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Abstract

Rationale and objective Inhaled black carbon (BC) has been previously shown to reach and accumulate in the
kidneys. As kidneys filter toxicants, they may be susceptible to adverse effects caused by BC accumulation. We studied
gene expressions and pathways related to BC particle load in kidney biopsy tissue.

Study design Gene expression was measured in 29 kidney biopsies performed at one or two years post-
transplantation using Affymetrix microarray. We performed a transcriptome-wide association analysis using linear
regression analyses, adjusting for individual characteristics to investigate alterations in gene expression in association
with kidney BC. Finally, we performed overrepresentation analyses (ConsensusPathDB) to identify enriched pathways
and gene ontology sets.

Results The geometric mean (5th, 95th percentile) of BC particle levels was 5.4 x 10% (1.5x 10%, 4.1 x 10%) number

of BC particles per mm?® kidney tissue. The BC particle load associated with gene expression in overrepresenting
pathways related to ciliopathies, macrophage-derived proteins involved in anti-inflammatory response, DNA damage
response, TP53 regulation, and necrosis. We identified BC associated genes involved in GO terms ciliogenesis and
ciliary structure, including genes involved in the ciliary plasm and axoneme. Furthermore, we found significantly
BC-associated genes involved in RNA-related processes, including e.g., genes in the integrator complex.

Conclusions Here, we identified genes and pathways associated with real-life kidney BC particle load, indicating
alterations in gene expression involved in assembly and maintenance of primary cilia, the anti-inflammatory
properties of the innate immune system, and DNA damage-related pathways. These findings highlight the need for
public health measures to reduce exposure and protect kidney health in at-risk populations.
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Introduction

Ambient air pollution is one of the major environmental
risk factors to human health, affecting the entire popu-
lation, and is estimated to cause 4.2 million premature
death worldwide each year [1]. This mortality, and most
adverse effects observed on human health, are predomi-
nantly due to exposure to fine particulate matter, which
are particulates with a diameter < 2.5 ym (PM, ;) [1, 2].
Exposure to PM, 5 has already been indicated as a cause
of e.g., adverse cardiovascular events [3-5] and respi-
ratory diseases [6, 7]. A component of PM, ; are black
carbon (BC) particles, which are derived from the incom-
plete combustion of e.g., fossil fuels [8]; they have been
shown to reach our systemic circulation to spread to dis-
tant organs, including the brain [9] and the kidney [10].
Additionally, we have previously shown that in Flanders
(Belgium), at low levels of ambient air pollution, BC par-
ticles in the urine of healthy children could be traced,
mirroring long-term exposure [11].

The human kidneys filter up to 180 L of fluid per day,
making them vulnerable to toxic environmental sub-
stances, such as BC, which has been shown to reach the
kidneys upon inhalation [10]. Previous research already
indicated a significant positive association between kid-
ney injury molecule 1, a marker of acute kidney damage,
and individualized BC particle load in kidney biopsy tis-
sue [10]. Moreover, higher PM, ; exposure has been asso-
ciated with increased rates of all-cause mortality, graft
failure, and graft rejection in kidney transplant recipients
[12, 13].

Research into the effects of PM,;, and more specifi-
cally BC, on gene expression changes in kidney tissue is
lacking. Only a limited number of studies have evaluated
the genome-wide effect of PM, ; and/or BC [14—-17] and
were mainly based on peripheral blood samples, other
on transplantation cohorts focussing on e.g., tubuloint-
erstitial damage [18], chronic damage [19], or transplant
rejection [20, 21], but none focusing on the kidney in
relation to air pollution exposure. In other organ systems,
such as e.g., the cardiovascular system, research indicated
that PM, ; exposure alters the transcriptome of genes that
are relevant for heart-associated diseases; identified dif-
ferentially expressing genes were functionally associated
with pathways e.g., related to cardiovascular develop-
ment, regulation of blood vessel size, vasculature devel-
opment, and the p53 pathway [22]. The identification of
a renal gene expression signature related to BC may pro-
vide new insights into the molecular mechanisms under-
lying the adverse effects of PM, s, and more importantly
BC, exerts on the kidney. Here, we hypothesized that
BC not only accumulates in the kidneys, but also causes
transcriptomic alterations in kidney tissue, with poten-
tial impact on fibrosis progression. Better insight in the
downstream pathobiology of pollution-related processes
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could provide valuable understanding in how air pollu-
tion, and more specifically BC, influences human kidney
health. To the best of our knowledge, no study so far has
investigated the connection between the renal transcrip-
tome and individualized BC exposure.

