N)
)
Check for
updates

Using Read Promotion and Mixed Isolation Levels for Performant
Yet Serializable Execution of Transaction Programs

Brecht Vandevoort
UHasselt, Data Science Institute
brecht.vandevoort@uhasselt.be

Frank Neven
UHasselt, Data Science Institute
frank.neven@ubhasselt.be

ABSTRACT

We propose a theory that can determine the lowest isolation level
that can be allocated to each transaction program in an application
in a mixed-isolation-level setting, to guarantee that all executions
will be serializable and thus preserve all integrity constraints, even
those that are not explicitly declared. This extends prior work ap-
plied to completely known transactions, to deal with the realistic
situation where transactions are generated by running programs
with parameters that are not known in advance. Using our theory,
we propose an optimization method that allows for high through-
put while ensuring that all executions are serializable. Our method
is based on searching for application code modifications that are
semantics-preserving while improving the isolation level allocation.
We illustrate our approach to the SmallBank benchmark.

PVLDB Reference Format:

Brecht Vandevoort, Alan Fekete, Bas Ketsman, Frank Neven, and Stijn
Vansummeren. Using Read Promotion and Mixed Isolation Levels for
Performant Yet Serializable Execution of Transaction Programs. PVLDB,
18(9): 2846 - 2858, 2025.

d0i:10.14778/3746405.3746412

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://tinyurl.com/repmila.

1 INTRODUCTION

Transaction management is a core capability for database manage-
ment systems. While research continues to find ways to improve
performance, especially utilising novel hardware [9, 12, 18, 19, 24—
26, 30-33, 36], the bulk of application software runs on popular
platforms whose concurrency control mechanisms are decades old
and are known to suffer from bottlenecks that make serializable
transactions perform poorly under contention [39, 45]. Under the
narrative that many applications have domain-specific reasons why
they do not need to be perfectly serializable, these platforms offer
the application programmer a choice of isolation levels. As such,
the programmer can select a weaker isolation level, such as the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746412

Alan Fekete
University of Sydney
alan.fekete@sydney.edu.au

2846

Bas Ketsman
Vrije Universiteit Brussel
bas.ketsman@vub.be

Stijn Vansummeren
UHasselt, Data Science Institute
stijn.vansummeren@uhasselt.be

platform’s default READ COMMITTED level [6], to improve per-
formance when apt. However, there is not yet a well-grounded
way for the programmer to decide when a decision to accept non-
serializable isolation is justified.

Robustness of transactions to guarantee serializability. Recent theoret-
ical studies have provided algorithms that can analyze the collection
of transactions occurring in an application, and determine which
isolation level to use for each of them in a mixed-isolation-level set-
ting, while still guaranteeing the robustness of the application [43].
That is, every possible execution of the application’s transactions
will in fact be serializable, even though several of the transactions
do not run with serializable isolation level. This task, dubbed the
allocation problem [20], requires some characterisation of the con-
currency control mechanism used by the platform. In particular, the
conclusions on a platform using traditional shared and exclusive
locks operating on single-version data will differ from the conclu-
sions for multiversion systems that allow reading versions that
have been overwritten (and therefore do not block reads) [20, 29].
The current theory for solving the allocation problem, however,
assumes that all the transactions are completely known at allo-
cation time, including all the items that will be read and written.
This is not realistic: in practice applications execute programs with
parameters that are provided at run-time, after allocation. For exam-
ple, a student enrollment system will have a program that enrolls
a student to a particular course. The concrete student id and the
course code are only provided by the end-user when the program
is executed.

Robustness of transaction templates. The key technical advance of
this paper, is to provide an algorithm that can determine which
isolation level can be allocated to each of a set of templates, where a
template is an abstraction that aims to capture a transaction whose
read and write set is determined based on some variables. The al-
gorithm returns an allocation that is guaranteed to be robust on
a platform such as PostgreSQL which offers multiversion concur-
rency control mechanisms. That is, every execution of any set of
transactions that instantiate the templates with arbitrary values,
will be serializable. Our algorithm, therefore, supports any number
of instantiations per template while maintaining polynomial time
in the template size. Unlike earlier work [43], which assumes a fixed
set of concrete transactions and scales with their size, our execution
time is independent of the number of concrete instantiations.

The template abstraction we use also has some restrictions. It
assumes a fixed set of read-only attributes that cannot be modified
and are used to select tuples for updates. A common example of

such attributes are primary keys. This assumption prevents predi-
cate reads that could cause non-serializable executions not covered
by our analysis. While it excludes workloads like TPC-C which
involve predicate reads, in many cases this is not a major limitation
as the inability to update primary keys is not a significant limitation,
because keys are typically assigned once and remain unchanged
due to regulatory or data integrity requirements. Furthermore, as
the template abstraction loses some of the constraints in the trans-
action code, our analysis is conservative but safe: we may miss a
desirable allocation which is robust, but the allocation found by our
algorithm does indeed ensure that all executions are serializable.
However, within the restrictions of the template abstraction, we
can prove optimality of the allocation we identify, in the sense that
we find the allocation that gives each template the lowest isolation
level possible (i.e., prioritizing Read Committed over Snapshot Iso-
lation, and Snapshot Isolation over the serializable level), such that
any code that fits the template will be robust. While our template
abstraction omits branches and loops for simplicity, we could han-
dle them by treating each execution path as a separate template
unfolding. Branches and bounded loops unfold easily, and for un-
bounded loops, it is sufficient to show that any non-robust behavior
has a counterexample with loops unfolded only a fixed number of
times (cf. [42]). The current paper does not consider depedencies
like foreign keys. It is known that, in general, these dependencies
can render the robustness property undecidable [41].

Optimization via read promotion and mixed-isolation level allocation.
Our allocation algorithm can be used to find ways to deliver an
application with the correctness guarantees of serializable execu-
tion (so all state invariants are preserved, including those which are
not explicitly declared in the database), and yet better performance
than when each transaction is executed at the serializable level.
We propose to consider a space of different ways to modify the
application code (while not changing its semantics), by “promoting”
some read operations [21] so they are treated as identity updates,
and thus set exclusive locks. For each of these different promotion
choices, we use our allocation algorithm to determine the lowest
isolation level. For each promotion choice and determined robust
allocation we can then empirically measure the performance ob-
tained; the promotion choice with best performance of its robust
allocation, is how the application should be coded. We refer to this
optimization approach as read promotion and mixed isolation level
allocation (RePMILA).

We illustrate RePMILA for the well-known benchmark Small-
Bank [3], and explore the performance obtained on PostgreSQL
under a range of workload parameters. We find that some promotion
choices have a robust allocation whose throughput is competitive
with the throughput of the unmodified application running with
all transactions using Read Committed. Unlike the latter, however,
the robust allocation still guarantees serializable execution. Fur-
thermore, the throughput under robust allocation can be twice
the throughput achieved by running all transactions under the
platform’s serializable isolation level.

Contributions. The contributions of this paper are varied, with both
theory and empirical results, and we propose guidance for practi-
tioners. As theory, we offer a proof technique that allows demon-
strating robustness for an allocation of multi-version isolation levels

2847

for transaction templates, and a polynomial-time algorithm that
generates a unique lowest robust allocation. We give an experimen-
tal demonstration for the SmallBank application mix, that some
promotion choices allow performance of a robust allocation, close
to that of the default non-robust allocation (and much better than
the naive use of Serializable isolation for all transactions). We con-
sider that in this context RePMILA can be useful for practitioners as
they seek performance while guaranteeing serializable execution.

Organization. The remainder of the paper is structured as follows.
In Section 2 we illustrate RePMILA applied to SmallBank, demon-
strating how each program is abstracted as a template, how the
allocation algorithm determines the allocation of isolation levels
for the templates, how the various promotion choices are gener-
ated, and what allocation is generated for each promotion choice.
In Section 3 we show the measured performance for the different
promotion choices, and compare with baselines where all programs
are run with Serializable isolation level, and also where all are run
at default Read Committed isolation (and thus undeclared data in-
variants can be violated). Section 4 presents the theory and includes
the details of the allocation algorithm. We discuss related work in
Section 5. Finally, Section 6 looks at implications and limitations of
this work, and identifies some further research directions.

A full version of this paper is available as [38], containing all
proofs, additional examples, further intuition regarding formaliza-
tion, as well as the SQL code for the SmallBank benchmark.

2 READ PROMOTION AND MIXED ISOLATION
LEVEL ALLOCATION (REPMILA)

To explain our approach, we work through the way it is applied to
the well-known SmallBank benchmark application [3]. While it is
not a real-world example, it has enough features to illustrate how
we can identify a high-performing, robust allocation, and yet it is
simple enough to fit in a conference paper.

SmallBank benchmark. The SmallBank [3] schema consists of the ta-
bles Account(Name, CustomerID), Savings(CustomerID, Balance),
and Checking(CustomerID, Balance) (key attributes are underlined).
The Account table associates customer names with IDs. The other
tables contain the balance (numeric value) of the savings and check-
ing accounts of customers identified by their ID. The application
code interacts with the database via transaction programs:
Balance(N) returns the total balance (savings and checking) for
a customer with name N.

