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ABSTRACT
Background  Accurate preoperative prediction of 
pathological complete response (pCR) following 
neoadjuvant chemoimmunotherapy (nCIT) could help 
individualize treatment for patients with esophageal 
squamous cell carcinoma (ESCC). This study aimed 
to develop and externally validate an interpretable 
multimodal machine learning framework that integrates 
CT radiomics and H&E-stained whole-slide images 
pathomics to predict pCR.
Methods  In this multicenter, retrospective study, 
335 patients with ESCC who received nCIT followed by 
esophagectomy were enrolled from three institutions. 
Patients from one center were divided into a training 
set (181 patients) and an internal test set (115 patients), 
while data from the other two centers comprised an 
external test set (39 patients). We developed unimodal 
radiomics and pathomics models, and two multimodal 
fusion models—an intermediate fusion model (MIFM) 
and a late fusion model (MLFM). Model performance 
was evaluated using the area under the curve (AUC), 
accuracy, sensitivity, specificity, and F1 score, with 
exploratory survival stratification by observed and 
model-predicted pCR status. Interpretability was treated 
as a design constraint and operationalized at both the 
feature and model levels.
Results  The MIFM outperformed unimodal 
models and the MLFM across all cohorts, 
achieving AUC/accuracy/sensitivity/specificity/F1 
score of 0.97/0.93/0.84/0.96/0.86 (training set), 
0.78/0.87/0.62/0.93/0.63 (internal test set), and 
0.76/0.77/0.54/0.88/0.61 (external test set). Both 
observed and predicted pCR status showed exploratory 
prognostic stratification for overall survival. Feature 
definitions were mathematically or morphologically 
explicit, and case-level/cohort-level explanations 
together with decision-pathway views provided insights 
into model reasoning. We additionally provide a user-
friendly Graphical User Interface to facilitate clinical 
practice.

Conclusions  We developed and externally validated 
an interpretable radiopathomics fusion framework that 
predicts pCR after nCIT in ESCC using standard-of-

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Neoadjuvant chemoimmunotherapy (nCIT) is a 
promising treatment for esophageal squamous cell 
carcinoma (ESCC), but accurately predicting patho-
logic complete response (pCR) remains challenging. 
Traditional biomarkers have limited predictive capac-
ity and are hindered by high detection costs and op-
erational complexity. Although the role of multimodal 
radiopathomics in predicting treatment outcomes has 
been studied in various cancers, its application in nCIT 
remains limited. Furthermore, the interpretability of 
predictive models requires further exploration.

WHAT THIS STUDY ADDS
	⇒ This study developed a multimodal radiopathomics 
model that predicts pCR in patients with ESCC fol-
lowing nCIT by integrating CT-based radiomics and 
whole-slide images-based pathomics features. The 
proposed model demonstrated superior performance 
over unimodal models, achieving high area under the 
curve, accuracy, sensitivity, specificity, and F1-score 
across multiple validation cohorts. Interpretability was 
treated as a design constraint and operationalized 
at both the feature and model levels. A user-friendly 
Graphical User Interface is additionally provided to fa-
cilitate clinical practice.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study highlights the potential of multimodal radio-
pathomics model to improve clinical decision-making 
for ESCC. The model’s ability to predict pCR could 
guide individualized decisions between surveillance 
and timely surgery. Further refinement and validation 
through large-scale prospective trials remain essential 
to establish its utility in clinical practice.
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care data. This model holds promise as an effective tool for guiding 
individualized decisions between surveillance and timely surgery.

INTRODUCTION
Esophageal squamous cell carcinomas (ESCC) remain 
one of the most prevalent and aggressive cancers world-
wide.1 Neoadjuvant chemoradiotherapy (nCRT) followed 
by surgery is the current standard care for locally advanced 
ESCC.2 3 Recent clinical trials, however, have highlighted 
neoadjuvant chemoimmunotherapy (nCIT) followed by 
surgery as a promising alternative, reporting R0 resec-
tion rates ranging from 80.9% to 98.0% and pathologic 
complete response (pCR) rates between 16.7% and 
50.0%.4 5 A prospective study further suggested that, 
compared with nCRT, nCIT may yield superior 2-year 
overall survival (OS) and disease-free survival (DFS) 
despite similar pCR rates (22.9% vs 25.9%).6 Achieving 
pCR correlates with improved long-term survival 
outcomes and may permit the implementation of watch-
and-wait strategies, thereby preserving organ function-
ality and enhancing quality of life.4 7 8 Consequently, 
accurate preoperative prediction of pCR following nCIT 
is critical for identifying suitable candidates and personal-
izing therapeutic approaches.

Despite this clinical need, robust biomarkers capable 
of accurately predicting pCR to nCIT require further 
exploration. Established tissue biomarkers, including 
microsatellite instability,9 10 programmed cell death 
ligand-1 (PD-L1) expression,11 12 and tumor mutational 
burden (TMB),13–15 have limited predictive capacity and 
are hindered by high detection costs and operational 
complexity. Therefore, there is an urgent need to develop 
accessible, reliable, and cost-effective predictive tools.

Medical imaging provides rich macro-scale and micro-
scale information that is well suited to artificial intelli-
gence (AI)-based prediction. Macroscopic radiologic 
images (eg, contrast-enhanced CT) and microscopic histo-
pathological images (H&E-stained whole-slide images 
(WSIs)) are complementary, and multimodal fusion may 
improve predictive accuracy.16 Radiomics and pathomics 
enable quantitative characterization of tumor pheno-
type and microenvironment respectively and have shown 
promise in outcome prediction across cancers, including 
ESCC.17–19 Building on prior work demonstrating the 
feasibility of radiomics-based pCR prediction following 
nCIT,20 and evidence that nuclei-level morphology and 
texture carry prognostic information,21 22 integrating 
radiomics and pathomics features represents a rational 
strategy to enhance preoperative prediction of pCR in 
ESCC.

