
Using Read Promotion and Mixed Isolation Levels for Performant
Yet Serializable Execution of Transaction Programs

Brecht Vandevoort

UHasselt, Data Science Institute

brecht.vandevoort@uhasselt.be

Alan Fekete

University of Sydney

alan.fekete@sydney.edu.au

Bas Ketsman

Vrije Universiteit Brussel

bas.ketsman@vub.be

Frank Neven

UHasselt, Data Science Institute

frank.neven@uhasselt.be

Stijn Vansummeren

UHasselt, Data Science Institute

stijn.vansummeren@uhasselt.be

ABSTRACT
We propose a theory that can determine the lowest isolation level

that can be allocated to each transaction program in an application

in a mixed-isolation-level setting, to guarantee that all executions

will be serializable and thus preserve all integrity constraints, even

those that are not explicitly declared. This extends prior work ap-

plied to completely known transactions, to deal with the realistic

situation where transactions are generated by running programs

with parameters that are not known in advance. Using our theory,

we propose an optimization method that allows for high through-

put while ensuring that all executions are serializable. Our method

is based on searching for application code modifications that are

semantics-preserving while improving the isolation level allocation.

We illustrate our approach to the SmallBank benchmark.

PVLDB Reference Format:
Brecht Vandevoort, Alan Fekete, Bas Ketsman, Frank Neven, and Stijn

Vansummeren. Using Read Promotion and Mixed Isolation Levels for

Performant Yet Serializable Execution of Transaction Programs. PVLDB,

18(9): 2846 - 2858, 2025.

doi:10.14778/3746405.3746412

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://tinyurl.com/repmila.

1 INTRODUCTION
Transaction management is a core capability for database manage-

ment systems. While research continues to find ways to improve

performance, especially utilising novel hardware [9, 12, 18, 19, 24–

26, 30–33, 36], the bulk of application software runs on popular

platforms whose concurrency control mechanisms are decades old

and are known to suffer from bottlenecks that make serializable

transactions perform poorly under contention [39, 45]. Under the

narrative that many applications have domain-specific reasons why

they do not need to be perfectly serializable, these platforms offer

the application programmer a choice of isolation levels. As such,

the programmer can select a weaker isolation level, such as the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.

doi:10.14778/3746405.3746412

platform’s default READ COMMITTED level [6], to improve per-

formance when apt. However, there is not yet a well-grounded

way for the programmer to decide when a decision to accept non-

serializable isolation is justified.

Robustness of transactions to guarantee serializability. Recent theoret-
ical studies have provided algorithms that can analyze the collection

of transactions occurring in an application, and determine which

isolation level to use for each of them in a mixed-isolation-level set-

ting, while still guaranteeing the robustness of the application [43].

That is, every possible execution of the application’s transactions

will in fact be serializable, even though several of the transactions

do not run with serializable isolation level. This task, dubbed the

allocation problem [20], requires some characterisation of the con-

currency control mechanism used by the platform. In particular, the

conclusions on a platform using traditional shared and exclusive

locks operating on single-version data will differ from the conclu-

sions for multiversion systems that allow reading versions that

have been overwritten (and therefore do not block reads) [20, 29].

The current theory for solving the allocation problem, however,

assumes that all the transactions are completely known at allo-

cation time, including all the items that will be read and written.

This is not realistic: in practice applications execute programs with

parameters that are provided at run-time, after allocation. For exam-

ple, a student enrollment system will have a program that enrolls

a student to a particular course. The concrete student id and the

course code are only provided by the end-user when the program

is executed.

Robustness of transaction templates. The key technical advance of

this paper, is to provide an algorithm that can determine which

isolation level can be allocated to each of a set of templates, where a

template is an abstraction that aims to capture a transaction whose

read and write set is determined based on some variables. The al-

gorithm returns an allocation that is guaranteed to be robust on

a platform such as PostgreSQL which offers multiversion concur-

rency control mechanisms. That is, every execution of any set of

transactions that instantiate the templates with arbitrary values,

will be serializable. Our algorithm, therefore, supports any number

of instantiations per template while maintaining polynomial time

in the template size. Unlike earlier work [43], which assumes a fixed

set of concrete transactions and scales with their size, our execution

time is independent of the number of concrete instantiations.

The template abstraction we use also has some restrictions. It

assumes a fixed set of read-only attributes that cannot be modified

and are used to select tuples for updates. A common example of

2846



such attributes are primary keys. This assumption prevents predi-

cate reads that could cause non-serializable executions not covered

by our analysis. While it excludes workloads like TPC-C which

involve predicate reads, in many cases this is not a major limitation

as the inability to update primary keys is not a significant limitation,

because keys are typically assigned once and remain unchanged

due to regulatory or data integrity requirements. Furthermore, as

the template abstraction loses some of the constraints in the trans-

action code, our analysis is conservative but safe: we may miss a

desirable allocation which is robust, but the allocation found by our

algorithm does indeed ensure that all executions are serializable.

However, within the restrictions of the template abstraction, we

can prove optimality of the allocation we identify, in the sense that

we find the allocation that gives each template the lowest isolation

level possible (i.e., prioritizing Read Committed over Snapshot Iso-

lation, and Snapshot Isolation over the serializable level), such that

any code that fits the template will be robust. While our template

abstraction omits branches and loops for simplicity, we could han-

dle them by treating each execution path as a separate template

unfolding. Branches and bounded loops unfold easily, and for un-

bounded loops, it is sufficient to show that any non-robust behavior

has a counterexample with loops unfolded only a fixed number of

times (cf. [42]). The current paper does not consider depedencies

like foreign keys. It is known that, in general, these dependencies

can render the robustness property undecidable [41].

Optimization via read promotion and mixed-isolation level allocation.
Our allocation algorithm can be used to find ways to deliver an

application with the correctness guarantees of serializable execu-

tion (so all state invariants are preserved, including those which are

not explicitly declared in the database), and yet better performance

than when each transaction is executed at the serializable level.

We propose to consider a space of different ways to modify the

application code (while not changing its semantics), by “promoting”

some read operations [21] so they are treated as identity updates,

and thus set exclusive locks. For each of these different promotion

choices, we use our allocation algorithm to determine the lowest

isolation level. For each promotion choice and determined robust

allocation we can then empirically measure the performance ob-

tained; the promotion choice with best performance of its robust

allocation, is how the application should be coded. We refer to this

optimization approach as read promotion and mixed isolation level
allocation (RePMILA).

We illustrate RePMILA for the well-known benchmark Small-

Bank [3], and explore the performance obtained on PostgreSQL

under a range ofworkload parameters.We find that some promotion

choices have a robust allocation whose throughput is competitive

with the throughput of the unmodified application running with

all transactions using Read Committed. Unlike the latter, however,

the robust allocation still guarantees serializable execution. Fur-

thermore, the throughput under robust allocation can be twice

the throughput achieved by running all transactions under the

platform’s serializable isolation level.

Contributions. The contributions of this paper are varied, with both

theory and empirical results, and we propose guidance for practi-

tioners. As theory, we offer a proof technique that allows demon-

strating robustness for an allocation of multi-version isolation levels

for transaction templates, and a polynomial-time algorithm that

generates a unique lowest robust allocation. We give an experimen-

tal demonstration for the SmallBank application mix, that some

promotion choices allow performance of a robust allocation, close

to that of the default non-robust allocation (and much better than

the naive use of Serializable isolation for all transactions). We con-

sider that in this context RePMILA can be useful for practitioners as

they seek performance while guaranteeing serializable execution.

Organization. The remainder of the paper is structured as follows.

In Section 2 we illustrate RePMILA applied to SmallBank, demon-

strating how each program is abstracted as a template, how the

allocation algorithm determines the allocation of isolation levels

for the templates, how the various promotion choices are gener-

ated, and what allocation is generated for each promotion choice.

In Section 3 we show the measured performance for the different

promotion choices, and compare with baselines where all programs

are run with Serializable isolation level, and also where all are run

at default Read Committed isolation (and thus undeclared data in-

variants can be violated). Section 4 presents the theory and includes

the details of the allocation algorithm. We discuss related work in

Section 5. Finally, Section 6 looks at implications and limitations of

this work, and identifies some further research directions.

A full version of this paper is available as [38], containing all

proofs, additional examples, further intuition regarding formaliza-

tion, as well as the SQL code for the SmallBank benchmark.

2 READ PROMOTION AND MIXED ISOLATION
LEVEL ALLOCATION (REPMILA)

To explain our approach, we work through the way it is applied to

the well-known SmallBank benchmark application [3]. While it is

not a real-world example, it has enough features to illustrate how

we can identify a high-performing, robust allocation, and yet it is

simple enough to fit in a conference paper.

SmallBank benchmark. The SmallBank [3] schema consists of the ta-

bles Account(Name, CustomerID), Savings(CustomerID, Balance),

and Checking(CustomerID, Balance) (key attributes are underlined).

The Account table associates customer names with IDs. The other

tables contain the balance (numeric value) of the savings and check-

ing accounts of customers identified by their ID. The application

code interacts with the database via transaction programs:

• Balance(𝑁 ) returns the total balance (savings and checking) for

a customer with name 𝑁 .

• DepositChecking(𝑁 ,𝑉 ) makes a deposit of amount𝑉 in the check-

ing account of the customer with name 𝑁 (see Figure 1).

• TransactSavings(𝑁 ,𝑉 ) makes a deposit or withdrawal 𝑉 on the

savings account of the customer with name 𝑁 .

• Amalgamate(𝑁1,𝑁2) transfers all the funds from customer 𝑁1 to

customer 𝑁2.

• Finally, WriteCheck(𝑁 ,𝑉 ) writes a check 𝑉 against the account

of the customer with name 𝑁 , penalizing if overdrawing.

Transaction templates.We abstract transaction programs via trans-

actions templates as illustrated in Figure 2. A transaction template

consists of a sequence of read (R), write (W), and update (U) op-
erations. Each operation accesses exactly one tuple. For instance,

R [X : Account{N, C}}] indicates that a read operation is performed

2847



DepositChecking(N,V):
SELECT CustomerId INTO :X FROM Account WHERE Name=:N;
UPDATE Checking SET Balance = Balance+:V
WHERE CustomerId=:X;

COMMIT;

Figure 1: SQL code for DepositChecking.