DepositChecking(N,V) makes a deposit of amount V in the check-
ing account of the customer with name N (see Figure 1).
TransactSavings(N,V) makes a deposit or withdrawal V on the
savings account of the customer with name N.
Amalgamate(N7,N3) transfers all the funds from customer Nj to
customer Nj.

Finally, WriteCheck(N,V) writes a check V against the account
of the customer with name N, penalizing if overdrawing.

Transaction templates. We abstract transaction programs via trans-
actions templates as illustrated in Figure 2. A transaction template
consists of a sequence of read (R), write (W), and update (U) op-
erations. Each operation accesses exactly one tuple. For instance,
R[X : Account{N, C}}] indicates that a read operation is performed

DepositChecking(N,V):
SELECT CustomerId INTO :X FROM Account WHERE Name=:N;
UPDATE Checking SET Balance = Balance+:V
WHERE CustomerId=:X;
COMMIT;

Figure 1: SQL code for DepositChecking.

Amalgamate:
R[Xq : Account{N, C}]

Balance:
R[X : Account{N, C}]

R[Y : Savings{C, B}] R[Xz : Account{N, C}]
R[Z : Checking{C, B}] U[Y; : Savings{C, B}{B}]
DepositChecking: U[Z; : Checking{C, B}{B}]
R[X : Account{N, C}] U[Z; : Checking{C, B}{B}]
U[Z : Checking{C, B}{B}] WriteCheck:
R[X : Account{N, C}]

TransactSavings:

R[X : Account{N, C}]
U[Y : Savings{C, B}{B}]

: Savings{C, B}]
: Checking{C, B}]
: Checking{C, B} {B}]

Figure 2: Transaction templates for SmallBank.

to a tuple X in relation Account on the attributes Name and Cus-
tomerID. We abbreviate the names of attributes by their first let-
ter to save space. The set {N,C} is the read set of the read op-
eration. Similarly, W and U refer to write and update operations
to tuples of a specific relation. Write operations have an associ-
ated write set while update operations contain a read set followed
by a write set: e.g., U[Z : DepositChecking{C,B}{B}}] first reads
the CustomerID and Balance of tuple Z and then writes to the at-
tribute Balance. A U-operation is an atomic update that first reads
the tuple and then writes to it. Templates serve as abstractions of
transaction programs and represent an infinite number of possible
workloads. For instance, let X, y, z (and their primed versions) be
concrete database objects serving as interpretations of the vari-
ables X, Y, and Z. Then, disregarding attribute sets, {R[x]R[y]R[z]
U[z],R[X']R[y’1R[2’]U[Z'],R[x]U[z]} is a workload consistent
with the SmallBank templates as it contains two instantiations
of WriteCheck and one instantiation of DepositChecking. We re-
mark that {R[x]R[y]R[z]U[z’]} with z # z’ is not a valid work-
load as the two final operations in WriteCheck should be on the
same object as required by the formalization. Typed variables effec-
tively enforce domain constraints as we assume that variables that
range over tuples of different relations can never be instantiated
by the same value. For instance, in the transaction template for
DepositChecking in Figure 2, X and Z can not be interpreted to be
the same object.

Templates do not capture all constraints in the original pro-
grams, and may therefore overapproximate the transactions that
can occur when the actual programs are executed. For instance, the
workload {R[t]U[q],R[t]U[q']} is consistent with the SmallBank
templates (two instantiations of DepositChecking), but cannot oc-
cur in practice under the assumption that a customer can only have
one checking account.

Lowest robust allocation. We are interested in determining the lowest
isolation level for each separate template such that every execution
that arises under the assigned levels will in fact be serializable. We
refer to such as an allocation as robust. We consider the isolation
levels of PostgreSQL: Read Committed (RC), Snapshot Isolation
(SI), and Serializable Snapshot Isolation (SSI) where we rank them
from lower to higher as RC < SI < SSI, under the assumption that
throughput increases when isolation levels are lowered. The alloca-
tion algorithm that we describe in Section 4 finds that the allocation
that maps DepositChecking to RC and all other templates to SSI is

2848

Promotion Lowest robust allocation
choices Bal DC TS Am WC
g; . Iiilocnﬁztlon SSI RC SSI SSI SSI (A)
8 Balial:\;'cc SSI SSI SSI SSI SSI (B)
®) Bal: C
6 WC: S
57; Bal: C, WC: S SI RC RC RC SI (C)
(8) Bal: C, WC: C
9 WC: S,C
(1(0; Bal:C we:sc | 8 RC RCRC RC (D)
(11) Bal: S,C
12 Bal: S, WC: S
213; Bal:sC wc:s | R RC RCRC SI (B)
(14) Bal:S,.C,WC: C
15 Bal: S, WC: S,C
216; Bal: S.C,we: sc | R¢ RC RCRCRC (F)

Table 1: Lowest robust allocations for each promotion choices
over the SmallBank benchmark, grouped by allocation. Pro-
motion choices and allocations are labeled for easy reference.

robust, and is in fact optimal in the sense that no isolation level can
be lowered without breaking robustness.

Read promotion choices. None of the considered isolation levels al-
low dirty writes. This forces a transaction that wants to overwrite
a change made by an earlier transaction, to wait until the earlier
transaction either commits or aborts. Therefore, if we promote a
read operation to an update (that is, a read operation that writes
back the observed value), the semantics of the transaction remains
unaffected but the lowest robust allocation might differ. Ignoring
the read operations over the read-only Account table, the Small-
Bank benchmark contains 4 read operations over the Savings and
Checking relations that are candidates for promotion, resulting in
16 possible promotion choices. For each promotion choice, we run
our algorithm to detect the lowest robust allocation. The resulting
allocations are summarized in Table 1. We denote each promotion
choice by the read operations that are promoted. For example, ‘Bal:
S, WC: C’ promotes the read operation over the Savings relation
in the Balance program, and the read operation over the Checking
relation in the WriteCheck program. For convenience, the promo-
tion choices are grouped by their lowest robust allocation. Notice
that without promotion, as mentioned previously, only one out of
the five programs (nl., DepositChecking) can be executed under
an isolation level lower that SSI without giving up serializability.
Furthermore, introducing a few promoted reads quickly leads to
robust allocations where almost all programs are being executed
under RC. However, the best promotion choice is not necessarily
the one that allows the most programs to run under RC, for the
simple reason that the newly introduced writes could have a nega-
tive impact on the overall performance. Throughput experiments
are therefore needed to determine the best promotion choices, as
we discuss in the next section.

3 EVALUATING REPMILA OVER SMALLBANK

Here we show experimentally the performance achieved by our
approach when applied to the SmallBank benchmark.

Original templates
(no promotion):
RC (upper bound, not robust)
—=-- S8I (lower bound)
lowest robust allocation
without promotion

80000

70000

60000

»
r\'g Best performing
© 50000 promotion choice:
bt —— (9
2 40000
=) Lowest robust allocation
g 30000 for promotion choices:
=
= - ®
20000 — ®
— (©
10000 — O
E)

(F)
0.2 04 0.6

Hotspot probability

0.8

Figure 3: Throughput for the promotion choices mentioned
in Table 1 for various hotspot probabilities.

Experimental setup. All experiments use PostgreSQL 16.2 as the
database engine, running on a single machine with two 18-core
Xeon Gold 6240 CPUs (2.6 GHz), 192 GB RAM and 200GB local SSD
storage. A separate machine is used to query the database, with
100 concurrent clients executing randomly sampled programs from
the SmallBank benchmark. If the database aborts a transaction,
the client immediately retries the same program with the same
parameters until it successfully commits. Each experiment runs
for 60 seconds and is repeated 5 times to measure the average
throughput. The database is populated with 18000 accounts. A
small subset of 20 accounts act as a hotspot that will be accessed
more frequently. The level of contention is varied by changing the
probability of sampling a hotspot account during execution. Within
the hotspot, uniform sampling is used to select an account. Unless
otherwise specified, each of the five SmallBank programs has an
equal probability of being sampled by the clients. Throughput is
indicated in number of transactions per second. We implemented
the allocation algorithm described in Section 4 in Python. Verifying
whether an allocation is robust takes only a few seconds, whereas
computing the lowest allocation for a specific promotion choice
requires less than a minute. This runtime is acceptable since the
computation is performed only once and can be executed offline.

