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Abstract

Human biomonitoring, measuring chemicals or their metabolites directly in tissues and fluids,
can, in principle, reveal EU-wide exposure patterns. The pooled HBM4EU data (2014—-2021)
were assembled from national and regional cohorts that each followed different, often not clearly
documented, sampling schemes. The resulting dataset lacks a unified probabilistic design, and
any uneven coverage against geographic and socio-demographic aspects, as well as the absence of
sampling weights make the derivation of "European” reference exposure values a challenge. This
thesis focuses on the HBM4EU children’s age-group (6-12 yrs) and phthalates/mono-benzyl
phthalate (MBzP) as a test-case. Exploratory analysis of the children dataset confirmed a
North—East bias, an excess of high-education households and urban—rural mismatches; sampling
year shadows cohort, magnifying site heterogeneity. Pronounced MBzP gradients by region,
DEGURBA, sampling season and education affirmed the need for weights and cluster-robust
inference, potentially providing a transferable template for other future initiatives.

A population—standardisation grid for EU-27 children was built crossing one-way Eurostat mar-
gins for region (North, South, West, East), sex (male, female), season (each pre-weighted at 0.25),
DEGURBA (urban, towns/suburbs, rural) and household-education (ISCED 0-2, 3-4, >5). Age
was fixed at 9 years, considering also the regional Eurostat data showing that uniform single-year
counts across the 6-12-yr span. The Cartesian product yields 288 cells; each cell weight equals
the product of its five marginal proportions and the set is normalised to 1. This construction
assumes the five dimensions are mutually independent; in the absence of joint tabulations. These
grid weights served a dual role: for model-based routes: each regression was fitted to the
HBMA4EU children data, after which its fitted values were projected onto the 288 cell profiles
and post-stratified with the grid weights to represent an average EU child. Two specifications
were considered: (i) an ordinary-least-squares model, with and without region—specific interac-
tion blocks, evaluated with delta-method SEs; and (ii) a random-intercept mixed model, with
and without interactions, propagating uncertainty via the analytic Delta-method, as well a “MC-
fixed” Monte-Carlo SE (resampling) only the fixed-effect coefficients but also a “MC-full” Monte-
Carlo SE (resampling both the fixed effects and a new cohort-level intercept on every replicate).
For design—based routes: the same weights were merged back to the HBM4EU data; dividing
each cell weight by the number of sampled children in that cell, yielding observation—level prob-
abilities that drove direct post-stratification, survey-design analysis and marginal raking, with
weight trimming explored as sensitivity checks. The EU-27 standardised geometric mean esti-
mates yielded narrower ranges, both with the model-based and design-based approaches, once
cohort clustering was not considered. Declaring cohorts as PSUs inflated the confidence bands.
Weight-trimming and marginal raking reduce design effects and sharpen intervals with negligi-
ble impact on the central estimate, whereas extending the calibration to a regionxage margin
lowered the geometric mean notably while substantially cutting the effective sample size. Next
steps could focus on: (a) future initiatives collecting study-specific design weights before pooling
to keep all downstream estimates design-consistent; (b) reporting both an efficient mixed-effects
projection (MC-fixed SE) and a raked, cluster-robust survey estimate to bracket uncertainty;
(c) test on the effect of replacing regional margins with finer, e.g. country-level or joint margins
(if available); (d) include single-year age calibration and extend the framework to adolescents,
adults and further biomarkers; and (e) explore weight- and cluster-aware design-based regres-
sion (svyglm) or GEE/GEE2, providing population-average estimates with sandwich-robust SEs.

Keywords: HBM4EU; biomonitoring; biomarkers; chemicals exposure; phthalates; weight-
ing; direct standardisation; post-stratification.
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1 Introduction

1.1 Human biomonitoring

Human biomonitoring (HBM) measures the concentration of chemicals or their metabolites in hu-
man fluids and tissues. Therefore, it allows the assessment of "human exposure to chemicals from
different sources, by different pathways, and during certain periods of life”.[1] It thus provides
a comprehensive assessment of overall exposure by capturing chemicals intake from a variety of
sources, including environmental, occupational, dietary, and consumer products. The European
Commission’s Chemicals Strategy for Sustainability (CSS), published in 2020, explicitly recognizes
human biomonitoring (HBM) as a vital tool for assessing chemical exposure and informing policy
decisions.[2] The CSS highlights the importance of HBM in understanding the internal concentra-
tions of chemicals, thus supporting the EU’s zero-pollution ambition. Furthermore, CSS outlines the
development of a framework of indicators to monitor the drivers and impacts of chemical pollution,
including the use of HBM data to measure the effectiveness of chemicals legislation.[3]

1.2 The European Human Biomonitoring Initiative (HBM4EU)

HBMA4EU, launched in 2017, aspired to advance and harmonise human-biomonitoring efforts across
Europe.[5] It encompassed national and regional studies, building on existing capacity of coun-
tries with recurring HBM programs, such as Germany, Belgium (Flanders), France, Sweden, and
Slovenia, while 32% of the studies were initiated specifically under the guideline protocols of the
HBMA4EU project (e.g. for Greece, Portugal, Croatia, Switzerland, and others).[6] [4] Consequently,
this suggests that each participating study retained its own sampling frame and recruitment strategy
and no single EU-level probabilistic design underpins the pooled dataset and statistical represen-
tativeness is guaranteed only within the boundaries of each contributing survey. Participants were
recruited between 2014 and 2021, from approximately 11-12 countries per age group, ensuring a
broad representation across Europe. The studies included 10,795 participants in three age groups:
3,576 children (6-12 years), 3,117 teenagers (12-18 years) and 4,102 young adults (20-39 years).
Each participating study (primary sampling unit, PSU) followed a common HBM4EU-aligned pro-
tocol: for instance, within the 6-12-year stratum ca. 300 children were retained per PSU, with sex
quotas of &~ 50 % boys and ~ 50 % girls and with > 10 % representation in every DEGURBA class
(urban, towns/suburbs, rural) and in each household-education level (ISCED 0-2, 3-4, > 5). The
twelve PSUs under the children’s age-group were allocated across the four UN geoscheme regions
(North, South, West, East) and sampling spanned all four seasons.

HBM4EU samples were analyzed for specific biomarkers, indicative of exposure to various chemi-
cal substances. Those included a range of chemicals, including emerging contaminants and legacy
pollutants, to better understand population exposure levels and trends. A prioritisation strategy
led to the identification of a list of priority substances for HBM in Europe.[7] The first list of
high-priority substances for action in HBM4EU included 9 substance groups: 1) phthalates and
the phthalate alternative: DINCH, 2) bisphenols, 3) per- and polyfluoroalkyl substances (PFAs),
4) (organophosphorus and halogenated) flame retardants, 5) cadmium and chromium VI, 6) poly-
cyclic aromatic hydrocarbons (PAHs), 7) aromatic amines, 8) chemical mixtures and 9) emerging
substances. The second list expanded into: acrylamide, aprotic solvents, arsenic, diisocyanates,



lead, mercury, mycotoxins, pesticides, and benzophenones. An HBM4EU expert group selected
the most appropriate biomarkers for each of the priority substances.[8] For the HBM4EU aligned
studies, a relatively large sample size was attained for the different substance groups being mea-
sured. For example, with regard to children: pesticides (6 countries, N=863), phthalates/DINCH
(12 countries, N=2877), organophosphorus flame retardants (7 countries, N=1,768), halogenated
flame retardants (4 countries, N=710) and acrylamide (5 countries, N=1,198).[6]

1.3 Context and thesis research question

Table 1 summarises information identified under the ”Information Platform for Chemical Moni-
toring” (IPCHEM), but also under published supporting material, related to the characteristics of
the HBM4EU-related cohorts, encompassing the children (6-12 years) age-group.[9],[4] One can con-
clude that cohorts were recruited with different, and in most cases, not clearly-documented sampling
strategies which ranged from national, stratified surveys to regional convenience or hospital-based
birth cohorts. Unequal coverage of countries, regions, age-groups, socio-economic strata and ex-
posure settings means that some demographic profiles may be over- or under-represented. One
solution for “FEuropean”-level representative estimates could be based on a hybrid scheme: explicit
design weights where the design is known, and externally-derived calibration weights where it is
not. Since study sampling designs are not clearly documented or heterogeneous, post-stratification
weights that rely on known selection probabilities may become unreliable, suggesting the need to
look for external standards (e.g. Eurostat) for applying weights related to socio-demographic and
geographic variables.

Table 1: HBM4EU: summary of children-related cohort characteristics

HBM4EU Country | N Sampling strategy Age Study design
Children cohorts
(Sampling year)
InAirQ Hungary | 262 IPCHEM: Probabilistic 8-11 Cross-sectional
(2017-2018) Supporting Info rather indi-
cates the possibility of con-

venience sampling

NACII Italy 300 IPCHEM: Probabilistic 7 only | Cross-sectional
(2014-2016) Supporting Info rather in-
dicates purposive sampling
and convenience sampling as
a secondary aspect

GerESV Germany | 300 Stratified random 3-17 Cross-sectional
(children subset)
(2015-2017)

NEBII Norway 300 IPCHEM: undefined 7-11 Longitudinal
(children subset) Supporting Info indicates
(2016-2017) non-random, purposive (or

targeted) sampling.




