

11th European Stroke Organisation Conference

21-23 May 2025, Helsinki, Finland

Abstract Number: 2540

Abstract Title: DETECTION OF ATRIAL FIBRILLATION USING PHOTOPLETHYSMOGRAPHY-BASED MONITORING IS NON-INFERIOR TO INSERTABLE CARDIAC MONITORS IN CRYPTOGENIC STROKE PATIENTS

Abstract Category: 04.00 - DIAGNOSIS / ETIOLOGY - 04.10 - ESUS/CRYPTOGENIC STROKE

Preferred Presentation Type: Oral or Poster Presentation

Femke Wouters^{*1, 2, 3}, Hugo Van Herendael², Laurent Pison^{2, 3}, Maximo Rivero-Ayerza², Dieter Nuyens², Ludovic Ernou², Kim Bekelaar², Henri Gruwez^{2, 3}, Julie Vranken^{2, 3}, Christophe Smeets^{2, 3}, Dieter Mesotten^{2, 3}, Pieter Vandervoort^{2, 3}, Thomas Philips¹, David Verhaert²

¹Jessa Ziekenhuis, Hasselt, Belgium, ²Ziekenhuis Oost-Limburg, Genk, Belgium, ³Hasselt University, Hasselt, Belgium

Background and Aims: The gold standard for long-term cardiac monitoring to detect atrial fibrillation (AF) in cryptogenic stroke patients is the insertable cardiac monitor (ICM). A non-invasive, less expensive alternative is photoplethysmography (PPG)-based monitoring using smartphones/smartwatches. This study aims to determine the non-inferiority of PPG-based rhythm monitoring with smartphones/smartwatches compared to ICMs for AF detection (>1h) in cryptogenic stroke patients.

Methods: This prospective, multicenter, double-blinded trial evaluated AF detection using PPG-based monitoring with smartphones/smartwatches compared to ICMs. Patients were randomized 1:1 to use smartphone (two one-minute spot-checks daily) or smartwatch (semi-continuous measurements every nine minutes) for six months.

Results: Among 185 patients, AF episodes lasting >1 hour were detected in 4.3% of patients by both ICMs and PPG-based monitoring. The digital follow-up strategy for detecting AF>1h, requiring at least 4 consecutive AF-positive measurements, resulted in only one false-positive and one false-negative case. As such, the detection of AF lasting longer than 1 hour using PPG-based monitoring on smartphone and smartwatches was non-inferior to ICMs ($p<.001$), with a significance level of $\alpha=.025$ and non-inferiority margin of $\delta=.07$.

Although the time to first AF detection was shorter using PPG-based monitoring on smartwatch compared to ICMs (watch: 49 ± 38 vs. 75 ± 76 days, $p=.261$; phone: 103 ± 56 vs. 92 ± 77 days, $p=.5$), the difference was not statistically significant, likely due to the limited number of patients in whom AF lasting longer than 1 hour was detected.

Conclusion: Prolonged cardiac monitoring using a PPG-based smartphone or smartwatch approach is non-inferior to ICMs for detecting AF>1h.

**11th European Stroke
Organisation Conference**

21-23 May 2025, Helsinki, Finland

THE VOICE OF STROKE
IN EUROPE**Disclosures:** nothing to disclose**Travel Grant Application:** No**Young Investigator Award Application:** No