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Abstract
Motivation: Insights from integrative multi-omics analyses have fueled demand for innovative computational methods and tools in multi-omics 
research. However, the scarcity of multi-omics datasets with user-defined signal structures hinders the evaluation of these newly developed 
tools. SUMO (SimUlating Multi-Omics), an open-source R package, was developed to address this gap by enabling the generation of high- 
quality factor analysis-based datasets with full control over the dataset’s structure such as latent structures, noise, and complexity. Users can 
configure datasets with distinct and/or shared non-overlapping latent factors, enabling flexible and precise control over the signal structures. 
Consequently, SUMO allows reproducible testing and validation of methods, fostering methodological innovation.
Availability and implementation: The SUMO R package is freely available and accessible on the Comprehensive R Archive Network https:// 
doi.org/10.32614/CRAN.package.SUMO and on GitHub https://github.com/lucp12891/SUMO.git under CC-BY 4.0 license.

1 Introduction
The growing impact of multi-omics analysis has prompted a 
surge in experiments, raising both the complexity and the 
scale of integrative analyses. These developments pose signifi
cant challenges for existing multi-omics tools while simulta
neously creating opportunities for innovative methodological 
advancements. To foster innovation in method development, 
it is crucial to systematically compare and validate newly de
veloped multi-omics integration tools with existing methods. 
However, the limited availability of curated benchmark data
sets with known signals for comparative evaluation of these 
tools remains a bottleneck. Furthermore, the availability 
of these datasets establishes a structured simulation environ
ment that enables the systematic generation of diverse, 
multi-faceted datasets, providing a rigorous foundation for 
benchmarking, stress-testing, and comparative evaluation of 
these tools.

To address this, tools such as MOSim (Monz�o et al. 2018), 
InterSIM (Chalise et al. 2016), OmicsSIMPLA (Chung and 
Kang 2019), and sismonr (Angelin-Bonnet et al. 2020) have 
emerged. Additionally, scDesign3 (Song et al. 2024) and 
scMultiSim (Li et al. 2025) have been developed for single- 
cell-oriented simulation frameworks. However, these multi- 
omics data simulators are not tailored for FA-based bench
marking in bulk omics. This lack of well-characterized simu
lation frameworks with clearly defined signal structures 
continue to hampers the development, validation, and rigor
ous evaluation of FA-based approaches for multi-omics 

integration. SUMO fills this gap by simulating datasets with 
explicit latent factors and traceable ground truth, enabling 
robust evaluation of FA-driven methods.

2 SUMO: an R package
Here, we present SUMO, an R package for simulating high- 
quality FA-based multi-omics datasets, granting users maxi
mum control over noise levels, signal structures, and custom
izable dataset features for robust and reproducible 
benchmarking. Such flexibility and user-definability is crucial 
for rigorous and unbiased evaluation of tools, advancing the 
reliability and reproducibility, and broader adoption of 
multi-omics analysis methods and pipelines.

SUMO uses a generative factor model approach to gener
ate multi-omics datasets by inverting the conventional FA- 
based model. For data analysis, standard matrix factorization 
methods typically decompose the observed data to infer 
lower-dimensional representations comprising latent factors 
with corresponding feature and sample contributions. SUMO 
reverses this process by starting with predefined latent struc
tures and constructs datasets from these factors, incorporat
ing their associated feature contributions (weights/loadings), 
sample contributions (factor scores), and user-defined, data- 
specific background noise. This methodology directly aligns 
with widely used FA-based approaches for multi-omics inte
gration, such as Multi-Omics Factor Analysis, MOFA 
(Argelaguet et al. 2018), Group Factor Analysis, GFA (Klami 

Received: May 22, 2025; Revised: September 14, 2025; Accepted: October 9, 2025 
© The Author(s) 2025. Published by Oxford University Press.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics Advances, 2025, 00, vbaf264 
https://doi.org/10.1093/bioadv/vbaf264 
Advance Access Publication Date: 22 October 2025 
Application Note 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/5/1/vbaf264/8296852 by H
asselt U

niversity user on 01 D
ecem

ber 2025



et al. 2015), and Factor Analysis for Biclustering Acquisition, 
FABIA (Hochreiter et al. 2010, Kasim et al. 2016). In this 
context, SUMO is uniquely well suited for benchmarking FA- 
based methods, providing a critical bridge between methodo
logical development and real-world application.

