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 A B S T R A C T

Background Studies on SARS-CoV-2 household transmission often assume random mixing, overlooking de-
tailed contact patterns and the timing of physical distancing.
Methods To address this, we examined interactions within 280 households, including 280 index cases and 
544 members, enrolled from April 2020 to April 2021 in Nashville, Tennessee, and central Wisconsin. Eligible 
households were enrolled within 7 days of index case symptom onset if at least one member was initially 
asymptomatic. Participants were monitored for 14 days, with symptoms and respiratory specimens collected 
daily, and contact data retrospectively assessed at three time points: the day before index case symptom onset, 
the day before enrollment, and 14 days post-enrollment. We fitted Exponential Random Graph Models to the 
contact pattern to identify drivers of household contact. We used the fitted household models to inform a 
two-level mixing model to account for community infection risk, and we calibrated it to the infection data. 
We then used the calibrated model to study different implementation of physical distancing.
Results Contact patterns showed a significant reduction in physical interactions after infection awareness, 
particularly avoidance of index cases, with a 77% reduction in contact density (95% CI [65%-84%], 𝑝 < 0.001). 
Simulations from the two-level mixing model indicated that initiating contact reductions at symptom onset 
could lower secondary infections by over 25% in households of 4-5 members.
Conclusions These results demonstrate how behavior changes following infection awareness reduce transmis-
sion. Implementing physical distancing earlier, at symptom onset, could further limit secondary infections and 
enhance household transmission control.
1. Introduction

The rapid spread of the COVID-19 pandemic forced countries world-
wide to take strong mitigation measures to prevent COVID-19-related 
morbidity and mortality and the collapse of healthcare systems. From 
this perspective, particular importance was placed on the isolation of 
infected individuals and quarantine of their close contacts. As house-
holds were identified as hot spots for disease transmission (World 
Health Organization, 2020), particular attention was devoted to the 
detail of SARS-CoV-2 transmission in households (Grijalva et al., 2020; 
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Shen et al., 2020; Wu et al., 2020; Cerami et al., 2021; McLean et al., 
2022). Most of these studies focused on epidemiological quantities such 
as the secondary attack rate, but did not consider the rich dynamics 
of household interactions, characterized by age specific heterogene-
ity (Layan et al., 2024). Although public health agencies, including 
the World Health Organization (WHO) and the Centers for Disease 
Control and Prevention (CDC), recommended that infected individ-
uals should self-isolate (World Health Organization, 2022; Centers 
for Disease Control and Prevention, 2023) (and, concurrent to that, 
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Fig. 1.  Schematic representation of the study design. Individuals with a positive SARS-CoV-2 (RT-PCR) test result (index case) enrolled in the study, together with 
their household members who agreed to participate. The participants reported their household contacts at three time points: the day before the symptom onset 
of the index case, the day before the enrollment, and after a two weeks of follow-up. Specimens from household members were collected daily and throughout 
the study period and tested for SARS-CoV-2, to identify secondary infections in the household.
household members of infected individuals should follow prevention 
measures) few studies have assessed changes in household contact 
network following the introduction of SARS-CoV-2 infections in house-
holds. Information on household contact networks can be used to 
understand the occurrence of infections (Wallinga et al., 2006; Sun 
et al., 2023) and to reconstruct infection trees and inform models 
of disease transmission (Goeyvaerts et al., 2018; Keeling and Eames, 
2005) that could, in turn, be used to evaluate the impact of intervention 
strategies (Cencetti et al., 2021). In this study, we sought to character-
ize household contact patterns and how those evolved at three time 
points: before the onset of the first symptom in the household, at study 
enrollment after the household became aware of a positive clinical test, 
and two weeks after enrollment. We then used these data-informed 
contact networks in an individual-based stochastic model of COVID-19 
to assess the impact of self-induced physical distancing on the risk of 
secondary infections under different scenarios.