Materials and methods
Study population
Kidney transplant biopsies were collected within the
context of the BIOMArkers of renal Graft Injuries (BIO-
MARGIN) and the Reclassification using OmiCs inte-
gration in KidnEy Transplantation (ROCKET) study, as
described elsewhere [20]. Included post-transplant renal
allograft biopsies were collected within the standard
of care and routine clinical practice by a trained physi-
cian through a percutaneous kidney biopsy according to
established medical guidelines. Post-transplant surveil-
lance (“protocol”) biopsies are standardly performed at
3, 12, and 24 months after transplantation, in addition
to indication biopsies. For this study, all kidney allograft
protocol biopsies from single kidney allograft recipients
(n = 29) that had transcriptome data and paraffin-embed-
ded kidney biopsy tissue available, which were collected
either 12 months (n = 14) or 24 months (# = 15) after
kidney transplantation, were included. Each patient only
contributed one biopsy. Institutional review boards and
national regulatory agencies approved the study protocol
at each clinical center (University Hospitals Leuven, Leu-
ven, Belgium; Hannover Medical School, Hanover, Ger-
many; University Hospital Limoges, Limoges, France; and
Necker Hospital, Paris, France) [20]. Secondary usage
after primary routine care was approved by the ethical
committee of the University Hospital of Leuven (S64649).
We extracted comprehensive patient information
encompassing patients’ sex, age, body mass index (BMI),
smoking status, number of days between transplantation,
and biopsy sampling from medical records. Smoking sta-
tus was defined as never, former, and current smoker.

Black carbon detection in kidney biopsy tissue

In the 29 kidney biopsies selected for this study, BC par-
ticles that accumulated in kidney tissue as a result of
real-life environmental exposure were detected using a
specific and sensitive detection technique, based on the
non-incandescence-related white light generation of BC
particles under femtosecond-pulsed illumination [10,
11, 23, 24]. In brief, 5 tile scans of 3 x 3 of formalin-fixed
paraffin-embedded kidney tissue, sectioned at 4 pm, were
collected at room temperature using a Zeiss LSM880
(Carl Zeiss, Jena, Germany) confocal microscope using
a 20x/0.8 M27 (Plan-Apochromat, Carl Zeiss) objective.
The confocal microscope is equipped with a two-photon
femtosecond-pulsed laser (150 fs, 80 MHz, MaiTai Deep-
See, Spectra-Physics, USA) tuned to a central wavelength
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of 810 nm with an average 10 mW radiant power at the
sample. Captured images were analyzed according to a
peak-finding algorithm with MatLab software (2017b,
MathWorks, The Netherlands) to count the number
of BC particles and with Image] free software (Fiji, ver-
sion 1.53c, USA) to determine the focal volume of each
image. BC validation in kidney tissue, using emission fin-
gerprints and fluorescence-lifetime imaging microscopy
decay with reference carbonaceous carbon black parti-
cles, has been performed previously [10].

Biopsy sample collection and transcriptomic analysis
Biopsy transcriptomic analysis has been described pre-
viously [20]. In brief, at least half of one of two needle
puncture kidney biopsies was immediately stored in All-
protect Tissue Reagent (Qiagen Benelux BV, Venlo, The
Netherlands). Kidney biopsies were stored at 4 °C for a
maximum of 72 h before long-term storage at — 20 °C
until RNA extraction. Total RNA was isolated using the
Allprep DNA/RNA/miRNA Universal kit (Qiagen Ben-
elux BV) on a QIAcube instrument. The quantity and
purity of the extracted RNA was measured using Nano-
Drop (ND-1000 spectrophotometer, ThermoFisher Sci-
entific, Ghent, Belgium). Additionally, RNA integrity was
evaluated using the Eukaryote nano/pico RNA kit (Agi-
lent Technologies, Diegem, Belgium). Subsequently, the
extracted RNA was stored at — 80 °C until microarray
analysis.

The arrays were washed and stained using streptavidin-
phycoerythrin on an automated fluidics station (Affyme-
trix, High Wycombe, UK); arrays were then scanned on
the GeneChip Scanner 300 7G system (Affymetrix). Total
extracted RNA was amplified and subsequently bioti-
nylated to complementary RNA (cRNA) employing the
GeneChip 3" IVT PLUS reagent kit (Affymetrix). Qual-
ity of labelled and fragmented cRNA was evaluated with
the Agilent 2100 bioanalyzed prior to hybridization to

Table 1 Study population characteristics (n=29)

Characteristics Mean £ SD, geometric
mean (5th, 95th per-
centile), or number (%)

Maternal

Age, years 51.06£15.16
Women 12 (41.38%)
BMI, kg/m? 2254+363
Smoking status

Never 23 (79.31%)
Former 2 (6.90%)
Current 4 (13.79%)
Days between transplantation and biopsy 578.38+192.08
sampling

54%x10° (1.5%103,
4.1 %10%

Individualized BC, no. of particles/mm?