ESTEBAN France 543 IPCHEM: undefined 6-17 Cross-sectional
(children subset) Supporting Info indicates
(2014-2016) two-stage sampling: ran-
dom household selection
with individual-level exclu-

sions
POLAES Poland 300 IPCHEM: undefined 7-10 Case-control
(children subset) Supporting Info indicates
(2017) mixed convenience and pur-

posive sampling

PCB Slovakia 300 IPCHEM: maternal ap- | 10-12 | Longitudinal
(children subset) proval at delivery
(2014-2017) Supporting Info indicates

clinically-based convenience

sampling
SLOCRP Slovenia 149 IPCHEM: Undefined 7-10 Cross-sectional
(children subset) Supporting Info indicates
(2018) convenience sampling with

purposive exclusions
CROME Greece 161 IPCHEM: Simple random 6-11 Cross-sectional
(children subset) Supporting Info indicates
(2020-2021) convenience and snowball

sampling
0CC Denmark | 300 IPCHEM: Random selec- | 5-7 Longitudinal
(children subset) tion - stratified
(2018-2019) Supporting Info rather indi-

cates longitudinal birth co-
hort sampling

3xG Belgium 133 Hospital-based prospective | 6-8 Longitudinal
(children subset) birth cohort
(2019-2020)

The overarching aim of this thesis has been to evaluate and compare statistical approaches for
deriving EU-level, reference values of chemical exposure, from biomarker data generated by the
studies included under HBM4EU. In HBM4EU, weights have not been used for the calculation of
European exposure values (or other analyses); thereby the use of weights may result in more EU-
level representative values. Assessing different strategies/methodologies could be useful for (future)
calculations of EU-exposure values, e.g. based on the PARC aligned studies.

Since simultaneously addressing all age strata and the full set of biomarkers would be very complex
at once, and considering that the purpose has been to obtain methodological insights, the present
work focuses on (i) the children age-group (6-12 years) and (ii) phthalates, with the example the
phthalate metabolite mono-benzyl phthalate (mbzp), a primary urinary biomarker of the plas-
ticiser butyl benzyl phthalate (BBzP). BBzP has historically been added to flexible PVC flooring,
sealants, coated fabrics and other building or consumer materials; legacy uses make it a continu-



ing indoor source despite recent regulatory restrictions. Methodologically, the study couples the
HBMA4EU dataset with externally-sourced population margins, obtained from Eurostat, in order to
build a weighting scheme representing the EU-27 demographic mix of 6-12-year-olds and deliver
population-standardised means and standard errors via selected statistical methodologies.

1.4 Societal relevance, Stakeholders and Ethics

Human Biomonitoring for Europe (HBM4EU) plays a key role in assessing the efficacy of chemi-
cals management policies and the monitoring of emerging pollutants. By systematically measuring
internal exposure to hazardous substances, regulatory frameworks such as REACH (Registration,
Evaluation, Authorisation and Restriction of Chemicals) could be informed and the EU could make
bigger steps towards its Zero-pollution ambition. HBM4EU has pooled data from a network of
coordinated national studies. Establishing EU-level reference values can be crucial as they can
provide a common baseline against which Member States can evaluate national results, highlight-
ing regions where exposures are atypically high or low. Moreover, it could enable proportionate,
evidence-based policy targets that are coherent across borders but also enable the timely detection
of emerging chemical hazards across Europe. Finally, EU-reference values could provide a robust
foundation for establishing benchmarks for comparison with chemicals exposure data worldwide.

HBMA4EU outcomes are of relevance to a broad spectrum of stakeholders. Policy makers and regu-
latory bodies at EU, national, and regional levels could use relevant findings to calibrate exposure
limits and prioritise risk-mitigation strategies. Furthermore, public health and environmental agen-
cies may use the data to target interventions in high-risk areas. Civil society, encompassing citizens,
consumer associations, and non-governmental organisations (NGOs), can benefit from transparent
reporting of chemical exposures and flagging potential health implications across the EU.

Fully anonymised datasets were extracted from the PEH Data Platform (Personal Exposure and
Health Data Platform) and provided by VITO. The individual-level data were fully anonymised
to protect participant confidentiality. Moreover, every aligned study has obtained approval from
its relevant local ethical committee, and explicit consent procedures have been implemented for
the sharing of personal data at the European level. Further information with regards to HBM4EU
cohorts meeting ethics requirements and details on local ethical committees has also been previously
summarised.[6] These measures protect participants’ rights and ensure research integrity.



2 Data

2.1 Data collection

A subject-coded, fully anonymised dataset was applied hereby, covering the age-group of children
(6-12 yrs). The HBM4EU dataset for children contained in total 2823 entries. It included biomark-
ers related to two pollutant categories: i) Phthalates (concentrations for 14 biomarkers, as well
as 10 sum parameters) and ii) Flame retardants (concentrations for 2 biomarkers). Creatinine
(crt) was used as an estimator for urinary density and a parameter to standardise the biomarker
concentrations. More specifically, the study hereby used biomarker concentrations expressed as
biomarker_impcrtlog, namely the natural-logarithm of the imputed biomarker concentration, stan-
dardised to creatinine (expressed as pug g ! crt). This already covered imputation for values below
the Limit of Detection (LOD) and Limit of Quantification (LOQ). An additional overview of the
full set of specific biomarkers within the children dataset is summarised, only for information, under
the Appendix (section B: additional tables).

2.2 Dataset dictionary

The list of all variables included in the provided HBM4EU dataset (children 6-12 years age-group),
and their key characteristics, is summarized, for reference, in Table 2.
Variables retained for subsequent statistical analyses are shown, within the table, marked by double *.

Table 2: Summary of variables included in the extracted HBM4EU children’s dataset

Variable Description Type Values / codes

1=C_NPHI_InAirQ
2=C_EPIUD_NAC IT
3=C_UBA_GerES V
4=C_NIPH_NEB II
5=C_ANSP_ESTEBAN
cohort_name 11 HBM cohorts string 6=C_NIOM_POLAES
7=C_SZU_PCB cohort
8=C_JSI_.SLO CRP
9=C_AUTH_CROME

10=C_SDU_OCC

40=C_VITO_3xG
*cohort* cohort code integer 1-10, 40 (see above)
country country related to the cohort string HU, IT, DE, NO, FR, PL,

SK, SL, EL, DK, BE

NUTS level of participant’s residence:
NUTS 1: major socio-economic regions

nutsl

NUTS 2: basi i
nuts?2 ( fU 5 2 ?SIC ;eglo)ns alphanumeric | official Eurostat codes (e.g.
nuts3 OF TEglonat polcies string BE2, BE24, BE241)

NUTS 3: small regions
(for specific diagnoses)




1=North (DK, NO)
2=South (SI, GR, IT, CY)

* ion* eographical region (UN geoscheme intege
region geographical region ( g me) integer 3—West (FR, NL, DE, BE)
4=East (PL, HU, SK)
id_hbm4eu_subject | unique participant ID alphanumeric | agegroup_institution_study_ID,
string e.g. T_-VITO_FLEHSIV_1
matrix biological matrix string US=urine-spot, UM=urine
first-morning
crt concentration of creatinine in urine numeric ng/L
samples
samplingyear year of sample collection integer 2014-2021
samplingmonth month of sample collection integer 1-12
samplingday day of sample collection integer 1-31
samplingtime time of day of sampling integer 1= morning, 2=
afternoon, 3= evening, 4=
night
*samplingseasonx season of sampling integer 1= spring, 2= summer, 3=
autumn, 4= winter
*Sex* sex of the participant character M= male, F= female
height height at sampling numeric cm
weight weight at sampling numeric kg
bmi body-mass index numeric kg/m?
*xageyears* age in years at sampling integer 6-12
agemonths age in months at sampling integer 72-156
smoking passive passive smoking exposure at home integer 0 =no, 1 = yes
xdegurbax* degree of urbanisation integer 1 = cities; 2 =
towns/suburbs; 3 = rural
*xisced_hhx highest education level of the integer 1=Low (ISCED

household of the subject at sampling
(ISCED scale)

0-2), 2=Medium (ISCED
3-4), 3=High (ISCED > 5)




biomarker biomarker (e.g.mbzp) concentration numeric values in pg/L; if not given by
the lab, they are replaced as:
e LOD and LOQ known:
—1 for X < LOD and
-2 for LOD < X <
LOQ
e LOQ known, LOD not:
—3 for X < LOQ
e LOD known, LOQ not:
—1 for X < LOD
LOD: limit of detection and
LOQ: min. concentration level
at which a substance can be
measured accurately and re-
ported with certainty.
biomarker_lod LOD of the biomarker (e.g. mbzp_lod) | numeric ng/L
biomarker_loq LOQ of the biomarker (e.g. mbzp_loq) | numeric ng/L
biomarker_crt biomarker values standardised for numeric ng/g crt
creatinine (e.g. mbzp_crt)
biomarker_log In-transformed biomarker values numeric ng/L
biomarker_crtlog In-transformed biomarker values numeric ng/g crt
standardised for creatinine
ng/L values indicated as:
—1 (below LOD),
-2 (between LOD and LOQ),
or -3 (below LOQ)
biomarker_imp imputed biomarker values numeric single random imputation
from a truncated lognormal
distribution. Imputation
performed, if at least 30% of
values were detected.
biomarker_impcrt imputed biomarker values numeric ng/g crt
standardised for creatinine
biomarker_implog In-transformed imputed biomarker numeric ng/L
value
*biomarker_ In-transformed imputed biomarker numeric ng/g crt
impcrtlog* values standardised for creatinine (e.g.

