflammatory responses, promotes muscle wasting and
adipose tissue depletion (6-9). The prevalence of cachexia varies across cancer types, affecting up to

60% of colorectal cancer (CRC) patients, especially in advanced stages (10). Factors such as tumor
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location, stage, and presence of metastasis influence cachexia severity, highlighting the complexity of

this syndrome across patients (11, 12).

Skeletal muscle is a highly dynamic tissue and comprises various muscle fiber types with distinct
metabolic and functional properties. Type | (slow-twitch) fibers, rich in mitochondria and capillaries,
support endurance activities, while type Il (fast-twitch) fibers, including type Ila and lIx, provide power
but are more quickly susceptible to fatigue (13-15). Most preclinical (16-19) and human studies (20, 21)
on CC indicate atrophy in both fiber types, while other preclinical (22-24) and human studies (25, 26)
suggest that type Il muscle fibers are more affected. While one study reports a shift towards type Il
fibers in cachectic pancreatic and CRC patients (27), others find no changes in fiber distribution (20, 21,
28). Myonuclei, critical for muscle maintenance and adaptation, may be lost more slowly than muscle
fiber size (29). In CC, myonuclei display typically more in the center of muscle fibers, which is associated
with muscle wasting (30). Capillary density influences muscle metabolism and may affect susceptibility
to atrophy, with CC-related muscle loss linked to hypoxia-induced capillary regression, being further

exacerbated by systemic inflammation (31-34).

Research on CC mechanisms and changes in skeletal muscle characteristics has primarily been
performed in preclinical models (e.g. C26 colon carcinoma mouse model, Lewis Lung carcinoma mouse
model, adenomatous polyposis coli (APC)Min/+ mouse model) (35). Human studies on CC cachexia, and
more specific CRC-related cachexia, are limited, as former studies on CC often focus on lung (20, 25),
gastrointestinal (21, 26, 27), and pancreatic cancer (26-28). Of particular importance to human patients,
muscle fiber atrophy in CC leads to decreased muscle mass and function, reducing physical performance
and daily activity levels (30, 36, 37). In contrast, computed tomography (CT) of the m. erector spinae has

been described to be attenuated in human patients with CC (8, 38-41).

This cross-sectional study aims to evaluate both microscopic (e.g. skeletal muscle fiber cross-sectional
area (CSA) and distribution, myonuclear content, and capillary density) and macroscopic (e.g. skeletal
muscle volume and quality) skeletal muscle characteristics in cachectic and non-cachectic CRC patients
compared to healthy controls (HCs). Additionally, the study explores interrelationships between skeletal
muscle characteristics and clinical indicators of physical function. By elucidating the structural and
functional muscle alterations in CRC-associated cachexia, this research seeks to inform targeted
interventions to mitigate muscle wasting in CRC patients, ultimately improving patient treatment

outcomes and quality of life.
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MATERIALS AND METHODS

Subjects and study design

This cross-sectional study included 12 cachectic CRC patients, 25 non-cachectic CRC patients and 25 HCs.
Recruitment of the CRC patients was done at the Department of Abdominal Surgery (Jessa Hospital,
Hasselt, Belgium) and HCs via professional social media platforms of the Hasselt University. The group
with the non-cachectic CRC patients and the HCs were matched for sex and age, no matching was

performed for the cachectic CRC patients.

Cachectic CRC patients met the following criteria: (1) age = 18 years, (2) unintentional weight loss >5%
over last six months or >2% with BMI <20kg/m? or sarcopenia based on the diagnostic criterion stated by
Fearon et al. (11), and (3) cachexia staging score (CSS) between five and 12. The cachexia staging score
(CSS), developed by Zhou at al. (42), provides a tool for classifying the stages of cachexia in patients with
cancer. The score is based on the assessment of five domains: weight loss, risk of sarcopenia, functional
status and overall health, appetite loss, and abnormal blood biochemistry. A total score between zero
and two corresponds to non-cachexia, a score between two and four to pre-cachexia, a score between
four and 8 to cachexia, and a score between eight and 12 (maximal score) to refractory cachexia (details
are described in the Appendix Table A1) (42). Non-cachectic CRC patients met criteria of (1) age > 18
years, (2) no or minimal unintentional weight loss <2% or unintentional weight loss 2-5% with BMI
>20kg/m? or no sarcopenia, and (3) CSS between zero and two. HCs were (1) > 18 years old with (2) BMI
18-30 kg/m?2. For all groups the exclusion criteria were identical: (1) severe mental or psychological
disorders, (2) insufficient knowledge of the Dutch language, (3) presence of muscle disorders influencing

the spinal cord or lower limbs, and (4) bedridden.

Sarcopenia was assessed in a subset of CRC patients following the European Working Group on
Sarcopenia in Older People (EWGSOP2) guidelines (40). Strength, assistance with walking, rising from a
chair, climbing stairs, and falls (SARC-F) screening tool (scores < 4 indicating symptomatic individuals)
was followed by handgrip strength measurement, (<27kg men, <16kg women), bioelectrical impedance
analysis for lean mass (fat-free mass index <18kg/m® men, <15kg/m” women), and short physical
performance battery (SPPB) test (< 8 indicating reduced physical performance). Probable sarcopenia was
defined by low strength, confirmed by low lean tissue mass, and severe sarcopenia by additional low

SPPB score.
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After meeting the inclusion criteria and obtaining written informed consent, all assessments were
conducted at a single time point. In cachectic CRC patients, measurements were performed
preoperatively in the following sequence: three-dimensional (3D) freehand ultrasound, SPPB test,
handgrip strength assessment, questionnaires, and muscle biopsies under local anesthesia. The same
assessments were performed with the HCs in the same order. In non-cachectic CRC patients, the
assessment protocol was identical, except that muscle biopsies were collected during surgery under

general anesthesia.

The study was approved by the ethical committee of the Jessa Hospital Hasselt and Hasselt University
(B2432021000037), and performed in accordance with the Declaration of Helsinki. All individuals gave
written informed consent prior to the start of the study (registered at Clinicaltrials.gov; NCT number:

NCT06780423).
Biopsy procedure

Fine needle muscle biopsies were taken from the right m. erector spinae (in prone position) and m.
vastus lateralis (in supine position) using a modified micro biopsy method described by Agten et al. (43).
We chose to take biopsies from the m. vastus lateralis due to its association with functional outcomes
and the m. erector spinae since it is the gold standard for clinically assessing skeletal muscle size and
quality (8, 44). Samples were frozen in liquid nitrogen-cooled isopentane for immunohistochemistry and

stored at -80°C.
Immunohistochemistry

Transverse cryosections (10um) obtained with the CM3050 cryostat (Leica Biosystems, Diegem,
Belgium) were stained following the protocol of Betz. et al. with primary and the appropriate secondary
antibodies for laminin, skeletal muscle fiber type |, capillaries, and myonuclei (details described in the
Appendix Table A2)(45). Slides were mounted with ProLongTM Gold antifade mounting medium
(Thermo Fisher Scientific). Images were captured at 10x and 20x magnification using an MC170 camera
connected to a DM2000 LED microscope (Leica Biosystems). Images (10x magnification) were analyzed
using SMASH, a semi-automatic program, (MATLAB, MathWorks, Massachusetts, US), for fiber CSA, fiber
type distribution, and the fiber relative CSA (RCSA). The fiber RCSA takes the number of each type of the

muscle fibers and the fiber CSA into account and was calculated as follows:
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mean CSA type I fibers * total type I fibers
(mean CSA type I fibers * total type I fibers) + (mean CSA type II fibers * total type Il fibers)

