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Abstract

As the emphasis on active mobility grows, ensuring pedestrian safety has become increasingly important.
Understanding how road users behave during interactions between pedestrians and vehicles is essential for
establishing effective road safety measures. Al coupled with drone technology can significantly enhance the
detection and analysis of these interactions and behaviors. While traditional microsimulation methods can simulate
road user behavior and potential risks, they are prone to inaccuracies since the environment is manually calibrated,
and the calibration parameters may not fully represent the real-world environment. Modeling real-world trajectories
and environments directly could facilitate the identification of potential risks at a micro-scale and help understand
how different road users respond to soft modes and the associated infrastructure. This paper presents an innovative
solution that uses drones and an Al-driven workflow to detect pedestrian-vehicle interactions and analyze vehicle
behavior in high-density pedestrian areas. The system automates the detection of these interactions based on
predetermined spatial and temporal conditions. Once these interactions are detected, a baseline of vehicle behavior
is established by plotting the dominant speed profiles as vehicles approach zebra crossings. This baseline behavior is
then used to estimate deviations for each vehicle at each movement at an unsignalized three-legged intersection. The
workflow helps pinpoint behavioral anomalies' location, cause, and temporal signature, enabling automation across
extensively recorded video data. The findings highlight the potential of these disruptive technologies to assist
policymakers, urban planners, and mobility experts to be aware of current traffic situations and aid in making
informed decisions to enhance road safety and improve driving conditions.
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1. Introduction

For a substantial amount of time, researchers working in the area of road safety have been exploring the use of
behavioral data for a better understanding of the underlying causes of road accidents. Several factors shape a
driver’s behavior including distraction, vehicle maneuvers, violations, brake response time, and involvement in
pedestrian-vehicle interaction as discussed in the past literature by Hancock et al. (2003); Luo et al. (2023);
Rosenbloom and Perlman (2016), and Wood and Troutbeck (1994). In the recent past, researchers have extensively
investigated the profile ratings of drivers using naturalistic driving data — for example Beusen et al. (2009) used data
obtained from onboard logging devices, Ellison et al. (2015) analyzed GNSS-based trajectories to determine the
smoothness of maneuvers and Papadimitriou et al. (2019) utilized cellular data for driver categorization and
estimation of crash risk probability. These already established measures are great at determining naturalistic driving
behavior but pose certain limitations. For instance, installing expensive onboard devices on vehicles poses certain
operational and legal constraints limiting the adequate sample size representative of an area’s population. Similarly,
GNSS-based methods are somewhat unreliable due to positional inaccuracies and clocking issues as the receiving
device tends to face delays in transmission.

Microsimulation platforms like PTV VISSIM, PARAMICS, and AIMSUM are widely used to model current
traffic environments and quantify the impact of an intervention in terms of driving behavior and road safety.
Mahmud et al. (2019) reviewed several studies that utilized these microsimulation platforms and their applicability
in modeling real-world traffic environments and naturalistic driving conditions. The authors acknowledged the
limitations of these platforms as they are highly data-dependent, and often, real-life conditions cannot be entirely
replicable within a probabilistic microsimulation. For example, it is challenging to model non-lane-based
heterogeneous traffic environments. Similarly, active or vulnerable users like pedestrians and cyclists may not
always follow their designated walkways or lanes, impacting the behavior of approaching vehicles. Although these
violations are often perceived as non-threatening, they still have some implications.

Recent advancements in computer vision and image processing systems offer reliable alternatives to conventional
data collection and analysis mechanisms. Saunier and Sayed (2007) demonstrated that these technologies offer the
potential to develop automated solutions for generalized and specialized traffic scenarios. With the advent of Al-
enabled Unmanned Aerial Vehicle (UAV) technology or recently coined so-called YOLO-based-UAV technology
(YBUT), road traffic analysis has been revolutionized, as discussed in a study by Chen et al. (2023). Butild and
Boboc (2022) systematically reviewed the use of UAVs in urban traffic monitoring and concluded that these
intelligent technologies offer a strong alternative to the conventional road traffic data collection and analysis due to
the enhanced coverage and aerial perspective that is otherwise not offered by conventional means, thereby enabling
a holistic view of road traffic with minimal blind spot risks. Aerial footage combined with Al technology can also
help uncover patterns that may go unnoticed but are consistently impacting the driving behavior. Avola et al. (2022),
for instance, proposed a novel two-branch Generative Adversarial Network (GAN)-based method for low-altitude
RGB aerial video to identify and localize anomalies. They define anomalous situations as encounters with
interactions with foreign objects like gas bottles, boxes, and suitcases, representing a danger to attention.