2.1 Generative factor model formulation
The core of SUMO’s data generation framework is a linear 
generative factor model, formulated in Equation (1), which 
decomposes each m×n data matrix (X), with m features and 
n samples: 

X ¼ ΛTΓþΕ (1) 

where Λ is a k×m loading matrix representing the contribu
tion of m features to k latent factors. Each row in Λ, denoted 
as λi (with i¼1, … ,k), corresponds to the loading vector of 
the ith latent factor. Γ is a k×n latent factor matrix encoding 
the influence of each latent factor across n samples. Each col
umn in Γ, denoted as γj (with j¼1, … ,n), represents the fac
tor scores for the jth sample. Residual variation (background 
noise) is modeled by E, an m×n matrix with entries drawn 
from a normal distribution with mean zero and constant vari
ance σ2. Consequently, each element/entry of the simulated 
data, xij, can be expressed as: 

xij ¼ λT
i γþ εijor equivalently;xij ¼ μijþ εij (2) 

where λi and γj represent the feature- and sample-specific con
tributions, respectively and Eij is the ijth entry of E.

The model formulated in Equations (1) and (2) is defined 
for a single omics dataset. In the case of multi-omics data, 
with m≥2 data matrices, where each XI represents a distinct 
mI×n omic layer with mI features measured across a shared 
set of n biological samples. For instance, when m¼2, X1 and 
X2 may correspond to transcriptomics and proteomics data, 
respectively. The model in Equation (1) can then be general
ized as: 

XI ¼ ΛT
I ΓþEIfor I ¼ 2;...; m (3) 

where Γ is a k×n shared score matrix capturing the latent 
structure across samples, ΛI are mI×k data-specific loading 
matrices, and EI are mI×n data-specific noise matrices. This 
formulation allows each omics layer to express distinct 
feature-level contributions through ΛI, while enforcing a 
common latent representation across all samples via Γ. 
Extended model derivations are provided in Section 2, avail
able as supplementary data at Bioinformatics Advances on
line. The data generation framework follows the algorithm 
described in Equations (i)–(xiii), with Fig. 1, available as sup
plementary data at Bioinformatics Advances online (Section 
2) further illustrates the formation of latent factors and the 
overall generation process, visually summarizing the mathe
matical principles presented in the equations.

2.2 Latent factor(s) configuration and multi- 
omics structure
The current SUMO framework generates omics datasets with 
heterogenous feature spaces and dimensionalities, but sharing 
a common sample set, a fundamental requirement for inte
grative multi-omics analysis (Argelaguet et al. 2018). Within 