For these analyses, two to five fields of view were examined to ensure inclusion of a sufficient number
of muscle fibers (m. vastus lateralis: 235 + 72, m. erector spinae: 203 + 49; Table 2). Muscle fiber
myonuclei, myonuclear domain, and central nuclei were analyzed using Imagel (10x magnification;
v1.54d software package, National Institute of Health, MD, US). For these analyses, only nuclei within
the fiber boundary (laminin) were counted as myonuclei. One to three fields of view were examined to
ensure inclusion of a sufficient number of muscle fibers (m. vastus lateralis: 129 + 29, m. erector spinae:
121 + 26; Table 2). Capillary density, capillary to fiber ratio, capillary domain, and heterogeneity index
was analyzed using Btablet and AnaTis software (20x magnification; BaLoH software, the Netherlands).
For these analyses, two to five fields of view were examined to ensure inclusion of a sufficient number

of muscle fibers (m. vastus lateralis: 104 + 18, m. erector spinae: 101 + 13; Table 3).
3D freehand ultrasound image acquisition and processing

A 3D freehand ultrasound technique was applied to perform a longitudinal two- or three-sweep
assessment of the m. rectus femoris in supine position with a knee roll placed under the participants
popliteal. For the ultrasound assessment, the m. rectus femoris, part of the quadriceps muscles, was
selected in preference of the m. vastus lateralis. This decision was based on the anatomical course of
the m. vastus lateralis, which present challenges for consistent visualization using ultrasound imaging.
The ultrasound device (EchoBlaster 128 CEXT-1Z, HL9.0/60/128Z-2 transducer, Telemed, Vilnius,
Lithuania) was synchronized with a portable motion tracking system with three fixed optical cameras, a
sampling rate of 120 Hz and a spatial resolution of 1 mm (Optitrack V120: Trio, NaturalPoint, USA). Four
optical markers were mounted on the ultrasound transducer and tracked with the Optitrack V120. To
integrate the 2D ultrasound images with the positional information of the tracking system, we used
Stradwin software (Mechanical Engineering, Cambridge University, UK) described by Rummens et al.

(46). Muscle volume of the m. rectus femoris was determined using this method.
CT-scan analysis

Preoperative single slice CT-scans of cachectic and non-cachectic CRC patients were analyzed at the third
lumbar vertebra (L3) level. Scans were analyzed using PACS (Sectra workstation IDS7, Linkoping,
Sweden). CSA of the right-sided m. erector spinae, was determined by manual planimetry using an area

measurement tool. Besides CSA, muscle density was assessed based on the Hounsfield Units (HU),with
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higher HU values indicating a greater density and less fat infiltration and therefore a potential better

quality of the muscle (47). Boundaries in HU for muscle tissue were set to -29 to +150 (48).
Physical performance

To assess the physical performance of the subjects, the SPPB test was performed. This test comprises
three subtests: a standing balance test, four-meter gait speed (4MGS), and five-times sit-to-stand (5STS).
During the standing balance test, the patient had to maintain three stances (feet placed side by side,
semi-tandem, tandem) for 10 seconds. The 4MGS was performed in duplicate to obtain habitual gait
speed over four meters. For the 5STS, the patient had to perform five sit-to-stand maneuvers as fast as
possible with arms folded in front of their chest. Each subtest was scored on a scale from zero (extreme
mobility impairment) to four (no mobility impairment), resulting in a total SPPB score ranging from zero

to 12, where higher scores indicate better physical function.

Handgrip strength was assessed using a JAMAR hydraulic dynamometer. Each subject performed three
trials with their dominant hand, from which the highest strength value (in kg) was used for further
analysis. During testing, subjects were seated comfortably, with the shoulder in an adducted position,

the forearm in neutral rotation, and the elbow flexed at 90°.
Activity pattern and quality of life

Physical Activity Scale for Individuals with Physical Disabilities (PASIPD)

Physical activity information was collected using the PASIPD questionnaire, including different domains
(leisure, household, and occupational activities). Patients were asked to recall the number of days in the
past seven days that they participated in these activities (never, seldom (1-2d/wk), sometimes (3-
4d/wk), or often (5-7d/wk)) and on average how many hours a day they participated (<1hr, 1-2hr, 2-4hr,
>4hr). The questionnaire consists of 12 items. The first item was included to familiarize with the item
format and was therefore not scored. The remaining questions were filled in to obtain the total physical
activity score, which was created by multiplying the average hours per day for each item by a metabolic
equivalent (MET) value associated with the intensity of the activity (MET in h/day, maximum score is
182.3 MET h/day). One MET is defined as the amount of oxygen required per minute under resting

conditions (49).

36-item Short Form Survey (SF-36)
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The SF-36 questionnaire includes multiple subscales which are the following: physical functioning, role
limitations due to physical health, role limitations due to emotional problems, energy/fatigue, emotional
well-being, social functioning, pain, general health, and health change. The total score on each subscale
ranges from 0 to 100. A greater score indicates a better perceived health and quality of life. Total score

from the 9 subscales can range from 0 to 900.
Statistical analysis

JMP Pro 17.2 statistical software (SAS Campus Drive, Cary, North Carolina, US) was used for the
statistical analysis. Residuals were checked for normal distribution. A general linear model was used
with group and sex as fixed effects and student’s t multiple comparisons tests were used for pairwise
comparisons with Bonferroni correction. For Ordinal data (SPPB, SF-36, and PASIPD), the Kruskal-Wallis
test was performed to test group differences. In case of significance, Wilcoxon each pair was used for
pairwise comparisons with Bonferroni correction. Significance level of 0.05 was considered as
statistically significant for main effects. Considering pairwise comparisons, an alpha level of 0.016 was
applied based on Bonferroni correction (comparing three groups). Data is expressed as mean + standard

deviation (SD).

Sample size estimates were based on previous data comparing skeletal muscle fiber CSA of the m. vastus
lateralis in cachectic lung cancer patients and HCs (20). Calculations indicated that 29 subjects per group
were required to detect differences in type | muscle fiber CSA (effect size 0.66, a=0.05, 1-=0.80), and 9
subjects per group for type Il muscle fiber CSA (effect size 1.26, a=0.05, 1-$=0.80). Our study included 10
cachectic CRC patients, 25 non-cachectic CRC patients, and 25 HCs. All groups exceeded the required
sample size for type Il muscle fiber CSA analysis. Post-hoc achieved power analyses were performed for

the different outcome measures (Gpower 3.1.9.7; Appendix Table A3).

RESULTS

Anthropometric characteristics

A total of 12 cachectic CRC patients, 25 non-cachectic CRC patients, and 25 HCs were included.
Anthropometric data (Table 1) showed no significant differences in age, sex, body weight, length, and

BMI (Pgroup>0.05, respectively). However, unlike the other groups, the cachectic CRC group comprised
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more women than men. Cachexia staging scores differed significantly between cachectic and non-

cachectic CRC patients (P<0.0001). Tumor location and stage are detailed in Appendix Table A4.

