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Abstract

Motivation: Insights from integrative multi-omics analyses have fueled demand for innovative computational methods and tools in multi-omics
research. However, the scarcity of multi-omics datasets with user-defined signal structures hinders the evaluation of these newly developed
tools. SUMO (SimUlating Multi-Omics), an open-source R package, was developed to address this gap by enabling the generation of high-
quality factor analysis-based datasets with full control over the dataset’s structure such as latent structures, noise, and complexity. Users can
configure datasets with distinct and/or shared non-overlapping latent factors, enabling flexible and precise control over the signal structures.
Consequently, SUMO allows reproducible testing and validation of methods, fostering methodological innovation.

Availability and implementation: The SUMO R package is freely available and accessible on the Comprehensive R Archive Network https://

doi.org/10.32614/CRAN.package.SUMO and on GitHub https://github.com/lucp12891/SUMO.git under CC-BY 4.0 license.

1 Introduction

The growing impact of multi-omics analysis has prompted a
surge in experiments, raising both the complexity and the
scale of integrative analyses. These developments pose signifi-
cant challenges for existing multi-omics tools while simulta-
neously creating opportunities for innovative methodological
advancements. To foster innovation in method development,
it is crucial to systematically compare and validate newly de-
veloped multi-omics integration tools with existing methods.
However, the limited availability of curated benchmark data-
sets with known signals for comparative evaluation of these
tools remains a bottleneck. Furthermore, the availability
of these datasets establishes a structured simulation environ-
ment that enables the systematic generation of diverse,
multi-faceted datasets, providing a rigorous foundation for
benchmarking, stress-testing, and comparative evaluation of
these tools.

To address this, tools such as MOSim (Monz6 et al. 2018),
InterSIM (Chalise et al. 2016), OmicsSIMPLA (Chung and
Kang 2019), and sismonr (Angelin-Bonnet et al. 2020) have
emerged. Additionally, scDesign3 (Song et al. 2024) and
scMultiSim (Li ez al. 2025) have been developed for single-
cell-oriented simulation frameworks. However, these multi-
omics data simulators are not tailored for FA-based bench-
marking in bulk omics. This lack of well-characterized simu-
lation frameworks with clearly defined signal structures
continue to hampers the development, validation, and rigor-
ous evaluation of FA-based approaches for multi-omics

integration. SUMO fills this gap by simulating datasets with
explicit latent factors and traceable ground truth, enabling
robust evaluation of FA-driven methods.

2 SUMO: an R package

Here, we present SUMO, an R package for simulating high-
quality FA-based multi-omics datasets, granting users maxi-
mum control over noise levels, signal structures, and custom-
izable dataset features for robust and reproducible
benchmarking. Such flexibility and user-definability is crucial
for rigorous and unbiased evaluation of tools, advancing the
reliability and reproducibility, and broader adoption of
multi-omics analysis methods and pipelines.

SUMO uses a generative factor model approach to gener-
ate multi-omics datasets by inverting the conventional FA-
based model. For data analysis, standard matrix factorization
methods typically decompose the observed data to infer
lower-dimensional representations comprising latent factors
with corresponding feature and sample contributions. SUMO
reverses this process by starting with predefined latent struc-
tures and constructs datasets from these factors, incorporat-
ing their associated feature contributions (weights/loadings),
sample contributions (factor scores), and user-defined, data-
specific background noise. This methodology directly aligns
with widely used FA-based approaches for multi-omics inte-
gration, such as Multi-Omics Factor Analysis, MOFA
(Argelaguet et al. 2018), Group Factor Analysis, GFA (Klami
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et al. 2015), and Factor Analysis for Biclustering Acquisition,
FABIA (Hochreiter et al. 2010, Kasim et al. 2016). In this
context, SUMO is uniquely well suited for benchmarking FA-
based methods, providing a critical bridge between methodo-
logical development and real-world application.