Translating such multimodal predictors into prac-
tice requires more than accuracy. Accordingly, we treat 
interpretability as a design constraint and frame it along 
two axes—model-level and feature-level. At the model 
level, we prioritize algorithms with auditable decision 
functions and stable post-hoc explanations (eg, Shapley-
value attribution), enabling visualization of case-level and 

cohort-level contributions while mitigating the black-box 
concerns typically associated with deep neural networks.23 
At the feature level, we emphasize mathematically 
defined radiomics features and explicitly defined path-
omics descriptors of nuclear and tissue architecture (eg, 
nuclear area, eccentricity, perimeter, chromatin texture), 
selected for their clear clinical semantics and communi-
cability to clinicians.

In this study, we developed an interpretable multi-
modal machine learning framework to preoperatively 
predict pCR to nCIT in ESCC using data from three inde-
pendent patient cohorts. We systematically benchmarked 
multiple machine learning algorithms and fusion strat-
egies to integrate CT-based radiomics and WSI-based 
pathomics features, while formalizing transparency at 
both the model and feature levels. To facilitate clinical 
communication and workflow fit, we specified case-level 
and cohort-level explanatory outputs (eg, contribution-
based attributions) and implemented a user-facing soft-
ware prototype to illustrate potential applicability and 
practicality.

METHODS
Given the retrospective design, the informed consent 
requirements were waived. The study adhered to the 
principles of the Declaration of Helsinki and followed 
established methodological guidance for radiomics 
research.24 To promote methodological rigor and trans-
parency, we evaluated protocol adherence using a 12-item 
methodology-evaluation checklist that we previously 
proposed.25 The checklist scoring sheet is provided in the 
online supplemental table 1. The overarching study flow 
is presented in figure 1.

Patient enrollment
Consecutive patients with histologically confirmed ESCC 
who received nCIT followed by curative-intent esophagec-
tomy were retrospectively identified across three 
academic medical centers—Zhejiang Cancer Hospital, 
Renmin Hospital of Wuhan University, and Tianjin 
Medical University Cancer Institute and Hospital—from 
July 2019 to July 2023 (n=335). At Zhejiang Cancer 
Hospital (n=296), patients were randomly allocated 
6:4 to a training set and an independent internal vali-
dation cohort (Test-set-1). The external validation 
cohort (Test-set-2, n=39) comprised patients treated at 
Renmin Hospital of Wuhan University from July 2020 to 
September 2023 (n=22) and at Tianjin Medical University 
Cancer Institute and Hospital from June 2020 to February 
2022 (n=17). For each patient, a contrast-enhanced chest 
CT was acquired within 14 days prior to nCIT initiation, 
and H&E-stained WSIs were digitized from pretreatment 
endoscopic biopsy specimens obtained within 7 days of 
the CT. Detailed inclusion and exclusion criteria and a 
patient selection flowchart are provided in online supple-
mental file A1 and figure 1.
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Figure 1  Study pipeline. Preoperative contrast-enhanced CT and H&E-stained WSIs from 335 patients with ESCC across 
three centers were analyzed. The tumors were manually contoured on CT images and tumor-rich fields were selected on WSIs. 
Radiomics (PyRadiomics) and pathomics (CellProfiler) features were extracted and screened. Four predictors were built—
unimodal radiomics, unimodal pathomics, MIFM, and MLFM—and evaluated in training, internal, and external cohorts using 
ROC curves, confusion matrix, reclassification Sankey diagrams, and survival analysis. Interpretability analyses included SHAP 
analysis, case-level decision-pathway views and cell-type quantification. A browser-based Graphical User Interface accepts the 
CT/ROI and CellProfiler inputs and outputs the patient-level pCR probability. BNB, Bernoulli Naïve Bayes; ESCC, esophageal 
squamous cell carcinoma; GNB, Gaussian Naïve Bayes; KNN, k-nearest neighbors; LASSO, Least Absolute Shrinkage and 
Selection Operator; LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model; 
pCR, pathologic complete response; RF, random forest; ROC, receiver operating characteristic; ROI, region of interest; SHAP, 
SHapley Additive exPlanations; SMOTE, Synthetic Minority Over-sampling Technique; SVM-RFE, Support Vector Machines-
Recursive Feature Elimination; XGBoost, eXtreme Gradient Boosting; WSIs, whole-slide images.
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Treatment protocol and pathological evaluation
Patients received at least one cycle of neoadjuvant immu-
notherapy concurrently with chemotherapy. Immuno-
therapy consisted of standard doses (200 mg every 3 
weeks per cycle) of programmed cell death protein 1 or 
PD-L1 monoclonal antibodies (tislelizumab, sintilimab, 
durvalumab, envafolimab, pembrolizumab, camreli-
zumab, or nivolumab). Platinum-based chemotherapy 
employed two-drug regimens: (1) TC regimen (every 3 
weeks): one to four cycles of nab-paclitaxel 260 mg/m2 
(day 1) or paclitaxel 135–175 mg/m2 (day 1) + carbo-
platin area under the curve (AUC) 5 mg/mL/min (day 
1) every 21 days; (2) TP regimen (every 3 weeks): one to 
four cycles of nab-paclitaxel 260 mg/m2 (day 1) or pacl-
itaxel 175 mg/m2 (day 1) + cisplatin 75 mg/m2 (day 1).

Radical esophagectomy was undertaken 4–8 weeks after 
completion of nCIT. Surgical approach (minimally inva-
sive or open) and lymphadenectomy extent (two-field 
or three-field) were determined by tumor location and 
surgeon assessment.

Resected specimens were examined by an experienced 
pathologist and reviewed by a senior esophageal cancer 
pathologist. Tumor regression grade (TRG) was classi-
fied according to the College of American Pathologists 
Esophageal Carcinoma Protocol26: TRG 0 (no histologi-
cally identifiable cancer cells); TRG 1 (single cell or rare 
small groups of cancer cells); TRG 2 (residual cancer 
with evident tumor regression but more than single cell 
or rare small groups of cancer cells); TRG 3 (extensive 
residual cancer with no evident tumor regression). pCR 
was defined as TRG 0 at the primary site, with TRG 1–3 
being classified as non-pCR. This pCR/non-pCR binary 
outcome served as the prespecified endpoint for model 
development and evaluation.