‘Insert Table 1 here’
Microscopic skeletal muscle characteristics of the m. vastus lateralis

Representative m. vastus lateralis images for muscle fiber typing of HCs, non-cachectic, and cachectic
CRC patients are shown in Figure 1A-C, respectively. CSA for type | muscle fibers did not differ between
groups (Pgroup=0.497) (Fig. 1D, Table 2). In contrast, type Il fiber CSA differed between groups
(Pgrour=0.033), with a significantly smaller CSA in cachectic CRC patients (3260 + 860 umz) compared
to HCs (4773 + 1270 pm?; P=0.009) (Fig. 1D, Table 2). The proportion of type | (Pgrour=0.036) and type II
muscle fibers (Pgrourp=0.036) showed significant differences between groups. Non-cachectic CRC patients
had proportionally fewer type | fibers (42 + 14 %; P=0.016) and more type Il fibers (58 + 14 %; P=0.016)
compared to HCs (type |: 52 + 13 %, type II: 48 + 13 %) (Fig. 1E, Table 2). No differences in RCSA for both

type | and type Il fibers were observed between groups (Psroup=0.090, respectively) (Fig. 1F, Table 2).

The number of myonuclei per type | fiber (Pgrour<0.001) and type Il fiber (Pgroup<0.001) differed
between groups. The number of myonuclei was significantly reduced in both fiber types in cachectic
(type 1: 3.12 + 1.03; P<0.001, type Il: 2.48 + 1.07; P=0.001) and non-cachectic CRC patients (type I: 3.54 +
1.18; P<0. 001, type II: 3.07 + 1.08; P=0.001) compared to HCs (type I: 4.71 + 0.92, type Il: 4.17 + 1.16)
(Fig. 1G, Table 2). The myonuclear domain of type | fibers differed between groups (Pgroup=0.003), with
a significant  increase in cachectic CRC patients (1890 + 761 um?) compared to HCs (1243 + 237 um?;
P=0.001). The myonuclear domain of type | fibers only tended to be increased in non-cachectic CRC
patients compared to HCs (P=0.038). For type Il fibers, the myonuclear domain did not differ between
groups (Pgroup=0.063) (Fig. 1H, Table 2). Interestingly, there was no difference between groups in

central nuclei, not for type | (Pgroup=0.135) nor for type Il fibers (Pgroup=0.362) (Fig. 11, Table 2).
‘Insert Table 2 here’

Capillary-to-fiber (C:F) ratio did not differ between groups (Pgroup=0.118) (Fig. 1J, Table 3). Capillary fiber
density (CFD) did not differ between groups for both type | (Pgrour=0.101) and type Il fibers
(Pgroup=0.778) (Fig. 1K, Table 3). The capillary domain (Pgrour=0.165) and heterogeneity index
(Pgroup=0.409) did not differ between groups (Table 3).

‘Insert Figure 1 here’
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Figure 1: Skeletal muscle characteristics of the m. vastus lateralis. Representative immunofluorescence images of healthy
control (A), non-cachectic CRC patients (B), and cachectic CRC patients (C) muscle biopsies stained for laminin (grey), MHC |
(green), nuclei/DAPI (blue), and capillaries/CD31 (red). HCs (open circles, n=25), non-cachectic CRC patients (open squares,
n=22), and cachectic CRC patients (open triangles, n=10). Quantitative analyses include: (D) muscle fiber CSA, (E) fiber type
distribution, (F) relative CSA, (G) number of myonuclei per fiber, (H) myonuclear domain, (I) number of central nuclei per fiber,
(J) capillary-to-fiber ratio, and (K) capillary fiber density. Data are presented as individual values with mean + SD. *P<0.016,
**P<0.005, ***P<0.001. CRC, colorectal cancer; CSA, cross-sectional area; HCs, healthy controls; non-cach, non-cachectic; cach,
cachectic; MHC, myosin heavy chain; RCSA, relative cross-sectional area; C:F, capillary to fiber ratio; CFD, capillary fiber density;

SD, standard deviation.

‘Insert Table 3 here’

Microscopic skeletal muscle characteristics of the m. erector spinae

Representative m. erector spinae images for muscle fiber typing of HCs, non-cachectic, and cachectic
CRC patients are shown in figure 2A-C, respectively. There were no significant differences in the mean
CSA of type | (Pgroup=0.538) nor type Il fibers (Pgroup=0.699) between groups (Fig. 2D, Table 2). A
significant difference in the proportion of type | (Pgroup=0.033) and type Il fibers (Pgroup=0.033) between
groups has been observed, with non-cachectic CRC patients showing proportionally fewer type | fibers
(57 £ 15 %; P<0.012) and more type |l fibers (43 + 15 %; P<0.012) compared to HCs (type |: 68 + 11 %,
type II: 32 £ 11 %) (Fig. 2E, Table 2). As such, significant differences were observed between groups for
the RCSA of type | and type Il fibers (Pgroup=0.035, respectively). The RCSA of type | fibers was lower in
non-cachectic CRC patients (60 + 17 %; P=0.013), while RCSA of type Il fibers was higher in non-cachectic
CRC patients (40 + 17 %; P=0.013) compared to HCs (type I: 72 + 11 %, type II: 28 + 11 %) (Fig. 2F, Table
2).

No differences between groups were observed for the number of myonuclei per type | (Pgrour=0.212)
and type Il fiber (Pgroup=0.187) (Fig. 2G, Table 2). The myonuclear domain did not differ between groups
for type | (Pgroup=0.547) and type Il fibers (Pgroup=0.061) (Fig. 2H, Table 2). Furthermore, the number of
central nuclei per type | (Pgroup=0.103) and type Il fiber (Pgroup=0.250) were similar between groups (Fig.

21, Table 2).

The C:F ratio showed no differences between groups (Pgroup=0.846) (Fig. 2J, Table 3). The CFD of type |
fibers differed between groups (Pgroup=0.049). However, post-hoc pairwise comparisons showed only an
approached significance towards a higher CFD of type | fibers in cachectic CRC patients (385.21 + 113.49

capillaries/mm?) compared to non-cachectic CRC patients (322.58 + 85.68 capillaries/mm?; P=0.028) (Fig.
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2K, Table 3). The CFD of type Il fibers also differed between groups (Pgrour=0.030), with an increase in
cachectic CRC patients (387.35 + 108.87 capillaries/mm?) compared to non-cachectic CRC patients
(301.41 + 76.71 capillaries/mm?; P=0.012) (Fig. 2K, Table 3). The capillary domain (Pgrour=0.166) and

heterogeneity index (Pgroupr=0.689) showed no differences between groups (Table 3).