2. Methods

2.1. Study design and household contact data

The Influenza Household Transmission Evaluation Study for COVID-
19 (FluTES-C) was a case-ascertained household transmission study 
conducted from April 2020 through April 2021 by Vanderbilt Univer-
sity Medical Center (VUMC) and Marshfield Clinic Research Institute 
(MCRI) (Grijalva et al., 2020). The methods have been previously 
described (Grijalva et al., 2020; McLean et al., 2022). In brief, the 
study prospectively identified individuals with a positive SARS-CoV-2 
reverse transcription-polymerase chain reaction (RT-PCR) test results 
from outpatient medical clinics, consented and enrolled individuals 
who were the first identified infected household members (index cases) 
in a household, together with their household members who agreed 
to participate in the study. As the study was an observational study, 
no specific recommendation about preventive measures were provided 
to the participants at enrollment. At enrollment, the study collected 
sociodemographic information and data on household characteristics. 
After enrollment, daily follow-up continued for 14 days. During each 
day of follow-up, participants reported symptoms and self-collected 
a respiratory specimen, regardless of the presence of symptoms (Gri-
jalva et al., 2020; McLean et al., 2022). The interactions between 
household members in terms of time spent in the same room and 
physical contacts were recorded at three time points: the day before the 
onset of symptoms in the index case (referred to as ‘‘onset’’, the day 
2 
before the enrollment (‘‘enrollment’’) and after the two-week follow-
up period post enrollment ended (‘‘follow-up’’).The list of symptoms 
used to define symptoms onset included: cough, sore throat, runny 
nose, nasal congestion, fatigue/feeling run down, wheezing and trouble 
breathing/shortness of breath. Fig.  1 shows a schematic summary of the 
study design and timing of contacts assessments. We constructed the 
household contact network for the three time points considering only 
physical contacts, as we assumed these are a better proxy for an in-
fection event than, for example, conversational interactions with other 
individuals (Goeyvaerts et al., 2018). A physical contact was defined 
as an interaction between household members that involved skin-to-
skin contact e.g., hugging, kissing, touching. We assumed reciprocity 
of contacts, considering a contact between two participants to happen 
if either of the two reported a physical contact. Figure S1 presents a 
selection diagram for participants and the corresponding households.

2.2. Inference of household contact network

Exponential Random Graph Models (ERGM) (Robins et al., 2007) 
are statistical models used to describe the probability of observing 
a specific network structure among nodes. In this work, we used 
ERGM to estimate the probability of physical contact between house-
hold members based on individual features (e.g., age) and household 
characteristics (e.g., size).

Our model includes terms for edges (physical contact, e.g., a and b 
in Fig.  1), 2-stars (two individuals in contact with a third person but not 
with each other, e.g., e and b in Fig.  1), and triangles (three individuals 
all in contact, e.g., a, c, and e in Fig.  1) (Robins et al., 2007; Krivitsky 
et al., 2023; Anon, 2012). Within this modeling approach, a positive 2-
star parameter would indicate a tendency for two household members 
that do not have a physical contact with each other to both have 
physical contact with a third individual. In contrast, a negative param-
eter suggests avoidance of such configurations. Analogously, a positive 
triangle parameter would suggest triadic closure, where individuals in 
contact with a third person are likely to contact each other.

We modeled whether a physical contact occurred in the household. 
Covariates included household characteristics (logarithm of household 
size as linear and quadratic terms), individual attributes (e.g., index 
case status, self-reported immuno-compromising condition, and age–
index case interaction), and pairwise features (e.g., both individuals’ 
age classes). For 2-stars and triangles, we considered only household 
size’s linear and quadratic effects. Age-specific mixing parameters were 
included to estimate physical contact levels in households, categorizing 
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individuals into children (0–17), younger adults (18–34), and older adults
(35–64). Parameters for individuals aged 65+ were excluded due to in-
sufficient data , as elderly individuals were only present in households 
of size two.

We modeled household contact networks at three time points and 
selected models using the Akaike Information Criterion (Akaike, 1998) 
(AIC). For the best-fit models, we also explored whether the study site 
(VUMC or MCRI) would be a relevant covariate for the probability of a 
physical contact. Model fitting was performed using the ‘‘ergm.multi’’ 
R package (Krivitsky, 2022), part of the ‘statnet’ suite (Handcock et al., 
2019), which enables joint model fitting across multiple networks and 
provides Goodness of Fit (GOF) diagnostics (Krivitsky et al., 2023).