Imaging acquisition and segmentation
CT acquisition parameters from the three centers are 
summarized in online supplemental table 2. Two physi-
cians (HS, XW), each with over 3 years of experience, 
performed manual segmentation of the primary esopha-
geal tumors on CT images to generate regions of interest 
(ROIs). Assessors were blinded to pathological outcomes 
and model outputs. All contours were subsequently 
reviewed and, when necessary, refined by a senior physi-
cian (YJ) with over 25 years of experience. Any discrep-
ancies were resolved by consensus adjudication, and the 
finalized ROIs served as the ground truth for radiomics 
feature extraction. Segmentations were performed using 
3D Slicer software (V.5.1.0).27

Formalin-fixed, paraffin-embedded H&E-stained slides 
were scanned at 20×magnification and digitized into 
WSIs. For each WSI, a thoracic pathologist with 3 years of 
experience (BQ), blinded to clinical outcomes, selected 
five representative tumor-rich fields of view (FOVs). Each 
FOV was cropped into a 512×512-pixel patch and saved 
in PNG format. All patches were visually inspected to 
guarantee their quality. Visual quality control (QC) was 
performed to exclude patches with over/under-staining, 

folds, chatter, inadequate tissue, air bubbles, pen marks 
or stripping artifacts.

Feature extraction and selection
Radiomics features were computed from the finalized 
CT ROIs using PyRadiomics28 (V.3.0.1). A total of 1,094 
features were extracted, encompassing shape and size 
descriptors, first-order intensity statistics, and multiple 
texture families—gray-level co-occurrence matrix, gray-
level size zone matrix, gray-level run length matrix, 
gray-level dependence matrix and neighboring gray-
tone difference matrix—together with wavelet-derived 
features.

Pathomics features were quantified from H&E-stained 
WSIs using CellProfiler29 (V.4.2.8) via an automated pipe-
line that measures intensity distributions, neighborhood 
relationships, morphological/shape attributes, texture 
statistics, and areas-fraction metrics (details in online 
supplemental file A2 and figure 2). For each case, features 
were calculated on the five 512×512-pixel patches and 
averaged to obtain slide-level descriptors, yielding a total 
of 4,892 quantitative pathomics features covering nuclear, 
cytoplasmic, and tissue-level characteristics.

Feature selection was conducted independently for 
radiomics and pathomics, with all procedures confined 
to the training set. The selection workflow comprised 
the following steps: first, we used the Synthetic Minority 
Over-sampling Technique (SMOTE) to address class 
imbalance. Standardization of extracted radiomics and 
pathomics features was carried out using Z-Scores (orig-
inal value−mean value/SD). Then, univariate logistic 
regression was implemented to identify features with a p 
value <0.01 (for pathomics features)/0.05 (for radiomics 
features) for subsequent analysis. Spearman correlation 
coefficients (ρ) were computed for each pair of features. 
Redundancy was reduced by computing pairwise 
Spearman correlations and, for any pair with |ρ| > 0.85, 
retaining the feature showing the stronger association 
with the outcome. Finally, two selectors—Least Absolute 
Shrinkage and Selection Operator (LASSO) with 10-fold 
cross-validation and Support Vector Machines-Recursive 
Feature Elimination (SVM-RFE)—were applied sepa-
rately, and their intersection constituted the modality-
specific feature set used for final model construction. A 
schematic of this pipeline is provided in online supple-
mental figure 3.

Model construction and validation
For unimodal modeling, we evaluated seven machine 
learning algorithms—logistic regression, Gaussian/
Bernoulli Naïve Bayes, SVM, random forests, K-nearest 
neighbors, and eXtreme Gradient Boosting (XGBoost)—
for the radiomics and pathomics feature sets. Hyper-
parameter optimization employed grid search with 
fivefold cross-validation. A fixed random seed was applied 
throughout parameter tuning to ensure reproducibility. 
Key hyperparameters are shown in the online supple-
mental file A3.
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For multimodal learning, we considered two fusion 
strategies. For the multimodal intermediate fusion model 
(MIFM), radiomics and pathomics features were concate-
nated into a joint representation, and the algorithm iden-
tified as optimal in the unimodal screen was used to fit 
the fused model on the development set. For the multi-
modal late fusion model (MLFM), the best-performing 
radiomics model and pathomics model from the 
unimodal stage were first trained on the development set. 
Their probabilistic risk scores were then used as inputs 
to a logistic regression model. In total, we established 
four types of models, including the unimodal radiomics 
models, unimodal pathomics models, MIFM, and MLFM.

External validation was performed on the original Test-
set-1 and the Test-set-2 with no further tuning. Test-set 
data was processed strictly through the same prepro-
cessing pipeline fitted on the development set, and no 
data augmentation (eg, SMOTE), no additional normal-
ization or standardization operations were applied to test 
datasets. Predictive performance was quantified by the 
area under the receiver operating characteristic (ROC) 
curve (AUC), accuracy, sensitivity, specificity, and F1 
score. To obtain CIs, we used 1,000-iteration bootstrap 
resampling of each test cohort and reported 95% CIs for 
all metrics. ROC and precision-recall (PR) curves were 
plotted for visual comparison. Furthermore, for the best-
performing model, decision curve analysis (DCA) was 
performed to assess its potential clinical utility.

Model interpretation
To interpret the radiomics and pathomics feature contri-
butions to the models, we applied SHapley Additive 
exPlanations (SHAP) analysis, which quantifies individual 
feature influence on probability of pCR at both the case 
level and the cohort level. The Shapley value is defined 
as follows:
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weight factor of this particular coalition. Case-level plots 
display how a patient’s specific feature values increase or 
decrease the predicted risk relative to the model baseline, 
whereas cohort-level summaries rank features by overall 
impact and indicate the dominant direction of effect.

To provide a stepwise view of the model’s decision logic, 
we derived patient-specific decision pathways from the 
trained model. For each patient, the pathway enumer-
ates the sequence of decision rules applied by the model, 
annotating the feature and threshold at each step and the 
incremental change in the prediction (on the log-odds/
probability scale) contributed by that step, culminating in 
the final predicted probability. This visualization clarifies 
which features—and which value ranges—most strongly 
pushed the prediction toward pCR or non-pCR for that 
specific case, thereby linking global feature importance 

with case-level rationale in a single view. The workflow 
for constructing the contribution plots and decision-path 
visualizations is presented as a flowchart in online supple-
mental figure 4.