‘Insert Figure 2 here’

Figure 2: Skeletal muscle characteristics of the m. erector spinae. Representative immunofluorescence images of healthy
control (A), non-cachectic CRC patient (B), and cachectic CRC patient (C) muscle biopsies stained for laminin (grey), MHC |
(green), nuclei/DAPI (blue), and capillaries/CD31 (red). HCs (open circles, n=23), non-cachectic CRC patients (open squares,
n=20), and cachectic CRC patients (open triangles, n=10). Quantitative analyses include: (D) muscle fiber CSA, | fiber type
distribution, (F) relative CSA, (G) number of myonuclei per fiber, (H) myonuclear domain, (I) number of central nuclei per fiber,
(J) capillary-to-fiber ratio, and (K) capillary fiber density. Data are presented as individual values with mean + SD. *P<0.016.
CRC, colorectal cancer; CSA, cross-sectional area; HCs, healthy controls; non-cach, non-cachectic; cach, cachectic; MHC, myosin

heavy chain; RCSA, relative cross-sectional area; C:F, capillary fiber ratio; CFD, capillary fiber density; SD, standard deviation.
Macroscopic skeletal muscle characteristics and volume

CT scans showed no significant difference for absolute CSA of the m. erector spinae between cachectic
CRC patients (1788 + 447 mm?) and non-cachectic CRC patients (2105 + 417 mm?; P=0.146) (Fig. 3A,
Table 4), irrespective of body height normalization (P=0.139) (Fig. 3B, Table 4). Skeletal muscle density
(expressed as Hounsfield Unit (HU)) was significantly lower in cachectic CRC patients (21 + 25) compared

to non-cachectic CRC patients (38 + 10; P=0.031) (Fig. 3C, Table 4).

‘Insert Figure 3 here’

Figure 3: Muscle mass and quality of the m. erector spinae. (A) Mean CSA, (B) Mean CSA corrected for body height, and (C)
muscle quality (Hounsfield Units, HU) of the m. erector spinae in non-cachectic (squares, n=24) and cachectic (triangles, n=11)
CRC patients. Data are presented as Individual values and mean * SD. *P<0.05. Non-Cach, non-cachectic; Cach, cachectic; CSA,

cross-sectional area; HU, Hounsfield Units; CRC, colorectal cancer; SD, Standard Deviation.

‘Insert Table 4 here’

Of interest, muscle fiber CSA of the m. vastus lateralis (r=0.61; P=0.0003) and m. erector spinae (r=0.50;
P=0.006) correlated positively with CT-based CSA of the m. erector spinae (Fig. 4A-B). Additionally,
ultrasound-based volume of the m. rectus femoris showed a significant difference between groups

(Pgroup=0.031). Here, m. rectus femoris volume was significantly lower in cachectic CRC patients (69 + 32
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ml) compared to HCs (104 + 41 ml; P=0.010), while only tending to be decreased compared to non-
cachectic CRC patients (96 + 32 ml; P=0.039) (Appendix Figure Al).

“Insert Figure 4 here”

Figure 4: Correlation analyses between microscopic and macroscopic muscle characteristics and physical performance
measures. Closed circles represent cachectic CRC patients and open squares non-cachectic CRC patients. (A) Correlation
between muscle fiber CSA of the vastus lateralis muscle and CSA of the erector spinae muscle on CT scans at level lumbar 3
(cach n=9, non-cach n=22). (B) Correlation between muscle fiber CSA of the erector spinae muscle and CSA of the erector
spinae muscle on CT scans at level lumbar 3 (cach n=9, non-cach n=20). (C) Correlation between the muscle quality (Hounsfield
Units) of the erector spinae muscle on CT scans at level lumbar 3 and the SPPB test (cach n=10, non-cach n=24). (D) Correlation
between muscle fiber CSA of the vastus lateralis muscle and the handgrip strength (cach n=10, non-cach n=21). (E) Correlation
between the CSA of the erector spinae muscle on CT scans at level lumbar 3 and the handgrip strength (cach n=11, non-cach
n=23). (F) Correlation between the CSA of the erector spinae muscle on CT scans at level lumbar 3 and patient’s quality of life
(cach n=9, non-cach n=23). All graphs are presented with a linear regression line with 95% confidence bands, r value, P value,
and R squared value. CRC, colorectal cancer; CSA, cross-sectional area; VL, vastus lateralis; ES, erector spinae; CT, Computed

Tomography; HU, Hounsfield Units; SPPB, Short Physical Performance Battery; cach, cachectic; non-cach, non-cachectic.

Muscle strength, physical functioning, physical activity and quality of life

Performance of the SPPB test differed between groups (Pgrour=0.002), where both CRC groups scored
worse (non-cachectic CRC patients: 10.2 + 2.3; P=0.013, cachectic CRC patients: 9.1 + 2.2; P<0.001)
compared to HCs (11.4 + 0.9). This mainly manifested in a tendency towards a poorer performance in
the four-meter walk test (Pgroup=0.070) and a worse performance on the 5-times sit-to-stand test
(Psroup=0.001) (Table 5). Both cachectic and non-cachectic CRC patients scored significantly lower on the
5-times sit-to-stand test (cachectic: 2.2 + 1.2; P<0.001, non-cachectic: 2.8 + 1.1; P=0.004) compared to
HCs (3.6 = 0.8) (Table 5). No differences between groups were observed for the balance test

(Pgroup=0.379) (Table 5). Handgrip strength did not differ between groups (Pgrour=0.151) (Table 5).

Of interest, skeletal muscle density (HU) positively correlated with total SPPB score (r=0.47; P=0.004).
Muscle fiber CSA of the m. vastus lateralis positively correlated with handgrip strength (r=0.59;
P<0.001), as was true for CT-based CSA of the m. erector spinae (r=0.53; P=0.001) (Fig. 4C-E).

No differences were observed between groups for physical activity behaviour (Pgroup=0.412) (Table 5).
The total score on the SF-36 differed between groups (Pgroup=0.005), where both cachectic and non-
cachectic CRC patients had lower total SF-36 scores (cachectic: 555.8 + 156.9; P=0.003, non-cachectic:

622.9 + 137.4; P=0.013) compared to HCs (719.0 + 86.7) (Table 5). In the subcategories of the SF-36,
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differences between groups were found for ‘limitations due to physical health’ (Pgrour=0.032),
‘limitations due to emotional problems’ (Pgroup=0.031), and ‘health change’ (Pgrour=0.009). Specifically,
cachectic CRC patients scored significantly lower compared to HCs in limitations due to physical health
(cachectic: 50.0 + 39.1, HCs: 85.5 + 29.24; P=0.007), limitations due to emotional problems (cachectic:
66.7 + 35.1, HCs: 94.7 + 16.7; P=0.006), and health change (cachectic: 32.5 + 12.1, HCs: 50.0 + 8.3;
P<0.001) (Appendix Figure A2). Of interest, correlation analyses showed a significant positive association

between total SF-36 score and CT-scan CSA of the m. erector spinae (r=0.54; P=0.001) (Fig. 4F).

‘Insert Table 5 here’

DISCUSSION

This study demonstrates insights into macro- and microscopic skeletal muscle characteristics and their
associations with clinical measures of physical functioning in CRC patients with and without cachexia.
Skeletal muscle-specific alterations in microscopic m. vastus lateralis fiber CSA and myonuclear content,
and m. erector spinae capillarization were found in CRC patients. Furthermore, we observe a significant
reduction in CT-based muscle density and a reduced volume of the m. rectus femoris in cachectic CRC
patients. Of interest, clinically highly relevant correlations between microscopic skeletal muscle
alterations, macroscopic skeletal muscle alterations, muscle functioning, and quality of life were
observed, postulating that in clinical practice pre-operative CT-scans could serve as an important source
of information on skeletal muscle tissue characteristics, potentially being a base for optimized patient

management and quality of life.