this framework, users can explicitly define latent factors 
through factor scores and feature loadings, thereby specifying 
how the signal is distributed across features and samples. 
These latent structures can be configured as (i) unique fac
tors, restricted to a single omics layer; (ii) shared factors, 
spanning multiple omics layers; or (iii) mixed structures, 
combining shared and unique components to capture cross- 
omics interactions and layer-specific variation (Table 1, avail
able as supplementary data at Bioinformatics Advances on
line). SUMO adopts an early integration strategy wherein co- 
occurring samples serve as anchors to link omics layers into a 
unified multidimensional matrix (Fig. 4, available as supple
mentary data at Bioinformatics Advances online). Each omics 
layer contributes a distinct dimension to the data space, pre
serving latent structure while enabling the exploration of 
both cross-layer dependencies and layer-specific variation 
[Equation (3) and Fig. 1, available as supplementary data at 
Bioinformatics Advances online]. Although the underlying 
model assumes linear relationships, potentially limiting the 
ability to capture complex nonlinear dependencies seen in ex
perimental omics data, SUMO nevertheless provides a struc
tured, transparent, and reproducible framework for 
benchmarking and advancing multi-omics integration meth
ods, particularly those grounded in matrix factorization. 
Details on package installation, dependencies, and setup are 
provided in the Section 2.4, available as supplementary data
at Bioinformatics Advances online and the accompanying vi
gnette. SUMO offers a built-in visualization functionality, to 
support inspection of simulated datasets, latent factors (via 
factor scores), and feature contributions (via weights/load
ings). These visualizations enable users to assess distribu
tional properties, signal structures, and sample- and feature- 
level variability. Available options include heatmaps for 
structured and permuted signals, 3D representations of the 
latent space, scatter plots for examining factor scores and 
dataset-specific loadings, and histograms to identify extreme 
values of these components (see Fig. 1). Collectively, these 
features support quality control of the simulated datasets and 
ensure suitability for rigorous downstream analyses.

3 SUMO workflow
Generation of multi-omics datasets with SUMO is illustrated 
in the workflow presented in Fig. 2. To illustrate its imple
mentation of the SUMO framework, we constructed an ex
ample using an experimental chronic lymphocytic leukemia 
(CLL) dataset as a reference case study, previously explored 
by Argelaguet et al. (2018), and originally published in 
Dietrich et al. (2018). This multi-omics dataset was used to 
estimate input parameters such as signal characteristics and 
background noise, which informed the simulation settings. 
The resulting SUMO-generated dataset preserves the approx
imated key statistical and structural properties of the refer
ence data such as feature-level and sample-level means, 
variances, and background noise, while allowing the con
trolled introduction of additional layers of variation through 
user-defined signals (for details refer to Section 3.4, available 
as supplementary data at Bioinformatics Advances online). 
As such, we do not expect SUMO-generated data to fully re
semble real experimental datasets, since authentic biological 
variation cannot be completely simulated. But we do expect 
SUMO-generated data to fully capture the data structure de
fined by the user. Importantly, this is not a limitation: 
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SUMO’s strength lies in enabling users to inject known sig
nals and systematically track whether they are recovered, 
thereby supporting rigorous benchmarking of analytical 
tools. Accordingly, SUMO is not intended to replace real 
datasets; rather, it bridges method development and real- 
world application by enabling controllable, traceable ground- 
truth signals that experimental data do not provide. 
Although SUMO-generated datasets can serve as benchmarks 
for a wide range of computational models, either individually 
or in comparative evaluations, such assessments are beyond 
the scope of this manuscript. Here, we focus on demonstrat
ing SUMO’s ability to generate structured, interpretable data
sets suitable for testing FA-based multi-omics integration 
methods. A detailed description and results are provided in 
Section 3, available as supplementary data at Bioinformatics 
Advances online.

3.1 Parameter specification and configuration
The first step in the SUMO workflow is model parameteriza
tion (Fig. 2A). In this stage, users can either apply SUMO’s 
default parameter settings, or derive parameters directly from 
experimental datasets (example of CLL data provided in the 
Section 3, available as supplementary data at Bioinformatics 
Advances online). Before initiating a simulation, configura
tions should be verified against the specifications provided in 
the SUMO user manual. As an illustration of how SUMO can 
be calibrated from real data, we generated datasets and com
pared them with the CLL dataset as a reference. These com
parisons show that SUMO dataset preserves expected 
variance structures and, although not specifically designed 
for clustering or correlation analyses, also maintains 

comparable patterns, underscoring its suitability for bench
marking (Sections 3.3 and 3.4, available as supplementary 
data at Bioinformatics Advances online). To further provide 
support to both expert and non-expert users, SUMO includes 
a vignette with detailed explanation of each parameter, and 
an example of simulation settings for method evaluation. 
This design ensures accessibility for both expert and non- 
expert users, enabling the generation of datasets tailored to 
their diverse analytical objectives and benchmarking needs.