3.1 RePMILA improves performance

Figure 3 displays the throughput for the different promotion choices
and associated lowest robust allocations mentioned in Table 1 for
increasing levels of contention. Promotion choices that result in
the same lowest robust allocation are depicted in the same color
and are not individually labeled to avoid adding complexity to the
figure. While not all lines are easily discernible, we do see that
the throughput for almost all promotion choices is higher than
executing the unmodified templates under SSI. The exception is
the bottom line indicating that these choices perform worse than
executing the original unmodified programs under SSI. This is
due to the introduction of additional writes, which do not provide
allocation benefits as all templates still require the use of SSI.
None of the promotions can match the throughput levels that can
be reached by the nonrobust allocation that executes all unmodified
templates at RC. Nevertheless, the most performant promotion
choice ‘WC: S,C’ is a near match. Here, no reads are promoted in

2849

80000 Overlapping top lines:
RC (not robust)
lowest robust allocation (D)
60000

Higher robust allocations:
Bal: SSI, DC: SSI, TS: SSI, Am: SSI, WC: SSI
Bal: SSI, DC: RC, TS: RC, Am: RC, WC: RC
Bal: SI, DC: SI, TS: SI, Am: SI, WC: SI
Bal: SI, DC: SI, TS: RC, Am: RC, WC: RC
Bal: S, DC: RC, TS: SI, Am: RC, WC: RC
Bal: SI, DC: RC, TS: RC, Am: S|, WC: RC
Bal: SI, DC: RC, TS: RC, Am: RC, WC: S|

40000

Throughput (trans/s)

20000

0.2 0.4 0.6

Hotspot probability

0.8

Figure 4: Throughput for promotion choice (9) ‘WC: S,C’ un-
der its lowest and higher allocations.

Promotion choices:
— an
(12)
— (13
— (14)

60000

40000

20000

Throughput (trans/s)

0.1 0.2 03 0.4 05 0.6

Hotspot probability

0.7 0.8 0.9

Figure 5: Throughput for different promotion choices sharing
the same lowest robust allocation (E), i.e., the one that maps
WriteCheck to SI and all the others to RC.

Balance and the lowest robust allocation assigns SI to Balance and
RC to the others. In our experiments we observe that in this case
there are no aborts due to concurrent writes.

We point out that the lowest robust allocation for the unmodified
templates allows little to no improvement compared to running
everything under SSI, especially when contention increases. We
thus conclude that read promotions can increase throughput and
that considering various promotion choices is helpful. In general,
read promotions that allow to allocate RC tend to outperform those
requiring SI or SSI. However, there are some notable exceptions:
for example, ‘WC: S,C’ still requires SI for Balance, but it outper-
forms all promotion choices that only require RC. Similarly, there
are promotion choices (which are not discernible in the figure as
individual lines are not labeled) where the lowest allocation assigns
both Balance and WriteCheck to SI, yet these choices still outper-
form specific promotion choices that allocate only WriteCheck to
SI, and RC to all others.

3.2 Lowest allocation outperforms higher ones

We defined a robust allocation as lowest when no isolation level
can be reduced without compromising robustness, following the
ordering RC < SI < SSI. As shown in Section 4, there always exists
a unique lowest allocation with respect to this order. We verify that
these unique lowest allocation consistently outperforms higher
allocations, allowing us to focus solely on them. To this end, we
examine the most performant promotion choice, ‘WC: S,C’, and
compare its lowest robust allocation—where Balance is assigned
SI and all other templates receive RC—against all alternative al-
locations that raise the isolation level for at least one of the five
programs. Figure 4 demonstrates that the lowest robust allocation
indeed outperforms all higher allocations. Additionally, we observe
that its throughput matches that of the nonrobust allocation for
‘WC: S,C’, where all templates run under RC.

Promotion choices:

100000 PP o)

Il -+- (6

= s —e-)

80000 > —%- (1)

& > (15)

3 “— (16)

£ 60000 o (10)

= — (14)

£ = (11)
(=]

3 40000 = 6

£ o (8)

o= (7)

v (12)

20000 *— (13)

 (3)

< (@)

02 03 0.4 0.5 06 0.7

Balance program sampling probability

0.8

Figure 6: Throughput for different promotion choices vary-
ing the probability of executing Balance for a fixed hotspot
probability of 0.5. Promotion choices that do not promote a
read in Balance are in blue. Those that do are in

3.3 Promotion choices within the same lowest
robust allocation impact performance

As illustrated by Table 1, distinct promotion choices may lead to
the same lowest robust allocation. For example, the four promotion
choices Bal: S,C’°, Bal: S, WC: S’, ‘Bal: S,C, WC: S’ and ‘Bal: S,C,
WC: C’ all result in the same lowest robust allocation that maps
WriteCheck to SI and all the others to RC. Since these promotion
choices promote different reads, an identical lowest allocation does
not necessarily lead to identical performance even under lower
levels of contention, as is shown in Figure 5. There, we see that
‘Bal: S,C” and ‘Bal: S,C, WC: C’ greatly outperform the others. This
implies, in particular, that an experimental exploration of promotion
choices cannot be limited to just a single promotion choice per
unique robust allocation. A closer inspection reveals that the read
promotions of the top performer, ‘Bal: S,C, WC: C’, form a strict
superset of those of the next-best contender, ‘Bal: S,C’. In this case,
the slight performance gain is obtained by taking an earlier lock
due to the newly promoted read. Indeed, the promoted read in
WriteCheck is over a tuple written to by a later write in the same
transaction. Since the lock is taken earlier and since WriteCheck
uses SI, potentially concurrent writes are detected earlier, thereby
avoiding the amount of work wasted before an abort.

3.4 Impact of template frequency

We next illustrate that finding the best performing promotion
choices is influenced as well by the template frequency. The previ-
ous experiments assumed uniform sampling over the five possible
SmallBank programs. Since only Balance is read-only (assuming
no promoted reads), this corresponds to a workload where only
20% of the transactions is read-only. To further explore the impact
of promoting reads in read-only transactions, Figure 6 shows the
throughput for different promotion choices when the probability of
executing Balance is varied between 0.2 and 0.8, assuming a fixed
hotspot probability of 0.5. The remaining four templates are sam-
pled with equal probability. Overall, we see that promotion choices
that do not promote a read in Balance start to outperform those
that do when the probability of executing Balance increases. This
observation is most pronounced for the promotion choice ‘WC: S,

2850

which is among the worst performers when the probability of exe-
cuting Balance is low, but becomes the second best performer when
the probability is high, vastly outperforming all other promotion
choices. Closer inspection reveals that in the latter case even the
original programs (i.e., ‘no promotion’) outperform all promotion
choices that promote a read in Balance.

3.5 Discussion

The SmallBank exploration in this section validates RePMILA as an
effective optimization method, demonstrating that combining read
promotion with the lowest robust allocation can double throughput
compared to executing all transactions under SSI. Furthermore,
it achieves throughput comparable to the unsafe yet default RC
isolation level used by some platforms, all while preserving safety.

Since our performance gains stem from a tradeoff between re-
duced concurrency and fewer aborts inherent to the studied iso-
lation levels, we expect our results to generalize to other systems
supporting these levels. While the analysis in Table 1 should hold,
the optimal promotion choice may vary (cf. Alomari et al.[3] for
cross-system comparisons).

In theory, the number of promotion choices grows exponentially
with the total number of read operations in templates. However, the
number of required throughput experiments can be significantly
reduced by the following guidelines: (i) ignoring reads from read-
only tables (e.g., Accounts in SmallBank); (ii) avoiding promotion
in read-only templates, particularly when they frequently appear
in workloads (e.g., Balance); and, (iii) when multiple promotion
choices yield the same lowest allocation, prioritizing those that
promote reads occurring earlier in a template.

4 ALLOCATION ALGORITHM

We start by introducing all necessary terminology and borrow no-
tation from [39, 43] along with some examples that we adapt and
modify to suit our context. In particular, we discuss transactions,
schedules, conflict-serializability, and isolation levels in Section 4.1-
4.3. In Section 4.4-4.5 we introduce templates and their robustness.
Finally, we present an algorithm for template robustness in Sec-
tion 4.6 and an algorithm for finding the lowest robust allocation
in Section 4.7.

4.1 Transactions and Schedules

A relational schemais a set Rels of relation names. For each R € Rels,
Attr(R) is the finite set of associated attribute names and we fix
an infinite set Objy of abstract objects called tuples. We assume
that Objp N Objg = 0 for all R,S € Rels with R # S. We denote
by Obj the set ([JreRels Objg of all possible tuples. We require that
for every t € Obj there is a unique relation R € Rels such that
t € Objp. We then say that t is of type R and denote the latter
by type(t) = R. A database D over schema Rels assigns to every
relation name R € Rels a finite set R® C Objp.

For a tuple t € Obj, we distinguish three operations R[t], W[t],
and U[t] on t, denoting that t is read, written, or updated, respec-
tively. We say that the operation is on the tuple t. Here, U[t] is
an atomic update and should be viewed as an atomic sequence of
aread of t followed by a write to t. To differentiate between the
cases where we want to refer to an actual operation (R, W, or U)

or to operations with a specific property (read or write), we em-
ploy the following terminology. A read operation is an R[t] or a
U[t], and a write operation is a W[t] or a U[t]. Furthermore, an
R-operation is an R[t], a W-operation is a W[t], and a U-operation
is a U[t]. We also assume a special commit operation denoted C.
To every operation o on a tuple of type R, we associate the set of
attributes ReadSet(0) C Attr(R) and WriteSet(o) C Attr(R) con-
taining, respectively, the set of attributes that o reads from and
writes to. When o is an R-operation then WriteSet(o0) = 0. Similarly,
when o is a W-operation then ReadSet(o) = 0.