2.1 Generative factor model formulation

The core of SUMO?’s data generation framework is a linear
generative factor model, formulated in Equation (1), which
decomposes each m X n data matrix (X), with 7 features and
n samples:

X=A"T+E (1)

where A is a k X m loading matrix representing the contribu-
tion of m features to k latent factors. Each row in A, denoted
as A; (with i=1,...,k), corresponds to the loading vector of
the ith latent factor. T is a k X 7 latent factor matrix encoding
the influence of each latent factor across # samples. Each col-
umn in T, denoted as y; (with j=1, ... ,n), represents the fac-
tor scores for the jth sample. Residual variation (background
noise) is modeled by E, an m X # matrix with entries drawn
from a normal distribution with mean zero and constant vari-
ance o”. Consequently, each element/entry of the simulated
data, x;;, can be expressed as:

Xjj = Ay + gior equivalently, x;; = u; + &5 (2)

where 4; and y; represent the feature- and sample-specific con-
tributions, respectively and g;; is the ijth entry of E.

The model formulated in Equations (1) and (2) is defined
for a single omics dataset. In the case of multi-omics data,
with 7 >2 data matrices, where each Xj represents a distinct
myxn omic layer with m; features measured across a shared
set of 7 biological samples. For instance, when 72 =2, X; and
X, may correspond to transcriptomics and proteomics data,
respectively. The model in Equation (1) can then be general-
ized as:

Xi = AT +Efor 1 = 2. m (3)
where I is a k X n shared score matrix capturing the latent
structure across samples, Aj are myxk data-specific loading
matrices, and Ej are m;xn data-specific noise matrices. This
formulation allows each omics layer to express distinct
feature-level contributions through Aj while enforcing a
common latent representation across all samples via T.
Extended model derivations are provided in Section 2, avail-
able as supplementary data at Bioinformatics Advances on-
line. The data generation framework follows the algorithm
described in Equations (i)—(xiii), with Fig. 1, available as sup-
plementary data at Bioinformatics Advances online (Section
2) further illustrates the formation of latent factors and the
overall generation process, visually summarizing the mathe-
matical principles presented in the equations.

2.2 Latent factor(s) configuration and multi-

omics structure

The current SUMO framework generates omics datasets with
heterogenous feature spaces and dimensionalities, but sharing
a common sample set, a fundamental requirement for inte-
grative multi-omics analysis (Argelaguet et al. 2018). Within
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this framework, users can explicitly define latent factors
through factor scores and feature loadings, thereby specifying
how the signal is distributed across features and samples.
These latent structures can be configured as (i) unique fac-
tors, restricted to a single omics layer; (ii) shared factors,
spanning multiple omics layers; or (iii) mixed structures,
combining shared and unique components to capture cross-
omics interactions and layer-specific variation (Table 1, avail-
able as supplementary data at Bioinformatics Advances on-
line). SUMO adopts an early integration strategy wherein co-
occurring samples serve as anchors to link omics layers into a
unified multidimensional matrix (Fig. 4, available as supple-
mentary data at Bioinformatics Advances online). Each omics
layer contributes a distinct dimension to the data space, pre-
serving latent structure while enabling the exploration of
both cross-layer dependencies and layer-specific variation
[Equation (3) and Fig. 1, available as supplementary data at
Bioinformatics Advances online]. Although the underlying
model assumes linear relationships, potentially limiting the
ability to capture complex nonlinear dependencies seen in ex-
perimental omics data, SUMO nevertheless provides a struc-
tured, transparent, and reproducible framework for
benchmarking and advancing multi-omics integration meth-
ods, particularly those grounded in matrix factorization.
Details on package installation, dependencies, and setup are
provided in the Section 2.4, available as supplementary data
at Bioinformatics Advances online and the accompanying vi-
gnette. SUMO offers a built-in visualization functionality, to
support inspection of simulated datasets, latent factors (via
factor scores), and feature contributions (via weights/load-
ings). These visualizations enable users to assess distribu-
tional properties, signal structures, and sample- and feature-
level variability. Available options include heatmaps for
structured and permuted signals, 3D representations of the
latent space, scatter plots for examining factor scores and
dataset-specific loadings, and histograms to identify extreme
values of these components (see Fig. 1). Collectively, these
features support quality control of the simulated datasets and
ensure suitability for rigorous downstream analyses.