To characterize the tumor microenvironment (TME) 
on H&E-stained WSIs, we implemented Hover-Net,30 an 
open-source deep learning network model, for nuclear 
segmentation and coarse cell-type assignment within the 
analyzed patches. This framework identified the following 
cell types: tumor cells, lymphocytes, connective cells, 
necrotic cells, and other cells. Finally, cell-type fractions 
were compared based on observed pCR status (observed 
pCR vs observed non-pCR), and separately, based on 
model-predicted status (predicted pCR vs predicted 
non-pCR).

Statistical analysis
Patient characteristics were evaluated using SPSS V.27. 
Pearson's chi-square/Likelihood-ratio tests were applied 
to compare categorical variables. ANOVA/Kruskal-Wallis 
H tests analyzed the continuous variables. To assess the 
predictive value of clinical parameters, univariable logistic 
regression analyses were conducted. Statistical significance 
was set at a p value of <0.05 for two-tailed tests. Survival 
was compared between observed pCR and observed non-
pCR, and between predicted pCR and predicted non-
pCR (Kaplan-Meier with log-rank tests; threshold fixed a 
priori). Differences in survival outcomes were analyzed 
using the log-rank test. HRs and 95% CIs were estimated 
using the Cox proportional hazards model.

Survival analysis was conducted using R software V.4.4.2 
with the “survival” package V.3.8.3, and results were visu-
alized using the “survminer” package V.0.5.0. All machine 
learning models were constructed using Python V.3.13.1 
with the “scikit-learn” V.1.6.1 and “xgboost” V.3.0.0 pack-
ages. Details of main packages can be found in the online 
supplemental table 3.

RESULTS
Patient characteristics
Patient characteristics stratified by observed response 
status are summarized in table 1. Overall, 77/335 patients 
(22.99%) achieved pCR and 258/335 (77.01%) did not. 
No statistically significant differences were observed 
in most clinicopathological characteristics, except for 
smoking status, NCIT cycle and s-LN number (p<0.05).

Performance of the unimodal model
After feature selection, 14 radiomics and 11 pathomics 
features constituted the final unimodal signatures. The 
definitions of each feature are shown in online supple-
mental tables 4 and 5. Among the seven unimodal 
machine learning models, the XGBoost yielded the most 
consistent discrimination in the Training-set, Test-set-1 
and Test-set-2 (figure  2A,B and online supplemental 
table 6). Therefore, unimodal radiomics and pathomics 
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Table 1  Patients’ clinical characteristics across all data sets

Characteristics

Overall Training-set Test-set-1 Test-set-2

P value(N=335) (n=181) (n=115) (n=39)

Sex 0.189

 � Female 23 (6.87) 13 (7.18) 5 (4.35) 5 (12.82)

 � Male 312 (93.13) 168 (92.82) 110 (95.65) 34 (87.18)

Age 64 (44–82) 64 (44–82) 65 (46–77) 62 (48–76) 0.825

Smoking status 0.286

 � Never 115 (34.33) 57 (31.49) 46 (40.00) 12 (30.77)

 � Current or former 220 (65.67) 124 (68.51) 69 (60.00) 27 (69.23)

Drinking status 0.047*

 � Never 96 (28.66) 44 (24.31) 35 (30.43) 17 (43.59)

 � Current or former 239 (71.34) 137 (75.69) 80 (69.57) 22 (56.41)

ECOG performance status 0.269

 � 0 146 (43.58) 81 (44.75) 44 (38.26) 21 (53.85)

 � 1 184 (54.93) 96 (53.04) 70 (60.87) 18 (46.15)

 � 2 5 (1.49) 4 (2.21) 1 (0.87) 0 (0)

Tumor location 0.251

 � Upper 46 (13.73) 26 (14.36) 17 (14.78) 3 (7.69)

 � Middle 169 (50.45) 99 (54.70) 51 (44.35) 19 (48.72)

 � Lower 120 (35.82) 56 (30.94) 47 (40.87) 17 (43.59)

cT 0.127

 � 1 3 (0.90) 2 (1.10) 1 (0.87) 0 (0)

 � 2 50 (14.92) 29 (16.02) 19 (16.52) 2 (5.13)

 � 3 267 (79.70) 145 (80.11) 90 (78.26) 32 (82.05)

 � 4a 15 (4.48) 5 (2.77) 5 (4.35) 5 (12.82)

cN 0.707

 � 0 47 (14.03) 24 (13.26) 16 (13.92) 7 (17.95)

 � 1 170 (50.75) 95 (52.49) 60 (52.17) 15 (38.46)

 � 2 105 (31.34) 56 (30.94) 35 (30.43) 14 (35.90)

 � 3 13 (3.88) 6 (3.31) 4 (3.48) 3 (7.69)

cTNM stage (AJCC Eighth) 0.475

 � I 3 (0.90) 2 (1.10) 1 (0.87) 0 (0)

 � II 74 (22.09) 40 (22.10) 26 (22.61) 8 (20.52)

 � III 228 (68.06) 127 (70.16) 78 (67.82) 23 (58.97)

 � IVA 30 (8.95) 12 (6.64) 10 (8.70) 8 (20.51)

Immunotherapy regimen 0.199

 � PD-1 298 (88.96) 159 (87.85) 101 (87.83) 38 (97.44)

 � PD-L1 37 (11.04) 22 (12.15) 14 (12.17) 1 (2.56)

NCIT cycle <0.001*

 � ≤2 271 (80.90) 153 (84.53) 96 (83.48) 22 (56.41)

 � >2 64 (19.10) 28 (15.47) 19 (16.52) 17 (43.59)

R0 resection 0.556

 � No 21 (6.27) 13 (7.18) 7 (6.09) 1 (2.56)

 � Yes 314 (93.73) 168 (92.82) 108 (93.91) 38 (97.44)

Surgical approach 0.103

 � Minimally 310 (92.54) 171 (94.48) 106 (92.17) 33 (84.62)

 � Open 25 (7.46) 10 (5.52) 9 (7.83) 6 (15.38)

Continued
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models were implemented using XGBoost with their 
respective optimal feature sets.

