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ABSTRACT

Background Accurate preoperative prediction of
pathological complete response (pCR) following
neoadjuvant chemoimmunotherapy (nCIT) could help
individualize treatment for patients with esophageal
squamous cell carcinoma (ESCC). This study aimed

to develop and externally validate an interpretable
multimodal machine learning framework that integrates
CT radiomics and H&E-stained whole-slide images
pathomics to predict pCR.

Methods In this multicenter, retrospective study,

335 patients with ESCC who received nCIT followed by
esophagectomy were enrolled from three institutions.
Patients from one center were divided into a training
set (181 patients) and an internal test set (115 patients),
while data from the other two centers comprised an
external test set (39 patients). We developed unimodal
radiomics and pathomics models, and two multimodal
fusion models—an intermediate fusion model (MIFM)
and a late fusion model (MLFM). Model performance
was evaluated using the area under the curve (AUC),
accuracy, sensitivity, specificity, and F1 score, with
exploratory survival stratification by observed and
model-predicted pCR status. Interpretability was treated
as a design constraint and operationalized at both the
feature and model levels.

Results The MIFM outperformed unimodal

models and the MLFM across all cohorts,

achieving AUC/accuracy/sensitivity/specificity/F1

score of 0.97/0.93/0.84/0.96/0.86 (training set),
0.78/0.87/0.62/0.93/0.63 (internal test set), and
0.76/0.77/0.54/0.88/0.61 (external test set). Both
observed and predicted pCR status showed exploratory
prognostic stratification for overall survival. Feature
definitions were mathematically or morphologically
explicit, and case-level/cohort-level explanations
together with decision-pathway views provided insights
into model reasoning. We additionally provide a user-
friendly Graphical User Interface to facilitate clinical
practice.

4

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Neoadjuvant chemoimmunotherapy (nCIT) is a
promising treatment for esophageal squamous cell
carcinoma (ESCC), but accurately predicting patho-
logic complete response (pCR) remains challenging.
Traditional biomarkers have limited predictive capac-
ity and are hindered by high detection costs and op-
erational complexity. Although the role of multimodal
radiopathomics in predicting treatment outcomes has
been studied in various cancers, its application in nCIT
remains limited. Furthermore, the interpretability of
predictive models requires further exploration.

WHAT THIS STUDY ADDS

= This study developed a multimodal radiopathomics
model that predicts pCR in patients with ESCC fol-
lowing nCIT by integrating CT-based radiomics and
whole-slide images-based pathomics features. The
proposed model demonstrated superior performance
over unimodal models, achieving high area under the
curve, accuracy, sensitivity, specificity, and F1-score
across multiple validation cohorts. Interpretability was
treated as a design constraint and operationalized
at both the feature and model levels. A user-friendly
Graphical User Interface is additionally provided to fa-
cilitate clinical practice.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= This study highlights the potential of multimodal radio-
pathomics model to improve clinical decision-making
for ESCC. The model’s ability to predict pCR could
guide individualized decisions between surveillance
and timely surgery. Further refinement and validation
through large-scale prospective trials remain essential
to establish its utility in clinical practice.

Conclusions We developed and externally validated
an interpretable radiopathomics fusion framework that
predicts pCR after nCIT in ESCC using standard-of-
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care data. This model holds promise as an effective tool for guiding
individualized decisions between surveillance and timely surgery.

INTRODUCTION

Esophageal squamous cell carcinomas (ESCC) remain
one of the most prevalent and aggressive cancers world-
wide.! Neoadjuvant chemoradiotherapy (nCRT) followed
by surgeryis the current standard care for locally advanced
ESCC.*” Recent clinical trials, however, have highlighted
neoadjuvant chemoimmunotherapy (nCIT) followed by
surgery as a promising alternative, reporting RO resec-
tion rates ranging from 80.9% to 98.0% and pathologic
complete response (pCR) rates between 16.7% and
50.0%.* ° A prospective study further suggested that,
compared with nCRT, nCIT may yield superior 2-year
overall survival (OS) and disease-free survival (DFS)
despite similar pCR rates (22.9% vs 25.9%).° Achieving
PCR correlates with improved long-term survival
outcomes and may permit the implementation of watch-
and-wait strategies, thereby preserving organ function-
ality and enhancing quality of life.* *® Consequently,
accurate preoperative prediction of pCR following nCIT
is critical for identifying suitable candidates and personal-
izing therapeutic approaches.

Despite this clinical need, robust biomarkers capable
of accurately predicting pCR to nCIT require further
exploration. Established tissue biomarkers, including
microsatellite instability,” ' programmed cell death
ligand-1 (PD-L1) expression,' '* and tumor mutational
burden (TMB),"*" have limited predictive capacity and
are hindered by high detection costs and operational
complexity. Therefore, there is an urgent need to develop
accessible, reliable, and cost-effective predictive tools.

Medical imaging provides rich macro-scale and micro-
scale information that is well suited to artificial intelli-
gence (Al)-based prediction. Macroscopic radiologic
images (eg, contrast-enhanced CT) and microscopic histo-
pathological images (H&E-stained whole-slide images
(WSIs)) are complementary, and multimodal fusion may
improve predictive accuracy.'® Radiomics and pathomics
enable quantitative characterization of tumor pheno-
type and microenvironment respectively and have shown
promise in outcome prediction across cancers, including
ESCC.'™" Building on prior work demonstrating the
feasibility of radiomics-based pCR prediction following
nCIT,* and evidence that nuclei-level morphology and
texture carry prognostic information,” ** integrating
radiomics and pathomics features represents a rational
strategy to enhance preoperative prediction of pCR in
ESCC.

Translating such multimodal predictors into prac-
tice requires more than accuracy. Accordingly, we treat
interpretability as a design constraint and frame it along
two axes—model-level and feature-level. At the model
level, we prioritize algorithms with auditable decision
functions and stable post-hoc explanations (eg, Shapley-
value attribution), enabling visualization of case-level and

cohortlevel contributions while mitigating the black-box
concerns typically associated with deep neural networks.”
At the feature level, we emphasize mathematically
defined radiomics features and explicitly defined path-
omics descriptors of nuclear and tissue architecture (eg,
nuclear area, eccentricity, perimeter, chromatin texture),
selected for their clear clinical semantics and communi-
cability to clinicians.