With the growing emphasis on active or soft mobility, it is important to identify the interaction behavior of soft
modes with motorized transport to foster a safer shared environment, as discussed by Che et al. (2021). Sullman et
al. (2012) similarly emphasized that this understanding becomes extremely critical in high-density pedestrian
environments such as school districts, where the presence of vulnerable road users is significantly high. While
surrogate safety indicators like time-to-collision and post-encroachment time are commonly used to identify
potential risk zones, Renard et al. (2022) utilized UAV footage combined with an Al-based platform called
Datafromsky to evaluate safety for active road users, i.e., school children. Although surrogate safety indicators can
be used to identify near-miss incidents and conflicts, behavioral profiling can enable a holistic analysis, and the
insights can even help mitigate the cause of the near-miss incidents. Moreover, post-intervention studies could help
model and determine the efficacy of soft-mobility infrastructure and its impact on regular traffic. Vehicle trajectories
from Al-enabled drone technology can help map the naturalistic traffic behavior in these areas and identify unsafe
road crossings and resultant anomalous vehicle behavior in response.

This paper presents an approach to determining and analyzing traffic behavior in high-density pedestrian areas
using Al-based drone technology. The proposed method establishes a baseline behavior of vehicles interacting with
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pedestrians at a three-legged intersection within a school district. The method extracts the real-world traffic directly,
enabling the ability to model the traffic behavior at a foundational level; therefore, the chances of calibration errors
are non-existent. This leads to the development of a workflow that reflects reality, in contrast to microsimulation
methods that depend on user expertise and may overlook deviant user behaviors that are often caused by the built
environment itself. The findings uncover anomalous patterns in vehicle-pedestrian interactions resulting from
infrastructural intervention. These patterns often remain undetectable by conventional methods; therefore, the
study's results offer insights for policy adjustments at a micro-level to ensure the safety of vulnerable road users.

2. Data and Methods
2.1. Study location and experimental setup

The experimental design consists of a DJI mini pro 3 flying at a height of 60 meters at 14:15 local time under all-
clear sky conditions over a three-legged intersection at ElfdeLiniestraat in Hasselt, Belgium (see Fig. 1). This
particular location was selected due to the high density of vulnerable road users because of the nearby schools.
Considering the intersection’s design, six gates are placed across each vehicle movement. The approaching gates 1,
3, and 6 were placed at 20 meters since the higher distance could help capture the speed profile more accurately,
whereas departure gates 4, 2, and 5 were placed at 5, 8, and 8 meters, respectively, based on the dimensions of the
intersection. This helps retain the records that are critical for determining the vehicle-pedestrian interaction and
discard the unnecessary records. Additionally, this setup is tailored for the built environment of the selected
location.

Fig. 1. The location of the experiment and gate assignment at ElfdeLiniestraat in Hasselt, Belgium. [Left: drone image; right: annotated
satellite view].
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The workflow consists of drone footage (see Fig. 2) processed by DataFromSky, a platform which performs road
user object detection on the recorded footage and extracts the trajectories that are used to calculate road user
parameters as previously demonstrated by Adamec et al. (2020). To enable a spatially consistent output, a spatial
reference system UTM 31N is defined by manually defined ground control points (GCPs). Subsequently, the data
undergoes a transformation process, and critical information like vehicle track IDs, type, speed, positions, and time
stamps are structured into a database for analysis.

Policy Interventions
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Fig. 2. Illustration of the methodological framework of the study.