The pathomics model achieved AUCs of 0.88 (95% 
CI 0.82 to 0.94) in the Training-set, 0.68 (95% CI 0.55 
to 0.81) in the Test-set-1, and 0.67 (95% CI 0.48 to 0.86) 
in the Test-set-2. The radiomics model achieved AUCs of 
0.90 (95% CI 0.84 to 0.95) in the Training-set, 0.74 (95% 
CI 0.62 to 0.85) in the Test-set-1, and 0.68 (95% CI 0.51 to 
0.85) in the Test-set-2 (figure 2D–F). In the Training-set, 
the radiomics model showed higher accuracy, sensitivity 
and specificity (0.84, 0.77 and 0.86, respectively) than the 
pathomics model (0.81, 0.72 and 0.83, table 2 and online 
supplemental figure 5).

Given class imbalance, we additionally evaluated PR 
performance. The pathomics model yielded area under 
the precision–recall curves (AUPRCs) of 0.73 in the 
Training-set, 0.37 in the Test-set-1 and 0.50 in the Test-
set-2, while the radiomics model achieved AUPRCs of 
0.81, 0.45 and 0.55 in the same cohorts (figure  2G–I). 

The confusion matrix for both unimodal models across 
test sets is provided in online supplemental figure 6.

Performance of multimodal model
We developed intermediate-fusion and late-fusion 
multimodal models using the fusion strategies prespeci-
fied in Methods. Across cohorts, both fusion approaches 
performed better than the unimodal radiomics and 
pathomics models across evaluation metrics (table 2 and 
figure 2D–I). Between the two multimodal approaches, 
MIFM demonstrated higher sensitivity, specificity, accu-
racy, and F1 score compared with MLFM (table 2 and 
online supplemental figure 5). For MIFM, the confu-
sion matrix (figure  2J–N) indicated strong exclusion 
of non-pCR cases: true negatives numbered 87 in the 
Test-set-1 and 23 in the Test-set-2, and specificity was the 
highest among all models (table 2). The Sankey diagram 
depicted reclassification from unimodal predictions to 
MIFM predictions in reference to the ground truth, 

Characteristics

Overall Training-set Test-set-1 Test-set-2

P value(N=335) (n=181) (n=115) (n=39)

Lymphadenectomy extent 0.243

 � Two-field 36 (10.75) 16 (8.84) 13 (11.30) 32 (82.05)

 � Three-field 299 (89.25) 165 (91.16) 102 (88.70) 7 (17.95)

Tumor pCR 0.144

 � No 258 (77.01) 138 (76.24) 94 (81.74) 26 (66.67)

 � Yes 77 (22.99) 43 (23.76) 21 (18.26) 13 (33.33)

ypT stage 0.052

 � 0 77 (22.99) 43 (23.76) 21 (18.26) 13 (33.33)

 � 1 70 (20.90) 33 (18.23) 24 (20.87) 13 (33.33)

 � 2 62 (18.51) 32 (17.68) 23 (20.00) 7 (17.96)

 � 3 126 (37.60) 73 (40.33) 47 (40.87) 6 (15.38)

ypN stage 0.465

 � 0 189 (56.42) 104 (57.46) 67 (58.26) 18 (46.15)

 � 1 91 (27.16) 44 (24.31) 32 (27.83) 15 (38.46)

 � 2 41 (12.24) 26 (14.36) 10 (8.70) 5 (12.83)

 � 3 14 (4.18) 7 (3.87) 6 (5.21) 1 (2.56)

ypTNM stage (AJCC Eighth) 0.550

 � I 151 (45.07) 83 (45.86) 51 (44.35) 16 (41.03)

 � II 50 (14.93) 27 (14.92) 20 (17.39) 3 (7.69)

 � III 134 (40.00) 71 (39.22) 44 (38.26) 20 (51.28)

s-LN number (median) 23 (5–78) 24.0 (6-63) 22 (5–78) 23 (8–61) 0.042*

Survival time (median) 692 (96–1772) 727 (100–1661) 716 (96–1172) 381 (136–1240) 0.137

Data are n (%), unless otherwise stated.
P value was calculated comparing the Training-set, Test-set-1 and Test-set-2.
s-LN number, defined as the number of lymph nodes removed from surgery.
*P value below 0.05 was considered statistically significant.
AJCC, American Joint Committee on Cancer; cN, clinical node stage; cT, clinical tumor stage; cTNM, Clinical Tumor-Node-Metastasis; 
ECOG, Eastern Cooperative Oncology Group; NCIT, neoadjuvant chemoimmunotherapy; pCR, pathologic complete response; PD-1, 
programmed cell death protein 1; PD-L1, programmed cell death ligand 1; s-LN number, surgical lymph node number; ypN, neoadjuvant 
pathologic node stage; ypT, neoadjuvant pathologic tumor stage; ypTNM, neoadjuvant pathologic Tumor-Node-Metastasis.

Table 1  Continued
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Figure 2  Performance of different models for predicting the pCR. Radar chart comparing the AUC values of seven machine 
learning algorithms in unimodal pathomics model (A) and unimodal radiomics model (B) in the Training-set. The Sankey diagram 
depicted reclassification from unimodal predictions to MIFM predictions in reference to the ground truth (C). The ROC curves 
for the unimodal pathomics model, unimodal radiomics model, MIFM, and MLFM are presented for both the Training-set (D), the 
Test-set-1 (E) and the Test-set-2 (F). The PR curves for the unimodal pathomics model, unimodal radiomics model, MIFM and 
MLFM for both the Training-set (G), the Test-set-1 (H) and the Test-set-2 (I). Confusion matrix of the MIFM in the Training-set 
(J), the Test-set-1 (K) and the Test-set-2 (L). Flow diagrams summarizing MIFM-assigned class versus observed outcome in 
Test-set-1 (M) and Test-set-2 (N), indicating counts of true positives/negatives and false positives/negatives. AUC, area under 
the curve; AUPRC, area under the precision-recall curve; BNB, Bernoulli Naïve Bayes; GNB, Gaussian Naïve Bayes; KNN, k-
nearest neighbors; LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model; 
pCR, pathological complete response; PR, precision-recall; RF, random forest; ROC, receiver operating characteristic; SVM, 
Support Vector Machines; XGB, eXtreme Gradient Boosting.
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highlighting the net movement toward correct labels 
(figure 2C). The DCA was illustrated in online supple-
mental figure 7.