2.3. Epidemic modeling

We first computed and described the cumulative infection rates 
among household members as the proportion of the total number 
of household members (excluding the index case) with laboratory-
confirmed infections. We then modeled the spread of SARS-CoV-2 
infections in households via an individual-based, two-level mixing SEIR 
(Susceptible–Exposed–Infected–Recovered) model (Ball et al., 1997). 
The two-level mixing model assumes that at each simulation step (a 
day), household individuals can acquire the infection either from one 
infected household member with whom they reported a contact (with 
probability 𝛽ℎℎ) or from the community (with a probability 𝛽𝑐). It 
allows therefore to model separately these two levels of mixing: the 
community mixing and the within household mixing. . We calibrated 
the transmission parameters 𝛽ℎℎ and 𝛽𝑐 by fitting the model to the 
observed epidemic data using a Bayesian Markov Chain Monte Carlo 
(MCMC) approach, assuming uniform priors and running 5 chains of 
100,000 iterations. Posterior distributions were summarized, and 95% 
credible intervals were obtained using equally tailed intervals (ETIs). 
Convergence was ensured using Gelman–Rubin diagnostic and effective 
sample sizes. We implemented the algorithm using the BayesianTools R 
package.We assumed that at the beginning of the simulation, i.e. the re-
ported date for the start of symptoms, participants interacted according 
to the contact data reported for the day prior to the index case’s onset of 
symptom. When participants became aware that one positive case was 
present in the household (i.e., usually at study enrollment) we assumed 
that they changed their contact behavior and we therefore used the 
contact data reported at enrollment. We used the empirical (i.e. col-
lected) contact networks for the fitting procedure, and used ERGM 
generated samples of network for simulating the different scenarios. 
Sensitivity analyses were performed varying the assumed duration of 
infectiousness and allowing the community transmission parameter to 
vary over time. More details on the model and on the fitting procedure 
can be found in the Supporting Information.

2.4. Definition of scenarios

To evaluate the impact of changing contact patterns, we used the 
best-fit parameters to simulate the epidemic for three scenarios. In all 
scenarios, we generated household contact networks from the best-fit 
models of the contact data. The first scenario is the Physical distancing 
after test results. This is analogous to the fitting scheme, with partici-
pants changing their contact behavior after knowing the presence of 
a positive case in the household. We therefore generated household 
contact network from the best fit of the onset network up to the 
date when one positive case was reported in the household; after this 
date, we generated household contact network from the best fit of the
enrollment network. In the no physical distancing scenario, individuals 
do not change their contact behavior over the course of modeled time 
and household contact patterns were derived from the ERGM based 
on surveys conducted on the day before index symptom onset. In the
Physical distancing after symptoms scenario, we derived the household 
contact network from the ERGM of the enrollment network only and 
3 
applied those contact patterns for the entirety of the simulation; this 
implied that all participants changed contact patterns as soon as there 
was an individual with symptoms in the household. In all scenarios, we 
used the contact network at enrollment to model physical distancing. 
However, this contact network may be affected by two, competing 
effects: the necessity to implement physical distancing with respect to 
the index case and the potential need to take care of the index case. We 
limited the scenario analysis to the households that reported contacts 
both at onset and enrollment and simulated each scenario