mbzp_impcrtlog)




3 Methodology

To ensure that estimates of biomarker exposure accurately reflect the heterogeneity of the EU-27
children (6-12 years old) population, key socio-demographic and geographic factors, also included
as variables in the HBM4EU dataset, were considered as they could influence environmental con-
taminant levels. In particular, region could capture broad environmental and regulatory differences
(e.g. variations in industrial activity, climate, and lifestyle) across the European regions. The degree
of urbanisation (DEGURBA) distinguishes urban, towns/suburbs, and rural settings, which differ
in terms of population density, housing characteristics, and potential sources of biomarker expo-
sure. Finally, household education (ISCED strata) may serve as a proxy for socioeconomic status,
reflecting differences in consumer behavior, dietary patterns, and awareness of chemical risks. Data
breakdown is not always available by sex stratum and the age group margins were defined along
the range of the HBM4EU dataset: 6-12 years. The external population margins were combined to
form a reference grid, which was then used to generate population-weighted estimations in order to
derive EU-27 standardized biomarker concentrations.

3.1 Identifying EU-27 population margins

Firstly, age-structured Eurostat data (2023) were used to aggregate population counts per region,
accounting for both females and males aged 6-12 yrs (Figure 1).The Eurostat dataset[10] covers
all European countries, but only the EU-27 members were retained for the calculations hereby.
Populations were then summed by European region, according to the UN geoscheme. In total, ca.
32 M children aged 6-12 years were calculated. The West accounted for 14.08 M, the South for
8.76 M, the East for 6.46 M, and the North for 2.71 M. To note that the sex—stratified Eurostat
tables (EU-27, 2023), indicate a nearly even sex split in total, with 6-12 yrs males accounting for
51.4 % of the EU-27 population and and females 48.6 %, respectively. Age-specific counts, for both
males and females within each region, appear remarkably uniform across the 6-12 yr span, with
each year of age comprising approximately 14% of its regional population (Figure 2). For instance,
in the West the proportion ranged from 14.13% at age 6 to 14.67% at age 12; comparable patterns
were observed in the North (14.01%-14.95%), East (14.48%-14.94%) and South (13.38%-15.46%).

A contingency table jointly stratifying the population by age (or sex) and DEGURBA could not
be identified in the available Eurostat releases. To estimate the distribution of children aged 6—
12 years across DEGURBA classes, urban, towns/ suburbs, and rural, two Eurostat datasets were
used: (i) population data by EU-27 country (2023), including total population and the population
of 6-12-year-old females and males, and (ii) the percentage distribution of the total population per
EU-27 country and by DEGURBA class (2020) [10, 11]. For each EU-27 country, the proportion
of the population living in each DEGURBA class was multiplied by the total population and by
the relative share of children aged 6-12 in that population. This yielded an estimated number of
children within each class. The estimates were subsequently aggregated by region following the UN
geoscheme. For example, in the West, approximately 3.56 M children were estimated to live in rural
areas, 5.01 M in towns and suburbs, and 5.50 M in urban areas. Distributions were also calculated
for the remaining regions, enabling cross-regional counts based on level of urbanisation (Figure 3).
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Figure 3: Regional distribution of EU-27 children (6-12 yrs) by DEGURBA, Eurostat estimates

An attempt was also made to estimate the distribution of children across ISCED levels, using
Eurostat’s “Distribution of households by educational attainment level of the reference person”
(2020).[12] Labelled by Eurostat as “experimental”, these data may be revised in future releases.
The dataset reports the % of households per country in each ISCED category: 0 = early childhood
education, 1 = primary education, 2 = lower secondary education, 3 = upper secondary education,
4 = post-secondary non-tertiary education, 5 = short-cycle tertiary education, and 6-8 = tertiary
education excluding short-cycle. Since 2020 figures were unavailable for Italy and Sweden, they
were substituted with their 2010 and 2015 values, respectively. The ISCED-level shares for all
EU-27 countries were then aggregated into 3 strata: Low (ISCED 0-2), Medium (ISCED 3-4) and
High (ISCED > 5), consistent with the HBM4EU grouping. Each country’s Low/Medium/High
proportions were then normalized to sum to 100 %. This was done as the original Eurostat dataset
provides % for each of the seven ISCED levels, and these values are often subject to rounding and
may include small “unknown” or unclassified portions. When summing the ISCED-level percentages
for Low, Medium, and High, it can yield a total marginally different from 100%. This step corrects
for any residual rounding error and guarantees a proper three-category breakdown for subsequent
regional aggregation. The normalized shares were joined with the totals of 6-12 yrs old children and
with the UN geoscheme regional mapping. By multiplying each country’s total children population
by its normalized ISCED-stratum percentages, counts of children in each category were derived.
Summing the counts across the UN-defined European regions yielded a regional breakdown (Fig. 4).
For example, in the West, children appear most often in medium-education households (ca. 6.08
M), followed by high-education (ca. 5.44 M), and low-education (ca. 2.56 M).
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Figure 4: Regional distribution of EU-27 children (6-12 yrs) by ISCED, Eurostat-based estimates

3.2 EU-27 population-standardised reference grid and weights derivation

To obtain an EU-27-standardised mean for children aged 6-12 years, a 4 X 2 x 4 x 3 x 3 = 288-cell
reference grid was built by crossing external Eurostat margins (Section 3.1) for: region, degree of
urbanisation, household education and sex; each season was given an a-priori weight of 0.25. As
detailed in Section 3.1, Eurostat tabulations reveal an essentially uniform age structure within each
EU-27 region, with each single-year age from 6 to 12 years accounting for roughly 14 % of the
regional child population. Therefore, the seven single-year age bands were collapsed by fixing age
at the midpoint (9 years) in the reference grid, and the centered age variable (age, = age — 9) can
be used in all subsequent regression steps. The 288-cell grid was thereby preserved, and model
intercepts correspond to a representative child at the midpoint age of 9-years-old. For any future
analyses requiring broader age bands (e.g., adults) or finer spatial resolution, the margins should be
re-crossed with single-year (or grouped) ages and the relevant geographic units, thereby expanding
the grid in exchange for greater demographic resolution.

Hereby, for every grid cell defined by region (r € {North, South, West, East}), sex (s € {M,F}),
season (q € {spring,...,winter}), degree of urbanisation (d € {urban,towns/suburbs,rural}) and
household-education stratum (e € {low, medium, high}) an external weight was assigned as the
product of the marginal Eurostat proportions,

. . d
Wrsgde = 7T7(,reg) ngex) ﬂ_(gseason) ﬂ—c(l eg) Wéedu)’ Z Wrsqde = 1.

T’s?q7d7e
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This construction post-stratifies to the EU-27 population under the working assumption that the
margins are mutually independent. To the best of our knowledge, most of the current Eurostat
releases provide one-way tabulations; hence it might be challenging to obtain the full five-way joint
distribution. The independence assumption is thus the least restrictive choice that still yields a
complete set of cell weights.

3.3 Model-based, EU-27 population-standardized predictions
3.3.1 Multiple linear regression - no interactions

Multiple Gaussian linear regression (Model 1) was fitted to the In-transformed, imputed, creatinine-
standardised biomarker. This follows the HBM4EU harmonised data-management protocol, in
which urinary biomarker concentrations are expressed per gram creatinine to correct for between-
sample variation in urine dilution; and values below the analytical LOD/LOQ were stochastically
imputed from a truncated log-normal distribution fitted to the observed data above limit [6].

K
Yi :ﬁO‘f‘ZﬁkXik-l—&?i, SiNN(O,UQ), 1=1,...,n.

k=1
Hereby, Y; = mbzp_impcrtlog; is the natural-log, creatinine-standardised mbzp concentration for
individual 7. The covariate vector X; contains the categorical factors region, DEGURBA, household
education, sex, and sampling season, together with the centred age term age, = age — 9. Centering
aligns the intercept with the reference-grid profile (Section 3.2) and can reduce intercept—slope
collinearity. Categorical predictors were coded as indicator (dummy) variables, taking North, male,
urban, low education (ISCED 0-2) and spring as reference levels. With age centered, the intercept
represents the expected In-mbzp for a nine-year-old boy in a low-education household, urban setting,
living in the North of Europe, and sampled in spring.
The fitted model was evaluated at each of the 288 covariate profiles ¢ = 1,...,288 in the EU-27
population-standardised reference grid, where every profile has age. = 0 (age = 9 yrs). This yielded
cell-level predictions Yg with model-based standard errors SE(XAfg). Let wy be the external weight
for cell g (3, wy =1). The EU-standardised mean is:

o 288
Y = ngyg
g=1

R’s predict.1lm returns Yfg and Var(f’g) for each design point, but not for a weighted aggregate
such as Y. Post-stratifying the 288 cell predictions with the EU weights overcomes this limitation.
Because the model is linear and Gaussian, Y is itself linear in the estimated coefficients, and the
delta method provides its exact variance:

o 288 . - 288 .
Var(Y) = Y wi Var(Yy),  SEA(Y) = szg [SE(Y,)]2.
g=1 g=1

Exponentiating Y and its £1.96 SE(Y’) limits transforms the results to concentration units (ng g

creatinine), yielding the EU-adjusted geometric mean and its 95% confidence interval on the original
scale while preserving the EU-27 demographic composition encoded in the reference grid.
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3.3.2 Multiple linear regression - screening and evaluation of interaction terms

Five two-way interactions were examined on the following hypotheses: region X season, as it may
capture climate-driven and behavioral seasonal differences across Europe; region x DEGURBA
due to potential urban—rural exposure contrasts driven by differences in population density, and
local pollutant sources and how those may vary across EU; season x DEGURBA to assess whether
seasonal variation may differ by living environment; as well as region x age. as it could allow region-
specific age slopes; and sex x age. for sex-dependent age trends, where age, is child’s age centred
at nine years. Each interaction was first added singly to the main-effects model (AICy = 8507); all
main effects were retained in every comparison, computing:

AAIC = AIC,,; — AIC; and LR(2df).