2.2. Defining vehicle-pedestrian interaction

Due to the large data volume, it was essential to develop a method to retain the relevant information only. In a
45-minute long traffic footage, there were approximately 1,259 unique road user trajectories, of which 76% are
active road users—specifically pedestrians (66%) and cyclists (10%) —while 24% are vehicles (20.49% cars, 0.95%
medium vehicles, 0.05% heavy vehicles, 0.74% motorcycles and 1.43% buses). For the experiment, it was crucial to
establish criteria for detecting pedestrian-vehicle interactions at road crossings. For each vehicle trajectory passing
through a crosswalk the interaction with pedestrian was detected by spatial and temporal conditions, similar to Hu et
al. (2022). We define the interaction criteria by equations (1) and (2), respectively.

a) Spatial condition: pedestrian within a crossing:
A pedestrian p at time t is considered to be inside a crossing Cj,.

p: € C, = pedestrian inside crossing (1)

Where p, = (Xp,¢, ¥p,t) is the pedestrian’s location at time t, Cyis the k., crossing polygon due to the presence of
multiple polygons and a pedestrian may cross multiple polygons within a footage.

b) Temporal condition: time matching:
For an interaction, a pedestrian must be present at the crossing at a time ¢, close to the vehicle's time ¢, within a
time tolerance At.

|6, — t,| < At @
Where At = 3 seconds based on reasonable crossing speed assumption. The At helps capture a vehicle's

behavior upon approaching a pedestrian. Both conditions ensure that an event is logged as a co-occurrence in both
space and time.
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2.3. Determining the baseline behavior and deviation from normality

After enforcing spatial and temporal criteria, 468 unique interactions were identified. Speed profile geometry of
vehicles upon interaction was plotted, and then Principal Component Analysis (PCA) was applied to reduce the
dimensionality, estimating the cumulative behavior and thereby determining a dominant speed profile with respect
to the distance to respective crossing from each gate. Given the dataset X = R™*?, where n is the number of filtered
interactions in the form of trajectories crossing through a gate, and p represents the number of features or
dimensions in each observation as outlined in the reference guide by Kurita (2019). PCA is applied to the gate-
specific matrix after data standardization as described by equation (3).

X—u 3)

Xscatea =

and calculating the covariance matrix C in equation (4):

_ 1T 4
€= ;XScaledXscaled '
Next we perform eigenvalue decomposition to extract the principal components, as shown in equation (5):
C, = v 5)

C, is simply 4, i.e., the corresponding eigenvalue times v. This shows that v is the direction or pattern in the
speed profile space along which the variance (i.e., the differences in vehicle speeds as they approach the crossing) is
maximized. The pattern, captured by the first principal component (PC1), captures the most common trend in
vehicle speeds at that gate while a pedestrian is moving through the nearest road crossing (illustrated in Fig. 3).
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Fig. 3. Dominant speed profiles (PC1) for vehicle trajectories across gates, showing the relationship between
speed and distance to crossing (normalized for each gate). Each gate has a different percentage of variance
retained, i.e., Gate 1 (89.3), Gate 2 (97.5), Gate 3 (80.9), Gate 4 (96.2), Gate 5 (96.3), and Gate 6 (85.9).

While the vehicles are moving at different speeds, the overall speed-profile geometry upon pedestrian-vehicle
interaction would be comparable; therefore, the cosine similarity was used to capture the deviant behavior. Cosine
similarity is defined as similarity between two vectors of an inner product space as described by Han et al. (2012). It
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is estimated by the cosine of angle between the two vectors and determined whether they are oriented in a similar
direction , as defined in equation (6).

. L. , Sy Spcl
Cosine SLlearLty|Si,SpC1| = —
”Sl” ”Spcl” (6)
Where:
Siy Spea is the dot product between the individual trajectory and PC;. ||S;|| and ”Spcl || are Euclidean norms of the
vectors. Since cosine similarity ranges from -1 (completely opposite) to 1 (identical), we define deviation (d) as
equation (7):

d =1 — Cosine Similarity(S;, Spc1) @)

If the deviation is 0, it suggests that the vehicle’s speed follows the baseline geometry, whereas a deviation > 0
suggests unusual behavioral deviations upon interaction. This similarity measure helps identify if the driver had to
take an abrupt action due to the interaction with a pedestrian as its speed vector would be significantly deviate from
the baseline. All of the vectors representing vehicle speeds during interaction were compared with the baseline and
statistically evaluated (further discussed in table 1).

3. Results and Discussion

The deviations were estimated upon analyzing the 468 unique interactions at different gates. Fig. 4 and Table 1
depict the deviation values across different gates, showing how individual vehicle trajectories differ from the
baseline behavior at each gate. The y-axis represents the deviation in each vehicle's speed profile compared to the
baseline, with higher values indicating greater divergence from the typical speed pattern at its respective gate. The
results reveal that Gate 3 exhibited the highest variability and deviations, demonstrated by a wide interquartile range
(IQR), and confidence interval ranging from 0.15 to 0.21. This indicates that vehicle behavior at Gate 3 is
significantly inconsistent compared to the other gates. This issue was later investigated, and the root cause was
identified (see Fig. 5).

