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Abstract 

As the emphasis on active mobility grows, ensuring pedestrian safety has become increasingly important. 
Understanding how road users behave during interactions between pedestrians and vehicles is essential for 
establishing effective road safety measures. AI coupled with drone technology can significantly enhance the 
detection and analysis of these interactions and behaviors. While traditional microsimulation methods can simulate 
road user behavior and potential risks, they are prone to inaccuracies since the environment is manually calibrated, 
and the calibration parameters may not fully represent the real-world environment. Modeling real-world trajectories 
and environments directly could facilitate the identification of potential risks at a micro-scale and help understand 
how different road users respond to soft modes and the associated infrastructure. This paper presents an innovative 
solution that uses drones and an AI-driven workflow to detect pedestrian-vehicle interactions and analyze vehicle 
behavior in high-density pedestrian areas. The system automates the detection of these interactions based on 
predetermined spatial and temporal conditions. Once these interactions are detected, a baseline of vehicle behavior 
is established by plotting the dominant speed profiles as vehicles approach zebra crossings. This baseline behavior is 
then used to estimate deviations for each vehicle at each movement at an unsignalized three-legged intersection. The 
workflow helps pinpoint behavioral anomalies' location, cause, and temporal signature, enabling automation across 
extensively recorded video data. The findings highlight the potential of these disruptive technologies to assist 
policymakers, urban planners, and mobility experts to be aware of current traffic situations and aid in making 
informed decisions to enhance road safety and improve driving conditions. 
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1. Introduction 

For a substantial amount of time, researchers working in the area of road safety have been exploring the use of 
behavioral data for a better understanding of the underlying causes of road accidents. Several factors shape a 
driver’s behavior including distraction, vehicle maneuvers, violations, brake response time, and involvement in 
pedestrian-vehicle interaction as discussed in the past literature by Hancock et al. (2003); Luo et al. (2023); 
Rosenbloom and Perlman (2016), and Wood and Troutbeck (1994). In the recent past, researchers have extensively 
investigated the profile ratings of drivers using naturalistic driving data – for example Beusen et al. (2009) used data 
obtained from onboard logging devices, Ellison et al. (2015) analyzed GNSS-based trajectories to determine the 
smoothness of maneuvers and  Papadimitriou et al. (2019) utilized cellular data for driver categorization and 
estimation of crash risk probability. These already established measures are great at determining naturalistic driving 
behavior but pose certain limitations. For instance, installing expensive onboard devices on vehicles poses certain 
operational and legal constraints limiting the adequate sample size representative of an area’s population. Similarly, 
GNSS-based methods are somewhat unreliable due to positional inaccuracies and clocking issues as the receiving 
device tends to face delays in transmission. 

Microsimulation platforms like PTV VISSIM, PARAMICS, and AIMSUM are widely used to model current 
traffic environments and quantify the impact of an intervention in terms of driving behavior and road safety. 
Mahmud et al. (2019) reviewed several studies that utilized these microsimulation platforms and their applicability 
in modeling real-world traffic environments and naturalistic driving conditions. The authors acknowledged the 
limitations of these platforms as they are highly data-dependent, and often, real-life conditions cannot be entirely 
replicable within a probabilistic microsimulation. For example, it is challenging to model non-lane-based 
heterogeneous traffic environments. Similarly, active or vulnerable users like pedestrians and cyclists may not 
always follow their designated walkways or lanes, impacting the behavior of approaching vehicles. Although these 
violations are often perceived as non-threatening, they still have some implications.  

Recent advancements in computer vision and image processing systems offer reliable alternatives to conventional 
data collection and analysis mechanisms. Saunier and Sayed (2007) demonstrated that these technologies offer the 
potential to develop automated solutions for generalized and specialized traffic scenarios. With the advent of AI-
enabled Unmanned Aerial Vehicle (UAV) technology or recently coined so-called YOLO-based-UAV technology 
(YBUT), road traffic analysis has been revolutionized, as discussed in a study by Chen et al. (2023). Butilă and 
Boboc (2022) systematically reviewed the use of UAVs in urban traffic monitoring and concluded that these 
intelligent technologies offer a strong alternative to the conventional road traffic data collection and analysis due to 
the enhanced coverage and aerial perspective that is otherwise not offered by conventional means, thereby enabling 
a holistic view of road traffic with minimal blind spot risks. Aerial footage combined with AI technology can also 
help uncover patterns that may go unnoticed but are consistently impacting the driving behavior. Avola et al. (2022), 
for instance, proposed a novel two-branch Generative Adversarial Network (GAN)-based method for low-altitude 
RGB aerial video to identify and localize anomalies. They define anomalous situations as encounters with 
interactions with foreign objects like gas bottles, boxes, and suitcases, representing a danger to attention. 