Balance:

R [X : Account{N, C} ]
R [Y : Savings{C, B} ]
R [Z : Checking{C, B} ]

DepositChecking:

R [X : Account{N, C} ]
U [Z : Checking{C, B}{B} ]

TransactSavings:

R [X : Account{N, C} ]
U [Y : Savings{C, B}{B} ]

Amalgamate:

R [X1 : Account{N, C} ]
R [X2 : Account{N, C} ]
U [Y1 : Savings{C, B}{B} ]
U [Z1 : Checking{C, B}{B} ]
U [Z2 : Checking{C, B}{B} ]

WriteCheck:

R [X : Account{N, C} ]
R [Y : Savings{C, B} ]
R [Z : Checking{C, B} ]
U [Z : Checking{C, B}{B} ]

Figure 2: Transaction templates for SmallBank.

to a tuple X in relation Account on the attributes Name and Cus-

tomerID. We abbreviate the names of attributes by their first let-

ter to save space. The set {𝑁,𝐶} is the read set of the read op-

eration. Similarly, W and U refer to write and update operations

to tuples of a specific relation. Write operations have an associ-

ated write set while update operations contain a read set followed

by a write set: e.g., U [Z : DepositChecking{C, B}{B}}] first reads
the CustomerID and Balance of tuple Z and then writes to the at-

tribute Balance. A U-operation is an atomic update that first reads

the tuple and then writes to it. Templates serve as abstractions of

transaction programs and represent an infinite number of possible

workloads. For instance, let x, y, z (and their primed versions) be

concrete database objects serving as interpretations of the vari-

ables X, Y, and Z. Then, disregarding attribute sets, {𝑅 [x]𝑅 [y]𝑅 [z]
𝑈 [z], 𝑅 [x′]𝑅 [y′]𝑅 [z′]𝑈 [z′],𝑅 [x]𝑈 [z]} is a workload consistent

with the SmallBank templates as it contains two instantiations

of WriteCheck and one instantiation of DepositChecking. We re-

mark that {𝑅 [x]𝑅 [y]𝑅 [z]𝑈 [z′]} with z ≠ z′ is not a valid work-

load as the two final operations in WriteCheck should be on the

same object as required by the formalization. Typed variables effec-

tively enforce domain constraints as we assume that variables that

range over tuples of different relations can never be instantiated

by the same value. For instance, in the transaction template for

DepositChecking in Figure 2, X and Z can not be interpreted to be

the same object.

Templates do not capture all constraints in the original pro-

grams, and may therefore overapproximate the transactions that

can occur when the actual programs are executed. For instance, the

workload {𝑅 [t]𝑈 [q], 𝑅 [t]𝑈 [q′]} is consistent with the SmallBank

templates (two instantiations of DepositChecking), but cannot oc-

cur in practice under the assumption that a customer can only have

one checking account.

Lowest robust allocation.We are interested in determining the lowest

isolation level for each separate template such that every execution

that arises under the assigned levels will in fact be serializable. We

refer to such as an allocation as robust. We consider the isolation

levels of PostgreSQL: Read Committed (RC), Snapshot Isolation

(SI), and Serializable Snapshot Isolation (SSI) where we rank them

from lower to higher as RC < SI < SSI, under the assumption that

throughput increases when isolation levels are lowered. The alloca-

tion algorithm that we describe in Section 4 finds that the allocation

that maps DepositChecking to RC and all other templates to SSI is

Promotion Lowest robust allocation
choices Bal DC TS Am WC

(1) no promotion

SSI RC SSI SSI SSI (A)

(2) WC: C

(3) Bal: S

SSI SSI SSI SSI SSI (B)

(4) Bal: S, WC: C

(5) Bal: C

SI RC RC RC SI (C)

(6) WC: S

(7) Bal: C, WC: S

(8) Bal: C, WC: C

(9) WC: S,C

SI RC RC RC RC (D)

(10) Bal: C, WC: S,C

(11) Bal: S,C

RC RC RC RC SI (E)

(12) Bal: S, WC: S

(13) Bal: S,C, WC: S

(14) Bal: S,C, WC: C

(15) Bal: S, WC: S,C

RC RC RC RC RC (F)

(16) Bal: S,C, WC: S,C

Table 1: Lowest robust allocations for each promotion choices
over the SmallBank benchmark, grouped by allocation. Pro-
motion choices and allocations are labeled for easy reference.

robust, and is in fact optimal in the sense that no isolation level can

be lowered without breaking robustness.

Read promotion choices. None of the considered isolation levels al-

low dirty writes. This forces a transaction that wants to overwrite

a change made by an earlier transaction, to wait until the earlier

transaction either commits or aborts. Therefore, if we promote a

read operation to an update (that is, a read operation that writes

back the observed value), the semantics of the transaction remains

unaffected but the lowest robust allocation might differ. Ignoring

the read operations over the read-only Account table, the Small-

Bank benchmark contains 4 read operations over the Savings and

Checking relations that are candidates for promotion, resulting in

16 possible promotion choices. For each promotion choice, we run

our algorithm to detect the lowest robust allocation. The resulting

allocations are summarized in Table 1. We denote each promotion

choice by the read operations that are promoted. For example, ‘Bal:
S, WC: C’ promotes the read operation over the Savings relation

in the Balance program, and the read operation over the Checking

relation in the WriteCheck program. For convenience, the promo-

tion choices are grouped by their lowest robust allocation. Notice

that without promotion, as mentioned previously, only one out of

the five programs (nl., DepositChecking) can be executed under

an isolation level lower that SSI without giving up serializability.

Furthermore, introducing a few promoted reads quickly leads to

robust allocations where almost all programs are being executed

under RC. However, the best promotion choice is not necessarily

the one that allows the most programs to run under RC, for the

simple reason that the newly introduced writes could have a nega-

tive impact on the overall performance. Throughput experiments

are therefore needed to determine the best promotion choices, as

we discuss in the next section.

3 EVALUATING REPMILA OVER SMALLBANK
Here we show experimentally the performance achieved by our

approach when applied to the SmallBank benchmark.

2848



Figure 3: Throughput for the promotion choices mentioned
in Table 1 for various hotspot probabilities.

Experimental setup. All experiments use PostgreSQL 16.2 as the

database engine, running on a single machine with two 18-core

Xeon Gold 6240 CPUs (2.6 GHz), 192 GB RAM and 200GB local SSD

storage. A separate machine is used to query the database, with

100 concurrent clients executing randomly sampled programs from

the SmallBank benchmark. If the database aborts a transaction,

the client immediately retries the same program with the same

parameters until it successfully commits. Each experiment runs

for 60 seconds and is repeated 5 times to measure the average

throughput. The database is populated with 18000 accounts. A

small subset of 20 accounts act as a hotspot that will be accessed

more frequently. The level of contention is varied by changing the

probability of sampling a hotspot account during execution. Within

the hotspot, uniform sampling is used to select an account. Unless

otherwise specified, each of the five SmallBank programs has an

equal probability of being sampled by the clients. Throughput is

indicated in number of transactions per second. We implemented

the allocation algorithm described in Section 4 in Python. Verifying

whether an allocation is robust takes only a few seconds, whereas

computing the lowest allocation for a specific promotion choice

requires less than a minute. This runtime is acceptable since the

computation is performed only once and can be executed offline.

3.1 RePMILA improves performance
Figure 3 displays the throughput for the different promotion choices

and associated lowest robust allocations mentioned in Table 1 for

increasing levels of contention. Promotion choices that result in

the same lowest robust allocation are depicted in the same color

and are not individually labeled to avoid adding complexity to the

figure. While not all lines are easily discernible, we do see that

the throughput for almost all promotion choices is higher than

executing the unmodified templates under SSI. The exception is

the bottom line indicating that these choices perform worse than

executing the original unmodified programs under SSI. This is

due to the introduction of additional writes, which do not provide

allocation benefits as all templates still require the use of SSI.

None of the promotions can match the throughput levels that can

be reached by the nonrobust allocation that executes all unmodified

templates at RC. Nevertheless, the most performant promotion

choice ‘WC: S,C’ is a near match. Here, no reads are promoted in

Figure 4: Throughput for promotion choice (9) ‘WC: S,C’ un-
der its lowest and higher allocations.

Figure 5: Throughput for different promotion choices sharing
the same lowest robust allocation (E), i.e., the one that maps
WriteCheck to SI and all the others to RC.

Balance and the lowest robust allocation assigns SI to Balance and

RC to the others. In our experiments we observe that in this case

there are no aborts due to concurrent writes.

We point out that the lowest robust allocation for the unmodified

templates allows little to no improvement compared to running

everything under SSI, especially when contention increases. We

thus conclude that read promotions can increase throughput and

that considering various promotion choices is helpful. In general,

read promotions that allow to allocate RC tend to outperform those

requiring SI or SSI. However, there are some notable exceptions:

for example, ‘WC: S,C’ still requires SI for Balance, but it outper-
forms all promotion choices that only require RC. Similarly, there

are promotion choices (which are not discernible in the figure as

individual lines are not labeled) where the lowest allocation assigns

both Balance and WriteCheck to SI, yet these choices still outper-

form specific promotion choices that allocate only WriteCheck to

SI, and RC to all others.

3.2 Lowest allocation outperforms higher ones
We defined a robust allocation as lowest when no isolation level

can be reduced without compromising robustness, following the

ordering RC < SI < SSI. As shown in Section 4, there always exists

a unique lowest allocation with respect to this order. We verify that

these unique lowest allocation consistently outperforms higher

allocations, allowing us to focus solely on them. To this end, we

examine the most performant promotion choice, ‘WC: S,C’, and
compare its lowest robust allocation—where Balance is assigned

SI and all other templates receive RC—against all alternative al-

locations that raise the isolation level for at least one of the five

programs. Figure 4 demonstrates that the lowest robust allocation

indeed outperforms all higher allocations. Additionally, we observe

that its throughput matches that of the nonrobust allocation for

‘WC: S,C’, where all templates run under RC.

2849



Figure 6: Throughput for different promotion choices vary-
ing the probability of executing Balance for a fixed hotspot
probability of 0.5. Promotion choices that do not promote a
read in Balance are in blue. Those that do are in orange.

3.3 Promotion choices within the same lowest
robust allocation impact performance

As illustrated by Table 1, distinct promotion choices may lead to

the same lowest robust allocation. For example, the four promotion

choices ‘Bal: S,C’, ‘Bal: S, WC: S’, ‘Bal: S,C, WC: S’ and ‘Bal: S,C,
WC: C’ all result in the same lowest robust allocation that maps

WriteCheck to SI and all the others to RC. Since these promotion

choices promote different reads, an identical lowest allocation does

not necessarily lead to identical performance even under lower

levels of contention, as is shown in Figure 5. There, we see that

‘Bal: S,C’ and ‘Bal: S,C, WC: C’ greatly outperform the others. This

implies, in particular, that an experimental exploration of promotion

choices cannot be limited to just a single promotion choice per

unique robust allocation. A closer inspection reveals that the read

promotions of the top performer, ‘Bal: S,C, WC: C’, form a strict

superset of those of the next-best contender, ‘Bal: S,C’. In this case,

the slight performance gain is obtained by taking an earlier lock

due to the newly promoted read. Indeed, the promoted read in

WriteCheck is over a tuple written to by a later write in the same

transaction. Since the lock is taken earlier and since WriteCheck

uses SI, potentially concurrent writes are detected earlier, thereby

avoiding the amount of work wasted before an abort.