Retention of interaction terms considered statistical criteria (AAIC < —2 and LR p < 0.05) and
especially biological plausibility. Three-way interactions were omitted to keep the model parsimo-
nious and to maintain stable predictions for every reference-grid cell.

Let i = 1,...,n index study participants and X; = (Xi1,...,X;x)" contain the K main-effect
covariates used in Model 1, including the centered age term age, = age — 9. Suppose a subset P
of predictor pairs (p, ¢) has been selected for inclusion as two-way interactions (e.g. region xseason,
regionx DEGURBA). For each chosen pair, we define the interaction covariate Wiy, = X;,X;q and
collect all such terms in the vector Z; = {Wiy, : (p,q) € P}'. The augmented regression fitted in
every subsequent analysis is:

YZ:BO_}_XIﬁ—’_Z—[’Y_{—ng 52'NN(070-2)’

where B contains all main-effect coefficients and ~ the interaction coefficients. Main effects are
retained regardless of which interactions are present; setting any component of v to zero simply
removes the corresponding interaction without altering the baseline structure of the model.

For every retained model m, the following were predicted: ff(,(m) with standard error SE(}A/g(m)) for
each grid cell g = 1,...,288. With EU weights wy (3, wy = 1):

7 Z S, v SEAT™) = \/ng SE(Y,™)?.
g g

Exponentiating ym and its +1.96 SE(?(m)) bounds returns the estimate to the original concentra-

! creatinine), yielding the EU-standardised geometric mean and its 95 % confidence

tion scale (ngg™
interval. Because identical population weights are used in every model, these geometric means

remain directly comparable across specifications and preserve the EU-27 demographic composition.
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3.3.3 Mixed models - random intercept specification

A random—intercept mixed model was fitted for the natural-log—transformed, creatinine-standardised
mbzp concentration. “Cohort” (j = 1,...,11) was modelled with a random intercept b; ~ N (0, 02),
assumed independent of the residual errors and of all fixed-effect predictors; this term captures un-
measured, study-specific heterogeneity. All parameters were estimated by maximum likelihood,
permitting likelihood-ratio tests of nested models. Since the EU-27 population-standardised ref-
erence grid fixes age at the midpoint (Section 3.2), age was centered as age. = ageyears — 9.
Accordingly, the fixed intercept Sy refers to a nine-year-old child in all reference-category covariate
levels. Centering and the retained interaction terms follow the rationale in Section 4.2, making the
mixed-model analysis comparable with the fixed-effects models.

Y = XZ-T]ﬂ-i-bj + €45, b; NN(O,UZ), EijNN(O,O'g),

2

2 is assumed to be constant (homoscedastic) across cohorts; diagnostic

The residual variance o
plots (Appendix A) show no meaningful violation. Here, i = 1,...,n; index individuals within
cohort j and j = 1,...,11 index the cohorts of the HBM4EU dataset related to children. The
design vector X;; contains: region (4 levels; North ref., 3 dummies), sex (M = 0, F = 1), centered
age,, DEGURBA (urban ref., 2 dummies), household education (ISCED 0-2 ref., 2 dummies),
and sampling season (spring ref., 3 dummies). Introducing two-way interactions, let R; € {0,1}3
(region), S; € {0,1}? (season), and D; € {0,1}?> (DEGURBA). With the two retained blocks

(region xseason, regionx DEGURBA) the model becomes:
Yij = X;;B + (Rz®SZ)T9 + (Ri®Di)T’y + bj + &ij,

where # € R? and v € R® parameterise the region-season and region-DEGURBA contrasts. R;®S;
denotes the element-wise product of the three-level region dummy R; and the three-level season
dummy S;, yielding the nine region—season contrasts (and similarly for R;®D;).

For both mixed models, the intraclass-correlation coefficient is defined as:

~2

— g
ICC = %7
62 + 62
u e

where 62 and 62 are the variance estimates of the random intercept and the residual error.

Each mixed model was projected onto the EU-27 population-standardised reference grid. Because
the grid contains only the midpoint age, the centered age regressor does not enter the linear predic-
tors used for EU standardisation, yet its coefficient 8,4c and its sampling variance are still estimated
before from the complete 6-12 years HBM4EU sample. Let 1)y = xgﬁ be the fixed-effects predictor
for grid cell g. The EU-standardised log-mean is:

288
la = Z wg ﬁgv
g=1
Three methods were used to quantify SE(/1). Each method was applied with the same 288-cell

reference grid and external weights across all model specifications, so the resulting standard errors
are directly comparable:
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a) Delta method: Linearising the cell-specific predictor 7y = x—lg—BA yields:

A

Var(ly) = ay Vary(5) z,.

Adding the estimated random-intercept variance 62 to every cell and aggregating with the external

weights {w, }2%8

g=1 gives:

288

SEA = \J Z wg [a:—g VarML(/B) Tg + 63} .
g=1

Note:Both the Delta-method and the following Monte-Carlo schemes treat the random-intercept

variance estimate 62 as fized, i.e. they ignore the small sampling variability in 62 itself. Given

the large sample size, treating 62 as fixed could be an acceptable simplification; accounting for its

sampling error is expected to widen the CIs marginally.

The closed-form expression for SEa: (i) propagates fixed-effect uncertainty through Vary,(3) and
2

(ii) incorporates between-cohort heterogeneity via ;. Under large-sample theory B is approxi-
mately multivariate normal, and 62 is treated as independent of VarML(B). A Wald 95 % interval

on the concentration scale is: [exp(fi = 1.96 SEx ).

b) Monte-Carlo sampling of 5 (“MC—fixed”). To propagate uncertainty from the fixed effects
only, M = 5,000 draws were taken from the asymptotic sampling distribution of the maximum-
likelihood estimator:

5(m)NN(B’ @‘ML(B))a mzl?aM
For each draw m and every reference-grid cell g the linear predictor is:

nim) = o7 g

The EU-weighted mean in replicate m and its Monte-Carlo standard error are:

288
m m m)y M
u =3 wen™,  SEgy = sd{uf N
=1

2

« is not resampled here, SEgy reflects fixed-effect uncertainty alone; additional variation

Because &
from between-cohort heterogeneity is incorporated in the subsequent “MC—full” procedure.

c) Monte-Carlo sampling of both 5 and the random intercept (“MC—full”). To propagate
fixed-effects and between-cohort uncertainty, each of the M = 5,000 replicates proceeds in two steps.
Step 1: drawing the fixed-effect vector:

B(m) ~ N(B,\//a\I'ML(B)), mzla"'vM'

Step 2: drawing a single cohort-level intercept, common to all grid cells in that replicate:

u

u™ ~ N(0,52).
For every grid cell g = 1,...,288 the linear predictor is:

n(m) = T B 4 ()
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The EU-weighted mean in replicate m and its Monte-Carlo standard error are:

288
m m m)y M
'“Eull) = Z Wy 775(; )] SEfun = Sd{“tguu)}m:l
g=1

With M = 5,000 draws, the Monte-Carlo sampling error in SEg,; is < 0.01.

Comparing SEA with SEg, assesses the delta-method approximation, whereas the difference between
SEgx and SEgy quantifies the additional uncertainty introduced by cohort heterogeneity. For every
model the point estimate exp(ji) is reported as the EU-standardised geometric mean, accompanied
by the concentration-scale 95 % confidence interval derived from the chosen standard-error method
(Delta, MC-fixed, or MC—full).

3.4 Non-model, design-based methods
3.4.1 Direct post-stratification weighting

An unweighted mean of the log-transformed, creatinine-standardised mbzp was first computed on
the full eligible sample of children aged 6-12 years, excluding 39 records with missing biomarker
values (resulting to n = 2784). Moroever, it was calculated for the dataset which was then fur-
ther restricted to records with complete information on the five post-stratification variables—EU-27
region, sex, sampling season, DEGURBA, and household ISCED—yielding the post-stratification
sample (n = 2722; 63 records excluded: 62 missing ISCED and 1 missing DEGURBA). Direct
post-stratification weights were assigned by matching each of the 2 722 observations to the Euro-
stat reference grid of joint marginal proportions for region, sex, season, DEGURBA, and ISCED
(Section 3.2). Note that the sample size is equivalent to the one in Section 3.3, considering that by
default both Im() and Imer() omit any observations with missing values on the outcome or predictors.