With the growing emphasis on active or soft mobility, it is important to identify the interaction behavior of soft 
modes with motorized transport to foster a safer shared environment, as discussed by Che et al. (2021). Sullman et 
al. (2012) similarly emphasized that this understanding becomes extremely critical in high-density pedestrian 
environments such as school districts, where the presence of vulnerable road users is significantly high. While 
surrogate safety indicators like time-to-collision and post-encroachment time are commonly used to identify 
potential risk zones, Renard et al. (2022) utilized UAV footage combined with an AI-based platform called 
Datafromsky to evaluate safety for active road users, i.e., school children. Although surrogate safety indicators can 
be used to identify near-miss incidents and conflicts, behavioral profiling can enable a holistic analysis, and the 
insights can even help mitigate the cause of the near-miss incidents. Moreover, post-intervention studies could help 
model and determine the efficacy of soft-mobility infrastructure and its impact on regular traffic. Vehicle trajectories 
from AI-enabled drone technology can help map the naturalistic traffic behavior in these areas and identify unsafe 
road crossings and resultant anomalous vehicle behavior in response.  

This paper presents an approach to determining and analyzing traffic behavior in high-density pedestrian areas 
using AI-based drone technology. The proposed method establishes a baseline behavior of vehicles interacting with 
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pedestrians at a three-legged intersection within a school district. The method extracts the real-world traffic directly, 
enabling the ability to model the traffic behavior at a foundational level; therefore, the chances of calibration errors 
are non-existent. This leads to the development of a workflow that reflects reality, in contrast to microsimulation 
methods that depend on user expertise and may overlook deviant user behaviors that are often caused by the built 
environment itself. The findings uncover anomalous patterns in vehicle-pedestrian interactions resulting from 
infrastructural intervention. These patterns often remain undetectable by conventional methods; therefore, the 
study's results offer insights for policy adjustments at a micro-level to ensure the safety of vulnerable road users. 

2. Data and Methods 

2.1. Study location and experimental setup 

The experimental design consists of a DJI mini pro 3 flying at a height of 60 meters at 14:15 local time under all-
clear sky conditions over a three-legged intersection at ElfdeLiniestraat in Hasselt, Belgium (see Fig. 1). This 
particular location was selected due to the high density of vulnerable road users because of the nearby schools. 
Considering the intersection’s design, six gates are placed across each vehicle movement. The approaching gates 1, 
3, and 6 were placed at 20 meters since the higher distance could help capture the speed profile more accurately, 
whereas departure gates 4, 2, and 5 were placed at 5, 8, and 8 meters, respectively, based on the dimensions of the 
intersection. This helps retain the records that are critical for determining the vehicle-pedestrian interaction and 
discard the unnecessary records. Additionally, this setup is tailored for the built environment of the selected 
location. 

 

Fig. 1. The location of the experiment and gate assignment at ElfdeLiniestraat in Hasselt, Belgium. [Left: drone image; right: annotated 
satellite view]. 
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The workflow consists of drone footage (see Fig. 2) processed by DataFromSky, a platform which performs road 
user object detection on the recorded footage and extracts the trajectories that are used to calculate road user 
parameters as previously demonstrated by Adamec et al. (2020). To enable a spatially consistent output, a spatial 
reference system UTM 31N is defined by manually defined ground control points (GCPs). Subsequently, the data 
undergoes a transformation process, and critical information like vehicle track IDs, type, speed, positions, and time 
stamps are structured into a database for analysis.  

2.2. Defining vehicle-pedestrian interaction 

Due to the large data volume, it was essential to develop a method to retain the relevant information only. In a 
45-minute long traffic footage, there were approximately 1,259 unique road user trajectories, of which 76% are 
active road users—specifically pedestrians (66%) and cyclists (10%) —while 24% are vehicles (20.49% cars, 0.95% 
medium vehicles, 0.05% heavy vehicles, 0.74% motorcycles and 1.43% buses). For the experiment, it was crucial to 
establish criteria for detecting pedestrian-vehicle interactions at road crossings. For each vehicle trajectory passing 
through a crosswalk the interaction with pedestrian was detected by spatial and temporal conditions, similar to Hu et 
al. (2022). We define the interaction criteria by equations (1) and (2), respectively.  

a) Spatial condition: pedestrian within a crossing: 
A pedestrian 𝑝𝑝 at time 𝑡𝑡 is considered to be inside a crossing 𝐶𝐶𝑘𝑘. 