BC, black carbon; BMI, body mass index
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the Affymetrix GeneChip human Genome U133 Plus 2.0
arrays (Affymetrix). This array comprised 54,675 probe
sets, covering the whole genome. Furthermore, arrays
were washed, stained, and scanned as mentioned above.
The resulting image files (.dat files) were generated with
the Genechip Command Console software (AGCC) and
intensity values for each probe cell (.cel files) were cal-
culated. The microarray data was handled in accordance
with the Minimum Information about a Microarray
Experiment guidelines. Gene expression data is avail-
able at the Gene Expression Omnibus database with the
accession number GSE147089.

Statistical analysis

Characteristics of the study population were described
as mean (SD), geometric mean (5th, 95th percentile), or
number (%). The association between transcript levels of
54,675 probe sets and measured BC particles in kidney
biopsy tissue was assessed using univariate and multivar-
iate linear regression models, adjusting for age, sex, BMI,
smoking status, number of days between the transplan-
tation and biopsy sampling using R (version 2023.03.0).
We adjusted for multiple testing by controlling the Ben-
jamini-Hochberg false discovery rate (FDR) at 5%. FDR-
adjusted p-values are referred to as q-values. Next, we
performed pathway and gene ontology (GO) term analy-
sis, where the genes with an unadjusted p-value <0.05 of
all 54,675 genes were uploaded into the online overrepre-
sentation analysis (ORA) tool ConsensusPathDB (http://
consensuspathdb.org) [25], developed at the Max Planck
Institute for Molecular Genetics to identify pathways or
GO terms influenced by BC exposure. Pathways with a
p-value of <0.05 were considered significant.

Results
General characteristics of the study population (n=29)
are provided in Table 1. Overall, the average (standard
deviation; SD) age was 51.06 (15.16) years, and 41.38%
were female. The population’s weight was in the normal
range, with an average (SD) BMI of 22.54 (3.63), and
79.31% never smoked. The average + SD number of days
between the transplantation and day of biopsy sampling
was 578.38+192.08 days. No significant differences
were observed in patient characteristics between biopsy
sampling after one year or after two years. The geomet-
ric mean (5th, 95th percentile) of BC particle levels was
5.4x10% (1.5x 103, 4.1 x 10%) number of BC particles per
mm?® kidney tissue. A raincloud plot of the individual BC
measurements is shown in Supplemental Fig. 1. There
was no significant difference in BC levels between biopsy
sampling after one year (1 =14) or after two years (n=15)
(p=0.85) (Fig. 1).

In the multivariate linear regression model assess-
ing the association between transcript levels and


http://consensuspathdb.org
http://consensuspathdb.org

Rasking et al. Particle and Fibre Toxicology (2025) 22:31

Page 4 of 13

Fig. 1 BC particles in kidney protocol biopsy tissue from a transplant recipient one-year post-transplant. The white light generation which originates from
the BC particles (depicted in white and indicated with white arrowheads) under femtosecond-pulsed laser illumination can be observed. Two photon
autofluorescence of the tissue (green, em. 450-650 nm) and second harmonic generation from collagen (red, em. 400-410 nm) are detected simultane-
ously. Scale bar: 100 um The orange box indicates BC particles present at a higher magnification. Scale bar: 50 um. BC black carbon, em. Emission, ex.
excitation

individualized BC in kidney biopsy tissue, none of the
54,576 genes survived the Benjamini-Hochberg for mul-
tiple testing, while 1,318 genes were identified to have a
p value<0.05. Of these 1318 genes, 1010 of them were
upregulated and 308 were downregulated. Results are
presented by means of a Volcano plot (Supplemental
Fig. 2), which depicts the log2 fold change effect size on
the x-axis and the significance (without FDR correction)
on the y-axis.