Let h = 1,..., H index the H strata defined by those factors, and Nj, be the number of sampled
children in stratum h. If M}, is the Eurostat population share for stratum h (>, M} = 1), each
child ¢ in stratum h received a raw weight:

Because excluding the 62 post-stratification-incomplete records removed approximately 14.6 % of
the total raw weight mass, the remaining weights were renormalised to sum to unity:

wraw
w; N277 N =2722
D k=1 wpv

The EU-standardised mean of log-transformed, creatinine-standardised mbzp (mbzp_impcrtlog)
was then computed as:

N
yweighted = Zwl Yis
=1

where y; denotes child i’s log-mbzp concentration (standardised for creatinine). Sensitivity analysis:
missing ISCED values (n = 62) were imputed to the “Medium” category while retaining all other
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cases; post-stratification weights and the weighted mean were recomputed to confirm that excluding
incomplete records had a negligible effect.

Overall, this weighted-mean procedure does not yield a closed-form variance; standard errors must
be derived with design-based methods (e.g. Taylor linearisation using the R survey package) or
with non-parametric bootstrap resampling.

3.4.2 Survey-design weighted estimation

The survey package [16] was used to estimate the EU-standardised geometric mean of log-transformed
mbzp (creatinine adjusted). Post-stratified weights were attached to every child and supplied to
svydesign under two sampling specifications:

o Independent design (ids = ~1): each child is treated as a primary sampling unit (PSU);
the SE therefore reflects the variance inflation from unequal weights.

o Clustered design (ids = “cohort): each HBM4EU cohort is treated as a PSU, allowing
the SE to incorporate both weight variability and any within-cohort correlation. Comparing
the two Cls quantifies any precision loss due to clustering.

For either design, svymean applies Taylor-series linearisation, expanding the weighted mean 7, =
>; wiy; to first order around its expectation and providing a design-consistent SE without resam-
pling. The log-scale estimate i and SE were back-transformed to obtain:

fis = exp(fi), 95 % CI = exp(i + 1.96 SE).

Weight heterogeneity was summarised by the design effect DEFF = n Y, w?, yielding an effective
sample size neg = n/DEFF. Range, quartiles and region-specific DEFFs were inspected to inspect
for outlying weights or high-variance strata. Robustness to extreme weights was assessed by trim-
ming at the 99% and 95% percentiles, renormalising to >, w; = 1, and re-estimating the geometric
mean; checking whether trimmed estimates stayed within the untrimmed 95 % CI, confirming
whether there was limited influence of the largest weights.

Sensitivity margin for single-year age: Considering that Eurostat data showed that 6-12-
year-olds (males and females) are distributed almost uniformly across single ages within every
EU-27 region (Section 3.1), a diagnostic calibration was run, adding a sixth margin region x age.
The existing five-way post-stratification frequency weights were raked to a synthetic table in which
each region’s total weight was split equally across the seven observed ages (6-12 y), restricting the
table to age-region combinations present in the HBM4EU sample to avoid inflating weights for
unsampled strata. Regional and overall totals therefore remained unchanged. The survey design
still treated cohorts as primary sampling units (PSUs) and introduced no additional covariates; the
alm was to gauge whether age imbalance could bias the EU-level estimate and how it would affect
the weights-only design effect (DEFF) and the 95 % confidence interval (CI). The calibration was
repeated without cohort-clustering as well.
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3.4.3 Raking calibration

An iterative proportional adjustment procedure ('raking’) was applied to n = 2722 HBM4EU chil-
dren with complete biomarker and auxiliary data. While direct post-stratification forces the sample
to match the full Eurostat cross-classification of region, sex, sampling season, DEGURBA and
household ISCED; raking instead calibrates each marginal distribution separately. This "softer”
constraint smooths the most extreme weights and typically lowers the weights-only design effect
and therefore increases the effective sample size.

Beginning the analysis with an unclustered survey design (ids = ~1), the initial weights were set to
wz-(o) =1 for every child ¢ = 1,...,n. For each margin j € {region, sex, season, DEGURBA,ISCED}
and category k (e.g. North vs. South for region, M vs. F for sex), let M}, denote the corresponding
Eurostat population proportion (3, M, = 1). These proportions were scaled to the sample size,
Tji = n Mji,. At iteration ¢, the weight of each child in cell (j, k) was updated by
CL)Z(Hl) _ CL)Z(t) 1; oL zi; =k,

Zr: Trj=k Wr
where the denominator is the current weighted total in that margin. Iterations cycled over all (j, k)
pairs until every weighted marginal matched its target to within the default tolerance e = 1075,
After calibration, cohort clustering was re-introduced by re-building the design with ids = ~cohort
and the calibrated frequency weights >, w; = n.

The raked log-mean of creatinine-standardised mbzp was:

n

larake = Z Wi Yi, Yi = log(mbzpi),

i=1
where w; are the calibrated (frequency) weights. Its SE was obtained by Taylor linearisation using
svymean (see also Section 3.4.2). Exponentiating fi;axe and its +1.96 SE limits yielded the geomet-
ric mean and its 95 % CI. Re-specifying the design with ids = ~cohort provided a cluster-robust CI.
For comparability with the post-stratification analysis, the calibrated frequency weights were also
rescaled to the probability scale, w; = w;/n (3_; w; = 1). These probability weights were used only

for diagnostics (design effect, histograms); all point estimates and CIs continued to rely on the
frequency weights w;. Weight heterogeneity was summarised by the “weights-only” design effect:

n 1 n
DEFF = 52— 1N 2 _
";w n ;“’ et = DEFF’

and by the empirical range and quartiles of the calibrated weights.
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4 Results & Discussion

4.1 Exploratory data analysis

The HBM4EU sample (n = 2784; 39 missing values for mbzp_impcrtlog) included the following
regional breakdown: 21.6% children from North, 21.9% from South, 25.8% from West, and 30.8%
from East (Figure 5). By contrast, population shares for 6-12-year-olds (see section 3.2; Figure 1),
based on EU-27 Eurostat data, corresponded to: North 8.5%, South 27.4%, West 44.0%, and East
20.2%. To note that the HBM4EU dataset included Norway also, a non-EU-27 country. Overall,
it could be deduced that Northern and Eastern Europe are overrepresented, while Western and
Southern Europe are underrepresented within the HBM4EU sample for children.

o ~
=} a
S =}

HBMA4EU: number of children (6-12 yrs)
X
o

North South West East

Figure 5: Regional distribution - HBM4EU sample: children aged 6—12 yrs per European region.

Age distribution appeared to vary by region within the HBM4EU dataset: in North and South, more
than half of the subjects were of age 7 (51.3% and 55.3%, respectively) with very few 6-years-old
(<6%) children. West was more evenly spread between ages 6-12 (28.4% at age 7; 5.2% at age 12),
while the East peaked at ages 11 (27.7%) and 9 (24.4%) [Figure 6]. A scatterplot of the standardised
log-biomarker concentration versus age, with a LOESS smoother, is illustrated in Figure 7. A linear
regression suggests that there is a trend (8 = —0.063 log-units/yr, SE = 0.014, p < 0.001%), but
the model explains only a small fraction of variance (R? = 0.0075, < 1%), underscoring that age
alone is a weak predictor. Adding a quadratic term did not improve fit (ARSS = 0.053, p = 0.85),
supporting linearity.

Figure 8 illustrates that within the HBM4EU sample, subjects residing in urban residence ranged
from 18.8% in the West to 64.3% in the North, with South having the highest rural share (34.6%)
and West the largest towns/suburbs proportion (48.3%). In contrast, Eurostat EU-27 margins
(Fig. 3) appear more balanced: urban shares span only 32.4% (East) to 42.0% (South), with rural
and suburban classes each accounting for roughly one-third of children in every region.
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Figure 6: Age distribution - HBM4EU sample: % of children aged 6-12 yrs per European region.
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Figure 8: DEGURBA distribution by region - HBM4EU sample: share of children living in Urban,
Towns & Suburbs, and Rural settings per European region.

Eurostat EU-27 data (Fig. 4) has suggested that low-ISCED (0-2) households comprise 14.9 %—47.6
% of children (East 14.9 %, South 47.6 %), medium (3-4) 28.3 %-59.8 % (South 28.3 %, East 59.8
%), and high (> 5) 24.1 %—40.8 % (South 24.1 %, North 40.8 %). In contrast, the HBM4EU sample
(Fig. 9) seems to over-represent high-ISCED households in all regions (North 64.4 %, South 61 %,
West 62.1 %, East 50.1 %) and under-represents low-ISCED households (< 7 % vs 14.9 %-47.6 %).