A transaction T is a sequence of read and write operations fol-
lowed by a commit. Formally, we model a transaction as a linear
order (T, <7), where T is the set of (read, write and commit) opera-
tions occurring in the transaction and <r encodes the ordering of
the operations. As usual, we use <t to denote the strict ordering.
We denote the first operation in T by first(T).

When considering a set 7~ of transactions, we assume that every
transaction in the set has a unique id i and write T; to make this id
explicit. Similarly, to distinguish the operations of different trans-
actions, we add this id as a subscript to the operation. That is, we
write W;[t], Ri[t], and U;[t] to denote a W[t], R[t], and U[t] oc-
curring in transaction T;; similarly C; denotes the commit operation
in transaction T;. This convention is consistent with the literature
(see, e.g. [7, 20]). To avoid ambiguity of notation, we assume that a
transaction performs at most one write, one read, and one update
per tuple. The latter is a common assumption (see, e.g. [20]). All
our results carry over to the more general setting in which multiple
writes and reads per tuple are allowed.

A (multiversion) schedule s over a set 7 of transactions is a tuple
(Os, <s, <s,vs) where
e O is the set containing all operations of transactions in 7~ as

well as a special operation op, conceptually writing the initial

versions of all existing tuples,

e < encodes the ordering of these operations,

< is a version order providing for each tuple t a total order over
all write operations on t occurring in s, and,

vs is a version function mapping each read operation a in s to
either op, or to a write operation different from a in s (recall that
a write operation is either a W[x] or a U[x]).

We require that op, <; a for every operation a € Os, op, <s a
for every write operation a € Og, and that a <7 b implies a < b
for every T € 7 and every a,b € T. We furthermore require that
for every read operation a, v5(a) <s a and, if vs(a) # op,, then the
operation vs(a) is on the same tuple as a. Intuitively, op, indicates
the start of the schedule, the order of operations in s is consistent
with the order of operations in every transaction T € 7, and the
version function maps each read operation a to the operation that
wrote the version observed by a. If v5(a) is op, then a observes
the initial version of this tuple. The version order < represents
the order in which different versions of a tuple are installed in the
database. For a pair of write operations on the same tuple, this
version order does not necessarily coincide with <;. E.g., under RC
and SI the version order is based on the commit order instead.

Figure 7 depicts an example of a schedule. There, the read opera-
tions on t in T; and Ty both read the initial version of t instead of
the version written but not yet committed by T». Furthermore, the

2851

read operation Rz[v] in T, reads the initial version of v instead of
the version written by T3, even though T3 commits before Rz [Vv].

We say that a schedule s is a single version schedule if < is
compatible with <s and every read operation always reads the
last written version of the tuple. Formally, for each pair of write
operations a and b on the same tuple, a < b iff a <5 b, and for
every read operation a there is no write operation c on the same
tuple as a with vs(a) <5 ¢ <s a. A single version schedule over a
set of transactions 7~ is single version serial if its transactions are
not interleaved with operations from other transactions. That is,
for every a,b,c € Os witha <; b <g cand a,c € Timpliesb € T
forevery Te 7.

4.2 Conflict-Serializability

Let a; and b; be two operations on the same tuple from different
transactions T; and T; in a set of transactions 7. We then say that
aj is conflicting with b; if:

o (ww-conflict) WriteSet(a;) N WriteSet(b;) # 0; or,

o (wr-conflict) WriteSet(a;) N ReadSet(b;) # 0; or,

o (rw-conflict) ReadSet(a;) N WriteSet(b;) # 0.

We also say that a; and b; are conflicting operations. Commit oper-
ations and the special operation op;, never conflict with any other
operation. When a; and b; are conflicting operations in 7°, we say
that a; depends on b; in a schedule s over 77, denoted b; —5 aj if:

o (ww-dependency) b; is ww-conflicting with a; and b; < aj; or,
e (wr-dependency) b; is wr-conflicting with a; and b; = vs(a;) or

b; <5 vs(aj); or,

o (rw-antidependency) b; is rw-conflicting with a; and vs(b;) <
aj.

Intuitively, a ww-dependency from b; to a; implies that a; writes
a version of a tuple that is installed after the version written by
b;. A wr-dependency from b; to a; implies that b; either writes
the version observed by aj, or it writes a version that is installed
before the version observed by a;. A rw-antidependency from b;
to a;j implies that b; observes a version installed before the version
written by a;.

For example, the dependencies Ua[t] — W4[t], Us[v] — R4[Vv]
and R4[t] — Uy[t] are respectively a ww-dependency, a wr-
dependency and a rw-antidependency in schedule s presented in
Figure 7.

Two schedules s and s’ are conflict-equivalent if they are over
the same set 7~ of transactions and for every pair of conflicting
operations a; and b;, b; —s a;j iff b —¢ aj.

Definition 4.1. A schedule s is conflict-serializable if it is conflict-
equivalent to a single version serial schedule.

A serialization graph SeG(s) for schedule s over a set of trans-
actions 7 is the graph whose nodes are the transactions in 7 and
where there is an edge from T; to T; if Tj has an operation a; that
depends on an operation b; in T;, thus with b; — a;. Since we
are usually not only interested in the existence of dependencies
between operations, but also in the operations themselves, we as-
sume the existence of a labeling function A mapping each edge to a
set of pairs of operations. Formally, (b;,a;) € A(T;, Tj) iff there is
an operation a; € T; that depends on an operation b; € T;. For ease
of notation, we choose to represent SeG(s) as a set of quadruples
(T;, bi, aj, T;) denoting all possible pairs of these transactions T; and

Ty :

Rq[t]

Wq[t]Rq[v] Cq

Figure 7: A schedule s with v (single lines) and < (double
lines) represented through arrows.

T; with all possible choices of operations with b; — 5 a;. Henceforth,
we refer to these quadruples simply as edges. Notice that edges can-
not contain commit operations. A cycle I' in SeG(s) is a non-empty
sequence of edges (11, b1, az, T2), (T2, b2, a3, B3), . . ., (T, bn, a1, 1)
in SeG(s), in which every transaction is mentioned exactly twice.

THEOREM 4.2 (IMPLIED BY [2]). A schedules is conflict-serializable
iff SeG(s) is acyclic.

Our formalisation of transactions and conflict serializability is
based on [20], generalized to operations over attributes of tuples
and extended with U-operations that combine R- and W-operations
into one atomic operation. These definitions are closely related to
the formalization presented by Adya et al. [2], but we assume a
total rather than a partial order over the operations in a schedule.

4.3 Isolation Levels

Let 7 be a class of isolation levels. An I -allocation A for a set of
transactions 7 is a function mapping each transaction T € 7~ onto
an isolation level A(T) € 7. When I is not important or clear from
the context, we also say allocation rather than 7 -allocation. In this
paper, we consider the following isolation levels: read committed
(RC), snapshot isolation (SI), and serializable snapshot isolation
(SSI). So, in general, 7 = {RC, S, SSI}. Before we define what it
means for a schedule to consist of transactions adhering to different
isolation levels, we introduce some necessary terminology. Some
of these notions are illustrated in Example 4.5 below.

Let s be a schedule for a set 7 of transactions. Two transactions
T;, Tj € T are said to be concurrent in s when their execution over-
laps. That is, if first(T;) <s C; and first(Tj) <s C;. We say that a
write operation 0j on t in a transaction Tj € 7 respects the commit
order of s if the version of t written by Tj is installed after all ver-
sions of t installed by transactions committing before T; commits,
but before all versions of t installed by transactions committing
after T; commits. More formally, if for every write operation o; on
t in a transaction T; € 7 different from T; we have 0; < o; iff
Cj <s Ci. We next define when a read operation a € T reads the
last committed version relative to a specific operation. For RC this
operation is a itself while for SI this operation is firs#(T). Intuitively,
these definitions enforce that read operations in transactions al-
lowed under RC act as if they observe a snapshot taken right before
the read operation itself, while under SI they observe a snapshot
taken right before the first operation of the transaction. A read
operation o; on t in a transaction T; € 7 is read-last-committed in
s relative to an operation a;j € T; (not necessarily different from o;)
if the following holds:

e 05(0j) = op, or C; <5 aj with vs(0j) € T;; and

2852

e there is no write operation oj on t in Ty with C; <s a;j and
05(0j) <5 Of.

The first condition says that o; either reads the initial version or
a committed version, while the second condition states that o;
observes the most recently committed version of t (according to
<). A transaction Tj € 7 exhibits a concurrent write in s if there is
another transaction T; € 7 and there are two write operations b;
and a; in s on the same object with b; € T;, aj € Tj and T; # T such
that b; <s a; and first(T;) <s C;. That is, transaction T; writes to
an object that has been modified earlier by a concurrent transaction
T;.

A transaction Tj € 7 exhibits a dirty write in s if there are two
write operations b; and a; in s on the same object with b; € Tj,
aj € Tj and T; # Tj such that b; <; aj < C;. That is, transaction
T; writes to an object that has been modified earlier by T;, but T;
has not yet issued a commit. Notice that by definition a transaction
exhibiting a dirty write always exhibits a concurrent write. Trans-
action Ty in Figure 7 exhibits a concurrent write, since it writes
to t, which has been modified earlier by a concurrent transaction
T>. However, Ty does not exhibit a dirty write, since T, has already
committed before Ty writes to t.