In this study, we developed an interpretable multi-
modal machine learning framework to preoperatively
predict pCR to nCIT in ESCC using data from three inde-
pendent patient cohorts. We systematically benchmarked
multiple machine learning algorithms and fusion strat-
egies to integrate CT-based radiomics and WSI-based
pathomics features, while formalizing transparency at
both the model and feature levels. To facilitate clinical
communication and workflow fit, we specified case-level
and cohort-level explanatory outputs (eg, contribution-
based attributions) and implemented a userfacing soft-
ware prototype to illustrate potential applicability and
practicality.

METHODS

Given the retrospective design, the informed consent
requirements were waived. The study adhered to the
principles of the Declaration of Helsinki and followed
established methodological guidance for radiomics
research.?* To promote methodological rigor and trans-
parency, we evaluated protocol adherence using a 12-item
methodology-evaluation checklist that we previously
proposed.25 The checklist scoring sheet is provided in the
online supplemental table 1. The overarching study flow
is presented in figure 1.

Patient enroliment

Consecutive patients with histologically confirmed ESCC
who received nCIT followed by curative-intent esophagec-
tomy were retrospectively identified across three
academic medical centers—Zhejiang Cancer Hospital,
Renmin Hospital of Wuhan University, and Tianjin
Medical University Cancer Institute and Hospital—from
July 2019 to July 2023 (n=335). At Zhejiang Cancer
Hospital (n=296), patients were randomly allocated
6:4 to a training set and an independent internal vali-
dation cohort (Testset-1). The external validation
cohort (Test-set-2, n=39) comprised patients treated at
Renmin Hospital of Wuhan University from July 2020 to
September 2023 (n=22) and at Tianjin Medical University
Cancer Institute and Hospital from June 2020 to February
2022 (n=17). For each patient, a contrast-enhanced chest
CT was acquired within 14 days prior to nCIT initiation,
and H&E-stained WSIs were digitized from pretreatment
endoscopic biopsy specimens obtained within 7days of
the CT. Detailed inclusion and exclusion criteria and a
patient selection flowchart are provided in online supple-
mental file Al and figure 1.

2

Qi B, et al. J Immunother Cancer 2025;13:€013840. doi:10.1136/jitc-2025-013840

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1sanb Aq 920z Atenuer G uo wodfwg-auly/:sdiy woly papeojumod ‘GZ0z loquiadad TZ U0 0#8ET0-G20Z-0Ul/9eTT 0T Sk payslignd 1sii :1aoue) jo Adesay]ounwiwyi oy peuinop



Image acquisition and segmentation Feature extraction

5 PyRadiomics '
: A —— :
E Intensity Texture Shape E
\Esophageal cancer :
: Cellprofiler '
: S :
H Intensity Texture Shape :
Feature selection Model construction

LR Q Feature1 Feature1

Feature2 Feature2

FeatureN FeatureN
(O \ /

E KNNO > Best-performing machine learning method : / :

@ OO & D D

o o 0 OXO

0°e OLLI
SMOTE Iogtfgtli\éasneﬁggion

o o (@] LASSO SVM-RFE

GNBO  MLFM
! Unimoda

Unimodal . ;
BNB O) Radiomics R's@re R:'SK %" Pathomic
Model Model

Centre A ‘% ' :

Spearman Common
removing redundancy features

»n —

ROC curves Confusion matrix

Feature SHAP Decision path Cell types

—

Centre B ) . Software

E: Input — — OUtdp'm‘: pCR E
Centre C Sankey Diagram  Survival analysis E: prediction rate :

Figure 1 Study pipeline. Preoperative contrast-enhanced CT and H&E-stained WSIs from 335 patients with ESCC across
three centers were analyzed. The tumors were manually contoured on CT images and tumor-rich fields were selected on WSiIs.
Radiomics (PyRadiomics) and pathomics (CellProfiler) features were extracted and screened. Four predictors were built—
unimodal radiomics, unimodal pathomics, MIFM, and MLFM —and evaluated in training, internal, and external cohorts using
ROC curves, confusion matrix, reclassification Sankey diagrams, and survival analysis. Interpretability analyses included SHAP
analysis, case-level decision-pathway views and cell-type quantification. A browser-based Graphical User Interface accepts the
CT/ROI and CellProfiler inputs and outputs the patient-level pCR probability. BNB, Bernoulli Naive Bayes; ESCC, esophageal
squamous cell carcinoma; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LASSO, Least Absolute Shrinkage and
Selection Operator; LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model;
pCR, pathologic complete response; RF, random forest; ROC, receiver operating characteristic; ROI, region of interest; SHAP,
SHapley Additive exPlanations; SMOTE, Synthetic Minority Over-sampling Technique; SVM-RFE, Support Vector Machines-
Recursive Feature Elimination; XGBoost, eXtreme Gradient Boosting; WSIs, whole-slide images.
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Treatment protocol and pathological evaluation

Patients received at least one cycle of neoadjuvant immu-
notherapy concurrently with chemotherapy. Immuno-
therapy consisted of standard doses (200mg every 3
weeks per cycle) of programmed cell death protein 1 or
PD-L.1 monoclonal antibodies (tislelizumab, sintilimab,
durvalumab, envafolimab, pembrolizumab, camreli-
zumab, or nivolumab). Platinum-based chemotherapy
employed two-drug regimens: (1) TC regimen (every 3
weeks): one to four cycles of nab-paclitaxel 260 mg/m”
(day 1) or paclitaxel 135-175mg/m* (day 1) + carbo-
platinarea under the curve (AUC) 5mg/mL/min (day
1) every 21 days; (2) TP regimen (every 3 weeks): one to
four cycles of nab-paclitaxel 260 mg/m® (day 1) or pacl-
itaxel 175 mg/m? (day 1) + cisplatin 75 mg/m? (day 1).

Radical esophagectomy was undertaken 4-8 weeks after
completion of nCIT. Surgical approach (minimally inva-
sive or open) and lymphadenectomy extent (two-field
or three-field) were determined by tumor location and
surgeon assessment.