Exploratory analysis of the log-transformed, crt-standardised mbzp concentrations revealed het-
erogeneity across strata. By region (Fig. 15a; Appendix), median exposures declined from West
(1.66; IQR 0.95-2.50) and South (1.49; 0.90-2.16) to North (1.07; 0.39-1.81) and East (0.79;
—0.06-1.62), with outliers in West (max 5.84) and North (max 7.53). A gradient appeared across DE-
GURBA (Fig. 15b; Appendix): median rose from urban areas (1.01; 0.29-1.85) through towns (1.36;
0.71-1.99) to rural settings (1.46; 0.82-2.29). When stratified by ISCED (Fig. 15¢; Appendix), chil-
dren in low-ISCED households had the highest median levels (1.55; 0.74-2.17) and greatest spread,
compared with medium (1.26; 0.41-2.12) and high (1.24; 0.57-1.98) ISCED. Furthermore, seasoN
boxplots (Fig. 15d; Appendix) showed peak concentrations when sampling was done in summer
(1.64; 0.70-2.43) and the lowest in autumn (1.12; 0.38-1.88), while males and females (Fig. 15e;
Appendix) exhibited similar distributions (M: 1.26; 0.55-2.04 vs F: 1.25; 0.46-2.02). Overall, these
unadjusted patterns highlight between-stratum differences and could also post-stratification weights
and multivariable models to obtain unbiased, precision-adjusted estimates.
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Figure 9: ISCED distribution — HBM4EU sample: share of children in Low, Medium, and High
ISCED households across European regions.
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Figure 10: Cohort-level distributions of log-mbzp (png/g creatinine) -HMB4EU (children). Each
“violin” depicts density within a cohort, with an overlaid boxplot showing median and IQR.
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Cohort-level log-mbzp (crt standardised) distributions (Figure 10) varied with median values ranging
from 0.46 (-0.07-1.04; Cohort 1: C NPHI-InAirQ ; HU) to 2.47 (1.92-3.11; Cohort 5: C-ANSP-
ESTEBAN; FR), with Cohort 2 (C-EPIUD-NAC-II; IT) also elevated (1.90; 1.36-2.41). Several
cohorts (e.g. 4, 5) exhibited heavy upper tails (max > 5.8), highlighting marked between-site het-
erogeneity and potentially supporting later the inclusion of a random-intercept term.

Participants
300

200
100

Country

§> K

Figure 11: Sampling intensity by country and year (HBM4EU, children-related cohorts). Countries
correspond to study cohorts (see Table 2) and are ordered by their first sampling year.

Figure 11 shows a heat-map of sampling intensity (number of participants) for each cohort (country)
and by calendar year. Countries are ordered by the first year in which they appear in the HBM4EU
children’s dataset, and the shading of each tile corresponds to the count of subjects sampled in that
country—year. From the plot, five cohorts-France (C-ANSP-ESTEBAN), Italy (C-EPIUD-NAC-II),
Slovakia (C-SZU-PCB), Germany (C-UBA-GerES-V) and Slovenia (C-JSI-SLO-CRP)- span three
or more sampling years; most of the remaining cohorts cover two years each, and only Poland (C-
NIOM-POLAES) appears sampled in a single year. Sampling year and cohort membership may
be confounded. Omne might consider collapsing cohorts with overlapping sampling-year windows
into broader time-band groups. The overlaps are though often asymmetric, so some year bands
may include some cohorts only partially and we may still leave year bands nearly collinear with
the grouped cohort term. Sampling year was excluded from both OLS and mixed-effects models,
aiming to allow for the cohort term in the latter to capture study-specific temporal and contextual

differences.

Figure 12 shows the log;,-transformed weights wy, for each of the 288 reference-grid strata (Sec-
tion 3.2). On the original scale, wy, ranges from 7.5 x 1074 to 9.13 x 1073 (median 3.12 x 1073;
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mean = 1/288 ~ 3.47 x 1073), and no stratum exceeds 1% of the total weight. The ten largest
weights all correspond to 9-year-old children in the West region from medium-educated households
(urban: 9.13 x 1073; towns & suburbs: a2 7.89 x 1073). This modest spread in the joint-margin grid
confirms that no single stratum drives the EU-standardised mean, thereby suggesting robustness of
the weighted-aggregation approach.
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Figure 12: Distribution of the EU27 ’reference-grid” of cell weights (n = 288); Section 3.2.
Histogram of log;(cell weight); dashed lines at the 1st, 5th, 95th, and 99th percentiles.
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4.2 OLS model-based standardization
4.2.1 Multiple linear regression—no interactions; EU-27 standardised values

A Gaussian linear model was fitted to the log—creatinine-standardised outcome Y; = mbzp_impcrtlog;,
with predictors region (reference =North), sex (reference =male), centered age (age, = age — 9),
DEGURBA (reference = urban), household education (reference =low), and sampling season (ref-
erence =spring). The model explained a modest proportion of variance (R?> = 0.116, adjusted
R? = 0.112); residual SE = 1.15; Fi2.2709 = 29.7, p < 2 x 10716,

Region: Relative to the North, the regression coefficient for children living in the South was
0.416log-units (95 % CI 0.277-0.555; p = 4.9 x 107?). For the West the coefficient was 0.601 log-
units (0.467-0.736; p < 2 x 10716), whereas for the East it was —0.307 log-units (~0.440 to —0.174;
p = 6.5 x 1075). Degree of urbanisation: Rural residence was associated with a 0.262 log-unit
increase compared with urban areas (0.139-0.385; p = 3.1 x 1079); the coefficient for“Towns &
suburbs” was not statistically different from zero (0.083; —0.032-0.197; p = 0.16). Season: Winter
samples had a coefficient of —0.199 log-units relative to spring (-0.326 to —0.071; p = 0.0022);
summer showed a weak positive estimate (0.130; —0.019-0.280; p = 0.087); autumn did not differ
from spring (—0.028; —0.152-0.096; p = 0.66). No statistically significant associations were observed
for sex, centered age, or household education (all p > 0.35).

Table 3: Significant predictors (p < 0.05) of log-mbzp in HMB4EU children from an ordinary-
least-squares (OLS) linear model.

Effect I6] 95% CI P
South (vs. North) 0.416 0.277-0.555 4.9 x 1079
West (vs. North) 0.601 0.467-0.736 <2 x 10716
East (vs. North) —0.307 —0.440-—0.174 6.5 x 107
Rural (vs. Urban) 0.262 0.139-0.385 3.1x107°
Winter (vs. Spring) —0.199 —0.326-—0.071 0.0022

Projecting the model predictions onto the 288-cell EU reference grid (see Section 3.2) and aggre-
gating with EU population weights, yielded a mean log-mbzp of:

Y1 =1459 (SEa = 0.0063),
Corresponding to a population-standardised geometric mean of:
exp(Y7) = 4.30 ug g™ ' creatinine (95% CI: 4.25-4.36)

All uncertainty was obtained analytically via the delta method (see section 3.3.1).
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4.2.2 Multiple linear regression - with interactions; EU-27 standardised values

Table 4: Diagnostics for tested OLS models (HBM4EU children’s data)

Model AIC  AAIC LR x2 (df) p-value
main-effects model (no interactions) 8507 0 - -
region X season 8480  —27 44.1 (9) 1.4 x 1076
regionx DEGURBA 8383 —124 135.7(6) <2x10716
region xseason + regionx DEGURBA 8359 —148 177.4 (15) <2 x 10716
DEGURBA xseason 8505 —2 13.9 (6) 0.031
region x ageyears 8364 —143 1483 (3) <2x10716
sex xageyears 8509 42 0.01 (1) 0.92

Adding the region x season term lowered AIC (AAIC = —27) and yielded a significant LR test
(x2 = 44.1, p = 1.4 x 107%). Winter-spring contrasts in log(mbzp) were +0.09 in the West (p =
0.44), —0.03 in the North (p = 0.85), while —0.46 in the East (95% CI [-0.73, —0.19]; p = 0.001),
and —0.53 in the South (95% CI [—0.83, —0.24]; p = 4.6 x 10~%. Regional seasonality is consistent
with how indoor temperatures and ventilation could modulate BBzP emissions, e.g. from PVC—
containing materials. In the West, prolonged winter heating in confined spaces could raise indoor
levels, whereas in warmer climates and intermittent ventilation may favor higher summer emissions.
Keeping the region x season term could represent climate-driven exposure shifts. As the underly-
ing emission processes are not age-—specific, the interaction could be applicable across all age-groups.

The addition of region x DEGURBA term improved the model fit (AAIC = —124; X%ﬁ) = 135.7,
p < 2 x 107%6). Estimated rural-urban contrasts in log(mbzp) differed by region: North, 41.30
(95% CI [1.01, 1.59]; p = 2.1 x 10~18); East, 4+0.39 (95% CI [0.17, 0.62]; p = 6.1 x 10™%); West,
4+0.15 (p = 0.23, NS); and South, —0.37 (95% CI [-0.58, —0.17]; p = 4.0 x 10~%). Thus, in
northern and eastern Europe, rural settings exhibited higher mbzp, whereas in southern Europe the
urban excess predominated. These region-specific rural-urban disparities may reflect geographic
variation in housing characteristics, local emission sources, or lifestyle factors, justifying the in-
clusion of the regionx DEGURBA interaction. Since the assumption is that emissions stem from
physical/chemical processes (e.g. leaching from building materials) rather than age-dependent phys-
iology, this interaction is expected to be applicable across all age groups. Whether such region x
DEGURBA disparities generalize to other exposure biomarkers could be further investigated.