Significant effects were further explored by overrepre-
sentation analyses (ORA), which identified 10 significant
pathways (Table 2; Fig. 2) and 7 significant GO terms
(Table 3). The pathway that comprises ciliopathies, dis-
eases caused by mutations in genes encoding proteins
that localize to cilia or centrosomes, was the one with
the smallest p value (p<0.001) associated with individu-
alized BC particle load (Table 2). A more detailed over-
view of the 18 significant renal genes after ORA, involved
in the ciliopathy pathway, is presented in Fig. 3. Here, 10
of the contributing renal-related genes were downregu-
lated, while 8 were upregulated. For example, intraflagel-
lar transport 140 homologue (IFT140) and WD repeat

domain 35 (WDR35), both involved in the formation and
maintenance of cilia, were downregulated in relation to
individualized BC exposure. Moreover, dynein axone-
mal heavy chain 11 (DNAH11) and WD repeat contain-
ing planar cell polarity effector (WDPCP), both involved
in ciliary movement and ciliogenesis, respectively, were
upregulated in association to individualized BC par-
ticle load. Additionally, other pathways were identified
that involve the biosynthesis of maresin and maresin-
like specialized proresolving mediators (SPMs) (n=2),
which are critical in the restoration of tissue homeosta-
sis post-inflammation, the DNA damage response (n=3),
regulation of TP53 (n=2), and necrosis-related pathways
(n=2).

The three significant GO terms with the smallest p val-
ues in relation to BC load included ‘integrator complex’
(p<0.001), of which all genes were upregulated, ‘cili-
ary transition zone’ (p<0.001), playing a crucial role in
controlling ciliary membrane composition to separate
the cytosol from the ciliary plasm, and ‘ciliary plasm’
(p<0.001), including genes which are important for com-
ponents of a cilium (Table 3). ConsensusPathDB analyses
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Table 2 All significant renal-related pathways associated with BC
load after the ORA analysis (n=10)

Pathway Effective Contribut- Contrib- p q
/total ingdown- utingup- value value
size regulated regulated

genes genes

Ciliopathies 181/183 TTBK2, DNAH11,  0.0002 0.275

FAM161A,  TCTNT,
CILK1, PIK3R4,
SPAGT, WDPCP,
TRAF3IP1,  NEKI1,
CEP104, DRC1,
IFT140, NEKS,
GLI2, EFHC1
CEP164,

WDR35

Biosynthesis 6/6 CYP2E1 CYP3A4, 0.0010 0.399

of maresin-like CYP2C9

SPMs

Biosynthesisof ~ 8/8 CYP2E1 CYP3A4, 00027 0415

maresins CYP2C9

DNA damage 68/68  APAF1, PIDDT, 00043 0512

response SMCTA, RADOA,

CHEK1 FANCD2,
TP53AIPT,
RAD52
Regulated 29/29 IRF2 PELIT, 0.0045 0512
necrosis STUBT,
RIPK3,
FASLG

miRNA regulation 72/98 APAFT, FANCD2, 0.0061 0.536

of DNA damage CHEK1, TP53AIPT,

response SMCTA RADS52,

RADYA,
PIDD1
Regulation of 160/163  L3MBTLI, RAD9A, 0.0085 0.536
TP53 activity CHEK1, HIPK2,
GATAD2B,  CHD4,
BRIP1, TOP3A,
TP53INP1T,
MAPK11,
TAF15,
TAF11,
BRPF3

Regulation of 92/93 BRIP1, RAD9YA, 0.0085 0.536

TP53 activ- CHEK1 MAPKT1T,

ity through TOP3A,

phosphorylation TP53INP1,

TAF15,
TAF11,
HIPK2
ATM pathway 34/34  SMCIA TOP3A, 00090 0536
RAD9A,
FANCD2,
SMC3

Regulation of 22/22 - PELIT, 0.0090 0.536

necroptotic cell STUBT,

death RIPK3,

FASLG

ATM ataxia telangiectasia mutated; SPM specialized proresolving mediators.
The effective size represents the number of significant genes (n=1,318) from
the input that are found in the respective pathway analyzed. The total size
represents the total number of genes in the specific pathway. The q value
represents the adjusted p value that control the false discovery rate
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revealed other overrepresented GO terms regarding the
cilia, such as e.g., axoneme (p =0.001). Additionally, other
GO terms involved in RNA-related biological processes,
e.g., ‘integrator complex’ (p<0.001), a protein complex
mediating the 3’-end processing of RNA, and ‘transla-
tion activator activity’ (p<0.01), encompassing a group
of proteins which have a function in ribosome-mediated
translation of mRNA.