Resected specimens were examined by an experienced
pathologist and reviewed by a senior esophageal cancer
pathologist. Tumor regression grade (TRG) was classi-
fied according to the College of American Pathologists
Esophageal Carcinoma Protocol®®: TRG 0 (no histologi-
cally identifiable cancer cells); TRG 1 (single cell or rare
small groups of cancer cells); TRG 2 (residual cancer
with evident tumor regression but more than single cell
or rare small groups of cancer cells); TRG 3 (extensive
residual cancer with no evident tumor regression). pCR
was defined as TRG 0 at the primary site, with TRG 1-3
being classified as non-pCR. This pCR/non-pCR binary
outcome served as the prespecified endpoint for model
development and evaluation.

Imaging acquisition and segmentation

CT acquisition parameters from the three centers are
summarized in online supplemental table 2. Two physi-
cians (HS, XW), each with over 3 years of experience,
performed manual segmentation of the primary esopha-
geal tumors on CT images to generate regions of interest
(ROIs). Assessors were blinded to pathological outcomes
and model outputs. All contours were subsequently
reviewed and, when necessary, refined by a senior physi-
cian (Y]) with over 25 years of experience. Any discrep-
ancies were resolved by consensus adjudication, and the
finalized ROIs served as the ground truth for radiomics
feature extraction. Segmentations were performed using
3D Slicer software (V.5.1.0).%"

Formalin-fixed, paraffin-embedded H&E-stained slides
were scanned at 20xmagnificationand digitized into
WSIs. For each WSI, a thoracic pathologist with 3 years of
experience (BQ), blinded to clinical outcomes, selected
five representative tumor-rich fields of view (FOVs). Each
FOV was cropped into a 512x512-pixel patch and saved
in PNG format. All patches were visually inspected to
guarantee their quality. Visual quality control (QC) was
performed to exclude patches with over/under-staining,

folds, chatter, inadequate tissue, air bubbles, pen marks
or stripping artifacts.

Feature extraction and selection

Radiomics features were computed from the finalized
CT ROIs using PyRadiomics™ (V.8.0.1). A total of 1,094
features were extracted, encompassing shape and size
descriptors, first-order intensity statistics, and multiple
texture families—gray-level co-occurrence matrix, gray-
level size zone matrix, gray-level run length matrix,
gray-level dependence matrix and neighboring gray-
tone difference matrix—together with wavelet-derived
features.

Pathomics features were quantified from H&E-stained
WSIs using CellProfiler® (V.4.2.8) via an automated pipe-
line that measures intensity distributions, neighborhood
relationships, morphological/shape attributes, texture
statistics, and areas-fraction metrics (details in online
supplemental file A2 and figure 2). For each case, features
were calculated on the five 512x512-pixel patches and
averaged to obtain slide-level descriptors, yielding a total
of 4,892 quantitative pathomics features covering nuclear,
cytoplasmic, and tissue-level characteristics.

Feature selection was conducted independently for
radiomics and pathomics, with all procedures confined
to the training set. The selection workflow comprised
the following steps: first, we used the Synthetic Minority
Over-sampling Technique (SMOTE) to address class
imbalance. Standardization of extracted radiomics and
pathomics features was carried out using Z-Scores (orig-
inal value-mean value/SD). Then, univariate logistic
regression was implemented to identify features with a p
value <0.01 (for pathomics features)/0.05 (for radiomics
features) for subsequent analysis. Spearman correlation
coefficients (p) were computed for each pair of features.
Redundancy was reduced by computing pairwise
Spearman correlations and, for any pair with Ipl > 0.85,
retaining the feature showing the stronger association
with the outcome. Finally, two selectors—Least Absolute
Shrinkage and Selection Operator (LASSO) with 10-fold
cross-validation and Support Vector Machines-Recursive
Feature Elimination (SVM-RFE)—were applied sepa-
rately, and their intersection constituted the modality-
specific feature set used for final model construction. A
schematic of this pipeline is provided in online supple-
mental figure 3.

Model construction and validation

For unimodal modeling, we evaluated seven machine
learning algorithms—Ilogistic regression, Gaussian/
Bernoulli Naive Bayes, SVM, random forests, K-nearest
neighbors, and eXtreme Gradient Boosting (XGBoost)—
for the radiomics and pathomics feature sets. Hyper-
parameter optimization employed grid search with
fivefold cross-validation. A fixed random seed was applied
throughout parameter tuning to ensure reproducibility.
Key hyperparameters are shown in the online supple-
mental file A3.
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For multimodal learning, we considered two fusion
strategies. For the multimodal intermediate fusion model
(MIFM), radiomics and pathomics features were concate-
nated into a joint representation, and the algorithm iden-
tified as optimal in the unimodal screen was used to fit
the fused model on the development set. For the multi-
modal late fusion model (MLFM), the best-performing
radiomics model and pathomics model from the
unimodal stage were first trained on the development set.
Their probabilistic risk scores were then used as inputs
to a logistic regression model. In total, we established
four types of models, including the unimodal radiomics
models, unimodal pathomics models, MIFM, and MLFM.

External validation was performed on the original Test-
set-1 and the Testset-2 with no further tuning. Test-set
data was processed strictly through the same prepro-
cessing pipeline fitted on the development set, and no
data augmentation (eg, SMOTE), no additional normal-
ization or standardization operations were applied to test
datasets. Predictive performance was quantified by the
area under the receiver operating characteristic (ROC)
curve (AUC), accuracy, sensitivity, specificity, and F1
score. To obtain Cls, we used 1,000-iteration bootstrap
resampling of each test cohort and reported 95% Cls for
all metrics. ROC and precision-recall (PR) curves were
plotted for visual comparison. Furthermore, for the best-
performing model, decision curve analysis (DCA) was
performed to assess its potential clinical utility.

Model interpretation
To interpret the radiomics and pathomics feature contri-
butions to the models, we applied SHapley Additive
exPlanations (SHAP) analysis, which quantifies individual
feature influence on probability of pCR at both the case
level and the cohort level. The Shapley value is defined
as follows:

[SIT(N—ISI —1)!
2i= 2 seands} ( Y :

(v(SU{j}) —2(9)

where: v (SU {j}) — v (9) is the specific contribution of
j to the coalition S; > [S - N{]}] is the summation over
all possible coalitions; and (|S’! (N— |S| —1)!) /Nlis the
weight factor of this particular coalition. Case-level plots
display how a patient’s specific feature values increase or
decrease the predicted risk relative to the model baseline,
whereas cohort-level summaries rank features by overall
impact and indicate the dominant direction of effect.