Inclusion of the DEGURBAx season term yielded a modest improvement in fit (AAIC = —2;
LR x2 = 13.9, p = 0.031). The rural-urban contrast in log(mbzp) varied by season—largest in
summer at +0.64 (95 % CI 0.31-0.97; p = 1.3 x 10~%), intermediate in spring at +0.43 (0.18-0.68;
p="7.1x10"%) and winter at +0.20 (0.01-0.39; p = 0.037), and small, non-significant in autumn at
+0.10 (p = 0.33). Overlapping CIs for winter and autumn suggest that any rural-urban difference
is minor during cooler seasons; the modest winter excess may reflect heating-related indoor sources
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rather than ventilation-driven factors.

The regionx age. interaction improved model fit (AAIC = —143; x3 = 148.3, p < 2 x 10716). Esti-
mated age slopes (Alog[mbzp] yr~!) were +0.305 (95 % CI [0.243, 0.366]; p = 5.0 x 10722) in the
North; —0.215 (95% CI [-0.286, —0.145]; p = 2.4 x 107Y) in the South; ~0.083 (95% CI [-0.131,
~0.036]; p = 6.3 x 107%) in the West; and —0.041 (95% CI [-0.105, 0.022]; p = 0.20) in the East.
The positive northern age slope likely reflects indoor exposure from older housing stock, whereas
the southern decline aligns with accelerated metabolic clearance and reduced floor-contact behavior
as children age. The HBM4EU children data suggest that childhood mbzp trajectories vary by
region, reflecting differences in exposure sources and metabolic maturation, so modelling region-
specific slopes could possibly capture this heterogeneity. Whether these divergent patterns persist
into adolescence or for other biomarkers remains to be investigated.

Introducing the sexxage. term increased AIC (AAIC = +2) and yielded a non-significant LR test
(x3 = 0.01, p = 0.92). Estimated age slopes in log(mbzp) were —0.009 yr=! (95 % CI [—0.049,
0.031]; p = 0.66) for boys and —0.012 yr~! (95 % CI [~0.052, 0.029]; p = 0.58) for girls, indicating
no meaningful sex difference within this age band. This could be consistent with prepubertal chil-
dren exhibiting comparable xenobiotic kinetics and exposure patterns, whereas hormonal changes
in adolescence may introduce sex-specific trajectories.[15]

In the interaction model which includes both regionx season and regionx DEGURBA, two context-
specific contrasts that remained statistically significant (p < 0.05) were extracted for interpretation:
the winter—spring difference within each region with DEGURBA fixed at its reference level (urban)
and the rural-urban difference within each region with season fixed at its reference level (spring).
Estimates are presented on the log-mbzp scale with 95 % confidence intervals (Table 5).

Table 5: Statistically significant contrasts (p < 0.05) from Model 4 with interactions, including
both regionx season and regionx DEGURBA. Estimates are on the log-mbzp scale; 95 % Cls.

Contrast B 95% CI D

Winter — Spring (by region)
Fast -0.474 -0.743--0.205 0.001

Rural — Urban (by region)

North 1.319 1.030-1.608 <2 x 10716
South -0.392 —0.615—-0.170 0.001
East 0.341  0.116-0.565 0.003

Each candidate model, whether or not it contained interaction terms, retained the full set of main-
effect covariates (region, sampling season, DEGURBA, sex, centred age, and household education);
interaction blocks were added on top of this common core. The fitted coefficients were projected
onto the 288-cell EU-27 reference grid; delta-method SEs were calculated on the log-scale and back-
transformed to obtain geometric means. Model 1, the main-effects specification (see also section
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~(1)
4.2.1), had an AIC of 8507 and an EU-standardised log-mean of ¥ = = 1.4594 (SE = 0.0063).

Adding the regionx season block (Model 2) lowered AIC by 27 but left the log-mean unchanged
~(2)
(Y~ =1.4594, SE = 0.0080). Adding the regionx DEGURBA block alone (Model 3) gave a larger

improvement (AAIC = —-124) and raised the log-mean to 1.5140 (SE = 0.0075). Including both
interaction blocks simultaneously (Model 4) produced the best fit (AIC = 8359; AAIC = -147.4;
LR x3; = 1774, p < 2 x 10716) and an EU-standardised log-mean of 1.5000 (SE = 0.0090).
Exponentiation yields the population-weighted geometric means and 95 % CIs reported in Table 6.

Table 6: EU-standardised mbzp means, log and concentration scales, from candidate OLS models
projected onto the EU-27 reference grid.

=(m)
Model Y (log) + SEA GM (ng g~ tert) 95% CI
1 (no interactions) 1.4594 + 0.0063 4.30 4.25-4.36
2 (+ regionxseason) 1.4594 + 0.0080 4.32 4.25-4.39
3 (+ regionx DEGURBA) 1.5140 + 0.0075 4.50 4.44-4.57
4 (4 regionxseason + regionx DEGURBA)  1.5000 £ 0.0090 4.48 4.41-4.56

The different interaction specifications altered the EU-standardised log-mean by no more than

~ 0.055 log-units (ca. 45 % on the pgg!

creatinine scale) relative to Model 1. Of the five
two-way interactions tested, regionx season and regionx DEGURBA were retained as they captured
geographic heterogeneity (large LR statistics and AAIC of —26 and —124, respectively). The terms
regionx age, and sexrx age may prove relevant, especially in adolescent or adult populations, where
age trajectories and pubertal physiology could become more prominent modifiers. However, they
would add little information within the narrow 6-12 year EU-27 band (for which the age was fixed
at 9 years, the midpoint of a nearly uniform distribution), and are therefore proposed for future

work in other age groups and where age- and sex-specific trajectories may be more pronounced.
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4.3 Mixed models-based standardisation
4.3.1 Diagnostics

For both random-intercept fits, with and without interaction terms, standardised con-
ditional residuals (i.e., residuals after removing the estimated cohort effects) show no systematic
curvature and no funnel-shaped pattern in the residual-versus-fitted plots (panels a, ¢ of Fig. 16;
Appendix); hence the homoscedasticity assumption appears credible. The accompanying QQ-plots
(panels b, d of Fig. 16; Appendix) remain essentially linear over the central 75 % of the observations,
with a few points in the extreme tails departing from the N(0, 1) reference, indicating mild rather
than consequential heavy-tailedness. Residual spread at high fitted values is slightly narrower in the
interaction model, suggesting that the regionxseason and regionx DEGURBA terms may absorb
some residual heterogeneity. For comparison, diagnostics were likewise produced for the
ordinary—least—squares projections (Models 1 and 4 of Section 4.2; Fig. 17; Appendix).
Their residual—versus—fitted plots only show a slight increase in spread at very low fitted values. The
accompanying Q-Q plots again track the N(0, 1) reference through roughly the central 75 % of the
data, before displaying the same mild heavy-tailed pattern observed for the mixed models. Hence,
the key distributional assumptions of linearity, homoscedastic errors, and approximate
normality appear reasonable for both the mixed-effects and the OLS specifications.

To also verify that the two interaction blocks did not introduce problematic multicollinearity in the
fized—effects design matrix, the random intercept was temporarily ignored, fitting an OLS model
with the same fixed terms, and computed Generalised Variance Inflation Factors (GVIFs).
GVIFs assess collinearity in the fixed-effects matrix X; the random-intercept term adds a separate
Z-matrix and leaves X unchanged. Therefore, an OLS fit provides the correct X for collinearity
diagnostics. The scaled indices were GVIFY/ (24D Region 2.67 (df = 3); sampling-season 2.16 (df
= 3); DEGURBA 2.62 (df = 2); sex 1.01 (df = 1); age. 1.31 (df = 1); household-education 1.05 (df
= 2); regionxseason 1.66 (df = 9); and regionx DEGURBA 1.70 (df = 6). All values are well below
the conventional thresholds of 4-5, indicating that multicollinearity among the fixed predictors is
minor and unlikely to compromise the interaction-model estimates.

The cohort-intercept BLUPs (Fig. 18; Appendix) were centered at zero and closely follow a
N(0,62) shape (6, = 0.485 in the baseline, 0.472 in the with interactions mixed models), with
almost all values between —1 and +1 on the log scale and only a hint of heavier tails. Therefore,
the Gaussian random-effects assumption appears reasonable, and no single cohort dominates the
fixed-effect estimates. Cohort-level Cook’s distances mostly fall below the conventional cut-off
D > 4/n ~ 0.36 (see Figure 19; Appendix). Only cohort 4 (NEBII-NO; D = 0.46) and cohort 10
(OCC-DK; D = 0.43) exceeded the threshold. A leave-one-out sensitivity analysis of the baseline
mixed model produced pog = 1.39 (0.0387) with all cohorts; 1.32 (0.0321) after removing cohort 4;
1.48 (0.0315) after removing cohort 10; and 1.45 (0.0363) when both 4 & 10 were omitted (SEs in
parentheses; A-method). These shifts of about +0.07-0.09 log-units are larger than the A-method
SE yet still well below the Monte-Carlo SDs reported in Table 8. Hence, while cohorts 4 and 10 are
the most influential, their impact might be modest relative to the overall Monte-Carlo uncertainty.
All 11 cohorts were retained, with cohorts 4 and 10 flagged as influential.
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4.3.2 Mixed models fitting; EU-27 standardised values

For the random-intercept mixed model without interactions the between—cohort variance was: 62 =
0.235 (6, = 0.485) and the within-cohort (residual) variance 62 = 1.103 (6. = 1.050), giving an
intraclass—correlation:

0.235

ICC = """ —0.176.
CC=0as5 1103 17O

Thus 17.6 % of the variability in log-mbzp (standardised for creatinine) is attributable to differences
between cohorts. In the mixed model with interactions the corresponding estimates, 65 = 0.223
(64 = 0.472) and 62 = 1.082 (6. = 1.040), yield ICC = 0.171; hence 17.1 % of the variance
is attributable between cohorts. Moreover, for the latter, fit improved with AIC dropping from
8063.7 to 8040 (mixed effects model without interactions) and a likelihood-ratio test (x35 = 53.7,
p=29x107).