3. Results

3.1. Study population

In total 302 households were included in the study between April 
of 2020 and April of 2021, resulting in 879 individuals, 438 (49.8%) 
from the Marshfield Clinic Research Institute site and 441 (50.2%) from 
the Vanderbilt University Medical Center site (Table  1). The median 
age of the participants was 32 years (95% CI [3:70]) with 5% of 
individuals aged ≥65 years. The majority of index cases were adults 
(81%; 32% aged 18–34 years and 49% aged 35–64 years). The median 
household size was 3 (Interquartile range [2:4]), with the majority of 
participants (332, 37.8%) living in a household of size 2 and ∼50% 
of participants living in households of size 3, 4 and 5 (18.1%, 19.6% 
and 16.5%, respectively). A small number of participants (17, 1.9%) 
reported immuno-compromising conditions and only 34 participants 
(3.9%) received one or more doses of COVID-19 vaccine. After ex-
cluding 55 participants who did not report contact with household 
members at any time (Figure S1), the onset network included 269 
households with 800 individuals (with 750 physical contacts among 
household members), the enrollment network included 200 households 
with 638 individuals and 530 physical contacts among household 
members) and the follow-up network included 239 households with 
715 individuals (670 physical contacts among household members). 
Included households were similar to overall enrolled households in 
terms of household size and age of the household members (see Table 
S1). The median time between the index case’s symptom onset and 
enrollment was 3 days (95% CI: [1:7] days (See Figure S8), with 0.16% 
of participants enrolling on the same day of the symptom onset of 
the index case. The mean risk of infection among household members 
(excluding index case) was 0.38 (95% CI [0:0.8]). Most of the infected 
household members (113 cases, 35.2% of the total) were aged 35–64 
years, with children being the second most common age class (109 
cases, 34% of the total).

The aggregated, average probability of physical contact with an-
other household member was significantly greater at symptom onset 
than at enrollment for people in households of size 4 (P < 0.05, two-
sample Kolmogorov–Smirnov test) (Figure S2). In 3-person households 
and households of 5 people or more, there was a similar trend, though 
not statistically significant. Households of size two, instead, did not 
show any change in the probability of a physical contact between the 
three time points and in particular were always complete networks 
(i.e. with the one potential physical contact being realized).

3.2. Contact network inference

Model selection for contact networks considered household size, 
participant age, whether the participant was the index case, self-
reported immuno-compromising conditions, and the presence of a child 
in the household. The selected models, based on the lowest AIC, 
included covariates for household size, participant age, and whether 
the participant was the index case. Interaction effects of age and being 
an index case were selected only for networks at enrollment, although 
with no significance. We also included 2-stars and triangles to model 
interactions involving three participants. The selected models for the 
three time points include linear and quadratic effects of household size 
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Table 1
Sample compositions of household study participants, April 2020–May 2021.
 Category Group Index cases Infected household Uninfected household Total  
 (N = 302) members(N = 321) members(N = 256) (N = 879)  
 Age (years) 0–17 43 (14.24%) 109 (33.96%) 94 (36.72%) 246 (27.99%) 
 18–34 97 (32.12%) 79 (24.61%) 49 (19.14%) 225 (25.60%) 
 35–65 147 (48.68%) 113 (35.20%) 104 (40.62%) 364 (41.41%) 
 65+ 15 (4.97%) 20 (6.23%) 9 (3.52%) 44 (5.01%)  
 Household size 2 166 (54.97%) 108 (33.64%) 58 (22.66%) 332 (37.77%) 
 3 53 (17.55%) 56 (17.45%) 50 (19.53%) 159 (18.09%) 
 4 43 (14.24%) 73 (22.74%) 56 (21.88%) 172 (19.57%) 
 5 29 (9.60%) 59 (18.38%) 57 (22.27%) 145 (16.50%) 
 6 6 (1.99%) 19 (5.92%) 11 (4.30%) 36 (4.10%)  
 7 5 (1.66%) 6 (1.87%) 24 (9.38%) 35 (3.98%)  
 Immuno-compromised individuals Refused to answer 76 (25.17%) 90 (28.04%) 90 (35.16%) 256 (29.12%) 
 No 219 (72.52%) 231 (71.96%) 156 (60.94%) 606 (68.94%) 
 Yes 7 (2.32%) 0 10 (3.91%) 17 (1.93%)  
 Site Marshfield Clinic Research Institute (WI) 137 (45.36%) 157 (48.91%) 144 (56.25%) 438 (49.83%) 
 Vanderbilt University Medical Center (TN) 165 (54.64%) 164 (51.09%) 112 (43.75%) 441 (50.17%) 
 Vaccinated (any dose) Refused to answer 225 (74.50%) 245 (76.32%) 182 (71.09%) 652 (74.18%) 
 No 70 (23.18%) 70 (21.81%) 53 (20.70%) 193 (21.96%) 
 Yes 7 (2.32%) 6 (1.87%) 21 (8.20%) 34 (3.87%)  
on edges and 2-stars. Different results are observed for triangles, with 
the best-fit model for onset and enrollment networks only including a 
linear term, whereas the best-fit models for follow-up included a linear 
and a quadratic effect. Additional results on model selection can be 
found in the SI section 1.3.2, with a summary of all the tested models 
reported in Table S2.