Deviation fram Dominant Speed Profile (PC1) for All Gates
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Fig. 4. Boxplot of deviation values (1 - cosine similarity) from the dominant speed profile (PC1)
across different gates. The high variability of Gate 3 corresponds to infrastructure-induced risk.

In contrast, Gates 1, 2, 4, 5, and 6 showed relatively lower deviations, as evidenced by their narrower IQRs and
lower median deviation values. This suggests more stable and uniform speed behaviors at these locations. However,
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the presence of a few outliers was linked to a few instances of deviations like acceleration or deceleration, while a
larger spread indicates a deeper problem associated with the existing infrastructure.
Table 1. Summary statistics of deviation values by gate, including mean deviation, standard deviation (SD), and 95%
confidence interval (CI) lower (L) and upper (U) bounds.

Gate ID Mean SD CI(L) CI(U)
1 0.05 0.09 0.03 0.06
2 0.02 0.06 0.01 0.04
3 0.18 0.17 0.15 0.21
4 0.04 0.10 0.02 0.07
5 0.02 0.06 0.01 0.03
6 0.03 0.06 0.01 0.04

After further investigation, the root cause of the unusual behavior at gate 3 was identified. The issue originates
from the introduction of a bicycle path in close proximity to the gate. This biking path, intended for bicycles, is used
by pedestrians as a crossing point due to its convenience as the shortest path (highlighted in Fig. 5). This behavior
resulted in a high frequency of abnormal speed profiles, resulting from abrupt braking and deceleration of vehicles.
This situation depicts confusion among drivers when a pedestrian unexpectedly enters the cycling lane. The situation
seems to be an unintended consequence of the biking infrastructure, and relocating the bike path to align with the
existing zebra crossing could help alleviate this issue.

-

Fig. 5. The cyclist lane occupied by pedestrians leading to extreme deviations in speed profile at gate 3.

The study demonstrated the unparalleled potential of Al, combined with the aerial perspective of UAVs, for the
detection of behavioral anomalies in road traffic. The proposed workflow can be tailored to fit the geometry of the
study area, as the placement of monitoring gates can be customized. Additionally, this workflow necessitates the
establishment of a baseline that represents normal behavior in a localized area. Anomalies are then detected by
comparing current behavior against this baseline. These features make the proposed solution highly customizable
and scalable. Furthermore, the workflow relies on high-quality data; therefore, having extensive data, such as hours
or days of footage, can significantly enhance the robustness of user behavior modeling. However, a limitation of this
study is the quality of the data. While DataFromSky was utilized for this experiment, which is known for providing
reliable and high-quality vehicle trajectories, noisy data can adversely affect the results. Therefore, it is essential to
perform quality checks on the experimental data before implementation.
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4. Conclusion

This study represents one of the initial efforts to combine UAV and Al technologies for quantifying pedestrian-
vehicle risks at actual sites through unsupervised behavior profiling. The proposed approach first establishes a
baseline behavior and then recognizes deviations from aerial footage of road traffic. In this case study, the
observations revealed that deviant behavior was primarily caused by a bike path, originally intended for bicycles,
being used by pedestrians as a convenient crossing point due to its shorter route. These unusual behaviors are often
challenging to capture through conventional methods, leading to frequent underreporting of potential hazards. The
findings strongly advocate for the application of these disruptive technologies in real-world environments, thereby
promoting a robust integration of Al in road traffic monitoring.

In conclusion, the proposed method facilitates a micro-level analysis of real-world traffic behavior in densely
populated pedestrian areas, a capability not offered by current microsimulation platforms. This analysis allows users
to pinpoint the location, causes, and timing of anomalies identified in traffic footage. This method is adaptable to
different urban contexts with varying geometries and behaviors. Combining it with microsimulation frameworks to
model and evaluate the impacts of different inventions, it can assist policymakers in making informed decisions
backed by data. Future research will explore locations with differing built environments to analyze behavioral
aspects of road users and to identify both local and global behavioral patterns.
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