 𝑝𝑝𝑡𝑡 ∈ 𝐶𝐶𝑘𝑘 ⇒ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    (1) 
 
Where 𝑝𝑝𝑡𝑡 = (𝑥𝑥𝑝𝑝,𝑡𝑡, 𝑦𝑦𝑝𝑝,𝑡𝑡) is the pedestrian’s location at time 𝑡𝑡, 𝐶𝐶𝑘𝑘is the 𝑘𝑘𝑡𝑡ℎcrossing polygon due to the presence of 

multiple polygons and a pedestrian may cross multiple polygons within a footage. 
 
b) Temporal condition: time matching: 
For an interaction, a pedestrian must be present at the crossing at a time 𝑡𝑡𝑝𝑝 close to the vehicle's time 𝑡𝑡𝑣𝑣 within a 

time tolerance Δ𝑡𝑡.  

 |𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑣𝑣| ≤ Δ𝑡𝑡 (2) 
 
Where Δ𝑡𝑡 = 3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  based on reasonable crossing speed assumption. The Δ𝑡𝑡  helps capture a vehicle's 

behavior upon approaching a pedestrian. Both conditions ensure that an event is logged as a co-occurrence in both 
space and time. 

Fig. 2.  Illustration of the methodological framework of the study. 
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2.3. Determining the baseline behavior and deviation from normality 

After enforcing spatial and temporal criteria, 468 unique interactions were identified. Speed profile geometry of 
vehicles upon interaction was plotted, and then Principal Component Analysis (PCA) was applied to reduce the 
dimensionality, estimating the cumulative behavior and thereby determining a dominant speed profile with respect 
to the distance to respective crossing from each gate. Given the dataset 𝑋𝑋 = ℝ𝑛𝑛×𝑝𝑝, where 𝑛𝑛 is the number of filtered 
interactions in the form of trajectories crossing through a gate, and  𝑝𝑝  represents the number of features or 
dimensions in each observation as outlined in the reference guide by Kurita (2019). PCA is applied to the gate-
specific matrix after data standardization as described by equation (3). 

 
 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋 − 𝑢𝑢

𝜎𝜎  
 

(3) 

and calculating the covariance matrix C in equation (4): 
 

 𝐶𝐶 = 1
𝑛𝑛 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Τ 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 
 

(4) 

Next we perform eigenvalue decomposition to extract the principal components, as shown in equation (5): 
 

 𝐶𝐶𝑣𝑣 = 𝜆𝜆𝜆𝜆 (5) 
 
𝐶𝐶𝑣𝑣 is simply 𝜆𝜆, i.e., the corresponding eigenvalue times 𝑣𝑣. This shows that 𝑣𝑣 is the direction or pattern in the 

speed profile space along which the variance (i.e., the differences in vehicle speeds as they approach the crossing) is 
maximized. The pattern, captured by the first principal component (PC1), captures the most common trend in 
vehicle speeds at that gate while a pedestrian is moving through the nearest road crossing (illustrated in Fig. 3). 

While the vehicles are moving at different speeds, the overall speed-profile geometry upon pedestrian-vehicle 
interaction would be comparable; therefore, the cosine similarity was used to capture the deviant behavior. Cosine 
similarity is defined as similarity between two vectors of an inner product space as described by Han et al. (2012). It 

Fig. 3. Dominant speed profiles (PC1) for vehicle trajectories across gates, showing the relationship between 
speed and distance to crossing (normalized for each gate). Each gate has a different percentage of variance 
retained, i.e., Gate 1 (89.3), Gate 2 (97.5), Gate 3 (80.9), Gate 4 (96.2), Gate 5 (96.3), and Gate 6 (85.9). 



136	 Muhammad Waqas Ahmed  et al. / Transportation Research Procedia 91 (2025) 131–138
6 Muhammad Waqas Ahmed et al. / Transportation Research Procedia 00 (2025) 000–000 

is estimated by the cosine of angle between the two vectors and determined whether they are oriented in a similar 
direction , as defined in equation (6). 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑆𝑆𝑖𝑖, 𝑆𝑆𝑝𝑝𝑝𝑝1| =
𝑆𝑆𝑖𝑖,∙ 𝑆𝑆𝑝𝑝𝑝𝑝1

‖𝑆𝑆𝑖𝑖‖ ‖𝑆𝑆𝑝𝑝𝑝𝑝1‖ 

 
(6) 

Where: 
𝑆𝑆𝑖𝑖,∙ 𝑆𝑆𝑝𝑝𝑝𝑝1 is the dot product between the individual trajectory and PC1. ‖𝑆𝑆𝑖𝑖‖ and ‖𝑆𝑆𝑝𝑝𝑝𝑝1‖ are Euclidean norms of the 
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suggests unusual behavioral deviations upon interaction. This similarity measure helps identify if the driver had to 
take an abrupt action due to the interaction with a pedestrian as its speed vector would be significantly deviate from 
the baseline. All of the vectors representing vehicle speeds during interaction were compared with the baseline and 
statistically evaluated (further discussed in table 1). 