3.4 Impact of template frequency
We next illustrate that finding the best performing promotion

choices is influenced as well by the template frequency. The previ-

ous experiments assumed uniform sampling over the five possible

SmallBank programs. Since only Balance is read-only (assuming

no promoted reads), this corresponds to a workload where only

20% of the transactions is read-only. To further explore the impact

of promoting reads in read-only transactions, Figure 6 shows the

throughput for different promotion choices when the probability of

executing Balance is varied between 0.2 and 0.8, assuming a fixed

hotspot probability of 0.5. The remaining four templates are sam-

pled with equal probability. Overall, we see that promotion choices

that do not promote a read in Balance start to outperform those

that do when the probability of executing Balance increases. This

observation is most pronounced for the promotion choice ‘WC: S’,

which is among the worst performers when the probability of exe-

cuting Balance is low, but becomes the second best performer when

the probability is high, vastly outperforming all other promotion

choices. Closer inspection reveals that in the latter case even the

original programs (i.e., ‘no promotion’) outperform all promotion

choices that promote a read in Balance.

3.5 Discussion
The SmallBank exploration in this section validates RePMILA as an

effective optimization method, demonstrating that combining read

promotion with the lowest robust allocation can double throughput

compared to executing all transactions under SSI. Furthermore,

it achieves throughput comparable to the unsafe yet default RC

isolation level used by some platforms, all while preserving safety.

Since our performance gains stem from a tradeoff between re-

duced concurrency and fewer aborts inherent to the studied iso-

lation levels, we expect our results to generalize to other systems

supporting these levels. While the analysis in Table 1 should hold,

the optimal promotion choice may vary (cf. Alomari et al.[3] for

cross-system comparisons).

In theory, the number of promotion choices grows exponentially

with the total number of read operations in templates. However, the

number of required throughput experiments can be significantly

reduced by the following guidelines: (i) ignoring reads from read-

only tables (e.g., Accounts in SmallBank); (ii) avoiding promotion

in read-only templates, particularly when they frequently appear

in workloads (e.g., Balance); and, (iii) when multiple promotion

choices yield the same lowest allocation, prioritizing those that

promote reads occurring earlier in a template.

4 ALLOCATION ALGORITHM
We start by introducing all necessary terminology and borrow no-

tation from [39, 43] along with some examples that we adapt and

modify to suit our context. In particular, we discuss transactions,

schedules, conflict-serializability, and isolation levels in Section 4.1–

4.3. In Section 4.4–4.5 we introduce templates and their robustness.

Finally, we present an algorithm for template robustness in Sec-

tion 4.6 and an algorithm for finding the lowest robust allocation

in Section 4.7.

4.1 Transactions and Schedules
A relational schema is a set Rels of relation names. For each 𝑅 ∈ Rels,
Attr(𝑅) is the finite set of associated attribute names and we fix

an infinite set Obj𝑅 of abstract objects called tuples. We assume

that Obj𝑅 ∩ Obj𝑆 = ∅ for all 𝑅, 𝑆 ∈ Rels with 𝑅 ≠ 𝑆 . We denote

by Obj the set
⋃︁

𝑅∈Rels Obj𝑅 of all possible tuples. We require that

for every t ∈ Obj there is a unique relation 𝑅 ∈ Rels such that

t ∈ Obj𝑅 . We then say that t is of type 𝑅 and denote the latter

by type(t) = 𝑅. A database D over schema Rels assigns to every

relation name 𝑅 ∈ Rels a finite set 𝑅D ⊂ Obj𝑅 .
For a tuple t ∈ Obj, we distinguish three operations R [t], W [t],

and U [t] on t, denoting that t is read, written, or updated, respec-

tively. We say that the operation is on the tuple t. Here, U [t] is
an atomic update and should be viewed as an atomic sequence of

a read of t followed by a write to t. To differentiate between the

cases where we want to refer to an actual operation (R, W, or U)

2850



or to operations with a specific property (read or write), we em-

ploy the following terminology. A read operation is an R [t] or a
U [t], and a write operation is a W [t] or a U [t]. Furthermore, an

R-operation is an R [t], a W-operation is a W [t], and a U-operation
is a U [t]. We also assume a special commit operation denoted C.
To every operation 𝑜 on a tuple of type 𝑅, we associate the set of

attributes ReadSet(𝑜) ⊆ Attr(𝑅) and WriteSet(𝑜) ⊆ Attr(𝑅) con-
taining, respectively, the set of attributes that 𝑜 reads from and

writes to. When 𝑜 is an R-operation thenWriteSet(𝑜) = ∅. Similarly,

when 𝑜 is a W-operation then ReadSet(𝑜) = ∅.
A transaction 𝑇 is a sequence of read and write operations fol-

lowed by a commit. Formally, we model a transaction as a linear

order (𝑇, ≤𝑇), where 𝑇 is the set of (read, write and commit) opera-

tions occurring in the transaction and ≤𝑇 encodes the ordering of

the operations. As usual, we use <𝑇 to denote the strict ordering.

We denote the first operation in 𝑇 by first(𝑇 ).
When considering a set T of transactions, we assume that every

transaction in the set has a unique id 𝑖 and write 𝑇𝑖 to make this id

explicit. Similarly, to distinguish the operations of different trans-

actions, we add this id as a subscript to the operation. That is, we

write W𝑖 [t], R𝑖 [t], and U𝑖 [t] to denote a W [t], R [t], and U [t] oc-
curring in transaction𝑇𝑖 ; similarly C𝑖 denotes the commit operation

in transaction 𝑇𝑖 . This convention is consistent with the literature

(see, e.g. [7, 20]). To avoid ambiguity of notation, we assume that a

transaction performs at most one write, one read, and one update

per tuple. The latter is a common assumption (see, e.g. [20]). All
our results carry over to the more general setting in which multiple

writes and reads per tuple are allowed.

A (multiversion) schedule 𝑠 over a set T of transactions is a tuple

(𝑂𝑠 , ≤𝑠 ,≪𝑠 , 𝑣𝑠 ) where
• 𝑂𝑠 is the set containing all operations of transactions in T as

well as a special operation op
0
conceptually writing the initial

versions of all existing tuples,

• ≤𝑠 encodes the ordering of these operations,

• ≪𝑠 is a version order providing for each tuple t a total order over
all write operations on t occurring in 𝑠 , and,

• 𝑣𝑠 is a version function mapping each read operation 𝑎 in 𝑠 to

either op
0
or to a write operation different from 𝑎 in 𝑠 (recall that

a write operation is either a W [x] or a U [x]).
We require that op

0
≤𝑠 𝑎 for every operation 𝑎 ∈ 𝑂𝑠 , op0 ≪𝑠 𝑎

for every write operation 𝑎 ∈ 𝑂𝑠 , and that 𝑎 <𝑇 𝑏 implies 𝑎 <𝑠 𝑏

for every 𝑇 ∈ T and every 𝑎, 𝑏 ∈ 𝑇. We furthermore require that

for every read operation 𝑎, 𝑣𝑠 (𝑎) <𝑠 𝑎 and, if 𝑣𝑠 (𝑎) ≠ op
0
, then the

operation 𝑣𝑠 (𝑎) is on the same tuple as 𝑎. Intuitively, op
0
indicates

the start of the schedule, the order of operations in 𝑠 is consistent

with the order of operations in every transaction 𝑇 ∈ T , and the

version function maps each read operation 𝑎 to the operation that

wrote the version observed by 𝑎. If 𝑣𝑠 (𝑎) is op0, then 𝑎 observes

the initial version of this tuple. The version order ≪𝑠 represents

the order in which different versions of a tuple are installed in the

database. For a pair of write operations on the same tuple, this

version order does not necessarily coincide with ≤𝑠 . E.g., under RC
and SI the version order is based on the commit order instead.

Figure 7 depicts an example of a schedule. There, the read opera-

tions on t in 𝑇1 and 𝑇4 both read the initial version of t instead of

the version written but not yet committed by 𝑇2. Furthermore, the

read operation R2 [v] in 𝑇2 reads the initial version of v instead of

the version written by 𝑇3, even though 𝑇3 commits before R2 [v].
We say that a schedule 𝑠 is a single version schedule if ≪𝑠 is

compatible with ≤𝑠 and every read operation always reads the

last written version of the tuple. Formally, for each pair of write

operations 𝑎 and 𝑏 on the same tuple, 𝑎 ≪𝑠 𝑏 iff 𝑎 <𝑠 𝑏, and for

every read operation 𝑎 there is no write operation 𝑐 on the same

tuple as 𝑎 with 𝑣𝑠 (𝑎) <𝑠 𝑐 <𝑠 𝑎. A single version schedule over a

set of transactions T is single version serial if its transactions are
not interleaved with operations from other transactions. That is,

for every 𝑎, 𝑏, 𝑐 ∈ 𝑂𝑠 with 𝑎 <𝑠 𝑏 <𝑠 𝑐 and 𝑎, 𝑐 ∈ 𝑇 implies 𝑏 ∈ 𝑇

for every 𝑇 ∈ T .

4.2 Conflict-Serializability
Let 𝑎 𝑗 and 𝑏𝑖 be two operations on the same tuple from different

transactions 𝑇𝑗 and 𝑇𝑖 in a set of transactions T . We then say that

𝑎 𝑗 is conflicting with 𝑏𝑖 if:

• (ww-conflict) WriteSet(𝑎 𝑗 ) ∩WriteSet(𝑏𝑖 ) ≠ ∅; or,
• (wr-conflict) WriteSet(𝑎 𝑗 ) ∩ ReadSet(𝑏𝑖 ) ≠ ∅; or,
• (rw-conflict) ReadSet(𝑎 𝑗 ) ∩WriteSet(𝑏𝑖 ) ≠ ∅.
We also say that 𝑎 𝑗 and 𝑏𝑖 are conflicting operations. Commit oper-

ations and the special operation op
0
never conflict with any other

operation. When 𝑎 𝑗 and 𝑏𝑖 are conflicting operations in T , we say

that 𝑎 𝑗 depends on 𝑏𝑖 in a schedule 𝑠 over T , denoted 𝑏𝑖 →𝑠 𝑎 𝑗 if:

• (ww-dependency) 𝑏𝑖 is ww-conflicting with 𝑎 𝑗 and 𝑏𝑖 ≪𝑠 𝑎 𝑗 ; or,

• (wr-dependency) 𝑏𝑖 is wr-conflicting with 𝑎 𝑗 and 𝑏𝑖 = 𝑣𝑠 (𝑎 𝑗 ) or
𝑏𝑖 ≪𝑠 𝑣𝑠 (𝑎 𝑗 ); or,

• (rw-antidependency) 𝑏𝑖 is rw-conflicting with 𝑎 𝑗 and 𝑣𝑠 (𝑏𝑖 ) ≪𝑠

𝑎 𝑗 .