Exploratory prognostic stratification by observed and model-
predicted pCR status
We examined whether observed pCR status and model-
predicted pCR status (from the MIFM at its fixed oper-
ating threshold) stratified OS. In the Training-set, 
patients with observed pCR showed longer OS with visible 
separation of Kaplan-Meier curves (figure 3A), whereas 
this separation did not reach statistical significance in the 
Test-set-1 or Test-set-2 (figure 3C,E). Stratifying patients 
by the model’s predicted status yielded a qualitatively 
similar pattern but did not achieve statistical significance 
in any cohort (figure 3B,D and F). Univariate Cox regres-
sion analysis confirmed that observed pCR, and model-
predicted pCR were significantly associated with OS (p 
value<0.005; online supplemental figure 8).

Interpretability analyses and software prototype
SHAP summaries illustrated the contribution of indi-
vidual radiomics and pathomics features to the predic-
tions of the MIFM (figure 4A). Across all features retained 
in the final model, cross-modality correlations were mild 
to low (figure 4B and online supplemental figure 9), with 
values between −0.57 and 0.69, suggesting that the two 
modalities may capture complementary aspects of tumor 
biology and treatment response.

We compared the cell-type fractions by observed 
pCR status and, separately, by model-predicted pCR 
status (figure 4C). Relative to their respective non-pCR 
groups, both the observed pCR group and the predicted 
pCR group tended to show higher tumor and lympho-
cyte fractions and lower necrotic fractions.

Figure  4D presents two representative samples to 
make the decision process transparent. In one case, the 
unimodal radiomics and pathomics models offered discor-
dant opinions, and the fused model reconciled these by 
weighting modality-specific evidence; in the other, both 
modalities were concordant. For each sample, feature 
maps displayed the spatial distribution of salient imaging 
and tissue descriptors (online supplemental figure 10), 
per-feature contribution plots show how specific values 
pushed the prediction toward pCR or non-pCR, and a 
decision-pathway view summarizes the stepwise reasoning 
leading to the final probability. Together, these views link 
feature-level signals with the model’s case-level rationale.

Finally, we provide a browser-based, Graphical User 
Interface tool that requires no coding. Users upload the 
pretreatment CT, the corresponding tumor ROI mask, 
and the CellProfiler-derived comma-separated values 
(CSV) file; the tool returns the patient-level predicted 
probability of pCR along with basic input checks. A 
concise user guide and screenshots are available in 
the online supplemental figure 11. (This prototype is 
intended for research use).

Table 2  Performance of the models for predicting pathologic complete response

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1 score (95% CI)

Training-set

 � Unimodal 
pathomics model

0.88 (0.82 to 0.94) 0.81 (0.75 to 0.86) 0.72 (0.58 to 0.85) 0.83 (0.77 to 0.89) 0.64 (0.52 to 0.74)

 � Unimodal 
radiomics model

0.90 (0.84 to 0.95) 0.84 (0.79 to 0.90) 0.77 (0.64 to 0.89) 0.86 (0.80 to 0.92) 0.69 (0.58 to 0.80)

 � MIFM 0.97 (0.94 to 0.99) 0.93 (0.90 to 0.97) 0.84 (0.71 to 0.95) 0.96 (0.93 to 0.99) 0.86 (0.77 to 0.93)

 � MLFM 0.93 (0.88 to 0.97) 0.89 (0.85 to 0.93) 0.79 (0.67 to 0.91) 0.92 (0.87 to 0.96) 0.77 (0.68 to 0.86)

Test-set-1

 � Unimodal 
pathomics model

0.68 (0.55 to 0.81) 0.68 (0.59 to 0.77) 0.52 (0.32 to 0.75) 0.71 (0.61 to 0.80) 0.37 (0.21 to 0.52)

 � Unimodal 
radiomics model

0.74 (0.62 to 0.85) 0.69 (0.61 to 0.77) 0.62 (0.39 to 0.83) 0.70 (0.61 to 0.80) 0.42 (0.26 to 0.57)

 � MIFM 0.78 (0.64 to 0.90) 0.87 (0.81 to 0.92) 0.62 (0.41 to 0.83) 0.93 (0.87 to 0.98) 0.63 (0.44 to 0.79)

 � MLFM 0.77 (0.66 to 0.86) 0.70 (0.61 to 0.77) 0.57 (0.35 to 0.78) 0.72 (0.63 to 0.81) 0.41 (0.24 to 0.56)

Test-set-2

 � Unimodal 
pathomics model

0.67 (0.48 to 0.86) 0.69 (0.56 to 0.82) 0.54 (0.27 to 0.82) 0.77 (0.60 to 0.92) 0.54 (0.27 to 0.74)

 � Unimodal 
radiomics model

0.68 (0.51 to 0.85) 0.59 (0.44 to 0.74) 0.54 (0.29 to 0.80) 0.62 (0.42 to 0.81) 0.47 (0.22 to 0.67)

 � MIFM 0.76 (0.55 to 0.94) 0.77 (0.64 to 0.90) 0.54 (0.27 to 0.83) 0.88 (0.74 to 1.00) 0.61 (0.33 to 0.82)

 � MLFM 0.73 (0.56 to 0.89) 0.64 (0.49 to 0.79) 0.54 (0.25 to 0.82) 0.69 (0.50 to 0.86) 0.50 (0.24 to 0.71)

AUC, area under curve; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model.
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DISCUSSION
In this multicenter retrospective study across three 
academic hospitals, we developed and externally validated 

an interpretable multimodal framework that integrates 
routinely available contrast-enhanced CT radiomics with 
H&E-stained WSI pathomics to preoperatively predict 