Definition 4.3. Let s be a schedule over a set of transactions 7.

A transaction T; € 7 is allowed under isolation level read committed

(RC) ins if:

e each write operation in T; respects the commit order of s;

o each read operation b; € T; is read-last-committed in s relative
to b;; and

o T; does not exhibit dirty writes in s.

A transaction T; € 7 is allowed under isolation level snapshot isola-

tion (SI) in s if:

e each write operation in T; respects the commit order of s;

o each read operation in T; is read-last-committed in s relative to
first(T;); and

e T; does not exhibit concurrent writes in s.

We then say that the schedule s is allowed under RC (respec-
tively, SI) if every transaction is allowed under RC (respectively,
SI) in s. The latter definitions correspond to the ones in the litera-
ture (see, e.g., [20, 39]). We emphasize that our definition of RC is
based on concrete implementations over multiversion databases,
found in e.g. PostgreSQL, and should therefore not be confused
with different interpretations of the term Read Committed, such
as lock-based implementations [7] or more abstract specifications
covering a wider range of concrete implementations (see, e.g., [2]).
In particular, abstract specifications such as [2] do not require the
read-last-committed property, thereby facilitating implementations
in distributed settings, where read operations are allowed to ob-
serve outdated versions. When studying robustness, such a broad
specification of RC is not desirable, since it allows for a wide range
of schedules that are not conflict-serializable.

While RC and SI are defined on the granularity of a single trans-
action, SSI enforces a global condition on the schedule as a whole.
For this, recall the concept of dangerous structures from [13]: three
transactions T, T2, T3 € 7 (where T1 and T3 are not necessarily
different) form a dangerous structure Ty — T — Tz in s if:

e there is a rw-antidependency from Ty to Tz and from T to T3 in

S5

T1: W1 [q] R1 [t] Cl
T Ry[v] - W[t] G
T3 : ‘__—->W3[V]C3

Figure 8: Example of a dangerous structure T; - T, — T3
with the required rw-antidependencies represented through
dashed arrows.

Ty and T, are concurrent in s;
T, and T3 are concurrent in s;
C3 <5 C1 and C3 <5 Cy; and
if Ty is read-only, then C3 < first(Tq).
Note that this definition of dangerous structures slightly extends
upon the one in [13], where it is not required for T3 to commit
before T; and Ty. In the full version [14] of that paper, it is shown
that, if all transactions are allowed under SI, such a structure can
only lead to non-serializable schedules if T3 commits first. Fur-
thermore, Ports and Grittner [35] show that if T} is a read-only
transaction, this structure can only lead to non-serializable behav-
ior if T3 commits before T; starts. Actual implementations of SSI
(e.g., PostgreSQL [35]) therefore include this optimization when
monitoring for dangerous structures to reduce the number of aborts
due to false positives. It is interesting to note that presence of a
dangerous structure on itself does not necessarily mean that the
schedule s is non-conflict-serializable, as our definition does not
require a cycle in the serialization graph SeG(s). However, if all
transactions are allowed under SI, then every cycle in SeG(s) im-
plies a dangerous structure as part of the cycle [21, 35]. Stated
differently, the absence of dangerous structures is a sufficient con-
dition for conflict-serializability when all transactions are allowed
under SL

We are now ready to define when a schedule is allowed under a
(mixed) allocation of isolation levels.

Definition 4.4. A schedule s over a set of transactions 7~ is allowed
under an allocation A over 7 if:
for every transaction T; € 7 with A(T;) = RC, T; is allowed
under RC;
for every transaction T; € 7~ with A(T;) € {SL SSI}, T; is allowed
under SI; and
there is no dangerous structure T; — Tj — Tj in s formed by
three (not necessarily different) transactions T;, T, T, € {T € 7 |
A(T) = SSI}.

We denote the allocation mapping all transactions to RC (respec-
tively, SI) by Agc (respectively, Agy). We illustrate some of the just
introduced notions through an example.

Example 4.5. Consider the schedule s in Figure 7. Transaction Tj
is concurrent with T, and Ty, but not with T3; all other transactions
are pairwise concurrent with each other. The second read operation
of Ty is a read-last-committed relative to itself but not relative to the
start of Ty. The read operation Ry [v] of T is read-last-committed
relative to the start of Ty, but not relative to itself, so an allocation
mapping T> to RC is not allowed. All other read operations are
read-last-committed relative to both themselves and the start of the
corresponding transaction. None of the transactions exhibits a dirty
write. Only transaction Ty exhibits a concurrent write (witnessed by
the write operation Uz [t] in T3). Due to this, an allocation mapping

2853

T, on SI or SSIis not allowed. The transactions T1 — T2 — T3 form
a dangerous structure, therefore an allocation mapping all three
transactions 11, T, T3 on SSI is not allowed. All other allocations,
that is, mapping Ty on RC, T on SI or SSI and at least one of Ty, T2, T3
on RC or SI, is allowed. O

4.4 Transaction Templates

Transaction templates are transactions where operations are de-
fined over typed variables. Types of variables are relation names in
Rels and indicate that variables can only be instantiated by tuples
from the respective type. We fix an infinite set of variables Var
that is disjoint from Obj. Every variable X € Var has an associated
relation name in Rels as type that we denote by type(X).

Definition 4.6. A transaction template T is a transaction over Var.
In addition, for every operation o in 7 over a variable X, ReadSet(o0) C
Attr(type(X)) and WriteSet(o) C Attr(type(X)).

For an operation o in a transaction template 7, we denote by
var(o) the variable over which o is defined. Notice that opera-
tions in transaction templates are defined over typed variables
whereas they are over Obj in transactions. Indeed, the transac-
tion template for Balance in Figure 2 contains a read operation
0 = R[X : Account{N, C}]. As explained in Section 2, the notation
X : Account{N,C} is a shorthand for type(X) = Account and
ReadSet(o) = {N, C}.

Recall that we denote variables by capital letters X, Y, Z and tuples
by small letters t,v. A variable assignment y is a mapping from
Var to Obj such that p(X) € Objiype(x)- BY 1(1), we denote the
transaction T obtained by replacing each variable X in 7 with p(X).
A variable assignment for a database D maps every variable to
a tuple occurring in a relation in D. We say that a transaction T
is instantiated from a template 7 over a database D if there is a
variable assignment p for D such that T = u(7). As a slight abuse
of notation, we will frequently write y(0) for an operation o in 7 to
denote the corresponding operation in T.

A set of transactions 7 is consistent with a set of transaction
templates # and database D, if every transaction in 7 is instantiated
from a template in $ over D. That is, for every transaction T'in 7~
there is a transaction template 7 € and a variable assignment ur
for D such that up(r) = T.

We extend the notion of allocations towards transaction tem-
plates. For a class of isolation levels T, a template T -allocation A¥
for a set of transaction templates # is a function mapping each
template 7 € P onto an isolation level AP (r) € T. When T is not
important or clear from the context, we will frequently refer to A*
as a template allocation rather than template 7 -allocation.

Let 7 be a set of transactions consistent with a set of trans-
action templates ? and a database D, and let A” be a template
T -allocation for P. An allocation A for 7 is consistent with A¥
and D if for every transaction T € 7 there is a template 7 € £ such
that T is instantiated from over D and A(T) = A® (7).

4.5 Transaction and Template Robustness

We first define the robustness property [8] (also called acceptability
in [20, 21]) over a given set of transactions 7, which guarantees
serializability for all schedules over 7 for a given allocation.

Definition 4.7 (Transaction robustness). A set of transactions 7~
is robust against an allocation A for 7" if every schedule for 7~ that
is allowed under A is conflict-serializable.

We refer to A as a robust allocation. The (transaction) robustness
problem is then to decide whether a given allocation for a set of
transactions 7~ is a robust allocation. A polynomial time algorithm
for transaction robustness is given in [43].

We next lift robustness to the level of templates by requiring
transaction robustness for all possible template instantiations and
all possible databases. Let # be a set of transaction templates and
D be a database. Then, P is robust against a template allocation A*
over D if for every set of transactions 7 that is consistent with #
and D and for every allocation A for 7~ consistent with A% and
D, it holds that 7~ is robust against A.

Definition 4.8 (Template robustness). A set of transaction tem-
plates P is robust against a template allocation AP for P if P is
robust against A? for every database D.

4.6 Deciding Template Robustness

We are now ready to present our first algorithmic result: a polynomial-

time algorithm for template robustness. In Section 4.7, we demon-
strate how this algorithm can be applied to identify the lowest
robust allocation.