The selective atrophy of type Il muscle fibers observed in the m. vastus lateralis of cachectic CRC
patients in our study is supported by several preclinical and clinical findings. Studies on CC in animal
models for peritoneal carcinomatosis (22) and CRC (23, 24), as well as in patients with lung (25), gastric,
pancreatic, and colon cancer (26), have reported preservation of type | fiber CSA and predominant
atrophy of type Il fibers. However, the fiber type specific atrophy has not been corroborated by others,
where overall muscle fiber atrophy in CC has been suggested in both preclinical animal models
(pancreatic cancer (50), lung cancer (16-18), and CRC (19, 51)) and clinical studies including
gastrointestinal (21, 52) and lung cancer patients (20). Furthermore, we observe a shift toward a higher

proportion of type Il fiber in non-cachectic CRC patients compared to HCs, but not in cachectic CRC
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patients when corrected for sex. This is in line with preclinical animal models (53-56) and former clinical
studies showing no differences in muscle fiber type distribution between cachectic cancer patients and
healthy individuals (25, 26) or when compared to non-cachectic cancer patients (20, 21, 28). In contrast,
another study including cachectic patients with colon, pancreatic, and gastric cancer showed a shift
towards type Il fibers (27).
These inconsistencies in results between studies may reflect differences in cancer type, disease stage,
muscle groups examined, and diagnostic or staging criteria for CC. Sun et al. showed differences in early
CC and late CC in mice, with the latter showing significantly more reduction in skeletal muscle fiber CSA
(57). Of interest, Op den Kamp et al. reported non-selective fiber atrophy in advanced stage lung cancer
patients without a shift in fiber composition (20), whereas our cohort also included patients with earlier
stage of CRC. Additionally, diagnostic criteria for CC varied across studies. Notably, Johns et al. found
that only patients with both low muscularity and weight loss showed atrophy in both fiber types, while
other classifications showed no change or selective type Il fiber atrophy (21). Therefore, it is tempting to
speculate that looking at earlier staging of cachexia shows only type Il fiber specific atrophy, with type |
fibers being more likely to be affected only in later and more severe stages of cachexia (such as in
refractory-cachexia). This could explain why we only observe atrophy of type Il muscle fibers as we only

included cachectic CRC patients in the cachectic stage (CCS score between five and eight).

The observed reduction in the number of myonuclei per type | and type Il muscle fiber of the m. vastus
lateralis, observed in both cachectic and non-cachectic CRC patients, corresponds with previous studies
indicating that muscle atrophy is accompanied by a decrease in myonuclear content (29, 58). Here, an
increase in the myonuclear domain of type | fibers in cachectic CRC patients was observed, potentially
resulting from a decrease in numbers of myonuclei per fiber in the cachectic group, irrespective of the
number of central nuclei. Some previous studies, however, did show a small, but significant increase in
central nuclei in cachectic pancreatic (59) and CRC patients (60), as well as in animal models of CC (16,
61). As central nuclei are typically indicative of ongoing muscle regeneration, existing literature suggests
that muscle regeneration is impaired in CC due to the inhibition of satellite cell differentiation (62).
Moreover, Daou et al. shows the presence of central nuclei in muscle fibers of cachectic gastrointestinal
cancer patients and C26 mice alongside increased expression of markers associated with denervation
and motor neuron loss (30). These findings suggest that the presence of central nuclei in CC may reflect

a denervation-related process rather than a regenerative response to myofiber damage (30).
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Adequate muscle tissue perfusion is critical in muscle mass maintenance, as it is essential for oxygen,
nutrients, and growth factors delivery to the muscle (63). No differences in C:F ratio were observed
within the different muscles studied here. In contrast, a previous study reported reduced muscle
vascularization in cachectic breast cancer patients (64). Capillary fiber density remained unchanged in
the m. vastus lateralis, which can be explained by the reduced CSA of type Il muscle fibers, reflecting
findings in cachectic upper gastrointestinal cancer patients (65). However, further research looking into
the different subtypes of type Il muscle fibers could provide additional valuable insights about shifts in
muscle fiber phenotyping as well as capillary fiber density, as these fiber subtypes are suggested to

differ metabolically (66), although the existence has been questioned recently (67).

At the macroscopic level, cachectic CRC patients had lower muscle volume (m. rectus femoris), although
similar CSA of the m. erector spinae were observed after correction for sex. Therefore, our CT-based
findings for CSA do not align with existing literature, using CT- or MRI-based skeletal muscle
guantification, demonstrating muscle wasting in cachectic cancer patients, likely being associated with
disease severity and cachexia status (8, 68-70). However, the observed decline in muscle density (lower
HU values) further supports the notion that CC is characterized not only by muscle atrophy but also by
qualitative changes such as increased fat infiltration and fibrosis (8, 71, 72). Notably, our study shows
that a microscopic lower CSA of the m. vastus lateralis and m. erector spinae muscle fibers correlates
with a reduced macroscopic CT-based CSA of the m. erector spinae, which could have significant
implications for clinical practice. This association suggests that routinely preoperative CT-scans may
serve not only for anatomical assessment and staging of the tumor, but could also serve as a non-
invasive surrogate marker for skeletal muscle quantity and quality in (cachectic) cancer patients. This
could enable earlier identification of patients at risk for developing cachexia or poor postoperative
outcomes since muscle function and quality are critical determinants of recovery, treatment tolerance,
and overall survival in cancer patients (2, 73, 74). If CT-derived muscle metrics are validated as surrogate
markers of microscopic muscle characteristics, they may pave the way for personalized prehabilitation
strategies. Patients demonstrating diminished muscle CSA or attenuation on CT-scans could be stratified
toward tailored intervention, including nutritional optimization, resistance and/or aerobic conditioning,
prior to major oncologic therapy or surgery. Such an approach has the potential to enhance functional
reserve, mitigate perioperative morbidity, and favorably modify disease management for patients with

CRC.
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In our study cohort, functional consequences of muscle wasting were evident, as cachectic CRC patients
exhibited reduced physical performance by using the SPPB test, reinforcing previous findings that CC
impairs muscle function (37, 75, 76). While our findings suggest similar handgrip strength among groups,
at least partly explained by different sex distribution between our relatively small study groups, another
human study found reduced handgrip strength in cachectic patients with advanced cancer (stage Ill and
IV) compared to non-cachectic cancer patients and HCs (75) . Of interest, Delfinis et al. showed that
reduction in muscle force occurs prior to atrophy of the muscles, suggesting that muscle weakness
occurs already in the pre-cachectic stage of the C26 mice model (51). These discrepancies may be
attributable to differences in the voluntary nature of clinical handgrip strength assessments, in contrast
to involuntary contractions in preclinical models (51). Notably, the observed lower SPPB scores in both
cachectic and non-cachectic CRC patients compared to HCs corroborate the (early) presence of muscle
dysfunction in cancer patients regardless of cachexia or muscle atrophy status (77, 78). Furthermore, we
show significant positive correlations between handgrip strength and both micro- and macroscopic
skeletal muscle CSA, as well as a positive correlation between functional performance measures (i.e.
SPPB test) and macroscopic muscle density. This aligns with existing literature indicating that reductions
in muscle mass, as we observe in our micro- and macroscopic skeletal muscle alterations, are associated
with muscle weakness and increased muscular fatigability, all of which may contribute to a diminished
quality of life of the patient (79, 80). Indeed, quality of life was markedly reduced in CRC patients,
particularly those with cachexia, emphasizing muscle dysfunction as a determinant of poor quality of life
(81-84). Consistent with this, our data demonstrate a positive association between SF-36 scores and CT-
derived CSA of the m. erector spinae, indicating that reduced muscle mass correlates with impaired
quality of life. These findings highlight the potential of pre-operative CT-based muscle assessment as a

predictor of patient reported outcomes.