Results from network modeling are shown in Table S3, which shows 
the best-fit estimates for all model covariates. From these, the proba-
bility for a physical contact to happen can be computed considering 
all the relevant covariates (e.g. age of individuals involved, household 
size, etc.). Covariates that have a significant effect on the probability of 
a physical contact were similar when considering the three time points, 
with the exception of being an index case. More specifically, being 
an index case reduced the odds of a physical contact at enrollment 
(when household members are aware of the positive test result of 
the index case) but was not significant at the other two time points. 
Also, no significant interaction with the age of the index case was 
found, suggesting that reductions in contact after test results were 
known did not differ by age. The household networks at all three time 
points also suggested that the probability of contact depended on the 
age of the two individuals involved. The models estimated that the 
age-specific probability of physical contact between participants was 
similar across time, with the exception of interactions between two 
older adults, which had a lower probability at enrollment compared 
with onset (Figure S3). However, no formal statistical testing of this 
difference was pursued, as the selected model for the three time points 
differed in terms of covariates. The effect of household size on edges, 
2-stars, and triangles is summarized in Figure S5. Increasing household 
size was associated with lower odds of a physical contact and higher 
(lower) odds of forming a 2-stars (triangle). In particular, the formation 
of a triangle presented a strong dependence on household size, being 
very likely in households of size three (odds in favor of 100 or more) 
and not so favored in households of size 7 (odds in favor approaching 
1). No significant dependence on the study site (VUMC or MCRI) was 
observed.

3.3. Epidemic modeling and impact of physical distancing

We estimated the best-fit parameter values for the daily probabil-
ity to acquire infection from an infectious household member upon 
physical contact (𝛽ℎℎ) and from the community (𝛽𝑐) to be  0.120 (95% 
CI [0.052:0.193] and 0.0113 (95% CI [0.0005:0.0348] , respectively. 
Goodness of fit showed a good agreement between epidemic data and 
simulation, with the exception of households of size two and seven 
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(Figure S7). However, given that all households of size two in our 
sample are complete networks (i.e. with the one potential physical 
contact being realized) we could expect some lack of fit from the ERGM 
network model, with the corresponding misalignment of epidemic re-
sults for households of size two. Goodness of fit was difficult to assess 
for very large households (e.g. seven household members) because 
there were very few such observations.

Fig.  2 shows the probability of a secondary infection among house-
hold members who were not the index case for the three scenarios 
considered, by household size. Among these, the physical distancing after 
test scenario was the reference scenario, as it corresponded to the actual 
data collection, with participants implementing physical distancing 
after a positive case was reported in the household. The no physical 
distancing scenario was not significantly different from the physical 
distancing after test scenario. When comparing the physical distancing 
after test scenario with the physical distancing after symptoms scenario 
statistically significant differences in the secondary infections in the 
household were observed for household sizes of 3, 4, and 5 and above, 
with an average reduction of  16%, 25% and 26%, respectively, in the 
mean number of secondary cases.

Because of the age-specific contact patterns of household interac-
tions and the age distribution of the index cases the reduction in the 
probability of acquiring a secondary infection was age-specific (Fig.  3). 
In particular, the reduction in the probability of secondary infections 
when implementing physical distancing after symptoms (with respect 
to implementing physical distancing after test) was statistically signifi-
cant only for children (0–17 years of age) and older adults (35–64 years 
of age) with an average reduction of 23% (95% CI [3%–37%], P< 0.001, 
t-test) and 30% (95% CI [2%–38%], P< 0.001, t-test) , respectively.