Intuitively, a ww-dependency from𝑏𝑖 to 𝑎 𝑗 implies that 𝑎 𝑗 writes

a version of a tuple that is installed after the version written by

𝑏𝑖 . A wr-dependency from 𝑏𝑖 to 𝑎 𝑗 implies that 𝑏𝑖 either writes

the version observed by 𝑎 𝑗 , or it writes a version that is installed

before the version observed by 𝑎 𝑗 . A rw-antidependency from 𝑏𝑖
to 𝑎 𝑗 implies that 𝑏𝑖 observes a version installed before the version

written by 𝑎 𝑗 .

For example, the dependencies U2 [t] → W4 [t], U3 [v] → R4 [v]
and R4 [t] → U2 [t] are respectively a ww-dependency, a wr-

dependency and a rw-antidependency in schedule 𝑠 presented in

Figure 7.

Two schedules 𝑠 and 𝑠′ are conflict-equivalent if they are over

the same set T of transactions and for every pair of conflicting

operations 𝑎 𝑗 and 𝑏𝑖 , 𝑏𝑖 →𝑠 𝑎 𝑗 iff 𝑏𝑖 →𝑠′ 𝑎 𝑗 .

Definition 4.1. A schedule 𝑠 is conflict-serializable if it is conflict-
equivalent to a single version serial schedule.

A serialization graph 𝑆𝑒𝐺 (𝑠) for schedule 𝑠 over a set of trans-
actions T is the graph whose nodes are the transactions in T and

where there is an edge from 𝑇𝑖 to 𝑇𝑗 if 𝑇𝑗 has an operation 𝑎 𝑗 that

depends on an operation 𝑏𝑖 in 𝑇𝑖 , thus with 𝑏𝑖 →𝑠 𝑎 𝑗 . Since we

are usually not only interested in the existence of dependencies

between operations, but also in the operations themselves, we as-

sume the existence of a labeling function 𝜆 mapping each edge to a

set of pairs of operations. Formally, (𝑏𝑖 , 𝑎 𝑗 ) ∈ 𝜆(𝑇𝑖 ,𝑇𝑗 ) iff there is

an operation 𝑎 𝑗 ∈ 𝑇𝑗 that depends on an operation 𝑏𝑖 ∈ 𝑇𝑖 . For ease

of notation, we choose to represent 𝑆𝑒𝐺 (𝑠) as a set of quadruples
(𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) denoting all possible pairs of these transactions𝑇𝑖 and

2851



op
0

R1 [t] C1
U2 [t] R2 [v] C2

U3 [v] C3
R4 [t] W4 [t] R4 [v] C4

𝑇1 :

𝑇2 :

𝑇3 :

𝑇4 :

Figure 7: A schedule 𝑠 with 𝑣𝑠 (single lines) and ≪𝑠 (double
lines) represented through arrows.

𝑇𝑗 with all possible choices of operationswith𝑏𝑖 →𝑠 𝑎 𝑗 . Henceforth,

we refer to these quadruples simply as edges. Notice that edges can-

not contain commit operations. A cycle Γ in 𝑆𝑒𝐺 (𝑠) is a non-empty

sequence of edges (𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3), . . . , (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1)
in 𝑆𝑒𝐺 (𝑠), in which every transaction is mentioned exactly twice.

Theorem 4.2 (implied by [2]). A schedule 𝑠 is conflict-serializable
iff 𝑆𝑒𝐺 (𝑠) is acyclic.

Our formalisation of transactions and conflict serializability is

based on [20], generalized to operations over attributes of tuples

and extended with U-operations that combine R- and W-operations
into one atomic operation. These definitions are closely related to

the formalization presented by Adya et al. [2], but we assume a

total rather than a partial order over the operations in a schedule.

4.3 Isolation Levels
Let I be a class of isolation levels. An I-allocation A for a set of

transactions T is a function mapping each transaction 𝑇 ∈ T onto

an isolation levelA(𝑇) ∈ I. When I is not important or clear from

the context, we also say allocation rather than I-allocation. In this

paper, we consider the following isolation levels: read committed

(RC), snapshot isolation (SI), and serializable snapshot isolation

(SSI). So, in general, I = {RC, SI, SSI}. Before we define what it

means for a schedule to consist of transactions adhering to different

isolation levels, we introduce some necessary terminology. Some

of these notions are illustrated in Example 4.5 below.

Let 𝑠 be a schedule for a set T of transactions. Two transactions

𝑇𝑖 ,𝑇𝑗 ∈ T are said to be concurrent in 𝑠 when their execution over-

laps. That is, if first(𝑇𝑖 ) <𝑠 C𝑗 and first(𝑇𝑗 ) <𝑠 C𝑖 . We say that a

write operation 𝑜 𝑗 on t in a transaction 𝑇𝑗 ∈ T respects the commit
order of 𝑠 if the version of t written by 𝑇𝑗 is installed after all ver-

sions of t installed by transactions committing before 𝑇𝑗 commits,

but before all versions of t installed by transactions committing

after 𝑇𝑗 commits. More formally, if for every write operation 𝑜𝑖 on

t in a transaction 𝑇𝑖 ∈ T different from 𝑇𝑗 we have 𝑜 𝑗 ≪𝑠 𝑜𝑖 iff

C𝑗 <𝑠 C𝑖 . We next define when a read operation 𝑎 ∈ 𝑇 reads the

last committed version relative to a specific operation. For RC this

operation is 𝑎 itself while for SI this operation is first(𝑇). Intuitively,
these definitions enforce that read operations in transactions al-

lowed under RC act as if they observe a snapshot taken right before

the read operation itself, while under SI they observe a snapshot

taken right before the first operation of the transaction. A read

operation 𝑜 𝑗 on t in a transaction 𝑇𝑗 ∈ T is read-last-committed in
𝑠 relative to an operation 𝑎 𝑗 ∈ 𝑇𝑗 (not necessarily different from 𝑜 𝑗 )

if the following holds:

• 𝑣𝑠 (𝑜 𝑗 ) = op
0
or C𝑖 <𝑠 𝑎 𝑗 with 𝑣𝑠 (𝑜 𝑗 ) ∈ 𝑇𝑖 ; and

• there is no write operation 𝑜𝑘 on t in 𝑇𝑘 with C𝑘 <𝑠 𝑎 𝑗 and

𝑣𝑠 (𝑜 𝑗 ) ≪𝑠 𝑜𝑘 .

The first condition says that 𝑜 𝑗 either reads the initial version or

a committed version, while the second condition states that 𝑜 𝑗
observes the most recently committed version of t (according to

≪𝑠 ). A transaction𝑇𝑗 ∈ T exhibits a concurrent write in 𝑠 if there is
another transaction 𝑇𝑖 ∈ T and there are two write operations 𝑏𝑖
and 𝑎 𝑗 in 𝑠 on the same object with 𝑏𝑖 ∈ 𝑇𝑖 , 𝑎 𝑗 ∈ 𝑇𝑗 and𝑇𝑖 ≠ 𝑇𝑗 such

that 𝑏𝑖 <𝑠 𝑎 𝑗 and first(𝑇𝑗 ) <𝑠 C𝑖 . That is, transaction 𝑇𝑗 writes to
an object that has been modified earlier by a concurrent transaction

𝑇𝑖 .

A transaction 𝑇𝑗 ∈ T exhibits a dirty write in 𝑠 if there are two
write operations 𝑏𝑖 and 𝑎 𝑗 in 𝑠 on the same object with 𝑏𝑖 ∈ 𝑇𝑖 ,

𝑎 𝑗 ∈ 𝑇𝑗 and 𝑇𝑖 ≠ 𝑇𝑗 such that 𝑏𝑖 <𝑠 𝑎 𝑗 <𝑠 C𝑖 . That is, transaction
𝑇𝑗 writes to an object that has been modified earlier by 𝑇𝑖 , but 𝑇𝑖
has not yet issued a commit. Notice that by definition a transaction

exhibiting a dirty write always exhibits a concurrent write. Trans-

action 𝑇4 in Figure 7 exhibits a concurrent write, since it writes

to t, which has been modified earlier by a concurrent transaction

𝑇2. However, 𝑇4 does not exhibit a dirty write, since 𝑇2 has already

committed before 𝑇4 writes to t.

Definition 4.3. Let 𝑠 be a schedule over a set of transactions T .

A transaction𝑇𝑖 ∈ T is allowed under isolation level read committed
(RC) in 𝑠 if:
• each write operation in 𝑇𝑖 respects the commit order of 𝑠;

• each read operation 𝑏𝑖 ∈ 𝑇𝑖 is read-last-committed in 𝑠 relative

to 𝑏𝑖 ; and

• 𝑇𝑖 does not exhibit dirty writes in 𝑠 .

A transaction 𝑇𝑖 ∈ T is allowed under isolation level snapshot isola-
tion (SI) in 𝑠 if:
• each write operation in 𝑇𝑖 respects the commit order of 𝑠;

• each read operation in 𝑇𝑖 is read-last-committed in 𝑠 relative to

first(𝑇𝑖 ); and
• 𝑇𝑖 does not exhibit concurrent writes in 𝑠 .

We then say that the schedule 𝑠 is allowed under RC (respec-

tively, SI) if every transaction is allowed under RC (respectively,

SI) in 𝑠 . The latter definitions correspond to the ones in the litera-

ture (see, e.g., [20, 39]). We emphasize that our definition of RC is

based on concrete implementations over multiversion databases,

found in e.g. PostgreSQL, and should therefore not be confused

with different interpretations of the term Read Committed, such

as lock-based implementations [7] or more abstract specifications

covering a wider range of concrete implementations (see, e.g., [2]).

In particular, abstract specifications such as [2] do not require the

read-last-committed property, thereby facilitating implementations

in distributed settings, where read operations are allowed to ob-

serve outdated versions. When studying robustness, such a broad

specification of RC is not desirable, since it allows for a wide range

of schedules that are not conflict-serializable.

While RC and SI are defined on the granularity of a single trans-

action, SSI enforces a global condition on the schedule as a whole.

For this, recall the concept of dangerous structures from [13]: three

transactions 𝑇1,𝑇2,𝑇3 ∈ T (where 𝑇1 and 𝑇3 are not necessarily

different) form a dangerous structure 𝑇1 → 𝑇2 → 𝑇3 in 𝑠 if:

• there is a rw-antidependency from 𝑇1 to 𝑇2 and from 𝑇2 to 𝑇3 in

𝑠;

2852



W1 [q] R1 [t] C1
R2 [v] W2 [t] C2

W3 [v] C3

𝑇1 :

𝑇2 :

𝑇3 :

Figure 8: Example of a dangerous structure 𝑇1 → 𝑇2 → 𝑇3
with the required rw-antidependencies represented through
dashed arrows.