Discussion

Population-based studies found that ambient air pol-
lution is associated with a higher risk for the develop-
ment of chronic kidney disease [2, 12, 26, 27]. Making
use of unique data from surveillance (protocol) biopsies
one-year and two-year post-transplantation in 29 kid-
ney transplant patients, we identified interesting genes
in kidney biopsy tissue that were associated with kidney
BC particle load post kidney transplantation. Identi-
fied genes belonged to pathways mainly related to renal
tubular cilia and associated pathologies, innate immune
system-related pathways, such as maresin and maresin-
like SPMs, which are macrophage-derived anti-inflam-
matory molecules, and DNA damage-related processes.
We have previously demonstrated direct evidence of
BC and related carbonaceous particle translocation in
renal structures, where the proximal tubules exhibited
the highest relative particle accumulation [28]. Further-
more, in a murine model, we have shown that ultrafine
carbonaceous nanoparticle exposure alters tubular and
interstitial structures, potentially increasing kidney vul-
nerability to (environmental) injury [29]. Taken together,
these prior observations of tubular accumulation and
structural alterations may provide a biological context for
the pathways identified in the current study.

Ciliopathies pathway

In our study, we identified multiple cilia-related genes
whose expression was significantly associated with indi-
vidualized kidney BC load, implicating pathways involved
in ciliogenesis, intraflagellar transport, and cilium struc-
ture. Renal primary cilia are microscopic sensory organ-
elles found on the apical surface of renal epithelial cells
in tubular segments [30, 31]. These cilia detect fluid flow
across the epithelial layer, initiating a response cascade to
maintain the architecture of the nephron and collecting
duct [32]. Previously, we showed that tubules are the sec-
ond most prominent site of BC accumulation in kidney
biopsy tissue [10]. In this study, we identified pathways
indicating BC-induced changes in ciliogenesis, ciliary
trafficking, and cilium structure in the kidney (Fig. 3).
Gene mutations affecting ciliogenesis can lead to defects
in both cilia structure and function. Persistent cilia dys-
function has been implicated in the early stages and pro-
gression of renal diseases [33].
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Fig.2 Schematic overview indicating significantly associated transcripts and their position in identified pathways and GOterms. The ideogram shows the
gene transcripts (pale yellow) significantly correlated to identified pathways (blues). Red bands indicate gene transcripts that are involved in the GOterms
associated with renal cilia. In the center of the ideogram each significant correlation coefficient is visualized through a link connecting the gene transcript
and the identified pathway. Links regarding the ciliopathies pathway are colored red, and other identified pathways are colored black. ATM ataxia telan-

giectasia mutated, SPM specialized proresolving mediators

Genes involved in ciliogenesis that were found to
be upregulated in association with kidney BC particle
load include WDPCP and tectonic family member 1
(TCTN1). WDPCP is essential for the recruitment of
proteins in the transition zone [34], while TCTN1 regu-
lates the ciliary membrane composition [35]. Down-
regulated genes include tau-tubulin kinase 2 (TTBK2),
FAM161 centrosomal protein A (FAM161A), and centro-
somal protein of 164 kDa (CEP164). CEP164, alongside
FAMI161A, is a key component of the basal body of the
cilium, responsible for recruiting TTBK2 to the mother
centriole and triggering ciliogenesis [36]. TTBK2 acts as
a negative regulator of ciliogenesis by capping the mother
centriole, but is also required for IFT recruitment [36,
37].

The assembly and maintenance of cilia requires
intraflagellar transport (IFT), which consists of IFT pro-
teins localized at the base of a cilium [38]. Defects in
IFT, as well as in the function of motile or sensory cilia,
are associated with numerous adverse kidney outcomes,
such as polycystic kidney disease [38]. In this study, genes
involved in IFT associated with individualized BC parti-
cle load include WDR35, IFT140, and TRAF3 Interacting
Protein 1 (TRAF3IP1), all of which were downregulated.
The multi-subunit IFT protein complexes consist of IFT
subcomplex A (IFT-A) and IFT subcomplex B (IFT-B),
supported by Bardet-Biedl syndrome (BBS) proteins and
kinesin [39]. IFT-A is essential for the transport of mem-
brane-associated proteins and ion channels, and down-
regulation of genes involved in the IFT-A subunit, such
as IFT140 and WDR35, may result in shortened cilia,
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Table 3 Identified gene ontology terms in relation to individualized BC particle load (n=7)

Gene ontology term Effec- Contributing downregulated genes Contributing upregulated genes p-value g-
tive/ value
total
size