To provide a stepwise view of the model’s decision logic,
we derived patientspecific decision pathways from the
trained model. For each patient, the pathway enumer-
ates the sequence of decision rules applied by the model,
annotating the feature and threshold at each step and the
incremental change in the prediction (on the log-odds/
probability scale) contributed by that step, culminating in
the final predicted probability. This visualization clarifies
which features—and which value ranges—most strongly
pushed the prediction toward pCR or non-pCR for that
specific case, thereby linking global feature importance

with case-level rationale in a single view. The workflow
for constructing the contribution plots and decision-path
visualizations is presented as a flowchart in online supple-
mental figure 4.

To characterize the tumor microenvironment (TME)
on H&E-stained WSIs, we implemented Hover—Net,?’O an
open-source deep learning network model, for nuclear
segmentation and coarse cell-type assignment within the
analyzed patches. This framework identified the following
cell types: tumor cells, lymphocytes, connective cells,
necrotic cells, and other cells. Finally, cell-type fractions
were compared based on observed pCR status (observed
PCR vs observed non-pCR), and separately, based on
model-predicted status (predicted pCR vs predicted
non-pCR).

Statistical analysis

Patient characteristics were evaluated using SPSS V.27.
Pearson's chi-square/Likelihood-ratio tests were applied
to compare categorical variables. ANOVA/Kruskal-Wallis
H tests analyzed the continuous variables. To assess the
predictive value of clinical parameters, univariable logistic
regression analyses were conducted. Statistical significance
was set at a p value of <0.05 for two-tailed tests. Survival
was compared between observed pCR and observed non-
pCR, and between predicted pCR and predicted non-
PCR (Kaplan-Meier with log-rank tests; threshold fixed a
priori). Differences in survival outcomes were analyzed
using the log-rank test. HRs and 95% CIs were estimated
using the Cox proportional hazards model.

Survival analysis was conducted using R software V.4.4.2
with the “survival” package V.3.8.3, and results were visu-
alized using the “survminer” package V.0.5.0. All machine
learning models were constructed using Python V.3.13.1
with the “scikitlearn” V.1.6.1 and “xgboost” V.3.0.0 pack-
ages. Details of main packages can be found in the online
supplemental table 3.

RESULTS

Patient characteristics

Patient characteristics stratified by observed response
status are summarized in table 1. Overall, 77/335 patients
(22.99%) achieved pCR and 258/335 (77.01%) did not.
No statistically significant differences were observed
in most clinicopathological characteristics, except for
smoking status, NCIT cycle and s-LN number (p<0.05).

Performance of the unimodal model

After feature selection, 14 radiomics and 11 pathomics
features constituted the final unimodal signatures. The
definitions of each feature are shown in online supple-
mental tables 4 and 5. Among the seven unimodal
machine learning models, the XGBoost yielded the most
consistent discrimination in the Training-set, Test-set-1
and Testset-2 (figure 2A,B and online supplemental
table 6). Therefore, unimodal radiomics and pathomics
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Table 1 Patients’ clinical characteristics across all data sets

Overall Training-set Test-set-1 Test-set-2
Characteristics (N=335) (n=181) (n=115) (n=39) P value
Sex 0.189
Female 23 (6.87) 13 (7.18) 5 (4.35) 5(12.82)
Male 312 (93.13) 168 (92.82) 110 (95.65) 34 (87.18)
Age 64 (44-82) 64 (44-82) 65 (46-77) 62 (48-76) 0.825
Smoking status 0.286
Never 115 (34.33) 57 (31.49) 46 (40.00) 12 (30.77)
Current or former 220 (65.67) 124 (68.51) 69 (60.00) 27 (69.23)
Drinking status 0.047*
Never 96 (28.66) 44 (24.31) 35 (30.43) 7 (43.59)
Current or former 239 (71.34) 137 (75.69) 80 (69.57) 22 (56.41)
ECOG performance status 0.269
0 146 (43.58) 81 (44.75) 44 (38.26) 21 (53.85)
1 184 (54.93) 96 (53.04) 70 (60.87) 18 (46.15)
2 5(1.49) 4 (2.21) 1(0.87) 0 (0)
Tumor location 0.251
Upper 46 (13.73) 26 (14.36) 17 (14.78) 3(7.69)
Middle 169 (50.45) 99 (54.70) 51 (44.35) 19 (48.72)
Lower 120 (35.82) 56 (30.94) 47 (40.87) 17 (43.59)
cT 0.127
3 (0.90) 2(1.10) 1(0.87) 0(0)
2 50 (14.92) 29 (16.02) 19 (16.52) 2 (5.13)
3 267 (79.70) 145 (80.11) 90 (78.26) 32 (82.05)
4a 15 (4.48) 5(2.77) 5 (4.35) 5(12.82)
cN 0.707
0 47 (14.03) 24 (13.26) 16 (13.92) 7 (17.95)
1 170 (50.75) 95 (52.49) 60 (52.17) 15 (38.46)
2 105 (31.34) 56 (30.94) 35 (30.43) 14 (35.90)
3 13 (3.88) 6 (3.31) 4 (3.48) 3 (7.69)
cTNM stage (AJCC Eighth) 0.475
I 3(0.90) 2(1.10) 1(0.87) 0(0)
Il 74 (22.09) 40 (22.10) 26 (22.61) 8 (20.52)
1 228 (68.06) 127 (70.16) 78 (67.82) 23 (58.97)
IVA 30 (8.95) 12 (6.64) 10 (8.70) 8 (20.51)
Immunotherapy regimen 0.199
PD-1 298 (88.96) 159 (87.85) 101 (87.83) 38 (97.44)
PD-LA1 37 (11.04) 22 (12.15) 14 (12.17) 1(2.56)
NCIT cycle <0.001*
<2 271 (80.90) 153 (84.53) 96 (83.48) 22 (56.41)
>2 64 (19.10) 28 (15.47) 19 (16.52) 17 (43.59)
RO resection 0.556
No 21 (6.27) 13 (7.18) 7 (6.09) 1 (2.56)
Yes 314 (93.73) 168 (92.82) 108 (93.91) 38 (97.44)
Surgical approach 0.103
Minimally 310 (92.54) 171 (94.48) 106 (92.17) 33 (84.62)
Open 25 (7.46) 10 (56.52) 9 (7.83) 6 (15.38)
Continued
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Table 1 Continued