3.2 Data generation and visualization
The simulated data is generated by SUMO using the user- 
defined parameters. The built-in visualization functions 
(Fig. 2B) can be further used to inspect simulated datasets dis
tributions (heatmaps, 3-D image plot; Fig. 1A), to explore the 
underlying latent factor structures (scatter plot; Fig. 1B), and 
to assess feature contributions (scatter plot and histogram; 
Fig. 1C). These inspections provide valuable insights into the 
structure of the generated dataset, and the potential for accu
rate recovery of true signal. For example in Fig. 1, the clear 
separation between the simulated signal and background 
noise, suggests that the true signal will be easily recovered.

3.3 Performance evaluation environment
The generated simulated dataset can be further analyzed 
through a multi-omics analysis pipeline, such as MOFA 
(Fig. 2C). The resulting outputs can then be systematically 
evaluated for performance against the predefined signals em
bedded during simulation. SUMO offers explicit control over 
latent factor structures and full traceability of sample- and 
feature-level contributions, thereby enabling rigorous 

Figure 1. Visualization of simulated multi-omics datasets from SUMO illustrating latent factor and feature loadings/weights: (A) Heatmap and 3D surface 
plots of datasets with two user-defined latent factors: Factor 1 [shared across Omic 1 (X1) and Omic 2 (X2) and Factor 2 (specific to Omic 1 (X1)]. The 
heatmap includes an additional visualization with permuted signals to contrast structured and permuted signal patterns. (B) Scatter plots of factor scores, 
showing sample-level contributions to the shared (Factor 1) and unique (Factor 2) latent factors. (C) Scatter and histogram plots of feature loadings 
showing the distribution of feature contributions across both datasets, highlighting differences between features driven by shared versus unique factors 
and the influence of noise.
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assessment of how effectively computational methods recover 
the underlying true signals. As discussed in Section 3, avail
able as supplementary data at Bioinformatics Advances on
line, SUMO allows seamless integration of multi-omics 
analysis methods, such as MOFA (see Section 3, available as 
supplementary data at Bioinformatics Advances online for 
details). Beyond evaluating latent factor recovery, SUMO- 
generated datasets support evaluation across performance 
metrics including accuracy, sensitivity, specificity, and ro
bustness to noise. For instance, the impact of noise variation 
controlled via the signal-to-noise ratio (SNR) on model per
formance is illustrated in Figs 6a and b, available as supple
mentary data at Bioinformatics Advances online (Section 3). 
Finally, the pipeline outlined in Fig. 2, available as supple
mentary data at Bioinformatics Advances online is a proof- 
of-concept workflow developed in-house, which serves to 
demonstrate how SUMO can be integrated into diverse 

analytical pipelines to objectively benchmark and compare 
multi-omics integration tools in a flexible and reproduc
ible manner.

4 Conclusions
SUMO is a flexible and extensible R package designed to sim
ulate structured multi-omics datasets, offering precise control 
over latent structures, noise levels, and overall data complex
ity. Beyond its flexibility, it establishes a reproducible and 
standardized environment for developing and validating com
putational methods. Its compatibility with existing pipelines 
ensures seamless integration into established workflows, ac
celerating efficient method development and evaluation. By 
offering transparent benchmarking and optimization, SUMO 
provides a critical foundation for the advancement of compu
tational innovation in multi-omics research.

Figure 2. End-to-end SUMO data generation and benchmarking workflow. (A) Parameters are specified via a configuration function, using default settings or 
estimates derived from experimental data. (B) SUMO generates multi-omics datasets which are inspected using built-in visualizations prior to analysis. (C) 
The generated data are analyzed with multi-omics integration methods (e.g., MOFA), and performance is evaluated against the known ground truth.
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