Integrator complex 23/28 - CT45A1, CT45A2, 0.00019 0.0181

(GO:0032039) CT45A3, CT45A5,

CT45A6, INTS14

Ciliary transition 67/68 CCSAP, CETNT, SEPTINZ, FAM161A, IFT140, NEK4, TRAF3IP1, TTBK2 0.000242  0.0365

(GO:0035869) TCTNT, TMEM80

Ciliary plasm 129/131  GLI2, IFT140, NEK4, SEPTINO, TRAF3IP1, CCSAP, DNAH1, DNAH11, DRC1, EFHCT, PIK3R4,  0.000483  0.0365

(GO:0097014) WDR35, SEPTIN2, WDPCP

lon channel 125/129  ACTN4, PRKCSH, TRAPPC2, YWHAE ACTN2, AKAP6, ANK2, BAG2, KCNHS5, PIRT, 0.00113 0.114

(GO:0044325) RNF207, SCN3B, STX1A

Axoneme 127/129  GLI2, TRAF3IP1, SEPTIN2, SEPTINS, CCSAP, DNAHT, DNAH11, DRCT, EFHCT, IFT140,  0.00131 0.066

(GO:0005930) WDR35 PIK3R4, WDPCP

Chromatin DNA binding ~ 100/103  ACTN4, GATAD2B, HMGNS, SMARCC1,  CHD4, GATA1, JMIJD1C, RCC1, UTY 0.00169 0.114

(GO:0031490) THRA, TOX4

Ribonucleoprotein 841/878  ACTN4, DCAF13, DDX6, FAM207A, AICDA, CELF6, CIRBP, CPEB1, CSDET, DAZAP1, 0.00295 0.14

complex GRSF1,1SY1, LARP1, LARP6, NOL6, DHC30, EIF3B, HNRNPD, LASTL, LGALS3, MCTS1,

(GO:1990904) NOL10, RBMS2, RC3H2, RIOK3, RRP15,  MRPS5, MSI2, MTERF4, PABPC1L, RBMXL2,

RPP40, SHB, SMU1, ZC3H12C

RBPMS, RPL3L, RPL10, RPL27A, RPL30, SERPINBT,
SLC39A2, SMG7, SNRPN, SNRNP48, SYMPK,
TRA2A, TDRD6, TFIP11

reducing sensitivity to fluid flow [32, 39]. In contrast,
mutations in IFT-B-related genes, such as TRAF3IPI,
have been shown to cause ciliogenesis defects [40].

Furthermore, kidney epithelial cells contain a single,
non-motile primary cilium; however, motile cilia have
also been observed in kidney biopsies [41]. In this study,
we found that Sperm Associated Antigen 1 (SPAG1) is
downregulated in association with individualized BC
particle load. Research indicates that SPAG1 may play a
role in the cytoplasmic assembly of the dynein arms of
motile cilia [42]. Dynein arms are essential for generat-
ing the force required for ciliary beating; here, two genes
associated with microtubule-based organelles on the
outer dynein arm of motile cilia, DNAH11 and Dynein
Regulatory Complex Subunit 1 (DRC1), were upregu-
lated. If cilia are shortened due to downregulation of
genes involved in the IFT complex, and a disruption in
the cytoplasmic assembly of the dynein arms, compensa-
tion in the force of motile cilia may be required [41].

The non-motile primary cilium on the apical side of
tubular epithelial cells functions as a fluid flow sen-
sor, regulating tubule diameter based on the urine flow
rate [41]. Upregulation of certain genes, such as phos-
phoinositide-3-kinase regulatory subunit 4 (PIK3R4),
may disrupt the IFT’s ability to sense fluid flow and
respond appropriately [32, 39, 43]. Downregulated genes
associated with individualized BC kidney load include
never in mitosis A-related kinase 8 (NEKS8), which is
involved in the regulation of ciliary localization and for-
mation. Adamiok-Ostrowska et al. [44] indicated that
downregulation of NEKS results in the proper mainte-
nance of primary cilia structure. However, ciliopathies

resulting from gene mutations in ciliary proteins often
affect not only the kidney but also multiple other organ
systems, including the cardiovascular, respiratory, and
endocrine systems [45].

Taken together, these results indicate that BC particle
load is associated with coordinated changes across multi-
ple components of the cilium, suggesting potential altera-
tions in tubular sensory and motile cilia function.