Overall Training-set Test-set-1 Test-set-2
Characteristics (N=335) (n=181) (n=115) (n=39) P value
Lymphadenectomy extent 0.243
Two-field 36 (10.75) 16 (8.84) 13 (11.30) 32 (82.05)
Three-field 299 (89.25) 165 (91.16) 102 (88.70) 7 (17.95)
Tumor pCR 0.144
No 258 (77.01) 138 (76.24) 94 (81.74) 26 (66.67)
Yes 77 (22.99) 43 (23.76) 21 (18.26) 13 (33.33)
ypT stage 0.052
0 77 (22.99) 43 (23.76) 21 (18.26) 13 (33.33)
1 70 (20.90) 33 (18.23) 24 (20.87) 13 (33.33)
2 62 (18.51) 32 (17.68) 23 (20.00) 7 (17.96)
3] 126 (37.60) 73 (40.33) 47 (40.87) 6 (15.38)
ypN stage 0.465
0 189 (56.42) 104 (57.46) 67 (58.26) 18 (46.15)
1 91 (27.16) 44 (24.31) 32 (27.83) 15 (38.46)
2 41 (12.24) 26 (14.36) 10 (8.70) 5(12.83)
3 14 (4.18) 7 (3.87) 6 (5.21) 1(2.56)
ypTNM stage (AJCC Eighth) 0.550
| 151 (45.07) 83 (45.86) 51 (44.35) 16 (41.03)
Il 50 (14.93) 27 (14.92) 20 (17.39) 3(7.69)
11l 134 (40.00) 71 (39.22) 44 (38.26) 20 (51.28)
s-LN number (median) 23 (5-78) 24.0 (6-63) 22 (5-78) 23 (8-61) 0.042*
Survival time (median) 692 (96-1772) 727 (100-1661) 716 (96-1172) 381 (136-1240) 0.137

Data are n (%), unless otherwise stated.

P value was calculated comparing the Training-set, Test-set-1 and Test-set-2.
s-LN number, defined as the number of lymph nodes removed from surgery.

*P value below 0.05 was considered statistically significant.

AJCC, American Joint Committee on Cancer; cN, clinical node stage; cT, clinical tumor stage; cTNM, Clinical Tumor-Node-Metastasis;
ECOG, Eastern Cooperative Oncology Group; NCIT, neoadjuvant chemoimmunotherapy; pCR, pathologic complete response; PD-1,
programmed cell death protein 1; PD-L1, programmed cell death ligand 1; s-LN number, surgical lymph node number; ypN, neoadjuvant
pathologic node stage; ypT, neoadjuvant pathologic tumor stage; ypTNM, neoadjuvant pathologic Tumor-Node-Metastasis.

models were implemented using XGBoost with their
respective optimal feature sets.

The pathomics model achieved AUCs of 0.88 (95%
CI 0.82 to 0.94) in the Training-set, 0.68 (95% CI 0.55
to 0.81) in the Test-set-1, and 0.67 (95% CI 0.48 to 0.86)
in the Test-set-2. The radiomics model achieved AUCs of
0.90 (95% CI 0.84 to 0.95) in the Training-set, 0.74 (95%
CI0.62 to 0.85) in the Test-set-1, and 0.68 (95% CI1 0.51 to
0.85) in the Testset-2 (figure 2D-F). In the Training-set,
the radiomics model showed higher accuracy, sensitivity
and specificity (0.84, 0.77 and 0.86, respectively) than the
pathomics model (0.81, 0.72 and 0.83, table 2 and online
supplemental figure 5).

Given class imbalance, we additionally evaluated PR
performance. The pathomics model yielded area under
the precision-recall curves (AUPRCs) of 0.73 in the
Training-set, 0.37 in the Test-set-1 and 0.50 in the Test-
set-2, while the radiomics model achieved AUPRCs of
0.81, 0.45 and 0.55 in the same cohorts (figure 2G-I).

The confusion matrix for both unimodal models across
test sets is provided in online supplemental figure 6.

Performance of multimodal model

We developed intermediate-fusion and late-fusion
multimodal models using the fusion strategies prespeci-
fied in Methods. Across cohorts, both fusion approaches
performed better than the unimodal radiomics and
pathomics models across evaluation metrics (table 2 and
figure 2D-I). Between the two multimodal approaches,
MIFM demonstrated higher sensitivity, specificity, accu-
racy, and F1 score compared with MLFM (table 2 and
online supplemental figure 5). For MIFM, the confu-
sion matrix (figure 2]J-N) indicated strong exclusion
of non-pCR cases: true negatives numbered 87 in the
Test-set-1 and 23 in the Test-set-2, and specificity was the
highestamong all models (table 2). The Sankey diagram
depicted reclassification from unimodal predictions to
MIFM predictions in reference to the ground truth,

Qi B, et al. J Immunother Cancer 2025;13:¢013840. doi:10.1136/jitc-2025-013840
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Figure 2 Performance of different models for predicting the pCR. Radar chart comparing the AUC values of seven machine
learning algorithms in unimodal pathomics model (A) and unimodal radiomics model (B) in the Training-set. The Sankey diagram
depicted reclassification from unimodal predictions to MIFM predictions in reference to the ground truth (C). The ROC curves
for the unimodal pathomics model, unimodal radiomics model, MIFM, and MLFM are presented for both the Training-set (D), the
Test-set-1 (E) and the Test-set-2 (F). The PR curves for the unimodal pathomics model, unimodal radiomics model, MIFM and
MLFM for both the Training-set (G), the Test-set-1 (H) and the Test-set-2 (I). Confusion matrix of the MIFM in the Training-set