In our epidemic model we assumed a constant infectivity over 
time in the course of a person’s infection. We tested the impact of 
this assumption by including a time-varying infectivity profile (Puhach 
et al., 2022) in the model (see section 1.6 in the Supporting Infor-
mation) . Results in terms of the reduction of secondary infection 
when implementing physical distancing after symptoms with respect 
to implementing physical distancing after positive tests were similar 
(Figure S13), although the model resulted in a worse fit to the epidemic 
data. We also assessed the impact of our assumption of constant com-
munity transmission (see section 1.5 of the Supporting Information). 
Using the number of reported cases in the state of the study sites as 
a proxy for community transmission we repeated our analysis. Again, 
the model with time-varying community transmission provided a worse 
fit to the epidemic data and provided a smaller reduction in the 
number of secondary infections when implementing physical distancing 
after symptoms compared with implementing physical distancing after 
positive test (Figure S12).
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Fig. 2.  Probability of secondary infections for the three scenarios, stratified by household size. The solid line marks the median value, with the box marking 
the 25th–75th percentile and whiskers marking the 95% confidence interval.
Fig. 3. Probability of secondary infections after follow-up for the three scenarios, stratified by age category of the contact. Solid line marks the median value, 
with the box marking the 25th–75th percentile and whiskers marking the 95% confidence interval.
4. Discussion

Household transmission has been shown to contribute substantially 
to the spread of COVID-19 (Wu et al., 2020; Shen et al., 2020). 
Therefore, efficient physical distancing measures in households are 
regarded as crucial to interrupt chains of transmission and to reduce 
disease spread. However, quantifying the impact of physical distancing 
measures requires detailed information on household contact patterns 
together with systematic sequential testing of the household members, 
which is usually not available. Using data from a case-ascertained 
household transmission study, we found that households in the US, 
early during the COVID-19 pandemic, reduced self-reported physical 
contact with the index case , even though no specific recommendation 
about preventive measures were provided.
5 
Through additional modeling, we found that reducing physical con-
tact when the index case started having symptoms may substantially 
reduce the risk of infection in other household members. As estimated 
from our model, the probability of acquiring infection from an infected 
household member with whom a physical contact is established is ∼
12% per day, much higher than the probability of acquiring infections 
from the community, estimated as ∼ 1% per day, marking the intimate 
nature of physical contacts in household and their higher spreading 
potential with respect to contacts outside the household. However, 
this comparison stands only when there is a positive case inside the 
household, and the overall impact of community transmission could be 
larger, especially over longer periods of time with no positive case in 
the household. This also relates with infections between households 
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being better described via a density-dependent mass action princi-
ple, while infections in the community being better described via 
a frequency-dependent mass action principle (Wilson and Worcester, 
1945).

Our results showed reduced physical contact after a positive test 
result, with index cases less likely than other household members to 
establish new contacts during symptom development, as signaled by the 
statistical significance for the term for being an index case in the model 
for the enrollment network. However, this effect was absent in two-
person households, likely due to caregiving roles. In fact, the reduced 
contact with the index case measured at enrollment may be influenced 
by two opposite effects: physical distancing and increased need of 
taking care. Contact formation depended also on factors like household 
size and age-specific patterns. In particular, our analysis has found that 
household interactions among older adults (from 35 to 65 years of age) 
are reduced when an individual reported a positive test. This marks a 
stronger tendency of this age group, compared with other (typically, 
younger) age groups, to implement physical distancing. Additionally, 
physical contact was more likely if both individuals had contact with a 
third member.

In a situation when households are not aware of positive cases, 
our findings align with prior studies (Krivitsky et al., 2023; Ozella 
et al., 2018) that observed strong role-specific interactions between 
household members, contrasting random mixing (Goeyvaerts et al., 
2018). Households with positive cases showed reduced contact with 
the index case and among non-index members, potentially disrupting 
transmission chains.

We observed that almost half of the index cases were in the older 
adults age group (35–64), followed by younger adults and, less com-
monly, children. This is consistent with the time of the study, during 
which several kids were likely not attending school and thus may be 
less likely to introduce infections into the households (Tan, 2021).