3. Results and Discussion 

The deviations were estimated upon analyzing the 468 unique interactions at different gates. Fig. 4 and Table 1 
depict the deviation values across different gates, showing how individual vehicle trajectories differ from the 
baseline behavior at each gate. The y-axis represents the deviation in each vehicle's speed profile compared to the 
baseline, with higher values indicating greater divergence from the typical speed pattern at its respective gate. The 
results reveal that Gate 3 exhibited the highest variability and deviations, demonstrated by a wide interquartile range 
(IQR), and confidence interval ranging from 0.15 to 0.21. This indicates that vehicle behavior at Gate 3 is 
significantly inconsistent compared to the other gates. This issue was later investigated, and the root cause was 
identified (see Fig. 5). 

In contrast, Gates 1, 2, 4, 5, and 6 showed relatively lower deviations, as evidenced by their narrower IQRs and 
lower median deviation values. This suggests more stable and uniform speed behaviors at these locations. However, 

Fig. 4. Boxplot of deviation values (1 - cosine similarity) from the dominant speed profile (PC1) 
across different gates. The  high variability of Gate 3 corresponds to infrastructure-induced risk. 
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the presence of a few outliers was linked to a few instances of deviations like acceleration or deceleration, while a 
larger spread indicates a deeper problem associated with the existing infrastructure. 

Table 1. Summary statistics of deviation values by gate, including mean deviation, standard deviation (SD), and 95% 
confidence interval (CI) lower (L) and upper (U) bounds. 

Gate ID Mean SD CI (L) CI (U) 
1 0.05 0.09 0.03 0.06 
2 0.02 0.06 0.01 0.04 
3 0.18 0.17 0.15 0.21 
4 0.04 0.10 0.02 0.07 
5 0.02 0.06 0.01 0.03 
6 0.03 0.06 0.01 0.04 

 
After further investigation, the root cause of the unusual behavior at gate 3 was identified. The issue originates 

from the introduction of a bicycle path in close proximity to the gate. This biking path, intended for bicycles, is used 
by pedestrians as a crossing point due to its convenience as the shortest path (highlighted in Fig. 5). This behavior 
resulted in a high frequency of abnormal speed profiles, resulting from abrupt braking and deceleration of vehicles. 
This situation depicts confusion among drivers when a pedestrian unexpectedly enters the cycling lane. The situation 
seems to be an unintended consequence of the biking infrastructure, and relocating the bike path to align with the 
existing zebra crossing could help alleviate this issue. 

The study demonstrated the unparalleled potential of AI, combined with the aerial perspective of UAVs, for the 
detection of behavioral anomalies in road traffic. The proposed workflow can be tailored to fit the geometry of the 
study area, as the placement of monitoring gates can be customized. Additionally, this workflow necessitates the 
establishment of a baseline that represents normal behavior in a localized area. Anomalies are then detected by 
comparing current behavior against this baseline. These features make the proposed solution highly customizable 
and scalable. Furthermore, the workflow relies on high-quality data; therefore, having extensive data, such as hours 
or days of footage, can significantly enhance the robustness of user behavior modeling. However, a limitation of this 
study is the quality of the data. While DataFromSky was utilized for this experiment, which is known for providing 
reliable and high-quality vehicle trajectories, noisy data can adversely affect the results. Therefore, it is essential to 
perform quality checks on the experimental data before implementation. 

Fig. 5. The cyclist lane occupied by pedestrians leading to extreme deviations in speed profile at gate 3. 
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4. Conclusion 

This study represents one of the initial efforts to combine UAV and AI technologies for quantifying pedestrian-
vehicle risks at actual sites through unsupervised behavior profiling. The proposed approach first establishes a 
baseline behavior and then recognizes deviations from aerial footage of road traffic. In this case study, the 
observations revealed that deviant behavior was primarily caused by a bike path, originally intended for bicycles, 
being used by pedestrians as a convenient crossing point due to its shorter route. These unusual behaviors are often 
challenging to capture through conventional methods, leading to frequent underreporting of potential hazards. The 
findings strongly advocate for the application of these disruptive technologies in real-world environments, thereby 
promoting a robust integration of AI in road traffic monitoring. 

 In conclusion, the proposed method facilitates a micro-level analysis of real-world traffic behavior in densely 
populated pedestrian areas, a capability not offered by current microsimulation platforms. This analysis allows users 
to pinpoint the location, causes, and timing of anomalies identified in traffic footage. This method is adaptable to 
different urban contexts with varying geometries and behaviors. Combining it with microsimulation frameworks to 
model and evaluate the impacts of different inventions, it can assist policymakers in making informed decisions 
backed by data. Future research will explore locations with differing built environments to analyze behavioral 
aspects of road users and to identify both local and global behavioral patterns. 
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