Interestingly, physical activity levels did not differ between groups based on PASIPD. This contrasts with
prior reports of reduced activity in CC patients, likely due to methodological differences (84-86). While
our study used a self-reported questionnaire, others use accelerometer techniques which are more

objective and less prone to bias.

Study Limitations
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While this study provides important insights, some limitations should be acknowledged. One limitation
of the present study is the relatively small sample size of the cachectic CRC group which may have
constrained our ability to detect more subtle differences, especially for microscopic characteristics. Post-
hoc power analyses were performed showing low statistical power for some outcome measurements.

Details are listed in the Appendix Table A3 (G*Power 3.1.9.7).

Furthermore, the cachectic CRC group was not matched for sex with the non-cachectic CRC group and
HCs. While no statistically differences were observed in this variable, potential residual confounding
factors cannot be ruled out. As age and sex are known to play a role in skeletal muscle fiber CSA and

contractile performance (87-90), we corrected for sex in our statistical analyses.

Additionally, the cross-sectional design of this study limits causal inferences. Future longitudinal studies
are warranted to investigate the temporal progression of muscle alterations in cachectic CRC patients
and to explore the efficacy of potential therapeutic interventions, including exercise and nutritional

support, to mitigate muscle wasting in cancer.

Conclusion

This study delineates both micro- and macroscopic alterations in skeletal muscle associated with
cachexia in CRC patients. At the microscopic level, cachectic CRC patients showed a marked reduction in
muscle fiber type Il CSA, a decrease in myonuclear content, and an expansion of the myonuclear
domain. At the macroscopic level, these patients demonstrated a significant reduction in overall CT-

derived muscle density and a reduced muscle volume of the m. rectus femoris.

Our findings indicate that macroscopic CT-based measures of muscle loss are correlated with
microscopic alterations in skeletal muscle, supporting potential utility of preoperative CT imaging-scans
as a surrogate marker for muscle characteristics and quality in patients with CRC. The decline in muscle
function and physical performance underscores the clinical relevance of these micro- and macroscopic
alterations, emphasizing the contribution of muscle dysfunction and reduced muscle mass to impaired
quality of life. This was further substantiated by our observation of a positive assocation between
patient-reported quality of life and CT-based CSA of the m. erector spinae. Furthermore, micro- and

macroscopic skeletal muscle alterations were associated with impaired physical function.
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Despite inherent study limitations, these results emphasize the need for further investigation. Future
longitudinal studies should delineate the temporal progression of muscle alterations and assess the
efficacy of targeted interventions, including nutritional support and structured exercise programs, to

mitigate muscle wasting and optimize patient outcomes.
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APPENDIX

This appendix provides additional details on the methods (Appendix Table A1-A3), tumor characteristics
(Appendix Table A4), and results (Appendix Figure A1-A2). The Cachexia Staging Score was used as an
inclusion criterium for patients with colorectal cancer (Appendix Table Al). Immunohistochemistry was
used to perform fluorescent staining of skeletal muscle fibers, with primary and secondary antibodies
listed in Appendix Table A2. Due to the smaller sample size of the cachectic cancer group compared to
other groups, post-hoc power calculations were conducted for all outcome measures (Appendix Table
A3). Tumor location and staging data were collected from all cancer patients (Appendix Table A4).

Additional details on the results are presented in Appendix Figure Al and A2. The muscle volume of the
m. rectus femoris was assessed using the 3DfUS (Appendix Figure Al). Appendix Figure A2 shows the
SF-36 scores about the quality of life.

Table A1l - Cachexia Staging Score.

Table A2 - Primary and secondary antibodies for immunohistochemistry.

Table A3 - Post-hoc power calculations for the different outcome measures.

Table A4 - Tumor location and staging.

Figure Al: Muscle volume of the m. rectus femoris. HCs are represented as circles (n=18), non-cachectic CRC patients as
squares (n=18), and cachectic CRC patients as triangles (n=12). Data is presented as individual values and mean + SD. *P<0.05.

HCs, healthy controls; Non-Cach, non-cachectic; Cach, cachectic; CRC, colorectal cancer; SD, Standard Deviation.

Figure A2: Scores (0-100) across different domains of the 36-item Short Form Survey (SF-36). HCs (n=19) are presented as the
white bars, non-cachectic CRC patients (n=24) as grey bars, and cachectic CRC patients (n=10) as black bars. Data is presented

as mean + SD. *P<0.05, ***P<0.001. HCs, healthy controls; Non-Cach, non-cachectic; Cach, cachectic; CRC, colorectal cancer.
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Table 1 - Anthropometric data.

Healthy controls Non-cachectic Cachectic

(n=25) (n=25) (n=12) Poroue
Age (years) (age range) 66 + 10 (41-81) 66 + 13 (39-86) 66 + 15 (43-88) 0.988
Sex (male:female) 18:7 18:7 5.7 0.142
Body weight (kg) 78.8+11.5 82.7+15.2 75.6 £16.1 0.321
Length (m) 1.73 £0.07 1.76 £ 0.08 1.71+£0.07 0.104
Body mass index (kg/mz) 26.2+2.6 26.5+3.5 259+5.1 0.887
Cachexia staging score (0-12) NA 1+1 6t1 <0.0001

Values are presented as mean * SD, range or number only.
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Table 2 - Microscopic skeletal muscle characteristics of the m. vastus lateralis and m. erector
spinae.

Muscle fiber type  Healthy controls  Non-cachectic CRC patients  Cachectic CRC patients

m. vastus lateralis n=25 n=22 n=10
Number of muscle fibers counted 202 £48 269 £78 244 £ 74
CSA (um?) Type | 5703 + 1359 5197 + 1531 5415 + 1438
Type ll 4773 £1270 432241322 3260 £ 860
% Type | 52+13 42+14 42+17
Type Il 48 +13 58+ 14 58 +17
RCSA (%) Type | 56 + 14 46 17 54+ 15
Type ll 44 + 14 54 +17 46 £ 15
Number of muscle fibers counted 126 + 28 131 +30 133 £33
Number myonuclei/fiber Type | 4.71+0.92 3.54+1.18 3.12 +1.03
Type Il 417 +1.16 3.07+1.08 2.48+1.07
Myonuclear domain (um?) Type | 1243 + 237 1550 + 547 1890 + 751*
Type ll 1209 + 327 1473 + 389 1418 + 387
Number central nuclei/fiber Type | 0.08 £0.10 0.12+0.16 0.17£0.18
Type ll 0.07 £0.09 0.10+0.11 0.09 £0.10
m. erector spinae n=23 n=20 n=10
Number of muscle fibers counted 207 + 45 202+ 54 198 + 54
CSA (um?) Type | 6325 +1611 6296 + 2344 5124 + 1515
Type ll 5234 + 1396 5465 + 1797 4671 + 2259
% Type | 68+ 11 57+15 58 + 15
Type Il 32+11 43 +15 42 +15
RCSA (%) Type | 72+11 60+17 61+19
Type Il 28+11 4017 39+19
Number of muscle fibers counted 122 +26 121 +26 122 +30
Number myonuclei/fiber Type | 4.66 +0.99 4.34+1.46 3.58 £1.02
Type ll 3.63+1.31 3.23+1.33 2.39+1.19
Myonuclear domain (um?) Type | 1386 + 358 1472 + 286 1482 + 392
Type ll 1535 + 475 1790 + 469 2080 + 718
Number central nuclei/fiber Type | 0.11 +0.08 0.33+0.46 0.27 £0.33
Type ll 0.10+0.14 0.12+0.12 0.19+0.21