(J), the Test-set-1 (K) and the Test-set-2 (L). Flow diagrams summarizing MIFM-assigned class versus observed outcome in
Test-set-1 (M) and Test-set-2 (N), indicating counts of true positives/negatives and false positives/negatives. AUC, area under
the curve; AUPRC, area under the precision-recall curve; BNB, Bernoulli Naive Bayes; GNB, Gaussian Naive Bayes; KNN, k-
nearest neighbors; LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model;
pCR, pathological complete response; PR, precision-recall; RF, random forest; ROC, receiver operating characteristic; SVM,
Support Vector Machines; XGB, eXtreme Gradient Boosting.
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Table 2 Performance of the models for predicting pathologic complete response

AUC (95% Cl)

Accuracy (95% CIl) Sensitivity (95% CIl) Specificity (95% Cl) F1 score (95% Cl)

Training-set
Unimodal

pathomics model

0.88 (0.82 to 0.94)

0.81 (0.75 to 0.86)

Unimodal 0.90 (0.84 t0 0.95) 0.84 (0.79 to 0.90)

radiomics model

MIFM 0.97 (0.94 t0 0.99)  0.93 (0.90 to 0.97)

MLFM 0.93 (0.88t0 0.97)  0.89 (0.85 to 0.93)
Test-set-1

Unimodal 0.68 (0.55t0 0.81) 0.68 (0.59 to0 0.77)

pathomics model

Unimodal 0.74 (0.62 t0 0.85) 0.69 (0.61 t0 0.77)

radiomics model

MIFM 0.78 (0.64 to 0.90) 0.87 (0.81 to 0.92)

MLFM 0.77 (0.66 t0 0.86) 0.70 (0.61 to 0.77)
Test-set-2

Unimodal 0.67 (0.48 t0 0.86) 0.69 (0.56 to 0.82)

pathomics model

Unimodal 0.68 (0.51 t0 0.85) 0.59 (0.44 to0 0.74)
radiomics model

MIFM 0.76 (0.55t0 0.94) 0.77 (0.64 to 0.90)
MLFM 0.73 (0.56t0 0.89) 0.64 (0.49 to 0.79)

0.72 (0.58 to 0.85)
0.77 (0.64 to 0.89)

0.84 (0.71 to 0.95)
0.79 (0.67 to 0.91)

0.52 (0.32 to 0.75)
0.62 (0.39 to 0.83)

0.62 (0.41 to 0.83)
0.57 (0.35 to 0.78)

0.54 (0.27 to 0.82)
0.54 (0.29 to 0.80)

0.54 (0.27 to 0.83)
0.54 (0.25 to 0.82)

0.83 (0.77 to 0.89)
0.86 (0.80 to 0.92)

0.96 (0.93 to 0.99)
0.92 (0.87 to 0.96)

0.71 (0.61 to 0.80)
0.70 (0.61 to 0.80)

0.93 (0.87 t0 0.98)
0.72 (0.63 t0 0.81)

0.77 (0.60 t0 0.92)
0.62 (0.42 to 0.81)

0.88 (0.74 to 1.00)
0.69 (0.50 to 0.86)

0.64 (0.52 to 0.74)
0.69 (0.58 to 0.80)

0.86 (0.77 to 0.93)
0.77 (0.68 to 0.86)

0.37 (0.21 to 0.52)
0.42 (0.26 to 0.57)

0.63 (0.44 to 0.79)
0.41 (0.24 to 0.56)

0.54 (0.27 to 0.74)
0.47 (0.22 to 0.67)

0.61 (0.33 t0 0.82)
0.50 (0.24 to 0.71)

AUC, area under curve; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model.

highlighting the net movement toward correct labels
(figure 2C). The DCA was illustrated in online supple-
mental figure 7.

Exploratory prognostic stratification by observed and model-
predicted pCR status

We examined whether observed pCR status and model-
predicted pCR status (from the MIFM at its fixed oper-
ating threshold) stratified OS. In the Training-set,
patients with observed pCR showed longer OS with visible
separation of Kaplan-Meier curves (figure 3A), whereas
this separation did not reach statistical significance in the
Test-set-1 or Test-set-2 (figure 3C,E). Stratifying patients
by the model’s predicted status yielded a qualitatively
similar pattern but did not achieve statistical significance
in any cohort (figure 3B,D and F). Univariate Cox regres-
sion analysis confirmed that observed pCR, and model-
predicted pCR were significantly associated with OS (p
value<0.005; online supplemental figure 8).

Interpretability analyses and software prototype

SHAP summaries illustrated the contribution of indi-
vidual radiomics and pathomics features to the predic-
tions of the MIFM (figure 4A). Across all features retained
in the final model, cross-modality correlations were mild
to low (figure 4B and online supplemental figure 9), with
values between —0.57 and 0.69, suggesting that the two
modalities may capture complementary aspects of tumor
biology and treatment response.

We compared the cell-type fractions by observed
pCR status and, separately, by model-predicted pCR
status (figure 4C). Relative to their respective non-pCR
groups, both the observed pCR group and the predicted
pCR group tended to show higher tumor and lympho-
cyte fractions and lower necrotic fractions.

Figure 4D presents two representative samples to
make the decision process transparent. In one case, the
unimodal radiomics and pathomics models offered discor-
dant opinions, and the fused model reconciled these by
weighting modality-specific evidence; in the other, both
modalities were concordant. For each sample, feature
maps displayed the spatial distribution of salient imaging
and tissue descriptors (online supplemental figure 10),
perfeature contribution plots show how specific values
pushed the prediction toward pCR or non-pCR, and a
decision-pathway view summarizes the stepwise reasoning
leading to the final probability. Together, these views link
feature-level signals with the model’s case-level rationale.

Finally, we provide a browser-based, Graphical User
Interface tool that requires no coding. Users upload the
pretreatment CT, the corresponding tumor ROI mask,
and the CellProfiler-derived comma-separated values
(CSV) file; the tool returns the patient-level predicted
probability of pCR along with basic input checks. A
concise user guide and screenshots are available in
the online supplemental figure 11. (This prototype is
intended for research use).

Qi B, et al. J Immunother Cancer 2025;13:¢013840. doi:10.1136/jitc-2025-013840
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Figure 3 Prognostic stratification performance. KM curves for OS stratified by observed pCR versus non-pCR in the Training-
set (A), Test-set-1 (C) and Test-set-2 (E) and stratified by MIFM predicted pCR versus non-pCR in the Training-set (B), Test-set-1
(D) and Test-set-2 (F). KM, Kaplan-Meier; MIFM, multimodal intermediate fusion model; OS, overall survival; pCR, pathologic
complete response.