• 𝑇1 and 𝑇2 are concurrent in 𝑠;

• 𝑇2 and 𝑇3 are concurrent in 𝑠;

• C3 ≤𝑠 C1 and C3 <𝑠 C2; and
• if 𝑇1 is read-only, then C3 <𝑠 first(𝑇1).

Note that this definition of dangerous structures slightly extends

upon the one in [13], where it is not required for 𝑇3 to commit

before 𝑇1 and 𝑇2. In the full version [14] of that paper, it is shown

that, if all transactions are allowed under SI, such a structure can

only lead to non-serializable schedules if 𝑇3 commits first. Fur-

thermore, Ports and Grittner [35] show that if 𝑇1 is a read-only

transaction, this structure can only lead to non-serializable behav-

ior if 𝑇3 commits before 𝑇1 starts. Actual implementations of SSI

(e.g., PostgreSQL [35]) therefore include this optimization when

monitoring for dangerous structures to reduce the number of aborts

due to false positives. It is interesting to note that presence of a

dangerous structure on itself does not necessarily mean that the

schedule 𝑠 is non-conflict-serializable, as our definition does not

require a cycle in the serialization graph 𝑆𝑒𝐺 (𝑠). However, if all
transactions are allowed under SI, then every cycle in 𝑆𝑒𝐺 (𝑠) im-

plies a dangerous structure as part of the cycle [21, 35]. Stated

differently, the absence of dangerous structures is a sufficient con-

dition for conflict-serializability when all transactions are allowed

under SI.

We are now ready to define when a schedule is allowed under a

(mixed) allocation of isolation levels.

Definition 4.4. A schedule 𝑠 over a set of transactionsT is allowed
under an allocation A over T if:

• for every transaction 𝑇𝑖 ∈ T with A(𝑇𝑖 ) = RC, 𝑇𝑖 is allowed

under RC;

• for every transaction𝑇𝑖 ∈ T withA(𝑇𝑖 ) ∈ {SI, SSI},𝑇𝑖 is allowed
under SI; and

• there is no dangerous structure 𝑇𝑖 → 𝑇𝑗 → 𝑇𝑘 in 𝑠 formed by

three (not necessarily different) transactions𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘 ∈ {𝑇 ∈ T |
A(𝑇) = SSI}.
We denote the allocation mapping all transactions to RC (respec-

tively, SI) byARC (respectively,ASI). We illustrate some of the just

introduced notions through an example.

Example 4.5. Consider the schedule 𝑠 in Figure 7. Transaction𝑇1
is concurrent with 𝑇2 and 𝑇4, but not with 𝑇3; all other transactions

are pairwise concurrent with each other. The second read operation

of𝑇4 is a read-last-committed relative to itself but not relative to the

start of 𝑇4. The read operation R2 [v] of 𝑇2 is read-last-committed

relative to the start of 𝑇2, but not relative to itself, so an allocation

mapping 𝑇2 to RC is not allowed. All other read operations are

read-last-committed relative to both themselves and the start of the

corresponding transaction. None of the transactions exhibits a dirty

write. Only transaction𝑇4 exhibits a concurrent write (witnessed by

the write operation U2 [t] in𝑇2). Due to this, an allocation mapping

𝑇4 on SI or SSI is not allowed. The transactions𝑇 1 → 𝑇 2 → 𝑇 3 form

a dangerous structure, therefore an allocation mapping all three

transactions 𝑇1,𝑇2,𝑇3 on SSI is not allowed. All other allocations,

that is, mapping𝑇4 on RC,𝑇2 on SI or SSI and at least one of𝑇1,𝑇2,𝑇3
on RC or SI, is allowed. 2

4.4 Transaction Templates
Transaction templates are transactions where operations are de-

fined over typed variables. Types of variables are relation names in

Rels and indicate that variables can only be instantiated by tuples

from the respective type. We fix an infinite set of variables Var
that is disjoint from Obj. Every variable X ∈ Var has an associated

relation name in Rels as type that we denote by type(X).

Definition 4.6. A transaction template 𝜏 is a transaction over Var.
In addition, for every operation𝑜 in𝜏 over a variable X, ReadSet(𝑜) ⊆
Attr(type(X)) and WriteSet(𝑜) ⊆ Attr(type(X)).

For an operation 𝑜 in a transaction template 𝜏 , we denote by

𝑣𝑎𝑟 (𝑜) the variable over which 𝑜 is defined. Notice that opera-

tions in transaction templates are defined over typed variables

whereas they are over Obj in transactions. Indeed, the transac-

tion template for Balance in Figure 2 contains a read operation

𝑜 = R [X : Account{N, C}]. As explained in Section 2, the notation

X : Account{𝑁,𝐶} is a shorthand for type(X) = Account and

ReadSet(𝑜) = {𝑁,𝐶}.
Recall that we denote variables by capital letters X, Y, Z and tuples

by small letters t, v. A variable assignment 𝜇 is a mapping from

Var to Obj such that 𝜇 (X) ∈ Obj
type(X) . By 𝜇 (𝜏), we denote the

transaction 𝑇 obtained by replacing each variable X in 𝜏 with 𝜇 (X).
A variable assignment for a database D maps every variable to

a tuple occurring in a relation in D. We say that a transaction 𝑇

is instantiated from a template 𝜏 over a database D if there is a

variable assignment 𝜇 for D such that 𝑇 = 𝜇 (𝜏). As a slight abuse
of notation, we will frequently write 𝜇 (𝑜) for an operation 𝑜 in 𝜏 to

denote the corresponding operation in 𝑇.

A set of transactions T is consistent with a set of transaction

templatesP and databaseD, if every transaction inT is instantiated

from a template in P over D. That is, for every transaction 𝑇 in T
there is a transaction template 𝜏 ∈ P and a variable assignment 𝜇𝑇
for D such that 𝜇𝑇 (𝜏) = 𝑇.

We extend the notion of allocations towards transaction tem-

plates. For a class of isolation levels I, a template I-allocation AP

for a set of transaction templates P is a function mapping each

template 𝜏 ∈ P onto an isolation level AP (𝜏) ∈ I. When I is not

important or clear from the context, we will frequently refer toAP

as a template allocation rather than template I-allocation.
Let T be a set of transactions consistent with a set of trans-

action templates P and a database D, and let AP
be a template

I-allocation for P. An allocation A for T is consistent with AP

and D if for every transaction𝑇 ∈ T there is a template 𝜏 ∈ P such

that 𝑇 is instantiated from 𝜏 over D and A(𝑇) = AP (𝜏).

4.5 Transaction and Template Robustness
We first define the robustness property [8] (also called acceptability
in [20, 21]) over a given set of transactions T , which guarantees

serializability for all schedules over T for a given allocation.

2853



Definition 4.7 (Transaction robustness). A set of transactions T
is robust against an allocation A for T if every schedule for T that

is allowed under A is conflict-serializable.

We refer to A as a robust allocation. The (transaction) robustness
problem is then to decide whether a given allocation for a set of

transactions T is a robust allocation. A polynomial time algorithm

for transaction robustness is given in [43].

We next lift robustness to the level of templates by requiring

transaction robustness for all possible template instantiations and

all possible databases. Let P be a set of transaction templates and

D be a database. Then, P is robust against a template allocationAP

over D if for every set of transactions T that is consistent with P
and D and for every allocation A for T consistent with AP

and

D, it holds that T is robust against A.

Definition 4.8 (Template robustness). A set of transaction tem-

plates P is robust against a template allocation AP
for P if P is

robust against AP
for every database D.

4.6 Deciding Template Robustness
Weare now ready to present our first algorithmic result: a polynomial-

time algorithm for template robustness. In Section 4.7, we demon-

strate how this algorithm can be applied to identify the lowest

robust allocation.

Outline of approach.We recall that template robustness is defined

over all possible database instances. Consequently, any approach

that considers all possible instantiations of transaction templates

and then applies the transaction robustness algorithm from [43]

is infeasible due to the infinite number of possible instantiations.

The algorithm proposed in this paper addresses this challenge us-

ing the following approach. We first introduce the concept of a

sequence of potentially conflicting quadruples (which can be seen

as an abstraction of a path in a serialization graph induced by the

templates). We then obtain some conditions that characterize when

this sequence can be converted to a counterexample schedule, that

is, a non-conflict-serializable schedule that is still allowed under

the given allocation. Furthermore, the schedule is of a very specific

form to which we refer as a split schedule and only requires the

existence of four different tuples per relation in the database. For

the decision problem it then suffices to check for the existence of a

sequence satisfying the above mentioned conditions, for which we

present a polynomial time algorithm.

Sequence of potentially conflicting quadruples. Let 𝜏𝑖 and 𝜏 𝑗
be two (not necessarily different) templates in P, and let 𝑜𝑖 and 𝑝 𝑗
be two operations in 𝜏𝑖 and 𝜏 𝑗 , respectively. We then say that 𝑜𝑖 is

potentially conflicting with 𝑝 𝑗 if 𝑜𝑖 and 𝑝 𝑗 are over variables of the

same type (i.e., type(𝑣𝑎𝑟 (𝑜𝑖 )) = type(𝑣𝑎𝑟 (𝑝 𝑗 ))) and at least one of

the following conditions holds:

• (potential ww-conflict) WriteSet(𝑜𝑖 ) ∩WriteSet(𝑝 𝑗 ) ≠ ∅;
• (potential wr-conflict) WriteSet(𝑜𝑖 ) ∩ ReadSet(𝑝 𝑗 ) ≠ ∅; or
• (potential rw-conflict) ReadSet(𝑜𝑖 ) ∩WriteSet(𝑝 𝑗 ) ≠ ∅.
In this case, we also say that the tuple (𝜏𝑖 , 𝑜𝑖 , 𝑝 𝑗 , 𝜏 𝑗 ) is a potentially
conflicting quadruple over P. Intuitively, a potentially conflicting

quadruple represents a pair of operations that leads to conflicting

operations whenever the corresponding variables are instantiated

with the same tuple by a variable assignment. We will sometimes

refer to the operation 𝑜 as an outgoing operation and the operation

𝑝 as an incoming operation in the quadruple (𝜏𝑖 , 𝑜, 𝑝, 𝜏 𝑗 ).
Towards our algorithm, we consider sequences of potentially con-

flicting quadruples C = (𝜏1, 𝑜1, 𝑝2, 𝜏2), (𝜏2, 𝑜2, 𝑝3, 𝜏3), . . . , (𝜏𝑛−1, 𝑜𝑛−1,
𝑝𝑛, 𝜏𝑛), (𝜏𝑛, 𝑜𝑛, 𝑝1, 𝜏1) over a set of templates P, where each tuple

is a potentially conflicting quadruple over P, and where multiple

occurrences of the same template in C are allowed (i.e., 𝜏𝑖 = 𝜏 𝑗 is

allowed, even when 𝑖 ≠ 𝑗 ). Notice in particular that C starts and

ends with the same template 𝜏1.