Values are presented as mean + SD. *p<0.05 compared to the healthy control group. m., muscle; CSA, cross-sectional area;

RCSA, relative cross-sectional area; CRC, colorectal cancer.
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Table 3 - Capillary to fiber ratio (C:F), capillary fiber density (CFD) for type | and Il fibers, capillary
domains, and heterogeneity index of the m. vastus lateralis and m. erector spinae.

C:F CFD type I CFD type Il Capillary Heterogeneity
(capillaries/mm2) (capillaries/mm:) domain (um?) Index (LogSD)

m. vastus lateralis

Number of muscle fibers counted
(healthy controls: 109 *+ 13, non-cachectic CRC patients: 98 + 23, cachectic CRC patients: 103 + 12)

Healthy controls (n=25) 3.17 + 482.61+ 100.68 459.43 +109.99 2279 £ 492 0.21+0.02
0.92

Non-cachectic CRC 2,65 + 418.03+102.98 435.24 +107.24 2615 + 705 0.21+0.02

patients (n=22) 0,83

Cachectic CRC 252 + 415.76+101.39 452.72 + 144.08 2513 + 605 0.21+0.02

patients (n=10) 0.80

m. erector spinae

Number of muscle fibers counted
(healthy controls: 102 + 14, non-cachectic CRC patients: 98 + 11, cachectic CRC patients: 105 + 14)

Healthy controls (n=23) 2.92 + 386.58+123.00 358.49 +115.47 2987 + 1086 0.22 £0.02
1.09

Non-cachectic CRC 292 + 322.58+85.68 301.41+£76.71 3534 £ 969 0.23£0.03

patients (n=20) 1.01

Cachectic CRC patients 237 + 385.21+113.49 387.35 + 108.87" 3174 £ 767 0.22 £0.02

(n=10) 0.77

Values are presented as mean = SD. #p<0.05 compared to the non-cachectic CRC group. m., muscle; CRC, colorectal cancer;
SD, standard deviation.
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Table 4 - Macroscopic skeletal muscle cross-sectional area and density (Hounsfield Units) of the m.
erector spinae.

CSA (mmz) CSA (mm:)/patient body height2 ((m)z) HU
Cachectic CRC patients 1788 + 447 603 £ 129 21+25"
Non-cachectic CRC patients 2105 + 417 679 £ 109 3810

Values are presented as mean + SD. Cachectic (n=11) and non-cachectic (n=24) CRC patients. “p<0.05 compared to the non-
cachectic CRC group. CSA, cross-sectional area; HU, Hounsfield units; CRC, colorectal cancer; m., muscle.
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Table 5 - Short Physical Performance Battery test, handgrip strength, Physical Activity Scale for
Individuals with Physical Disabilities and 36-item Short Form Survey.

Healthy controls Non-cachectic Cachectic PGroup
SPPB total score (0-12) 11.4+0.9 10.2 +2.3* 9.1+2.2* 0.002
Walk speed (0-4) 3.8+04 35+0.8 3.2+0.9 0.070
Sit-to-stand (0-4) 3.6+0.8 2.8+1.1% 2.2+1.2% 0.001
Balance 39+0.2 3.7+0.6 3.6+0.8 0.379

(0-4)
Handgrip strength (kg) 41.7 +11.9 41.3+11.5 31.2+6.0 0.151
PASIPD ( MET h/day) 20.2+11.4 17.7 £14.5 16.8 +13.8 0.412
SF-36 total score 719.0 £ 86.7 622.9 + 137.4* 555.8 + 156.9* 0.005

(0-900)

Values are presented as mean + SD. SPPB: healthy controls n=21, non-cachectic n=25, cachectic n=11. Handgrip strength:
healthy controls n=24, non-cachectic n=24, cachectic n=12. PASIPD: healthy controls n=25, non-cachectic n=24, cachectic
n=12. SF-36: healthy controls n=19, non-cachectic n=24, cachectic n=10. *significantly different compared to healthy
controls. SPPB, Short Physical Performance Battery Test; PASIPD, Physical Activity Scale for Individuals with Physical
Disabilities; MET, metabolic equivalent; SF-36, 36-item Short Form Survey.
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Impact of Cancer Cachexia on Skeletal Muscle and Physical Function in Colorectal Cancer Patients

STUDY DESIGN AND METHODS
Cross-sectional study: healthy controls, non-cachectic, and cachectic colorectal cancer patients
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Colorectal cancer cachexia leads to micro- and macroscopic skeletal muscle alterations and reduced
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APPENDIX

Table Al - Cachexia Staging score.

Measurements Value Score
Weight loss last 6 months Weight is stable or gained 0
weight
Weight loss < 5% 1
Weight loss > 5% and £ 15% 2
Weight loss = 15% 3
Strength, Assistance with 0 0
walking, Rise from a chair, 1-3 1
Climb stairs, and Falls (SARC-F) | 4-6 2
7-10 3
Eastern Cooperative Oncology | O 0
Group Performance Status 1-2 1
(ECOG PS) 3-4 2
Appetite loss 0-3 0
4-6 1
7-10 2
Abnormal biochemistry All normal 0
(WBC>10*10%/L, Alb< 35g/L; | One abnormal 1
Hb <120/110 g/L) More than one abnormal 2

Weight loss last 6 months
Select what applies:

Weight is stable or gained weight

Weight loss < 5%

Weight loss 2 5% and £ 15%

WIN|F-|O

Weight loss 2 15%

SARC-F guestionnaire
Select what applies:

Strength: How difficult is it for you to lift and carry a 5 kg bag?
a.Easy=0

b. A little difficult = 1

c. Very difficult or impossible = 2

Assistance with walking: How difficult is it for you to walk across a room?
a.Easy=0

b. A little difficult = 1

c. Very difficult or impossible = 2

Getting up from a chair: How difficult is it for you to get up from a chair or bed?
a.Easy =0
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b. A little difficult = 1
c. Very difficult or impossible = 2

Climbing stairs: How difficult is it for you to climb ten steps?
a.Easy=0

b. A little difficult = 1

c. Very difficult or impossible = 2

Falling: How many times have you fallen in the past year?
a.None=0

b.1-3 times =1

c. 4 times or more =2

Total score

0

1-3

4-6

WIN|—|O

7-10

ECOG-PS
Select what applies:

0 = Fully active, able to carry on all pre-disease activities without restriction

1 = Restricted in physically strenuous activity but ambulatory and able to carry out light or sedentary
work, e.g., light housework, office work