DISCUSSION
In this multicenter retrospective study across three
academic hospitals, we developed and externally validated

an interpretable multimodal framework that integrates
routinely available contrast-enhanced CT radiomics with
H&E-stained WSI pathomics to preoperatively predict

10 Qi B, et al. J Immunother Cancer 2025;13:6013840. doi:10.1136/jitc-2025-013840
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Figure 4 Interpretability analyses. (A) The SHAP summary of the MIFM: right, beeswarm plot showing per-feature effects on
model output; left, bar chart ranking global importance by mean |[SHAP|; inset shows proportional contributions. (B) Cross-
modality Spearman correlation network for features retained in the final model (edge width reflects correlations). (C) Boxplots
of WSI-derived cell-type fractions (tumor, lymphocyte, stromal, necrotic, other): left, comparison by observed status (observed
pPCR vs observed non-pCR); right, comparison by model-predicted status (predicted pCR vs predicted non-pCR). (D) Case
vignettes illustrating discordant unimodal predictions reconciled by MIFM (Patient A, observed pCR) and concordant unimodal
predictions (Patient B, observed non-pCR); for each, feature maps, top-20 contribution ranking, and the decision-pathway
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Qi B, et al. J Immunother Cancer 2025;13:¢013840. doi:10.1136/jitc-2025-013840 1

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1sanb Ag 920z Arenuer g uo wod'[wg oul//:sdiny wolj papeojumoq ‘GZ0z Jaquadad Tz Uo Or8ET0-SZ0Z-oMI/9ETT 0T St paysiignd 1s.iy 119oue) Jo Adelayounwwi Joj jeuinor



pCR after nCIT in ESCC. Compared with unimodal radio-
mics or pathomics, the intermediate-fusion model showed
more robust discrimination across the development set
and two validation cohorts, underscoring the value of
combining complementary imaging and tissue informa-
tion. The work’s key strengths are its clinical practicality—
it relies solely on standard-of-care data without additional
testing or cost—and its interpretability-first design, where
feature definitions are mathematically or morpholog-
ically explicit and case-level/cohort-level explanations
(eg, SHAP summaries, feature maps) together with
decision-pathway views render model reasoning trans-
parent. Finally, we provide a browser-based Graphical
User Interface tool that requires no coding and returns a
patient-level pCR probability, facilitating exploratory use
in multidisciplinary settings. Together, these elements
highlight a feasible and transparent pathway toward
translating multimodal Al into decision support for nCIT
in ESCC.

The chemoradiotherapy for esophageal cancer followed
by surgery study (CROSS) trial established the superiority
of nCRT over surgery alone for locally advanced ESCC.”!
Nonetheless, distant metastasis remains the dominant
mode of failure after nCRT—far exceeding local recur-
rence (22.0% vs 5.9%)—underscoring the need for
enhanced systemic therapies to improve outcomes.
Recently, it was shown that intensive chemotherapy
improved the OS and local control over nCRT.** **
These improved regimens could lead to the omission of
esophagectomy in patients achieving a pCR after induc-
tion therapy.”* However non-invasive ways to determine
pPCR are not available. In the era of immunotherapy,
multiple studies have reported that the combination of
immunotherapy and chemotherapy has achieved favor-
able outcomes as the first-line treatment for advanced
esophageal cancer,” * suggesting translational potential
in the neoadjuvant setting. Head-to-head comparisons
of nCIT versus nCRT in locally advanced ESCC are still
accruing. In a prospective multicenter study across eight
high-volume centers, Guo et al reported superior 2-year
OS (81.83% vs 71.3%) and DFS (73.9% vs 63.4%) with
nCIT compared with nCRT, while pCR rates were similar
(22.9% vs 25.9%) and major pathologic response favored
nCRT (61.5% vs 71.8%).° Taken together, although the
optimal neoadjuvant strategy is not yet settled, current
evidence indicates substantial promise for chemoimmu-
notherapy in this population.

This evolving landscape motivates the present work. In
routine care, pCR can only be histologically confirmed
postoperatively. For patients likely to achieve pCR after
neoadjuvant therapy, a watch-and-wait strategy may avert
unnecessary esophagectomy, preserve organ function,
and improve quality of life.3™ Conversely, for patients
unlikely to achieve pCR, proceeding to timely esophagec-
tomy to eradicate residual disease remains the standard
curative pathway. Consequently, there is a clear clinical
need for an accurate, preoperative, non-invasive predictor
of pCR to guide individualized decision-making between

surveillance and prompt surgery. Our multimodal,
interpretability-constrained framework directly addresses
this gap, aiming to inform neoadjuvant pathways in ESCC.

Integration of multimodal data has emerged as a prom-
ising approach for predicting treatment response across
various cancers. For example, Mao et alcombined pretreat-
ment MRI, WSIs, and clinical risk factors to predict pCR
following neoadjuvant chemotherapy in breast cancer,*
although with deep learning-derived features whose
semantics were less explicit. For ESCC, Qi et al reported
that incorporating CT images and WSIs could predict
pCR after nCIT, supporting the utility of multimodal
fusion®'; however, pathomics features were extracted by
deep learning models, and the paired CT-WSI cohort was
relatively limited (n=89). Against this backdrop, our study
provides, to our knowledge, one of the largest multi-
modal evaluations of pCR prediction after nCIT in ESCC,
with paired CT and biopsy WSIs across three centers and
external validation. By employing mathematically defined
radiomics features and explicitly defined morphologic/
texture descriptors from WSIs, the framework enhances
feature-level interpretability while maintaining compet-
itive discrimination. compared with unimodal models,
the MIFM achieved higher specificity across all cohorts
(table 2), indicating strong exclusion of non-pCR cases.
Clinically, such operating characteristics primarily reduce
the risk of misclassifying non-pCR as pCR, thereby avoiding
inappropriate surveillance and supporting timely surgery
for those unlikely to achieve pCR. Conversely, patients
predicted as pCR could be considered for cautious watch-
and-wait, where confirmatory assessment and close moni-
toring are in place. Prospective studies are warranted to
determine thresholds and workflows that safely translate
these findings into practice.