Figure 3  Prognostic stratification performance. KM curves for OS stratified by observed pCR versus non-pCR in the Training-
set (A), Test-set-1 (C) and Test-set-2 (E) and stratified by MIFM predicted pCR versus non-pCR in the Training-set (B), Test-set-1 
(D) and Test-set-2 (F). KM, Kaplan-Meier; MIFM, multimodal intermediate fusion model; OS, overall survival; pCR, pathologic 
complete response.
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Figure 4  Interpretability analyses. (A) The SHAP summary of the MIFM: right, beeswarm plot showing per-feature effects on 
model output; left, bar chart ranking global importance by mean |SHAP|; inset shows proportional contributions. (B) Cross-
modality Spearman correlation network for features retained in the final model (edge width reflects correlations). (C) Boxplots 
of WSI-derived cell-type fractions (tumor, lymphocyte, stromal, necrotic, other): left, comparison by observed status (observed 
pCR vs observed non-pCR); right, comparison by model-predicted status (predicted pCR vs predicted non-pCR). (D) Case 
vignettes illustrating discordant unimodal predictions reconciled by MIFM (Patient A, observed pCR) and concordant unimodal 
predictions (Patient B, observed non-pCR); for each, feature maps, top-20 contribution ranking, and the decision-pathway 
depict how modality-specific features accumulate to the final prediction. MIFM, multimodal intermediate fusion model; pCR, 
pathologic complete response; SHAP, SHapley Additive exPlanations; WSI, whole-slide image.
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pCR after nCIT in ESCC. Compared with unimodal radio-
mics or pathomics, the intermediate-fusion model showed 
more robust discrimination across the development set 
and two validation cohorts, underscoring the value of 
combining complementary imaging and tissue informa-
tion. The work’s key strengths are its clinical practicality—
it relies solely on standard-of-care data without additional 
testing or cost—and its interpretability-first design, where 
feature definitions are mathematically or morpholog-
ically explicit and case-level/cohort-level explanations 
(eg, SHAP summaries, feature maps) together with 
decision-pathway views render model reasoning trans-
parent. Finally, we provide a browser-based Graphical 
User Interface tool that requires no coding and returns a 
patient-level pCR probability, facilitating exploratory use 
in multidisciplinary settings. Together, these elements 
highlight a feasible and transparent pathway toward 
translating multimodal AI into decision support for nCIT 
in ESCC.

The chemoradiotherapy for esophageal cancer followed 
by surgery study (CROSS) trial established the superiority 
of nCRT over surgery alone for locally advanced ESCC.31 
Nonetheless, distant metastasis remains the dominant 
mode of failure after nCRT—far exceeding local recur-
rence (22.0% vs 5.9%)—underscoring the need for 
enhanced systemic therapies to improve outcomes. 
Recently, it was shown that intensive chemotherapy 
improved the OS and local control over nCRT.32 33 
These improved regimens could lead to the omission of 
esophagectomy in patients achieving a pCR after induc-
tion therapy.34 However non-invasive ways to determine 
pCR are not available. In the era of immunotherapy, 
multiple studies have reported that the combination of 
immunotherapy and chemotherapy has achieved favor-
able outcomes as the first-line treatment for advanced 
esophageal cancer,35 36 suggesting translational potential 
in the neoadjuvant setting. Head-to-head comparisons 
of nCIT versus nCRT in locally advanced ESCC are still 
accruing. In a prospective multicenter study across eight 
high-volume centers, Guo et al reported superior 2-year 
OS (81.3% vs 71.3%) and DFS (73.9% vs 63.4%) with 
nCIT compared with nCRT, while pCR rates were similar 
(22.9% vs 25.9%) and major pathologic response favored 
nCRT (61.5% vs 71.8%).6 Taken together, although the 
optimal neoadjuvant strategy is not yet settled, current 
evidence indicates substantial promise for chemoimmu-
notherapy in this population.

This evolving landscape motivates the present work. In 
routine care, pCR can only be histologically confirmed 
postoperatively. For patients likely to achieve pCR after 
neoadjuvant therapy, a watch-and-wait strategy may avert 
unnecessary esophagectomy, preserve organ function, 
and improve quality of life.37–39 Conversely, for patients 
unlikely to achieve pCR, proceeding to timely esophagec-
tomy to eradicate residual disease remains the standard 
curative pathway. Consequently, there is a clear clinical 
need for an accurate, preoperative, non-invasive predictor 
of pCR to guide individualized decision-making between 

surveillance and prompt surgery. Our multimodal, 
interpretability-constrained framework directly addresses 
this gap, aiming to inform neoadjuvant pathways in ESCC.

Integration of multimodal data has emerged as a prom-
ising approach for predicting treatment response across 
various cancers. For example, Mao et al combined pretreat-
ment MRI, WSIs, and clinical risk factors to predict pCR 
following neoadjuvant chemotherapy in breast cancer,40 
although with deep learning-derived features whose 
semantics were less explicit. For ESCC, Qi et al reported 
that incorporating CT images and WSIs could predict 
pCR after nCIT, supporting the utility of multimodal 
fusion41; however, pathomics features were extracted by 
deep learning models, and the paired CT-WSI cohort was 
relatively limited (n=89). Against this backdrop, our study 
provides, to our knowledge, one of the largest multi-
modal evaluations of pCR prediction after nCIT in ESCC, 
with paired CT and biopsy WSIs across three centers and 
external validation. By employing mathematically defined 
radiomics features and explicitly defined morphologic/
texture descriptors from WSIs, the framework enhances 
feature-level interpretability while maintaining compet-
itive discrimination. compared with unimodal models, 
the MIFM achieved higher specificity across all cohorts 
(table 2), indicating strong exclusion of non-pCR cases. 
Clinically, such operating characteristics primarily reduce 
the risk of misclassifying non-pCR as pCR, thereby avoiding 
inappropriate surveillance and supporting timely surgery 
for those unlikely to achieve pCR. Conversely, patients 
predicted as pCR could be considered for cautious watch-
and-wait, where confirmatory assessment and close moni-
toring are in place. Prospective studies are warranted to 
determine thresholds and workflows that safely translate 
these findings into practice.