We will use a sequence C of potentially conflicting quadruples

to construct a non-conflict-serializable schedule, where a cycle

in the serialization graph is formed by the operations in C. For
this to work, care must be taken to ensure that the variables of

the operations occurring in a potentially conflicting quadruple are

assigned the same tuple in the database instance. Indeed, otherwise

there would be no dependency between these operations in the

schedule. Let 𝑜 and 𝑝 be two operations from templates 𝜏𝑖 and 𝜏 𝑗
respectively, where 𝜏𝑖 and 𝜏 𝑗 both occur in a sequence of potentially

conflicting quadruples C = (𝜏1, 𝑜1, 𝑝2, 𝜏2), . . . , (𝜏𝑛, 𝑜𝑛, 𝑝1, 𝜏1). We

then say that the variables 𝑣𝑎𝑟 (𝑜) and 𝑣𝑎𝑟 (𝑝) are connected in C if

• 𝑖 = 𝑗 and 𝑣𝑎𝑟 (𝑜) = 𝑣𝑎𝑟 (𝑝) (connected within the same template);
• there exists a quadruple (𝜏𝑖 , 𝑜, 𝑝, 𝜏 𝑗 ) or (𝜏 𝑗 , 𝑝, 𝑜, 𝜏𝑖 ) in C (connected

between templates); or
• there exists a variable X occurring in a template in C such that

both 𝑣𝑎𝑟 (𝑜) and 𝑣𝑎𝑟 (𝑝) are connected to X (transitivity).
Intuitively, connected variables must be assigned the same tuple

for the variable assignments to be valid while ensuring that the

desired dependencies are in place.

Mapping to a database with four elements per relation. Before
we define variable assignments 𝜇𝑖 for each template 𝜏𝑖 in C, we
first introduce a special database instance D4 over the considered

schema Rels containing four tuples per relation in Rels. We refer

to these tuples as t𝑅
1
, t𝑅

2
, t𝑅

3
, and t𝑅

4
for each 𝑅 ∈ Rels and use

D4 to construct the variable assignments 𝜇𝑖 . To this end, we first

define four type mappings 𝑐1, 𝑐2, 𝑐3 and 𝑐4 that map each relation

𝑅 ∈ Rels to a tuple of the corresponding type inD4. Formally, we set

𝑐𝑖 (𝑅) = t𝑅
𝑖
for each 𝑖 ∈ {1, 2, 3, 4} and 𝑅 ∈ Rels. For each template

𝜏𝑖 in C, we define the canonical variable assignments 𝜇𝑖 over D4 as

follows:

𝜇1 (X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐1 (type(X)) if X is connected to 𝑣𝑎𝑟 (𝑜1),
𝑐2 (type(X)) if X is connected to 𝑣𝑎𝑟 (𝑝1) and

not to 𝑣𝑎𝑟 (𝑜1),
𝑐4 (type(X)) otherwise.

For every 𝜇𝑖 with 1 < 𝑖 ≤ 𝑚,

𝜇𝑖 (X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐1 (type(X)) if X is connected to 𝑣𝑎𝑟 (𝑜1),
𝑐2 (type(X)) if X is connected to 𝑣𝑎𝑟 (𝑝1)

not to 𝑣𝑎𝑟 (𝑜1),
𝑐3 (type(X)) otherwise.

By construction, type mapping 𝑐4 is used exclusively for 𝜏1, whereas

𝑐3 is only used for 𝜏2, . . . , 𝜏𝑛 ; 𝑐1 is used for all variables connected

to 𝑣𝑎𝑟 (𝑜1); and, 𝑐2 is used for all variables connected to 𝑣𝑎𝑟 (𝑝1),
unless 𝑣𝑎𝑟 (𝑜1) and 𝑣𝑎𝑟 (𝑝1) are connected in C in which case 𝑐1 is

used as well as by transitivity variables connected to 𝑣𝑎𝑟 (𝑝1) are
also connected to 𝑣𝑎𝑟 (𝑜1).

2854



From a sequence to a split schedule. For a given sequence C
of potentially conflicting quadruples over a set of templates P, we

define the canonical set of transactions TC as the set obtained by

applying the canonical variable assignment 𝜇𝑖 to each template 𝜏𝑖

occurring in C. A template allocation AP
over P then induces a

canonical allocationAC over TC in a natural way: for each template

𝜏𝑖 in C, we allocate the corresponding transaction𝑇𝑖 = 𝜇𝑖 (𝜏𝑖 ) to the
isolation levelAC (𝑇𝑖 ) = AP (𝜏𝑖 ). By construction, TC is consistent

with P and D4, and AC is consistent with AP
and D4. For a

transaction 𝑇 and operation 𝑜 ∈ 𝑇, we denote by prefix𝑜 (𝑇) the
subsequence of 𝑇 containing all operations up to and including 𝑜 ,

and by postfix𝑜 (𝑇) the subsequence of 𝑇 containing all operations

strictly after 𝑜 . This notation extends to templates in a natural way.

Definition 4.9. Let P be a set of transaction templates,AP
a tem-

plate allocation over P, and C = (𝜏1, 𝑜1, 𝑝2, 𝜏2), . . . , (𝜏𝑛, 𝑜𝑛, 𝑝1, 𝜏1)
a sequence of potentially conflicting quadruples over P. A tem-
plate split schedule 𝑠 for P and AP induced by C is a multiversion

schedule over the canonical set of transactions TC of the form:

prefix𝜇1 (𝑜1 ) (𝜇1 (𝜏1)) · 𝜇2 (𝜏2) · . . . · 𝜇𝑛 (𝜏𝑛) · postfix𝜇1 (𝑜1 ) (𝜇1 (𝜏1)),
where

(1) 𝑠 is allowed under the canonical allocationAC induced byAP
;

(2) 𝜇𝑖 (𝑜𝑖 ) →𝑠 𝜇 𝑗 (𝑝 𝑗 ) for each quadruple (𝜏𝑖 , 𝑜𝑖 , 𝑝 𝑗 , 𝜏 𝑗 ) ∈ C; and
(3) there is no operation in 𝜇1 (𝜏1) conflicting with an operation in

any of the transactions 𝜇3 (𝜏3), . . . , 𝜇𝑛−1 (𝜏𝑛−1).

Notice that the cycle of dependencies between the operations in

C implies that such a schedule is not conflict-serializable. The next

proposition then readily follows:

Proposition 4.10. Let 𝑠 be a template split schedule for a set of
templates P and template allocation AP over P induced by a se-
quence of potentially conflicting quadruples C. Then, 𝑠 is non-conflict-
serializable and allowed under AP .

Conditions characterizing the existence of a counterexample
schedule.We introduce a set of conditions that must be satisfied

by a sequence of potentially conflicting quadruples for a template

split schedule to exist.

Proposition 4.11. Let P be a set of transaction templates, AP a
template allocation overP, andC = (𝜏1, 𝑜1, 𝑝2, 𝜏2), . . . , (𝜏𝑛, 𝑜𝑛, 𝑝1, 𝜏1)
a sequence of potentially conflicting quadruples over P. A template
split schedule for P and AP induced by C exists if and only if the
following conditions hold:
(1) there is no operation 𝑜 in 𝜏1 potentially conflicting with an op-

eration 𝑝 in any of the templates 𝜏3, . . . , 𝜏𝑛−1 with 𝑣𝑎𝑟 (𝑜) and
𝑣𝑎𝑟 (𝑝) connected in C;

(2) there is no write operation 𝑜 in prefix𝑜1 (𝜏1) potentially ww-
conflicting with a write operation 𝑝 in 𝜏2 or 𝜏𝑛 where 𝑣𝑎𝑟 (𝑜)
and 𝑣𝑎𝑟 (𝑝) are connected in C;

(3) if AP (𝜏1) ∈ {SI, SSI}, then there is no write operation 𝑜 in
postfix𝑜1 (𝜏1) potentially ww-conflicting with a write operation
𝑝 in 𝜏2 or 𝜏𝑛 with 𝑣𝑎𝑟 (𝑜) and 𝑣𝑎𝑟 (𝑝) connected in C;

(4) 𝑜1 is potentially rw-conflicting with 𝑝2;
(5) 𝑜𝑛 is potentially rw-conflicting with 𝑝1 or (AP (𝜏1) = RC and

𝑜1 <𝜏1 𝑝1);
(6) AP (𝜏1) ≠ SSI or AP (𝜏2) ≠ SSI or AP (𝜏𝑛) ≠ SSI;

(7) if AP (𝜏1) = SSI and AP (𝜏2) = SSI, then there is no operation
𝑜 in 𝜏1 potentially wr-conflicting with an operation 𝑝 in 𝜏2 with
𝑣𝑎𝑟 (𝑜) and 𝑣𝑎𝑟 (𝑝) connected in C; and

(8) if AP (𝜏1) = SSI and AP (𝜏𝑛) = SSI, then there is no operation
𝑜 in 𝜏1 potentially rw-conflicting with an operation 𝑝 in 𝜏𝑛 with
𝑣𝑎𝑟 (𝑜) and 𝑣𝑎𝑟 (𝑝) connected in C.

Intuitively, these conditions enforce the desired cycle of depen-

dencies, while ensuring that the schedule is allowed under the

allocation (cf. Definition 4.9). For example, conditions (1) and (2)

ensure that no dirty writes are present, and condition (3) addition-

ally avoids concurrent writes for transactions allocated to SI or SSI.

In the proof we argue that if a condition is not satisfied, then at

least one of the requirements of Definition 4.9 is not met.

Decision algorithm. The next proposition shows that it suffices

to find a split schedule to decide template robustness.

Proposition 4.12. Let P be a set of transaction templates and let
AP be an allocation for P. The following are equivalent:
• P is not robust against AP ;
• there exists a template split schedule 𝑠 for P and AP induced by

a sequence of potentially conflicting quadruples C over P.

It readily follows from Proposition 4.10 that a split schedule wit-

nesses non-robustness. The reverse direction is more involved, and

relies on the argument that we can extract a sequence C satisfying

the conditions in Proposition 4.11 from an arbitrary non-conflict-

serializable schedule allowed under the allocation.

Proposition 4.11 then offers a concrete way to find a split sched-

ule via sequences of potentially conflicting quadruples. However, a

naive enumeration is not feasible, as these sequences can have an

arbitrary length. Instead, we propose an algorithm that iterates over

all possible choices for operations 𝑜1 and 𝑝1 in a template 𝜏1 ∈ P,

constructing a graph referred to as pt-conflict-graph(𝑜1, 𝑝1, 𝜏1, ℎ,P)
with ℎ ∈ {1, 2}, which we will define next. Intuitively, the existence

of a sequence C satisfying the conditions in Proposition 4.11 cor-

responds to reachability between specific nodes in this graph, and

some additional conditions that the algorithm will verify separately.