To reduce risk inherent to high-dimensional features
and modest cohort sizes,"” * we implemented a rigorous,
training-only feature screening pipeline. From 1,094
radiomics features and 4,892 pathomics features, we
applied two complementary selectors—LASSO and SVM-
RFE—and used the intersection of their selected features
for the final model construction. For multimodal models,
we implemented intermediate-fusion and late-fusion
techniques to integrate the 14 selected radiomics features
and 11 selected pathomics features. While some prior
reports favor late-fusion models for its robustness,** our
results indicate that intermediate-fusion—which directly
models complementary information across modalities—
can yield superior specificity in this setting (table 2 and
figure 2D-I). We hypothesize that retaining original,
modality-specific feature information and explicitly lever-
aging cross-modality complementarity facilitates building
predictors that are both discriminative and robust.

We further used SHAP to interpret our machine learning
model, quantifying the global influence of each feature.
For instance, radiomics feature R8 (wavelet. HHL_glszm_
SizeZoneNonUniformityNormalized) captures textural
heterogeneity—higher values indicate a more uneven
distribution of same-intensity zones after high-frequency
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filtering, which could be related to mixed viable/necrotic
components or perfusion variability. Radiomics feature
R4 (wavelet. LLH_firstorder_90Percentile) summa-
rizes the brightest voxel intensities in the low—low-high
(LLH) sub-band. Higher values may indicate areas of
rich vascular supply and active tumor proliferation, while
lower values could correspond to necrotic or low-density
regions. Among pathomics, P6 (Texture_InverseDiffer-
enceMoment_Hematoxylin) quantifies the uniformity of
the staining intensity of hematoxylin within the nuclear
region, with higher values indicating high nuclear
heterogeneity, while lower values indicate low nuclear
heterogeneity. Pathomics feature P11 (Mean_Filtered-
Nuclei_AreaShape_HuMoment) quantifies nuclear asym-
metry and morphological heterogeneity, with higher
values indicating greater nuclear irregularity and lower
values reflecting more symmetrical nuclear morphology.
Nuclear morphology reflects cellular proliferation status
and abnormal development, where generally enlarged or
irregular nuclei are associated with malignant potential.*”
These key features provide, to some extent, biologically
plausible links between image-derived measurements and
tumor phenotype, helping bridge model outputs with
clinical reasoning.

We evaluated case-level interpretability using the
decision-pathway views in figure 4D, making the step-
wise reasoning of the tree-based learner explicit. Patient
A (observed pCR) represents a discordant unimodal
scenario: unimodal radiomics and pathomics models
predicted pCR (risk score: 0.00224) and non-pCR
(-0.00016), respectively, while MIFM correctly predicted
pCR. Feature map panels display the three most influ-
ential radiomics and pathomics features, and a top-20
contribution ranking shows radiomics features predom-
inating for this case. The decision pathway traces how
successive radiomics thresholds progressively increased
the cumulative score above the fixed operating threshold,
while several pathomics features exerted negative contri-
butions toward non-pCR. Patient B (observed non-pCR)
illustrates a concordant scenario: both unimodal models
correctly predicted non-pCR (radiomics: —0.00408; path-
omics: —0.00232), and MIFM also yielded accurate predic-
tions. Here, the contribution histogram shows a more
balanced mix of radiomics and pathomics influences,
and the decision pathway depicts cumulative decrements
that keep the prediction below the threshold. These
two examples not only enhance the transparency of the
decision-making process but also suggest a complemen-
tary and synergistic relationship between macroradiolog-
ical information and micropathological features.

The TME constitutes a complex network comprising
diverse components including cancer cells, stromal cells,
blood vessels, nerve fibers, and extracellular matrix. 0 47
This system plays a crucial role in tumor progression, prog-
nosis, and response to immunotherapy.* In our cohort,
we quantified cell-type fractions on H&E-stained WSIs
(tumor/epithelial, lymphocyte, stromal/spindle,
necrotic, other) and compared distributions by observed

PCR status and, separately, by model-predicted status
(figure 4C). In both comparisons, the pCR groups tended
to exhibit higher tumor and lymphocyte fractions and
lower necrotic fractions relative to their respective non-
PCR groups—directionally consistent with prior reports
linking viable tumor architecture and lymphocytic infil-
tration to treatment sensitivity. >’ Although these trends
did not reach statistical significance, plausibly reflecting
limited sample size, biopsy sampling variability, and
potential variability in Hover-Net segmentation, they
are biologically plausible and hypothesis-generating,
warranting confirmation in larger, prospective datasets.

Although the results are encouraging, our study has
several limitations. First, the retrospective design and
limited external validation cohorts may introduce poten-
tial bias, necessitating prospective validation in larger
populations. Second, established predictive biomarkers
for immunotherapy efficacy—including TMB, PD-L1
expression levels, and combined positive score—were
excluded from our analysis because these tests were not
uniformly available and would add cost; integrating such
markers could further improve performance. Third,
despite predefined procedures, manual segmentation
and visual QC for CT and WSIs inevitably introduce
subjectivity. Developing and validating automated QC
and segmentation pipelines should be prioritized. Fourth,
no stain normalization or color augmentation was used
in this study, and these strategies should be explored in
future work. Fifth, statistically significant Kaplan-Meier
separation was observed only for observed pCR in the
training cohort, and the lack of statistical significance
in the other cohorts may be attributable to the limited
number of deaths. In addition, pCR is not the only deter-
mining prognostic factor for long-term survival. There-
fore, these findings should be considered exploratory and
hypothesis-generating. Finally, although our discussion of
transparency in this study focuses on both the machine
learning model level and the handcrafted feature level,
interpretable deep learning could potentially enhance
both model performance and transparency in future
work. Furthermore, the biological hypotheses generated
from this study remain preliminary, and genomic-level
evidence will be essential to validate and substantiate
these interpretations.

In summary, we developed and externally validated an
interpretable multimodal machine learning framework
that integrates contrast-enhanced CT radiomics with
H&E-stained WSI pathomics to preoperatively predict
PCR after nCIT in ESCC. Our findings demonstrate the
clinical potential of this multimodal approach for guiding
individualized decisions between surveillance and timely
surgery. Further refinement and validation through
large-scale prospective trials remain essential to establish
its utility in clinical practice.
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