To reduce risk inherent to high-dimensional features 
and modest cohort sizes,42 43 we implemented a rigorous, 
training-only feature screening pipeline. From 1,094 
radiomics features and 4,892 pathomics features, we 
applied two complementary selectors—LASSO and SVM-
RFE—and used the intersection of their selected features 
for the final model construction. For multimodal models, 
we implemented intermediate-fusion and late-fusion 
techniques to integrate the 14 selected radiomics features 
and 11 selected pathomics features. While some prior 
reports favor late-fusion models for its robustness,44 our 
results indicate that intermediate-fusion—which directly 
models complementary information across modalities—
can yield superior specificity in this setting (table 2 and 
figure  2D–I). We hypothesize that retaining original, 
modality-specific feature information and explicitly lever-
aging cross-modality complementarity facilitates building 
predictors that are both discriminative and robust.

We further used SHAP to interpret our machine learning 
model, quantifying the global influence of each feature. 
For instance, radiomics feature R8 (wavelet.HHL_glszm_
SizeZoneNonUniformityNormalized) captures textural 
heterogeneity—higher values indicate a more uneven 
distribution of same-intensity zones after high-frequency 
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filtering, which could be related to mixed viable/necrotic 
components or perfusion variability. Radiomics feature 
R4 (wavelet.LLH_firstorder_90Percentile) summa-
rizes the brightest voxel intensities in the low–low–high 
(LLH) sub-band. Higher values may indicate areas of 
rich vascular supply and active tumor proliferation, while 
lower values could correspond to necrotic or low-density 
regions. Among pathomics, P6 (Texture_InverseDiffer-
enceMoment_Hematoxylin) quantifies the uniformity of 
the staining intensity of hematoxylin within the nuclear 
region, with higher values indicating high nuclear 
heterogeneity, while lower values indicate low nuclear 
heterogeneity. Pathomics feature P11 (Mean_Filtered-
Nuclei_AreaShape_HuMoment) quantifies nuclear asym-
metry and morphological heterogeneity, with higher 
values indicating greater nuclear irregularity and lower 
values reflecting more symmetrical nuclear morphology. 
Nuclear morphology reflects cellular proliferation status 
and abnormal development, where generally enlarged or 
irregular nuclei are associated with malignant potential.45 
These key features provide, to some extent, biologically 
plausible links between image-derived measurements and 
tumor phenotype, helping bridge model outputs with 
clinical reasoning.

We evaluated case-level interpretability using the 
decision-pathway views in figure  4D, making the step-
wise reasoning of the tree-based learner explicit. Patient 
A (observed pCR) represents a discordant unimodal 
scenario: unimodal radiomics and pathomics models 
predicted pCR (risk score: 0.00224) and non-pCR 
(−0.00016), respectively, while MIFM correctly predicted 
pCR. Feature map panels display the three most influ-
ential radiomics and pathomics features, and a top-20 
contribution ranking shows radiomics features predom-
inating for this case. The decision pathway traces how 
successive radiomics thresholds progressively increased 
the cumulative score above the fixed operating threshold, 
while several pathomics features exerted negative contri-
butions toward non-pCR. Patient B (observed non-pCR) 
illustrates a concordant scenario: both unimodal models 
correctly predicted non-pCR (radiomics: −0.00408; path-
omics: −0.00232), and MIFM also yielded accurate predic-
tions. Here, the contribution histogram shows a more 
balanced mix of radiomics and pathomics influences, 
and the decision pathway depicts cumulative decrements 
that keep the prediction below the threshold. These 
two examples not only enhance the transparency of the 
decision-making process but also suggest a complemen-
tary and synergistic relationship between macroradiolog-
ical information and micropathological features.

The TME constitutes a complex network comprising 
diverse components including cancer cells, stromal cells, 
blood vessels, nerve fibers, and extracellular matrix.46 47 
This system plays a crucial role in tumor progression, prog-
nosis, and response to immunotherapy.48 In our cohort, 
we quantified cell-type fractions on H&E-stained WSIs 
(tumor/epithelial, lymphocyte, stromal/spindle, 
necrotic, other) and compared distributions by observed 

pCR status and, separately, by model-predicted status 
(figure 4C). In both comparisons, the pCR groups tended 
to exhibit higher tumor and lymphocyte fractions and 
lower necrotic fractions relative to their respective non-
pCR groups—directionally consistent with prior reports 
linking viable tumor architecture and lymphocytic infil-
tration to treatment sensitivity.49 50 Although these trends 
did not reach statistical significance, plausibly reflecting 
limited sample size, biopsy sampling variability, and 
potential variability in Hover-Net segmentation, they 
are biologically plausible and hypothesis-generating, 
warranting confirmation in larger, prospective datasets.

Although the results are encouraging, our study has 
several limitations. First, the retrospective design and 
limited external validation cohorts may introduce poten-
tial bias, necessitating prospective validation in larger 
populations. Second, established predictive biomarkers 
for immunotherapy efficacy—including TMB, PD-L1 
expression levels, and combined positive score—were 
excluded from our analysis because these tests were not 
uniformly available and would add cost; integrating such 
markers could further improve performance. Third, 
despite predefined procedures, manual segmentation 
and visual QC for CT and WSIs inevitably introduce 
subjectivity. Developing and validating automated QC 
and segmentation pipelines should be prioritized. Fourth, 
no stain normalization or color augmentation was used 
in this study, and these strategies should be explored in 
future work. Fifth, statistically significant Kaplan-Meier 
separation was observed only for observed pCR in the 
training cohort, and the lack of statistical significance 
in the other cohorts may be attributable to the limited 
number of deaths. In addition, pCR is not the only deter-
mining prognostic factor for long-term survival. There-
fore, these findings should be considered exploratory and 
hypothesis-generating. Finally, although our discussion of 
transparency in this study focuses on both the machine 
learning model level and the handcrafted feature level, 
interpretable deep learning could potentially enhance 
both model performance and transparency in future 
work. Furthermore, the biological hypotheses generated 
from this study remain preliminary, and genomic-level 
evidence will be essential to validate and substantiate 
these interpretations.

In summary, we developed and externally validated an 
interpretable multimodal machine learning framework 
that integrates contrast-enhanced CT radiomics with 
H&E-stained WSI pathomics to preoperatively predict 
pCR after nCIT in ESCC. Our findings demonstrate the 
clinical potential of this multimodal approach for guiding 
individualized decisions between surveillance and timely 
surgery. Further refinement and validation through 
large-scale prospective trials remain essential to establish 
its utility in clinical practice.
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