3 SUMO workflow

Generation of multi-omics datasets with SUMO is illustrated
in the workflow presented in Fig. 2. To illustrate its imple-
mentation of the SUMO framework, we constructed an ex-
ample using an experimental chronic lymphocytic leukemia
(CLL) dataset as a reference case study, previously explored
by Argelaguet et al. (2018), and originally published in
Dietrich et al. (2018). This multi-omics dataset was used to
estimate input parameters such as signal characteristics and
background noise, which informed the simulation settings.
The resulting SUMO-generated dataset preserves the approx-
imated key statistical and structural properties of the refer-
ence data such as feature-level and sample-level means,
variances, and background noise, while allowing the con-
trolled introduction of additional layers of variation through
user-defined signals (for details refer to Section 3.4, available
as supplementary data at Bioinformatics Advances online).
As such, we do not expect SUMO-generated data to fully re-
semble real experimental datasets, since authentic biological
variation cannot be completely simulated. But we do expect
SUMO-generated data to fully capture the data structure de-
fined by the user. Importantly, this is not a limitation:
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A Simulated dataset visualization

Heatmap 3D Image plot

D = 4000

Lol

Features

D = 3000

P — T T 1 \\ S
e Samples (N = 100) \:\é

Factor Shared

by X; and X, AN
\ g J N
\\ E Factor Unique
\ S | B < to X,
\ w /
\ ~ Omic 2 (X;) b = 3000 /
] - S - /
\ N R S S | ik /
\ Samples (N = 100) //
\
. . . /
B \ Factor scores visualization //
/
\\ Scatter plot /
¥ v
S 5.0 ¢ 6 50
E . g sl s 50
=25 ege o ;o'.' 4~ 251 o JSoe '..:
= o Pl
B W S R e AR
23 0.01 *
Loy TUIML , & X 4 » o
: 251 ¢ *
0 25 50 75 100 0 25 50 75 100
Samples Samples

C Feature Weights visualization (Factor contributions)

Scatter plot

Data: Omic 1 (X,) - to Factor 1 Data: Omic 2 (X,) - to Factor 1

50

25
0.0
25 4

0 1000 2500 3000 4000 0 1000 2000
Featiyes . Features
\ Histogram

Weights
Weights

©
8

5.0
25
0.0
25

Frequency
Frequency
Py
3

w
=3
b © w @

o

50 25 00 25 50 75 4 0 4
Weights Weights

Data: Omic 1 (X,) - to Factor 2

50
25
0.0
25

0 1000 2000 3000 4000 25 00 25 50 75
Features Weights

Figure 1. Visualization of simulated multi-omics datasets from SUMO illustrating latent factor and feature loadings/weights: (A) Heatmap and 3D surface
plots of datasets with two user-defined latent factors: Factor 1 [shared across Omic 1 (X4) and Omic 2 (X5) and Factor 2 (specific to Omic 1 (X4)]. The
heatmap includes an additional visualization with permuted signals to contrast structured and permuted signal patterns. (B) Scatter plots of factor scores,
showing sample-level contributions to the shared (Factor 1) and unique (Factor 2) latent factors. (C) Scatter and histogram plots of feature loadings
showing the distribution of feature contributions across both datasets, highlighting differences between features driven by shared versus unique factors

and the influence of noise.

SUMO?’s strength lies in enabling users to inject known sig-
nals and systematically track whether they are recovered,
thereby supporting rigorous benchmarking of analytical
tools. Accordingly, SUMO is not intended to replace real
datasets; rather, it bridges method development and real-
world application by enabling controllable, traceable ground-
truth signals that experimental data do not provide.
Although SUMO-generated datasets can serve as benchmarks
for a wide range of computational models, either individually
or in comparative evaluations, such assessments are beyond
the scope of this manuscript. Here, we focus on demonstrat-
ing SUMO?s ability to generate structured, interpretable data-
sets suitable for testing FA-based multi-omics integration
methods. A detailed description and results are provided in
Section 3, available as supplementary data at Bioinformatics
Advances online.