Inflammatory pathways

In this study, we identified two pathways related to the
synthesis of maresin and maresin-like SPMs that were sig-
nificantly associated with individualized kidney BC load.
Maresins are biosynthesized macrophage-derived mole-
cules that help repair and regenerate damaged tissue and
clear bacteria and tissue debris [46]. Macrophages play a
central role in the acute inflammatory response, with M1
macrophages initiating inflammation and causing tissue
damage, while M2 macrophages resolve inflammation
by promoting cell proliferation and tissue repair [46, 47].
Moreover, M2 macrophages express higher levels of SPM
biosynthetic enzymes, which are crucial for regulating
resolution responses. These SPMs counter-regulate the
production of inflammation-initiating signals, such as
cytokines and chemokines, while also promoting tissue
repair and regeneration [46, 48]. In kidney transplanta-
tion, M2 macrophage polarization is favorable. Devraj
et al. [49] indicated that M2 macrophages dominate in
kidney grafts with stable function, whereas M1 mac-
rophages are more prevalent in dysfunctional or reject-
ing kidney grafts. Additionally, short-term exposure to
PM, ; has been shown to promote inflammation [50]. In
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chronic obstructive pulmonary disease (COPD) patients,
research has shown that PM, ; exposure promotes polar-
ization to M2 macrophages rather than M1 [51]. Similar
results were observed when macrophages were exposed
to carbon nanomaterials in vitro [52].

The genes involved in the identified maresin pathways
associated with individualized BC kidney load were the
cytochrome P450 (CYP) monooxygenases CYP2EL,
CYP3A4, and CYP2C9, where CYP2E1 was downregu-
lated, while CYP3A4 and CYP2C9 were upregulated
(Fig. 4). Maresin biosynthesis is initiated in macro-
phages by the 14-lipoxygenation of docosahexaenoic
acid (DHA), where CYP3A4 and CYP2C9 hydroxylate
it to 14R-hydroxy-DHA (HDHA). Downregulation of
CYP2EL1 results in reduced oxidation of 14R-HDHA to
14R,21S/R-HDHA [53], which may influence the expres-
sion of proinflammatory cytokines and the infiltration of
inflammatory cells into the kidney [54]. Additionally, the
upregulated CYP3A4 and CYP2C9 are involved in con-
verting the precursor 14R-HDHA to the maresin-like

SPM MaR-L2, which has anti-inflammatory properties
[55].

Overall, these findings indicate that kidney BC load
is associated with coordinated changes in genes driv-
ing maresins biosynthesis, highlighting a potential link
between particulate exposure and modulation of renal
anti-inflammatory pathways.

DNA damage-related pathways

In addition to ciliopathy and maresins pathways, we also
identified DNA damage response, regulated necrosis, and
TP53 activity pathways that were significantly associ-
ated with individualized kidney BC load. The DNA dam-
age response pathway is activated in cells to repair DNA
when damage from endogenous or exogenous sources,
such as BC exposure, is detected. We have previously
demonstrated changes in the methylation and expres-
sion of placental and cord blood TP53 genes at birth and
linked them to prenatal ambient particulate exposure
[56, 57]. In the current study, the most central pathways
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in the DNA damage response associated with individual-
ized BC kidney load are the ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia and Rad3-related (ATR)
pathways. The most crucial genes are TP53 and check-
point kinase 2 (CHEK2) for ATM and CHEK]1 for ATR,
respectively [58, 59].

In the ATM pathway (Fig. 5), ATM kinase activates
both the downregulated structural maintenance of chro-
mosomes 1 A (SMC1A) and TP53 and the upregulated

Fanconi anaemia group D2 protein (FANCD2). SMC1A
is implicated in the cell cycle, where it inhibits growth
and enhances apoptosis in various cancers [60-62].
TP53 is involved in the activation of the downregulated
TP53AIP1 and P53-Induced Death Domain Protein 1
(PIDD1), both associated with apoptotic cell death induc-
tion [63, 64]. PIDD1 activates caspase 8, an upstream
regulator of the downregulated APAF1, which is linked to
the induction of apoptosis [59]. FANCD2 promotes cell
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cycle progression by modulating checkpoint proteins to
repair DNA damage [65].

In the ATR pathway (Fig. 5), the ATR kinase is activated
by DNA double strand breaks and blocks transcription,
resulting in the activation of the intra-S checkpoint. ATR,
alongside cell cycle checkpoint control protein RAD9A,
activates the downregulated CHEK1, which halts cell
progression through the S phase. Subsequently, the
upregulated RAD52 is downstream activated by CHEKI,
playing a crucial role in repairing double-stranded breaks
[66]. Overall, the up- and downregulation of the associ-
ated genes suggest a tendency toward cell cycle arrest
and the promotion of the apoptotic pathway. Synthetic
carbon black has previously been shown to induce apop-
totic cell death in human lung fibroblasts [67]. It is plau-
sible that BC exposure results in the activation of the
apoptotic cell death pathway in the kidney; however,
more research is required to elucidate this mechanism.