Outline of approach. We recall that template robustness is defined
over all possible database instances. Consequently, any approach
that considers all possible instantiations of transaction templates
and then applies the transaction robustness algorithm from [43]
is infeasible due to the infinite number of possible instantiations.
The algorithm proposed in this paper addresses this challenge us-
ing the following approach. We first introduce the concept of a
sequence of potentially conflicting quadruples (which can be seen
as an abstraction of a path in a serialization graph induced by the
templates). We then obtain some conditions that characterize when
this sequence can be converted to a counterexample schedule, that
is, a non-conflict-serializable schedule that is still allowed under
the given allocation. Furthermore, the schedule is of a very specific
form to which we refer as a split schedule and only requires the
existence of four different tuples per relation in the database. For
the decision problem it then suffices to check for the existence of a
sequence satisfying the above mentioned conditions, for which we
present a polynomial time algorithm.

Sequence of potentially conflicting quadruples. Let 7; and 7;
be two (not necessarily different) templates in #, and let 0; and p;
be two operations in 7; and 7}, respectively. We then say that o; is
potentially conflicting with p; if 0; and p; are over variables of the
same type (i.e., type(var(o;)) = type(var(p;))) and at least one of
the following conditions holds:

o (potential ww-conflict) WriteSet(o0;) N WriteSet(p;) # 0;

o (potential wr-conflict) WriteSet(o;) N ReadSet(p;) # 0; or

o (potential rw-conflict) ReadSet(o;) N WriteSet(p;) # 0.

In this case, we also say that the tuple (7, 0;, pj, 7j) is a potentially
conflicting quadruple over P. Intuitively, a potentially conflicting
quadruple represents a pair of operations that leads to conflicting
operations whenever the corresponding variables are instantiated
with the same tuple by a variable assignment. We will sometimes

2854

refer to the operation o as an outgoing operation and the operation
p as an incoming operation in the quadruple (7, 0, p, 7j).

Towards our algorithm, we consider sequences of potentially con-
flicting quadruples C = (11, 01, p2, 72), (72, 02, P3,73), . . ., (Th—1,0n—1,
Pns Tn)s (Tn, 0n, 1, 71) Over a set of templates P, where each tuple
is a potentially conflicting quadruple over #, and where multiple
occurrences of the same template in C are allowed (i.e., 7; = 7j is
allowed, even when i # j). Notice in particular that C starts and
ends with the same template 7;.

We will use a sequence C of potentially conflicting quadruples
to construct a non-conflict-serializable schedule, where a cycle
in the serialization graph is formed by the operations in C. For
this to work, care must be taken to ensure that the variables of
the operations occurring in a potentially conflicting quadruple are
assigned the same tuple in the database instance. Indeed, otherwise
there would be no dependency between these operations in the
schedule. Let 0 and p be two operations from templates 7; and 7;
respectively, where 7; and 7; both occur in a sequence of potentially
conflicting quadruples C = (71,01, p2, 72), - - ., (Tn, 0n, p1,71). We
then say that the variables var (o) and var(p) are connected in C if
e i = jandvar(o) = var(p) (connected within the same template);
e there exists a quadruple (73, 0, p, ;) or (7}, p, 0, 7;) in C (connected

between templates); or
o there exists a variable X occurring in a template in C such that

both var (o) and var(p) are connected to X (transitivity).
Intuitively, connected variables must be assigned the same tuple
for the variable assignments to be valid while ensuring that the
desired dependencies are in place.

Mapping to a database with four elements per relation. Before
we define variable assignments y; for each template 7; in C, we
first introduce a special database instance D4 over the considered
schema Rels containing four tuples per relation in Rels. We refer
to these tuples as tf, tg, t§, and tf for each R € Rels and use
Dy to construct the variable assignments ;. To this end, we first
define four type mappings c1, c2, c3 and ¢4 that map each relation
R € Rels to a tuple of the corresponding type in D4. Formally, we set
¢i(R) = tf for each i € {1,2,3,4} and R € Rels. For each template
7; in C, we define the canonical variable assignments y; over Dy as
follows:

c1(type(X)) if X is connected to var(o1),
c2(type(X)) if X is connected to var(p;) and
p1(X) =
not to var(oy),
c4(type(X)) otherwise.

For every p; with1 <i < m,

c1(type(X)) if X is connected to var(o1),
c2(type(X)) if X is connected to var(p1)
pi(X) =
not to var(oq),
c3(type(X)) otherwise.

By construction, type mapping c4 is used exclusively for 71, whereas
c3 is only used for 7, . . ., 7,5 ¢1 is used for all variables connected
to var(o1); and, ¢y is used for all variables connected to var(pi),
unless var(o01) and var(p;) are connected in C in which case ¢y is
used as well as by transitivity variables connected to var(p;) are
also connected to var(o1).

From a sequence to a split schedule. For a given sequence C
of potentially conflicting quadruples over a set of templates P, we
define the canonical set of transactions 7¢ as the set obtained by
applying the canonical variable assignment y; to each template 7;
occurring in C. A template allocation A® over # then induces a
canonical allocation A over 7¢ in a natural way: for each template
7; in C, we allocate the corresponding transaction T; = p;(7;) to the
isolation level A (T;) = AP (). By construction, 7 is consistent
with £ and Dy, and A is consistent with AP and Dy. For a
transaction T and operation o € T, we denote by prefix,(T) the
subsequence of T containing all operations up to and including o,
and by postfix, (T) the subsequence of T containing all operations
strictly after o. This notation extends to templates in a natural way.

Definition 4.9. Let P be a set of transaction templates, A a tem-
plate allocation over P, and C = (1,01, p2, 72); - - -, (Tn, O, P1, T1)
a sequence of potentially conflicting quadruples over . A tem-
plate split schedule s for P and A” induced by C is a multiversion
schedule over the canonical set of transactions 7¢ of the form:

prefix, (o) (11(71)) - p2(72) - ... - pn(7n) - postfix,, (o,) (p1(71)),

where

(1) sisallowed under the canonical allocation A¢ induced by AP,

(2) pi(o;) —s pj(pj) for each quadruple (73,04, pj, 7j) € C; and

(3) there is no operation in p1(71) conflicting with an operation in
any of the transactions p3(73), . . ., fin—1(tn-1)-

Notice that the cycle of dependencies between the operations in
C implies that such a schedule is not conflict-serializable. The next
proposition then readily follows:

PROPOSITION 4.10. Let s be a template split schedule for a set of
templates P and template allocation AY over P induced by a se-
quence of potentially conflicting quadruples C. Then, s is non-conflict-
serializable and allowed under AY .

Conditions characterizing the existence of a counterexample
schedule. We introduce a set of conditions that must be satisfied
by a sequence of potentially conflicting quadruples for a template
split schedule to exist.

PROPOSITION 4.11. Let P be a set of transaction templates, A” a
template allocation over P, andC = (11, 01, p2, 72), - - - » (Tn, On, P1, 71)
a sequence of potentially conflicting quadruples over P. A template
split schedule for P and A” induced by C exists if and only if the
following conditions hold:

(1) there is no operation o in 1 potentially conflicting with an op-
eration p in any of the templates 13, . .., Tp—1 with var(o) and
var(p) connected in C;

(2) there is no write operation o in prefix, (1) potentially ww-
conflicting with a write operation p in ta or t, where var(o)
and var(p) are connected in C;

3) ifﬂp(rl) € {SL SSI}, then there is no write operation o in
postfix,, (1) potentially ww-conflicting with a write operation
p in 1y or T, withvar(o) and var(p) connected in C;

(4) o1 is potentially rw-conflicting with pa;

(5) on is potentially rw-conflicting with py or (A% (r1) = RC and
01 <r p1);

(6) A% (r1) # SSLor AP (13) # SSIor A (z,) # SSL

2855

(7) ifﬂ?(rl) = 5ST and A% (1) = SSI, then there is no operation
o in 71 potentially wr-conflicting with an operation p in ty with
var (o) andvar(p) connected in C; and

(8) ifﬂp(rl) = 5SI and A¥ (1,,) = SSI, then there is no operation
o in 11 potentially rw-conflicting with an operation p in 7, with
var(o) andvar(p) connected in C.

Intuitively, these conditions enforce the desired cycle of depen-
dencies, while ensuring that the schedule is allowed under the
allocation (cf. Definition 4.9). For example, conditions (1) and (2)
ensure that no dirty writes are present, and condition (3) addition-
ally avoids concurrent writes for transactions allocated to SI or SSL
In the proof we argue that if a condition is not satisfied, then at
least one of the requirements of Definition 4.9 is not met.

Decision algorithm. The next proposition shows that it suffices
to find a split schedule to decide template robustness.

PROPOSITION 4.12. Let P be a set of transaction templates and let
A% be an allocation for P. The following are equivalent:
o P is not robust against ﬂ?;
e there exists a template split schedule s for P and A* induced by
a sequence of potentially conflicting quadruples C over P.

It readily follows from Proposition 4.10 that a split schedule wit-
nesses non-robustness. The reverse direction is more involved, and
relies on the argument that we can extract a sequence C satisfying
the conditions in Proposition 4.11 from an arbitrary non-conflict-
serializable schedule allowed under the allocation.