3.1 Parameter specification and configuration

The first step in the SUMO workflow is model parameteriza-
tion (Fig. 2A). In this stage, users can either apply SUMO’s
default parameter settings, or derive parameters directly from
experimental datasets (example of CLL data provided in the
Section 3, available as supplementary data at Bioinformatics
Advances online). Before initiating a simulation, configura-
tions should be verified against the specifications provided in
the SUMO user manual. As an illustration of how SUMO can
be calibrated from real data, we generated datasets and com-
pared them with the CLL dataset as a reference. These com-
parisons show that SUMO dataset preserves expected
variance structures and, although not specifically designed
for clustering or correlation analyses, also maintains

comparable patterns, underscoring its suitability for bench-
marking (Sections 3.3 and 3.4, available as supplementary
data at Bioinformatics Advances online). To further provide
support to both expert and non-expert users, SUMO includes
a vignette with detailed explanation of each parameter, and
an example of simulation settings for method evaluation.
This design ensures accessibility for both expert and non-
expert users, enabling the generation of datasets tailored to
their diverse analytical objectives and benchmarking needs.

3.2 Data generation and visualization

The simulated data is generated by SUMO using the user-
defined parameters. The built-in visualization functions
(Fig. 2B) can be further used to inspect simulated datasets dis-
tributions (heatmaps, 3-D image plot; Fig. 1A), to explore the
underlying latent factor structures (scatter plot; Fig. 1B), and
to assess feature contributions (scatter plot and histogram;
Fig. 1C). These inspections provide valuable insights into the
structure of the generated dataset, and the potential for accu-
rate recovery of true signal. For example in Fig. 1, the clear
separation between the simulated signal and background
noise, suggests that the true signal will be easily recovered.

3.3 Performance evaluation environment

The generated simulated dataset can be further analyzed
through a multi-omics analysis pipeline, such as MOFA
(Fig. 2C). The resulting outputs can then be systematically
evaluated for performance against the predefined signals em-
bedded during simulation. SUMO offers explicit control over
latent factor structures and full traceability of sample- and
feature-level contributions, thereby enabling rigorous
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Figure 2. End-to-end SUMO data generation and benchmarking workflow. (A) Parameters are specified via a configuration function, using default settings or
estimates derived from experimental data. (B) SUMO generates multi-omics datasets which are inspected using built-in visualizations prior to analysis. (C)
The generated data are analyzed with multi-omics integration methods (e.g., MOFA), and performance is evaluated against the known ground truth.

assessment of how effectively computational methods recover
the underlying true signals. As discussed in Section 3, avail-
able as supplementary data at Bioinformatics Advances on-
line, SUMO allows seamless integration of multi-omics
analysis methods, such as MOFA (see Section 3, available as
supplementary data at Bioinformatics Advances online for
details). Beyond evaluating latent factor recovery, SUMO-
generated datasets support evaluation across performance
metrics including accuracy, sensitivity, specificity, and ro-
bustness to noise. For instance, the impact of noise variation
controlled via the signal-to-noise ratio (SNR) on model per-
formance is illustrated in Figs 6a and b, available as supple-
mentary data at Bioinformatics Advances online (Section 3).
Finally, the pipeline outlined in Fig. 2, available as supple-
mentary data at Bioinformatics Advances online is a proof-
of-concept workflow developed in-house, which serves to
demonstrate how SUMO can be integrated into diverse

analytical pipelines to objectively benchmark and compare
multi-omics integration tools in a flexible and reproduc-
ible manner.

4 Conclusions

SUMO is a flexible and extensible R package designed to sim-
ulate structured multi-omics datasets, offering precise control
over latent structures, noise levels, and overall data complex-
ity. Beyond its flexibility, it establishes a reproducible and
standardized environment for developing and validating com-
putational methods. Its compatibility with existing pipelines
ensures seamless integration into established workflows, ac-
celerating efficient method development and evaluation. By
offering transparent benchmarking and optimization, SUMO
provides a critical foundation for the advancement of compu-
tational innovation in multi-omics research.
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