Secondary infections were instead more likely in older adults and 
children (with respect to younger adults and elderly), with comparable 
probabilities. This situation is consistent with the specific structure 
of household interactions, that present high age-group homophily to-
gether with inter-generational mixing. Observing the age-specific in-
teractions, it is expected that index cases in the older adults age group 
(aged 35–64) would generate most of the secondary infections in the 
same age group and, to a weaker extent, in children. For index cases 
in the younger adults age group (aged 18–34) it is instead expected 
to have more infections in the children age class than in the same age 
class. Therefore, the high fraction of secondary infections in children 
may be due to the high interactions that these have with their par-
ents, either in the younger or in the older adults age group. A study 
conducted in French households in 2020 (Novelli et al., 2024) already 
observed age-specific within household transmission, however could 
not disentangle the contribution due to contact patterns. Although 
age-dependent effects in transmission both in terms of infectivity and 
susceptibility are widely known (Davies et al., 2020) our findings 
highlight the crucial role of household contact patterns in shaping the 
dynamics of COVID-19.

The secondary infection rates found in this study are in line with 
studies conducted in the US during the first phase of the pandemic, 
roughly from 2020 to mid-2021 (McLean et al., 2022; Rosenberg 
et al., 2020; Lewis et al., 2021), although estimates of secondary 
infection rates are highly heterogeneous (Madewell et al., 2020, 2022; 
Layan et al., 2022). Previous work also highlighted an increase of sec-
ondary infection rates in individuals with immuno-compromising con-
ditions (Lewis et al., 2021) and a reduction due to vaccination (Rolfes 
et al., 2024; Layan et al., 2022; Guo et al., 2024), which we did 
not observe. However, our sample has fairly limited representation 
of immuno-compromised or vaccinated individuals (the study was 
conducted early in the pandemic), with only 17 and 34 individuals 
included, respectively.
6 
Simulations of an individual-based model showed reduced sec-
ondary infections when distancing began at symptom onset, with 
stronger effects in larger households. In two-person households, dis-
tancing was less effective, likely due to shared space and impossibility 
to isolate in a two-people house. No significant difference was measured 
when comparing the physical distancing after symptoms scenario with 
no physical distancing.

Our results were robust when considering a different community 
infectivity profile over time (Yan et al., 2021; Puhach et al., 2022), 
highlighting how household transmission can be disrupted by early 
physical distancing, regardless of the duration or trajectory of infectious 
shedding. When considering a time-varying probability of infection 
from the community we found a reduced impact of physical distanc-
ing. This is however to be expected, as household physical distancing 
can only reduce within-household risk of transmission: if community-
mediated risk of transmission is large (e.g. during peak activity) house-
hold members are more likely to acquire infection from the community. 
Furthermore, as the median time between the onset of symptoms of the 
index case and the enrollment is 3 days, our results underscore how 
implementing household physical distancing just a few days sooner 
can significantly decrease the number of secondary infections in the 
household by as much as 25% .

Although this is one of the few studies that attempted to describe 
changes in household contact networks due to physical distancing 
because of a positive test, our work is affected by several limitations. 
First, index cases were defined as the first symptomatic individual, 
though concurrent infections cannot be ruled out. However, only in 
25 participants additional infections have been detected on the same 
day or the day after the index case. We therefore expect the infection 
of a household member concurrently with the index case (e.g. co-
primary cases) to be unlikely and with limited impact on our results. In 
addition to this, as household enrollment was conditioned on a COVID-
19 positive case, we could not include in our study the situation of 
unnecessary physical distancing, i.e. physical distancing implemented 
on symptoms in the absence of COVID-19. As several pathogens may 
cause the symptoms we considered, the trade off between the benefit 
of early physical distancing vs the possibility of unnecessary physi-
cal distancing should be properly evaluated. Also, enrollment criteria 
excluded scenarios of unnecessary distancing (e.g., symptoms without 
COVID-19), which requires further evaluation. Self-induced distancing 
may be higher in tested households than in untested ones. Finally, since 
our study was conducted at two sites in the United States between April 
2020 and May 2021 our findings may not be directly applicable to other 
settings or in a highly vaccinated population, where contact patterns 
may differ (Wambua et al., 2022, 2023) or different variants may be 
co-circulating.

5. Conclusions

We showed how the awareness of viral infection introduction into 
the household reduces physical contact with the index case and leads 
to an overall lower number of physical contacts in the household. If 
such self-induced physical distancing would be implemented when a 
household member first develops symptoms instead of after a positive 
test, the risk of infections among household members could be reduced 
by a considerable fraction.
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