Proposition 4.11 then offers a concrete way to find a split sched-
ule via sequences of potentially conflicting quadruples. However, a
naive enumeration is not feasible, as these sequences can have an
arbitrary length. Instead, we propose an algorithm that iterates over
all possible choices for operations 01 and p; in a template 7; € P,
constructing a graph referred to as pt-conflict-graph(oy, p1, 71, b, P)
with & € {1, 2}, which we will define next. Intuitively, the existence
of a sequence C satisfying the conditions in Proposition 4.11 cor-
responds to reachability between specific nodes in this graph, and
some additional conditions that the algorithm will verify separately.

Let P be a set of transaction templates, 01 and p; two (not nec-
essarily different) operations occurring in a template 7; € £, and
let h € {1, 2}. The directed graph pt-conflict-graph(os, p1, 71, b, P)
has nodes of the form (z,0,¢,k) forallt € P,o € 7,c € {O,P,N}
and k € {in, out} satisfying the following conditions:

(1) if ¢ = O, there is no operation 0] € 71 over the same variable
as 01 such that o] is potentially conflicting with an operation
o’ € tand var(o’) = var(o);

if ¢ = P, there is no operation o; € 71 over the same variable
as p1 such that o] is potentially conflicting with an operation

o’ € tand var(o’) = var(o).

Intuitively, the value h indicates whether var(o1) and var(p;) are
connected in the sequence C that will be constructed by the algo-
rithm, where h = 1 indicates that they are connected and h = 2
indicates that they are not. For each node (7,0, ¢, k), the value of
c indicates that o is connected to 01 (c = O), to p1 (c = P), or to
neither (¢ = N) in C. Lastly, the value of k indicates whether o is an
incoming or outgoing operation in a quadruple in C. The previous
two conditions then guarantee that the sequence C constructed by
the algorithm satisfies Condition 1 in Proposition 4.11.

’

@

Algorithm 1: Deciding template robustness

Algorithm 2: Computing the lowest robust allocation.

Input :Set of transaction templates # and template
allocation A% for P
Output: True iff P is robust against A*

1 foreach o1, p1 € 71 withr; € P do
if var(o1) = var(p;) then H := {1} else H := {1, 2};
foreach h € H do
G := pt-conflict-graph(oy, p1, 71, h, P);
TC := transitive closure of G;
foreach o0y, py € 12; 0, pn € T With 1y, 7, € P do
if 01 not potentially conflicting with py or
on not potentially conflicting with p; then

9 ‘ continue;

10 if var(oy) = var(p;) then Cyy := {O} else
Coz = {N, P};

11 if var(on) = var(pn) then Cpy, := {P} else
Cpn = {N.O);

12 foreach coz € Coz, cpn € Cpn do
if Reachable(ry, 02, p2, co2,
Tn, On, P, Cpn, , TC) and
ValidSchedule(zy, 01, p1, 72, 02, P2, Co2,
Tns On, P> Cpns B, A?) then
‘ return False;

13

14

15

16

17

18 return True;

The graph pt-conflict-graph(oy, p1, 71, b, P) contains an edge
from a node (7, 0,c k) to a node (7/,0’,¢’, k) if and only if one
of the following conditions hold:

(3) k=out, k’ =in, ¢ = ¢/, and o is potentially conflicting with o’;
(4) kK = in, k¥’ out, 7 = 7/, var(o) # wvar(o’) and (c,c’) €
{(O’P)> (Os N)> (N’N)> (N,P)},
(5) k =in, kK’ = out, 7 = 7/, var(o) = var(o’) and ¢ = ¢’; or
(6) k =in, K’ = out, r = 7/, var(o) = var(o’),c = O, ¢’ = P and
h=1.
By construction, these edges propagate connectedness with respect
to var(o1) and var(p1) in the sequence C that will be constructed
by the algorithm. Condition (3) requires potentially conflicting op-
erations for each quadruple in C, while maintaining connectedness
(recall that the variables over which the operations in a quadruple
are defined are always connected). Within a template, connected-
ness with o7 or p; only propagates if the variables are the same
(Condition (4) and Condition (5)). Condition (6) covers the spe-
cial case when we assume that var(o1) and var(p1) are connected
(i.e., h = 1). In that case, every variable connected to var(o;) is
connected to var(p1) as well.

The template robustness algorithm is displayed as Algorithm 1.
The algorithm iterates over all possible choices for operations
in 71, 2 and 7y, tracking connectedness of var(o2) and var(pn)
with respect to var(o1) and var(p;). For each such choice, the
algorithm then verifies whether p, is reachable from oz in the
pt-conflict-graph, thereby witnessing the existence of a sequence
of potentially conflicting quadruples satisfying Condition (1) of
Proposition 4.11, followed by the verification of the remaining con-
ditions. The implementation of Reachable and ValidSchedule are
straightforward and provided in detail in [38].

2856

Input : Set of templates P
Output: Lowest robust template allocation A* for P

1 forr € P do AP [r] :=SSI;

2 fort e P do

if P is robust againstﬂp [— RC] then
‘ AP = AP [t — RC];

else if P is robust against&’['P [z — SI] then
‘ AP = AP [r - 1)

7 return 3{7);

3

4

5
6

THEOREM 4.13. Let P be a set of templates and A a template
allocation for P. Algorithm 1 decides whether P is robust against
A% in time polynomial in the size of P.

4.7 Finding Lowest Robust Allocations
We first show that there always exists a unique lowest robust allo-
cation and then present a polynomial time algorithm to find it.

As discussed in Section 2, we assume a total order RC < SI < SSI
over the three considered isolation levels, expressing our prefer-
ence for lower isolation levels over higher ones. In the following,
let ﬂf’ and &’[;P be two template allocations for a set of templates
P. We write fﬂf < fﬂf if ﬂlp(r) < &ZIZP(T) for all T € P. Fur-
thermore, we write &1(17) < ﬂg) if ﬂlp < &lep and there exists a
template 7 € P such that &1117)(1') < .?’[;P(r). For an isolation level
I, we denote by ﬂf [z +> I] the template allocation for $ where
APt I1(1) =T and AP [t T1(7') = AL (') for all other
templates 7’ € P. That is, the template allocation derived from
.?IIP by setting the isolation level of 7 to 7, while leaving all other
templates unchanged.

Definition 4.14. Let P be a set of templates robust against a
template allocation ﬂlp for . Then, ﬂf is lowest if there is no
other allocation .?IZP for # such that ﬂzp < ?{1? and P is robust
against ﬂf .

The next propositions extend some results for allocations for
transactions presented in [43] towards template allocations:

PROPOSITION 4.15. Let P be a set of templates, and let ﬂlp and
_7(2P be two template allocations for P.
(1) If?[l? < ﬂg) and P is robust against AP then P is robust
against ﬂg) .
(2) If P is robust against ?(IP and ﬂf, then P is robust against
ﬂZP [+ ?I;P(r)] foreveryr e P.

PROPOSITION 4.16. There exists a unique lowest template alloca-
tion for every set of templates P.

Algorithm 2 outlines the procedure for determining the unique
lowest robust allocation. Initially, all templates are assigned the
allocation SSI. The algorithm then iterates through each template,
evaluating whether the associated isolation level can be safely re-
duced using Algorithm 1 for the robustness test.

THEOREM 4.17. For a set of templates P, Algorithm 2 computes
the unique lowest robust template allocation in time polynomial in
the size of P.

5 RELATED WORK

Shortly after the initial papers that defined serializability and stud-
ied its theoretical complexity [34], the IBM System R team pub-
lished an account of weaker isolation levels and locking-based
algorithms that achieved those by releasing shared locks early, or
even not taking them at all [23]. Much later, the multiversion Snap-
shot Isolation mechanism was described, and shown to allow some
non-serializable executions, despite avoiding all the anomalies men-
tioned in the SQL specification [7]. The serializable multiversion
SSI mechanism was proposed by Cahill [14] and was implemented
(with optimizations) in PostgreSQL [35].

There has been a variety of approaches used to define isolation
properties abstractly. For definitions and proofs that mechanisms
achieve serializability, theory was developed especially by Bernstein
and Goodman, including for multiversion and even distributed pro-
tocols [10, 11]. For defining lower isolation, Gray et al. [23] and the
later SQL specification used the notion of anomalies, that is patterns
of read and write operations that occur in the system’s histories
and can lead to situations that do not happen in serial executions.
Berenson et al. [7] showed that this approach was inadequate to
deal with Snapshot Isolation, and proposed some alternatives that
were later seen as also inadequate. Adya developed a theory frame-
work for defining these isolation levels abstractly, based on graphs
showing dependency edges between operations[1, 2]. Much ongo-
ing work has built on Adya’s style. Cerone et al. [15] and Crooks
et al. [17] offer different approaches based on abstract state or a
“client-centric” definition style.