2 = Ambulatory and capable of all self-care but unable to carry out any work activities; up and about
more than 50% of waking hours

3 = Capable of only limited self-care; confined to bed or chair more than 50% of waking hours

4 = Completely disabled; cannot carry on any self-care; totally confined to bed or chair

0 0
1-2 1
3-4 2
Reduced appetite

Indicate what applies:

Score from 0-10

0 =no reduced appetite

10 = no appetite at all

0-3 0
4-6 1
7-10 2
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Abnormal biochemistry
Indicate what applies:

e White blood cells > 10x10°/L
e Albumin<35g/L
e Haemoglobin <120/110 g/L

All normal 0
One of the three abnormal 1
More than one abnormal 2

Total score of the 5 categories

e 0-2: non-cachexia

e 3-4: pre-cachexia

e 5-8:cachexia

e 9-12:refractory cachexia
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Target Goal Primary antibody Dilution Firm

Laminin Fiber border Polyclonal Rabbit anti-laminin 1gG 1/50 Developmental Studies Hybridoma Bank,
(Ab11575) lowa City, lowa, US
MHC-1 Fiber type | Monoclonal Mouse anti-MHC 1gG2b 1/50 Abcam, Cambridge, UK
(BA-F8-s)
CD31 Capillarization  Monoclonal Mouse anti-human CD31 1/50 Agilent Technologies, Santa Clara,
1gG1 (M0823) California, US
Goal Secondary antibodies Dilution Firm
Fiber border Polyclonal Goat anti-rabbit IgG 1/400 Thermo Fisher Scientific, Waltham,
AF647 (A21245) Massachusetts, US
Fiber type | Polyclonal Goat anti-mouse IgG2b 1/400 Thermo Fisher Scientific, Waltham,
AFA88 (A21141) Massachusetts, US
Capillarization Horse anti-mouse IgG 1/200 Vector Laboratories, Newark, California, US
(BA-2000)
Texas Red Avidin D 1/400
(A-2006)

Table A2 - Primary and secondary antibodies for immunohistochemistry.

MHC, myosin heavy chain; AF, Alexa Fluor
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Table A3 - Post-hoc power calculations for the different outcome measures.

Outcome measure Effect size Power

m. vastus lateralis

CSA (umz) Type | fibers 0.21 0.13
Type Il fibers 1.39 0.98
Fiber type distribution (%) Type | fibers 0.66 0.53
Type Il fibers 0.66 0.53
RCSA (%) Type | fibers 0.13 0.10
Type Il fibers 0.13 0.10
Number myonuclei/fiber Type | fibers 1.04 0.86
Type Il fibers 2.00 0.99
Myonuclear domain (umz) Type | fibers 1.15 0.91
Type Il fibers 0.58 0.45
Number central nuclei/fiber Type | fibers 0.61 0.49
Type Il fibers 0.21 0.14
C:F 0.75 0.63
CFD Type | fibers 0.66 0.53
Type Il fibers 0.05 0.07

m. erector spinae

CSA (umz) Type | fibers 0.77 0.63
Type Il fibers 0.30 0.19
Fiber type distribution (%) Type | fibers 0.76 0.62
Type Il fibers 0.76 0.62
RCSA (%) Type | fibers 0.70 0.57
Type Il fibers 0.70 0.57
Number myonuclei/fiber Type | fibers 1.07 0.87
Type Il fibers 0.99 0.82
Myonuclear domain (umz) Type | fibers 0.26 0.16
Type Il fibers 0.90 0.75
Number central nuclei/fiber Type | fibers 0.66 0.53
Type Il fibers 0.50 0.37
C:F 0.58 0.44
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CFD Type | fibers 0.01 0.05

Type Il fibers 0.25 0.16
CT-scan CSA (mm?) 0.73 0.63
m. erector spinae
CT-scan CSA (mm?)/ 0.64 0.53

patient body heightZ ((m)?) m. erector spinae

CT-scan HU m. erector spinae 0.89 0.78
SPPB total score 1.37 0.97
Walk speed 0.86 0.73
Sit-to-stand 1.37 0.97

e Balance 0.51 0.38

e  Handgrip strength (kg) 1.11 0.91
PASIPD 0.27 0.19
SF-36 1.29 0.94

m., muscle; CSA, cross-sectional area; RCSA, relative cross-sectional area; C:F, capillary to fiber ratio; CFD, capillary fiber
density; CT, computed tomography; HU, Hounsfield Units; SPPB, Short Physical Performance Battery; PASIPD, Physical
Activity Scale for Individuals with Physical Disabilities; SF-36, 36-item Short Form Survey.
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Table A4 - Tumor location and staging.

Tumor location TNM staging Metastasis

Cachectic colorectal cancer patients

ccP1 Sigmoid T3NOM1 Yes
CcCcP2 Ascending colon T3N2MO No
CCP3 Rectum T3N2MO No
CCP4 Ascending colon T4AN1IMO No
CCP5 Cecum T3NOMO No
CCP6 Hepatic flexure T3NOMO No
CCP7 Cecum T4AN1IMO No
CCP8 Descending colon T3N2MO No
CCP9 Cecum TINOMO No
CCP10 Transverse colon TAN1IMO No
CCP11 Sigmoid T3N1IMO No
CCP12 Ascending colon T3NOMO No

Non-cachectic colorectal cancer patients

CCcP13 Sigmoid T3N1IMO No
CCP14 Distal rectum T3N2MO No
CCP15 Sigmoid T2N1MO No
CCP16 Descending colon T3NOMO No
CcCcP17 lleum T2N1MO No
CCP18 Distal rectum T3N1MO No
CCP19 Cecum T2NOMO No
CCP20 Sigmoid T3NOMO No
CccpP21 Mid rectum T3N1IMO No
CCcP22 Distal rectum T3NOMO No
CcCP23 Distal rectum T3NOMO No
CCP24 Distal rectum T3N1MO No
CCP25 Cecum T3NOMO No
CCP26 Hepatic flexure TisNOMO No
ccp27 lleum T4N1MO No
CcCcP28 Rectosigmoid T2NOMO No
CCP29 Sigmoid / /
CCP30 Ascending colon TINOMO No
CCP31 Distal rectum TINOMO No
CCP32 Proximal rectum T3N1IMO No
CCP33 Cecum T3NOMO No
CCP34 Sigmoid TANOMO No
CCcP35 Sigmoid TINOMO No
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CCP36 Sigmoid T2NOMO No

CCP37 Proximal rectum TINOMO No
*
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Figure Al: Muscle volume of the m. rectus femoris. HCs are represented as circles (n=18), non-cachectic CRC patients as
squares (n=18), and cachectic CRC patients as triangles (n=12). Data is presented as individual values and mean + SD.

*P<0.05. HCs, healthy controls; Non-Cach, non-cachectic; Cach, cachectic; CRC, colorectal cancer; SD, Standard Deviation.
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Figure A2: Scores (0-100) across different domains of the 36-item Short Form Survey (SF-36). HCs (n=19) are presented as

the white bars, non-cachectic CRC patients (n=24) as grey bars, and cachectic CRC patients (n=10) as black bars. Data is
presented as mean +

SD. *P<0.05, ***P<0.001. HCs, healthy controls; Non-Cach, non-cachectic; Cach, cachectic; CRC,
colorectal cancer.
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