Let P be a set of transaction templates, 𝑜1 and 𝑝1 two (not nec-

essarily different) operations occurring in a template 𝜏1 ∈ P, and

let ℎ ∈ {1, 2}. The directed graph pt-conflict-graph(𝑜1, 𝑝1, 𝜏1, ℎ,P)
has nodes of the form (𝜏, 𝑜, 𝑐, 𝑘) for all 𝜏 ∈ P, 𝑜 ∈ 𝜏 , 𝑐 ∈ {𝑂, 𝑃, 𝑁 }
and 𝑘 ∈ {in, out} satisfying the following conditions:
(1) if 𝑐 = 𝑂 , there is no operation 𝑜′

1
∈ 𝜏1 over the same variable

as 𝑜1 such that 𝑜′
1
is potentially conflicting with an operation

𝑜′ ∈ 𝜏 and 𝑣𝑎𝑟 (𝑜′) = 𝑣𝑎𝑟 (𝑜);
(2) if 𝑐 = 𝑃 , there is no operation 𝑜′

1
∈ 𝜏1 over the same variable

as 𝑝1 such that 𝑜′
1
is potentially conflicting with an operation

𝑜′ ∈ 𝜏 and 𝑣𝑎𝑟 (𝑜′) = 𝑣𝑎𝑟 (𝑜).
Intuitively, the value ℎ indicates whether 𝑣𝑎𝑟 (𝑜1) and 𝑣𝑎𝑟 (𝑝1) are
connected in the sequence C that will be constructed by the algo-

rithm, where ℎ = 1 indicates that they are connected and ℎ = 2

indicates that they are not. For each node (𝜏, 𝑜, 𝑐, 𝑘), the value of
𝑐 indicates that 𝑜 is connected to 𝑜1 (𝑐 = 𝑂), to 𝑝1 (𝑐 = 𝑃 ), or to

neither (𝑐 = 𝑁 ) in C. Lastly, the value of 𝑘 indicates whether 𝑜 is an

incoming or outgoing operation in a quadruple in C. The previous
two conditions then guarantee that the sequence C constructed by

the algorithm satisfies Condition 1 in Proposition 4.11.

2855



Algorithm 1: Deciding template robustness

Input :Set of transaction templates P and template

allocation AP
for P

Output :True iff P is robust against AP

1 foreach 𝑜1, 𝑝1 ∈ 𝜏1 with 𝜏1 ∈ P do
2 if 𝑣𝑎𝑟 (𝑜1) = 𝑣𝑎𝑟 (𝑝1) then 𝐻 := {1} else 𝐻 := {1, 2};
3 foreach ℎ ∈ 𝐻 do
4 𝐺 := pt-conflict-graph(𝑜1, 𝑝1, 𝜏1, ℎ,P);
5 𝑇𝐶 := transitive closure of 𝐺 ;

6 foreach 𝑜2, 𝑝2 ∈ 𝜏2; 𝑜𝑛, 𝑝𝑛 ∈ 𝜏𝑛 with 𝜏2, 𝜏𝑛 ∈ P do
7 if 𝑜1 not potentially conflicting with 𝑝2 or
8 𝑜𝑛 not potentially conflicting with 𝑝1 then
9 continue;

10 if 𝑣𝑎𝑟 (𝑜2) = 𝑣𝑎𝑟 (𝑝2) then 𝐶𝑜2 := {𝑂} else
𝐶𝑜2 := {𝑁, 𝑃};

11 if 𝑣𝑎𝑟 (𝑜𝑛) = 𝑣𝑎𝑟 (𝑝𝑛) then 𝐶𝑝𝑛 := {𝑃} else
𝐶𝑝𝑛 := {𝑁,𝑂};

12 foreach 𝑐𝑜2 ∈ 𝐶𝑜2, 𝑐𝑝𝑛 ∈ 𝐶𝑝𝑛 do
13 if Reachable(𝜏2, 𝑜2, 𝑝2, 𝑐𝑜2,
14 𝜏𝑛, 𝑜𝑛, 𝑝𝑛, 𝑐𝑝𝑛, ℎ,𝑇𝐶) and
15 ValidSchedule(𝜏1, 𝑜1, 𝑝1, 𝜏2, 𝑜2, 𝑝2, 𝑐𝑜2,
16 𝜏𝑛, 𝑜𝑛, 𝑝𝑛, 𝑐𝑝𝑛, ℎ,AP ) then
17 return False;

18 return True;

The graph pt-conflict-graph(𝑜1, 𝑝1, 𝜏1, ℎ,P) contains an edge

from a node (𝜏, 𝑜, 𝑐, 𝑘) to a node (𝜏 ′, 𝑜′, 𝑐′, 𝑘′) if and only if one

of the following conditions hold:

(3) 𝑘 = out, 𝑘′ = in, 𝑐 = 𝑐′, and 𝑜 is potentially conflicting with 𝑜′;
(4) 𝑘 = in, 𝑘′ = out, 𝜏 = 𝜏 ′, 𝑣𝑎𝑟 (𝑜) ≠ 𝑣𝑎𝑟 (𝑜′) and (𝑐, 𝑐′) ∈

{(𝑂, 𝑃), (𝑂, 𝑁 ), (𝑁, 𝑁 ), (𝑁, 𝑃)};
(5) 𝑘 = in, 𝑘′ = out, 𝜏 = 𝜏 ′, 𝑣𝑎𝑟 (𝑜) = 𝑣𝑎𝑟 (𝑜′) and 𝑐 = 𝑐′; or
(6) 𝑘 = in, 𝑘′ = out, 𝜏 = 𝜏 ′, 𝑣𝑎𝑟 (𝑜) = 𝑣𝑎𝑟 (𝑜′), 𝑐 = 𝑂 , 𝑐′ = 𝑃 and

ℎ = 1.

By construction, these edges propagate connectedness with respect

to 𝑣𝑎𝑟 (𝑜1) and 𝑣𝑎𝑟 (𝑝1) in the sequence C that will be constructed

by the algorithm. Condition (3) requires potentially conflicting op-

erations for each quadruple in C, while maintaining connectedness

(recall that the variables over which the operations in a quadruple

are defined are always connected). Within a template, connected-

ness with 𝑜1 or 𝑝1 only propagates if the variables are the same

(Condition (4) and Condition (5)). Condition (6) covers the spe-

cial case when we assume that 𝑣𝑎𝑟 (𝑜1) and 𝑣𝑎𝑟 (𝑝1) are connected
(i.e., ℎ = 1). In that case, every variable connected to 𝑣𝑎𝑟 (𝑜1) is
connected to 𝑣𝑎𝑟 (𝑝1) as well.

The template robustness algorithm is displayed as Algorithm 1.

The algorithm iterates over all possible choices for operations

in 𝜏1, 𝜏2 and 𝜏𝑛 , tracking connectedness of 𝑣𝑎𝑟 (𝑜2) and 𝑣𝑎𝑟 (𝑝𝑛)
with respect to 𝑣𝑎𝑟 (𝑜1) and 𝑣𝑎𝑟 (𝑝1). For each such choice, the

algorithm then verifies whether 𝑝𝑛 is reachable from 𝑜2 in the

pt-conflict-graph, thereby witnessing the existence of a sequence

of potentially conflicting quadruples satisfying Condition (1) of

Proposition 4.11, followed by the verification of the remaining con-

ditions. The implementation of Reachable and ValidSchedule are
straightforward and provided in detail in [38].

Algorithm 2: Computing the lowest robust allocation.

Input : Set of templates P
Output : Lowest robust template allocation AP

for P
1 for 𝜏 ∈ P do AP [𝜏] := SSI ;

2 for 𝜏 ∈ P do
3 if P is robust against AP [𝜏 ↦→ RC] then
4 AP

:= AP [𝜏 ↦→ RC];
5 else if P is robust against AP [𝜏 ↦→ SI] then
6 AP

:= AP [𝜏 ↦→ SI];
7 return AP

;

Theorem 4.13. Let P be a set of templates and AP a template
allocation for P. Algorithm 1 decides whether P is robust against
AP in time polynomial in the size of P.

4.7 Finding Lowest Robust Allocations
We first show that there always exists a unique lowest robust allo-

cation and then present a polynomial time algorithm to find it.

As discussed in Section 2, we assume a total order RC < SI < SSI

over the three considered isolation levels, expressing our prefer-

ence for lower isolation levels over higher ones. In the following,

let AP
1

and AP
2

be two template allocations for a set of templates

P. We write AP
1

≤ AP
2

if AP
1
(𝜏) ≤ AP

2
(𝜏) for all 𝜏 ∈ P. Fur-

thermore, we write AP
1

< AP
2

if AP
1

≤ AP
2

and there exists a

template 𝜏 ∈ P such that AP
1
(𝜏) < AP

2
(𝜏). For an isolation level

I, we denote by AP
1
[𝜏 ↦→ I] the template allocation for P where

AP
1
[𝜏 ↦→ I](𝜏) = I and AP

1
[𝜏 ↦→ I](𝜏 ′) = AP

1
(𝜏 ′) for all other

templates 𝜏 ′ ∈ P. That is, the template allocation derived from

AP
1

by setting the isolation level of 𝜏 to I, while leaving all other

templates unchanged.

Definition 4.14. Let P be a set of templates robust against a

template allocation AP
1

for P. Then, AP
1

is lowest if there is no
other allocation AP

2
for P such that AP

2
< AP

1
and P is robust

against AP
2
.

The next propositions extend some results for allocations for

transactions presented in [43] towards template allocations:

Proposition 4.15. Let P be a set of templates, and let AP
1

and
AP

2
be two template allocations for P.

(1) If AP
1

≤ AP
2

and P is robust against AP
1
, then P is robust

against AP
2
.

(2) If P is robust against AP
1

and AP
2
, then P is robust against

AP
2
[𝜏 ↦→ AP

1
(𝜏)] for every 𝜏 ∈ P.

Proposition 4.16. There exists a unique lowest template alloca-
tion for every set of templates P.

Algorithm 2 outlines the procedure for determining the unique

lowest robust allocation. Initially, all templates are assigned the

allocation SSI. The algorithm then iterates through each template,

evaluating whether the associated isolation level can be safely re-

duced using Algorithm 1 for the robustness test.

2856



Theorem 4.17. For a set of templates P, Algorithm 2 computes
the unique lowest robust template allocation in time polynomial in
the size of P.

5 RELATEDWORK
Shortly after the initial papers that defined serializability and stud-

ied its theoretical complexity [34], the IBM System R team pub-

lished an account of weaker isolation levels and locking-based

algorithms that achieved those by releasing shared locks early, or

even not taking them at all [23]. Much later, the multiversion Snap-

shot Isolation mechanism was described, and shown to allow some

non-serializable executions, despite avoiding all the anomalies men-

tioned in the SQL specification [7]. The serializable multiversion

SSI mechanism was proposed by Cahill [14] and was implemented

(with optimizations) in PostgreSQL [35].