Lastly, two necrosis-related pathways were identified,
where all but one, interferon regulator factor 2 (IRF2),
were upregulated. Necroptosis has already been indi-
cated to contribute to acute kidney damage [68]; it is
another form of regulated cell death, which depends
on the receptor-interacting serine-threonine kinase 3
(RIPK3) [69]. Fas ligand (FASLG) acts as a stimulant for
RIPK3 activation [70], which functions upstream in the
signal transduction cascade that incites necroptosis [71].
E3 ubiquitin ligase STIP1 homology and U-Box contain-
ing protein 1 (STUB1) inhibits necrosis by catalysing the
dephosphorylation or ubiquitinylation of RIPK3 [72].
Additionally, PELI1 ubiquitinylates RIPK3, leading to
proteasomal degradation of RIPK3 [70].

These observations indicate that kidney BC load is
associated with coordinated changes across the DNA
damage response, necrosis, and TP53-related pathways,
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highlighting potential molecular mechanisms by which
BC may affect renal cell homeostasis.

To our knowledge, this is the first study to assess indi-
vidualized BC particle load from air pollution in asso-
ciation to renal transcriptomics. The individualized BC
particle load does not require extensive labelling or sam-
ple preparation and was previously established in both
kidney tissue and other biological samples [10, 11, 73].
In previous work, we identified the carbonaceous char-
acteristics of the individualized BC particle load in kid-
ney protocol biopsy tissue one-year post-transplant [10].
Nevertheless, our study has some limitations. A limita-
tion of this study is that the BC measured in kidney tissue
cannot be traced back to a specific environmental source.
BC may derive from various combustion-related sources,
including traffic or biomass burning. Our measurements
therefore reflect the overall internal BC burden, rather
than source-specific exposure. Nevertheless, the biologi-
cal interpretation remains valid, as the kidney is exposed
to BC, regardless of its origin. Additionally, the relatively
small sample size limits our ability to account for mul-
tiple testing. This reflects a deliberate choice to focus
on one- and two-year post-transplant biopsies, which
are less affected by transplant-related inflammation or
chronic deterioration and thus provide a clearer win-
dow on BC-associated molecular changes [74, 75]. Next,
we cannot exclude the possibility that some of the BC in
the kidneys originates from the donor. However, since
we measure BC directly in the kidneys, this should not
have significantly biased our results. Furthermore, the
study represents a selection of kidney transplant recipi-
ents, which may not represent the general population,
but might be a selected group which might to be more
susceptible to environmental toxicants, such as BC.!%13
Our findings show that the BC load in kidney tissue is
associated with altered gene expression profiles. Due to
the observational study design, these data do not allow
conclusions on causality. Nonetheless, these observa-
tions are consistent with previous studies in both murine
and human kidneys [28, 29], which demonstrated that
carbonaceous nanoparticles accumulate preferentially in
proximal tubules [28] and are associated with alterations
in tubular morphology and overall kidney structure [29].
This structural and biodistribution context supports our
current observation that BC load is linked to altered gene
expression, including in pathway related to cilia and cili-
ary function.

Conclusion

Exposure to air pollution, more specifically BC, may
influence gene expression of primary cilia pathways in
renal tubules, potentially contributing to tubular dysfunc-
tion through underlying molecular mechanisms. Further-
more, BC may influence gene expression of the innate
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immune system pathways, pushing macrophage polar-
ization and contributing to the favoring of apoptotic-
related pathways in response to DNA damage caused by
BC exposure. With BC particles prominently present in
kidney tubules, an interesting avenue for investigation is
the impact of BC bioaccumulation on the renal tubules
and their cilia, including changes in morphology, histol-
ogy, and function. Given the critical role of our kidneys
in regulating homeostasis of the human body, the iden-
tified genes and pathways may reflect molecular mecha-
nisms underlying renal dysfunction associated with BC
exposure.
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gene expression per log2 fold change in BC load (x-axis) vs. multiple linear
regression model p values (y-axis). Multiple linear regression models were
adjusted for age, sex, body mass index, smoking status, and the number of
days between the transplantation and biopsy sampling. P values < 0.05 are
depicted in orange.
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