Shasha et al. introduced the approach of showing conditions
which can prove robustness, showing when serializable execution
is ensured despite using mechanisms that in general allow non-
serializable behavior (in this case, dividing a transaction into seg-
ments separated by COMMIT operations) [37]. Fekete et al. gave
a theory that could prove robustness for Snapshot Isolation [21].
This paper also introduced the technique of making an applica-
tion robust through modifying application code by “promoting” a
read to also do an identity update of the item. Alomari et al. ex-
amined performance comparisons of promotion choices and other
ways to modify application code for robustness [5]. Further work
in this line showed a sufficient condition to prove robustness for
Read Committed Isolation [4]. Recent research has introduced the
concept of split schedules, establishing necessary and sufficient
conditions for ensuring transaction robustness across various isola-
tion levels [28, 29, 39, 40, 43]. However, a proof technique utilizing
split-schedules does not always lead to an efficient algorithm: un-
der a lock-based semantics robustness testing can become coNP-
complete [27] or even undecidable [41]. Other work examines ro-
bustness within a framework that declaratively specifies different
isolation levels in a uniform manner [8, 15, 16], relying on the key
assumption of atomic visibility, which ensures that either all or
none of a transaction’s updates are visible to other transactions.

Fekete [20] introduced the allocation question: choosing the
concurrency control for each transaction separately from a set of

2857

available isolation mechanisms; this paper dealt with choosing
either 2-phase locking, or snapshot isolation. Recently, other com-
binations of choices have been considered, such as combinations of
read committed, snapshot isolation and/or serializable snapshot iso-
lation [43]. In [44], the allocation problem is studied in the context
of view- rather than conflict-serializability, and is observed that for
the isolation levels of PostgreSQL, both problems coincide.

Beyond handling specific transactions that access explicitly iden-
tified items, practical scenarios often require working with appli-
cation code, where the accessed items may vary at runtime. This
variability can arise, for example, from values retrieved in earlier
queries or user-provided parameters. Various approaches have been
explored to represent such applications and reason about the differ-
ent explicit transactions they may generate during execution. The
concept of a transaction program was introduced in [21], while the
abstraction of a transaction template, which we adopt here, was
presented in [39]. Adding constraints such as foreign keys quickly
makes robustness undecidable [41], though restricted classes of
constraints still allow decidability. Vandevoort et al. [42] explored
a more expressive variant of transaction programs, offering a suf-
ficient condition for ensuring robustness under read committed
isolation. This approach, which relies on a formalism for transac-
tion programs to define potential workloads, stands in contrast
to methods like IsoDiff [22], where transactions are derived from
concrete execution traces.

6 CONCLUSIONS

We introduced a novel optimization method, which can enhance per-
formance without requiring modifications to the database system’s
internals. An evaluation on SmallBank demonstrates that RePMILA
can achieve throughput comparable to the unsafe yet default RC
isolation level used by some platforms, while maintaining safety.
Additionally, it can double throughput compared to executing all
under the serializable isolation level.

Our approach builds on the theoretical framework for solving
the mixed allocation problem [43], which we extend in this paper
from fully specified transactions to transaction templates. However,
this extension brings several limitations that are not yet addressed
in the current formalization. First, it does not account for data
dependencies such as foreign keys which more accurately model
transactions that can effectively occur. Second, it lacks support for
transaction programs that include control structures (e.g., loops
and conditionals) as well as operations like inserts, deletes, and
predicate reads—scenarios that can trigger the phantom problem.
To address these challenges, we can build on ideas from [41, 42],
though substantial theoretical work is still needed—making this a
key direction for future research.

ACKNOWLEDGMENTS

This work was partly funded by FWO-grant G019921. Stijn Vansum-
meren was partially supported by the Bijzonder Onderzoeksfonds

(BOF) of Hasselt University (Belgium) under Grant No. BOF20ZAP02.
The resources and services used in this work were provided by the

VSC (Flemish Supercomputer Center), funded by the Research Foun-
dation - Flanders (FWO) and the Flemish Government.

REFERENCES

(1]

[10]

[11]

=
&

[13

[14]
[15]
[16]

[17

(18]

Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions. Ph.D. MIT, Cambridge, MA, USA.

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation
Level Definitions. In ICDE. 67-78.

Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The Cost
of Serializability on Platforms That Use Snapshot Isolation. In ICDE. 576-585.
Mohammad Alomari and Alan Fekete. 2015. Serializable use of Read Committed
isolation level. In AICCSA. 1-8.

Mohammad Alomari, Alan D. Fekete, and Uwe R6hm. 2014. Performance of pro-
gram modification techniques that ensure serializable executions with snapshot
isolation DBMS. Inf. Syst. 40 (2014), 84-101. https://doi.org/10.1016/].15.2013.10.
002

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations.
PVLDB?7, 3 (2013), 181-192.

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O'Neil. 1995. A Critique of ANSI SQL Isolation Levels. In SIGMOD.
1-10.

Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency
Models with Atomic Visibility. In CONCUR. 7:1-7:15.

Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. 2015. Op-
timizing Optimistic Concurrency Control for Tree-Structured, Log-Structured
Databases. In SIGMOD. 1295-1309.

Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency
Control - Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (1983), 465—
483.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

Philip A. Bernstein, Colin W. Reid, and Sudipto Das. 2011. Hyder - A Transactional
Record Manager for Shared Flash. In CIDR. 9-20.

Michael J. Cahill, Uwe R6hm, and Alan D. Fekete. 2008. Serializable isolation for
snapshot databases. In SIGMOD. 729-738.

Michael J. Cahill, Uwe Rohm, and Alan D. Fekete. 2009. Serializable isolation for
snapshot databases. ACM Trans. Database Syst. 34, 4 (2009), 20:1-20:42.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for
Transactional Consistency Models with Atomic Visibility. In CONCUR. 58-71.
Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. JACM
65, 2 (2018), 1-41.

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is
Believing: A Client-Centric Specification of Database Isolation. In PODC. 73-82.
Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD. 1243-1254.

Bailu Ding, Lucja Kot, Alan J. Demers, and Johannes Gehrke. 2015. Centiman:
elastic, high performance optimistic concurrency control by watermarking. In
SoCC. 262-275.

Alan Fekete. 2005. Allocating isolation levels to transactions. In PODS. 206-215.
Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and
Dennis E. Shasha. 2005. Making snapshot isolation serializable. ACM Trans.
Database Syst. 30, 2 (2005), 492-528.

Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020.
IsoDiff: Debugging Anomalies Caused by Weak Isolation. PVLDB 13, 11 (2020),
2773-2786.

Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. 1976.
Granularity of Locks and Degrees of Consistency in a Shared Data Base. In
Modelling in Data Base Management Systems, Proceeding of the IFIP Working Con-
ference on Modelling in Data Base Management Systems, Freudenstadt, Germany,
January 5-8, 1976, G. M. Nijssen (Ed.). North-Holland, 365-394.

2858

[24

[25]

Jinwei Guo, Peng Cai, Jiahao Wang, Weining Qian, and Aoying Zhou. 2019.
Adaptive Optimistic Concurrency Control for Heterogeneous Workloads. PVLDB
12, 5 (2019), 584-596.

Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.
Opportunities for Optimism in Contended Main-Memory Multicore Transactions.
PVLDB 13, 5 (2020), 629-642.

Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low overhead
concurrency control for partitioned main memory databases. In SIGMOD. 603
614.

Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2020. De-
ciding Robustness for Lower SQL Isolation Levels. In PODS. 315-330.

Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2022. Con-
currency control for database theorists. SIGMOD Rec. 51, 4 (2022), 6-17.

Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2022. De-
ciding Robustness for Lower SQL Isolation Levels. ACM Trans. Database Syst. 47,
4(2022), 13:1-13:41. https://doi.org/10.1145/3561049

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.

ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In SIGMOD. 1675-1687.

Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298-309.

Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In SIGMOD. 21-35.
Thomas Neumann, Tobias Mithlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD. 677-689.

Christos H. Papadimitriou. 1979. The serializability of concurrent database
updates. JACM 26, 4 (1979), 631-653.

Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. PVLDB 5, 12 (2012), 1850-1861.

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Accelerating
Analytical Processing in MVCC using Fine-Granular High-Frequency Virtual
Snapshotting. In SIGMOD. 245-258.

Dennis E. Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-
action Chopping: Algorithms and Performance Studies. ACM Trans. Database
Syst. 20, 3 (1995), 325-363.

Brecht Vandevoort, Alan Fekete, Bas Ketsman, Frank Neven, and Stijn Van-
summeren. 2025. Using Read Promotion and Mixed Isolation Levels for Perfor-
mant Yet Serializable Execution of Transaction Programs (full version). (2025).
http://arxiv.org/abs/2501.18377.

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2021. Ro-
bustness against Read Committed for Transaction Templates. PVLDB 14, 11
(2021), 2141-2153.

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-
bustness Against Read Committed: A Free Transactional Lunch. In PODS. 1-14.
Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-
bustness Against Read Committed for Transaction Templates with Functional
Constraints. In ICDT. 16:1-16:17.

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2023. De-
tecting Robustness against MVRC for Transaction Programs with Predicate
Reads. In EDBT. 565-577.

Brecht Vandevoort, Bas Ketsman, and Frank Neven. 2023. Allocating Isolation
Levels to Transactions in a Multiversion Setting. In PODS. 69-78.

Brecht Vandevoort, Bas Ketsman, and Frank Neven. 2024. When View- and
Conflict-Robustness Coincide for Multiversion Concurrency Control. Proc. ACM
Manag. Data 2, 2 (2024), 91.

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8, 3 (2014), 209-220.