There has been a variety of approaches used to define isolation

properties abstractly. For definitions and proofs that mechanisms

achieve serializability, theorywas developed especially by Bernstein

and Goodman, including for multiversion and even distributed pro-

tocols [10, 11]. For defining lower isolation, Gray et al. [23] and the

later SQL specification used the notion of anomalies, that is patterns

of read and write operations that occur in the system’s histories

and can lead to situations that do not happen in serial executions.

Berenson et al. [7] showed that this approach was inadequate to

deal with Snapshot Isolation, and proposed some alternatives that

were later seen as also inadequate. Adya developed a theory frame-

work for defining these isolation levels abstractly, based on graphs

showing dependency edges between operations[1, 2]. Much ongo-

ing work has built on Adya’s style. Cerone et al. [15] and Crooks

et al. [17] offer different approaches based on abstract state or a

“client-centric” definition style.

Shasha et al. introduced the approach of showing conditions

which can prove robustness, showing when serializable execution

is ensured despite using mechanisms that in general allow non-

serializable behavior (in this case, dividing a transaction into seg-

ments separated by COMMIT operations) [37]. Fekete et al. gave

a theory that could prove robustness for Snapshot Isolation [21].

This paper also introduced the technique of making an applica-

tion robust through modifying application code by “promoting” a

read to also do an identity update of the item. Alomari et al. ex-

amined performance comparisons of promotion choices and other

ways to modify application code for robustness [5]. Further work

in this line showed a sufficient condition to prove robustness for

Read Committed Isolation [4]. Recent research has introduced the

concept of split schedules, establishing necessary and sufficient

conditions for ensuring transaction robustness across various isola-

tion levels [28, 29, 39, 40, 43]. However, a proof technique utilizing

split-schedules does not always lead to an efficient algorithm: un-

der a lock-based semantics robustness testing can become coNP-

complete [27] or even undecidable [41]. Other work examines ro-

bustness within a framework that declaratively specifies different

isolation levels in a uniform manner [8, 15, 16], relying on the key

assumption of atomic visibility, which ensures that either all or

none of a transaction’s updates are visible to other transactions.

Fekete [20] introduced the allocation question: choosing the

concurrency control for each transaction separately from a set of

available isolation mechanisms; this paper dealt with choosing

either 2-phase locking, or snapshot isolation. Recently, other com-

binations of choices have been considered, such as combinations of

read committed, snapshot isolation and/or serializable snapshot iso-

lation [43]. In [44], the allocation problem is studied in the context

of view- rather than conflict-serializability, and is observed that for

the isolation levels of PostgreSQL, both problems coincide.

Beyond handling specific transactions that access explicitly iden-

tified items, practical scenarios often require working with appli-

cation code, where the accessed items may vary at runtime. This

variability can arise, for example, from values retrieved in earlier

queries or user-provided parameters. Various approaches have been

explored to represent such applications and reason about the differ-

ent explicit transactions they may generate during execution. The

concept of a transaction program was introduced in [21], while the

abstraction of a transaction template, which we adopt here, was

presented in [39]. Adding constraints such as foreign keys quickly

makes robustness undecidable [41], though restricted classes of

constraints still allow decidability. Vandevoort et al. [42] explored

a more expressive variant of transaction programs, offering a suf-

ficient condition for ensuring robustness under read committed

isolation. This approach, which relies on a formalism for transac-

tion programs to define potential workloads, stands in contrast

to methods like IsoDiff [22], where transactions are derived from

concrete execution traces.

6 CONCLUSIONS
We introduced a novel optimizationmethod, which can enhance per-

formance without requiring modifications to the database system’s

internals. An evaluation on SmallBank demonstrates that RePMILA
can achieve throughput comparable to the unsafe yet default RC

isolation level used by some platforms, while maintaining safety.

Additionally, it can double throughput compared to executing all

under the serializable isolation level.

Our approach builds on the theoretical framework for solving

the mixed allocation problem [43], which we extend in this paper

from fully specified transactions to transaction templates. However,

this extension brings several limitations that are not yet addressed

in the current formalization. First, it does not account for data

dependencies such as foreign keys which more accurately model

transactions that can effectively occur. Second, it lacks support for

transaction programs that include control structures (e.g., loops

and conditionals) as well as operations like inserts, deletes, and

predicate reads—scenarios that can trigger the phantom problem.

To address these challenges, we can build on ideas from [41, 42],

though substantial theoretical work is still needed—making this a

key direction for future research.

ACKNOWLEDGMENTS
This work was partly funded by FWO-grant G019921. Stijn Vansum-

meren was partially supported by the Bijzonder Onderzoeksfonds

(BOF) of Hasselt University (Belgium) under Grant No. BOF20ZAP02.

The resources and services used in this work were provided by the

VSC (Flemish Supercomputer Center), funded by the Research Foun-

dation - Flanders (FWO) and the Flemish Government.

2857



REFERENCES
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Imple-

mentations for Distributed Transactions. Ph.D. MIT, Cambridge, MA, USA.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation

Level Definitions. In ICDE. 67–78.
[3] MohammadAlomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The Cost

of Serializability on Platforms That Use Snapshot Isolation. In ICDE. 576–585.
[4] Mohammad Alomari and Alan Fekete. 2015. Serializable use of Read Committed

isolation level. In AICCSA. 1–8.
[5] Mohammad Alomari, Alan D. Fekete, and Uwe Röhm. 2014. Performance of pro-

gram modification techniques that ensure serializable executions with snapshot

isolation DBMS. Inf. Syst. 40 (2014), 84–101. https://doi.org/10.1016/J.IS.2013.10.

002

[6] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations.

PVLDB 7, 3 (2013), 181–192.

[7] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and

Patrick E. O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In SIGMOD.
1–10.

[8] Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency

Models with Atomic Visibility. In CONCUR. 7:1–7:15.
[9] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. 2015. Op-

timizing Optimistic Concurrency Control for Tree-Structured, Log-Structured

Databases. In SIGMOD. 1295–1309.
[10] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency

Control - Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (1983), 465–
483.

[11] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[12] Philip A. Bernstein, ColinW. Reid, and Sudipto Das. 2011. Hyder - A Transactional

Record Manager for Shared Flash. In CIDR. 9–20.
[13] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isolation for

snapshot databases. In SIGMOD. 729–738.
[14] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable isolation for

snapshot databases. ACM Trans. Database Syst. 34, 4 (2009), 20:1–20:42.
[15] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for

Transactional Consistency Models with Atomic Visibility. In CONCUR. 58–71.
[16] Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. J.ACM

65, 2 (2018), 1–41.

[17] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is

Believing: A Client-Centric Specification of Database Isolation. In PODC. 73–82.
[18] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s

memory-optimized OLTP engine. In SIGMOD. 1243–1254.
[19] Bailu Ding, Lucja Kot, Alan J. Demers, and Johannes Gehrke. 2015. Centiman:

elastic, high performance optimistic concurrency control by watermarking. In

SoCC. 262–275.
[20] Alan Fekete. 2005. Allocating isolation levels to transactions. In PODS. 206–215.
[21] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and

Dennis E. Shasha. 2005. Making snapshot isolation serializable. ACM Trans.
Database Syst. 30, 2 (2005), 492–528.

[22] Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020.

IsoDiff: Debugging Anomalies Caused by Weak Isolation. PVLDB 13, 11 (2020),

2773–2786.

[23] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. 1976.

Granularity of Locks and Degrees of Consistency in a Shared Data Base. In

Modelling in Data Base Management Systems, Proceeding of the IFIP Working Con-
ference on Modelling in Data Base Management Systems, Freudenstadt, Germany,
January 5-8, 1976, G. M. Nijssen (Ed.). North-Holland, 365–394.

[24] Jinwei Guo, Peng Cai, Jiahao Wang, Weining Qian, and Aoying Zhou. 2019.

Adaptive Optimistic Concurrency Control for HeterogeneousWorkloads. PVLDB
12, 5 (2019), 584–596.

[25] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.

Opportunities for Optimism in ContendedMain-MemoryMulticore Transactions.

PVLDB 13, 5 (2020), 629–642.

[26] Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low overhead

concurrency control for partitioned main memory databases. In SIGMOD. 603–
614.

[27] Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2020. De-

ciding Robustness for Lower SQL Isolation Levels. In PODS. 315–330.
[28] Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2022. Con-

currency control for database theorists. SIGMOD Rec. 51, 4 (2022), 6–17.
[29] Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2022. De-

ciding Robustness for Lower SQL Isolation Levels. ACM Trans. Database Syst. 47,
4 (2022), 13:1–13:41. https://doi.org/10.1145/3561049

[30] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.

ERMIA: Fast Memory-Optimized Database System for HeterogeneousWorkloads.

In SIGMOD. 1675–1687.
[31] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298–309.

[32] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:

Dependably Fast Multi-Core In-Memory Transactions. In SIGMOD. 21–35.
[33] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

SIGMOD. 677–689.
[34] Christos H. Papadimitriou. 1979. The serializability of concurrent database

updates. J.ACM 26, 4 (1979), 631–653.

[35] Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in

PostgreSQL. PVLDB 5, 12 (2012), 1850–1861.

[36] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Accelerating

Analytical Processing in MVCC using Fine-Granular High-Frequency Virtual

Snapshotting. In SIGMOD. 245–258.
[37] Dennis E. Shasha, François Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-

action Chopping: Algorithms and Performance Studies. ACM Trans. Database
Syst. 20, 3 (1995), 325–363.

[38] Brecht Vandevoort, Alan Fekete, Bas Ketsman, Frank Neven, and Stijn Van-

summeren. 2025. Using Read Promotion and Mixed Isolation Levels for Perfor-

mant Yet Serializable Execution of Transaction Programs (full version). (2025).

http://arxiv.org/abs/2501.18377.

[39] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2021. Ro-

bustness against Read Committed for Transaction Templates. PVLDB 14, 11

(2021), 2141–2153.

[40] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-

bustness Against Read Committed: A Free Transactional Lunch. In PODS. 1–14.
[41] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-

bustness Against Read Committed for Transaction Templates with Functional

Constraints. In ICDT. 16:1–16:17.
[42] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2023. De-

tecting Robustness against MVRC for Transaction Programs with Predicate

Reads. In EDBT. 565–577.
[43] Brecht Vandevoort, Bas Ketsman, and Frank Neven. 2023. Allocating Isolation

Levels to Transactions in a Multiversion Setting. In PODS. 69–78.
[44] Brecht Vandevoort, Bas Ketsman, and Frank Neven. 2024. When View- and

Conflict-Robustness Coincide for Multiversion Concurrency Control. Proc. ACM
Manag. Data 2, 2 (2024), 91.

[45] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control

with One Thousand Cores. PVLDB 8, 3 (2014), 209–220.

2858