Table 7: Fixed—effect estimates (log-mbzp scale) from random-intercept mixed models.

Mixed baseline model | Mixed interaction model

Effect
Estimate SE Estimate SE

agec —0.1056 0.0180 —0.1120 0.0180

Additional interaction effects

regionggyth :Summer — — 0.4775 0.2098
regionyyest :summer — — 0.4263 0.1752
regiong,gt :winter — — —0.4730 0.1818
degurbagryral — — 0.5122 0.1648
regiongouth:degurbagral — — —0.9313 0.2220
regiong,gt:degurbagral — — —0.6469 0.2430

Note. Only effects with p < 0.05 are displayed. The baseline specification contains only main-effect terms; the
interaction specification additionally includes regionx season and regionx DEGURBA. Reference levels: North region,
Spring season, Urban DEGURBA, male sex, low household education. Cohort is modelled as a random intercept.

A negative association with age persisted in both random—intercept specifications on the log-mzp
scale, implying an ~ 10% reduction in mbzp concentration for each additional year [exp(—0.1056) =
0.90. The interaction model, however, disclosed geographically specific modifications (see Table 7):
summer concentrations were higher in the South (3 = 0.48) and West (3 = 0.43), whereas winter
values were lower in the East (§ = —0.47). Urban-rural differences also varied by region; in the
South the overall rural excess of +0.51 log-units was counteracted by a SouthxRural interaction
of —0.93, yielding a net estimate of about —0.42 log-units for rural children in that region. The
baseline mixed model used the same fixed covariates as the OLS main—effects model (Table 3) but
added a random intercept for cohort. Once this between-cohort variance is absorbed, the large
regional main effects (South > North, West > North, East < North) that were highly significant in
OLS lose significance and disappear from Table 7. Hence those broad regional gaps arise chiefly
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between cohorts, not within them. Moreover, the mixed with interactions model retains the ran-
dom intercept and introduces regionx season and regionx DEGURBA blocks. The context-specific
terms—South:summer, West:summer, East:winter, South:Rural, etc.—match in sign and magnitude
the significant contrasts identified by the OLS with interactions model (Table 5), agreeing to within
~ 0.03 log-units and sharing the same 95 % confidence bounds. Therefore, after cohort-level het-
erogeneity is accounted for, only the fine-grained region-specific seasonal and urban—rural contrasts
remain important.

Table 8: EU-standardised log-mbzp means, geometric means from random-intercept mixed models

Model Method fuog  SE/SD* exp(f1) 95% CI (orig.)
Delta 1391 0.0387  4.02  [3.73, 4.34]
Baseline MC-fixed 1.389 0.1620 4.01 [2.92, 5.51]

MC-full  1.385 05133  3.99  [1.46, 10.9]

Delta 1.376  0.0383  3.96  [3.67, 4.27]
+ 2-way inter. MC-fixed 1.378 0.1582  3.96  [2.91, 5.41]
MC-full  1.380 0.4930  3.97  [1.50, 10.6]

# SE for the Delta method; Monte-Carlo SD for the two simulation-based schemes (M = 5,000 replicate means).
Concentrations at pg g * creatinine

Table 8 presents the EU-27—standardised means and three uncertainty estimates for the two random-
intercept models. For the baseline mixed model, projecting onto the EU-27 reference grid gave:
fa = 1.391 (0.039), fnic ax = 1.389 (0.162) and fivic fan = 1.385 (0.513). For the interaction model
the corresponding values were 1.376 (0.038), 1.378 (0.158) and 1.380 (0.498). Back-transforming

! creatinine, but the 95 % limits widen from the Delta estimate to

puts both models at ~ 4 ugg™
MC-fixed and again to MC-full, reflecting the successive inclusion of fixed-effect sampling error and,

finally, between-cohort heterogeneity.

Switching from the Delta method (SEx = 0.039) to the MC-fixed procedure (SDgyx = 0.162)
increases the uncertainty by roughly a factor of four. In the MC—fixed scheme, each Monte-Carlo
replicate applies a single draw of the coefficient vector 8 to every one of the G = 288 grid cells; the
replicate means therefore inherit the entire sampling variance of 8 and treat all cells as perfectly
correlated. By contrast, the Delta method first computes the variance of the prediction in each cell
and only then averages them, down—weighting by the squared calibration weights wg ~ (1/288)2
1.2 x 10~°. Consequently, the contribution of any single cell to the overall variance is on the order
of 0.001%, and the cell-specific uncertainties largely cancel:

A

Var(fia) :i [ Aﬁxg—i—a}

Because the MC-fixed replicates do not benefit from this wg—attenuation, their SD is appreciably
larger, while the MC—full variant inflates the uncertainty further by adding a random draw from
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the cohort-level variance component 62 to every replicate. More specifically, when the cohort-level

random intercept is resampled as well (MC—full), the uncertainty widens by a further factor of ~ 3,

2

. now enters the variance of the

giving §Bfu11 = 0.513. This arises because the cohort variance &
EU-standardised mean once, rather than being multiplied by the weight-squared term }_, wg that
dilutes it in the Delta expression. Since both Monte-Carlo schemes aggregate the simulated log-
means before applying the external weights, their standard deviations must exceed the Delta SE.
Introducing the regionx season and regionx DEGURBA blocks reduces §5qu only marginally (0.513
— 0.498), leaving the MC—full 95 % interval roughly an order of magnitude wider than the Delta
interval. MC—full therefore provides the most conservative confidence limits, with the interactions
trimming those limits only slightly by absorbing context-specific contrasts that would otherwise

contribute to unexplained between-cohort heterogeneity.

Moreover, the SEs rised sharply when we moved from the OLS grid projection (Section 4.2) to the
random-intercept mixed-effects projection hereby. Some of the potential reasons are outlined below:

(i) Explicit between—cohort variance: The mixed model treats cohort as a random factor, so the
estimated variance component 62 > 0 is propagated to every grid cell; OLS implicitly fixes o2 = 0.

ii) Uncertainty in the empirical-Bayes intercepts: Each cohort effect is estimated by a BLUP,

N 52 _ .

b, — u Y, — X 3),

J 63+62/n](j ]B)
where n; is the number of children in cohort j. The shrinkage factor pulls the cohort mean YJ
toward the fitted grand mean X ,B more aggressively when the cohort is small (n; low) or noisy (62
large). Although this stabilises the point estimate, l;j remains a random quantity, and its sampling
variance must still be propagated.

iii) Correlated resampling in MC—full: In the MC-full scheme a single draw u(™ ~ A(0,62) is
added to the linear predictor of all G = 288 grid cells within replicate m. Because the same random
intercept is applied everywhere, the replicate means are perfectly correlated across cells, inflating

the replicate-to-replicate spread.

The combined impact of these three mechanisms—an explicit between-cohort variance, uncertainty
in the shrinkage estimates, and joint resampling of the random intercept—raises the SEs by an order
of magnitude relative to the OLS projection, while potentially providing a more realistic reflection
of uncertainty for data that are clustered across multiple cohorts and countries.
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4.4 Non-model, design-based methods
4.4.1 Direct post-stratification weighting

An unweighted mean of the log-transformed, creatinine-standardised mbzp concentration was
first calculated on the biomarker-complete subset (n = 2 784), yielding a geometric mean of:

exp(1.2616) = 3.53 ugg 'ert

Restricting further to the n = 2 722 children, with complete stratification data as well, it changed
the log-mean only slightly to 1.2638, corresponding to:

exp(1.2638) = 3.54 pgg 'ert,
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Figure 13: Histogram of log,, post-stratification probability weights. Grey bars show the count
per 0.2-dex bin; red dashed lines mark the 1st, 5th, 95th and 99th percentiles.

After this restriction, direct post-stratification weights were computed by matching each of the 2
722 observations to the Eurostat reference grid (see Section 3.2), dividing each cell’s overall weight
by its sample count, and renormalising to sum to one. These observation-level weights ranged from
3.42 x 1075 t0 6.63 x 1073 (median 2.00 x 10~%; IQR 8.88 x 1075-3.95 x 10~%). This distribution
indicates modest heterogeneity in the post-stratification adjustment; most weights lie within a 2-
to 5-fold range around the median and show no extreme outliers that would unduly influence the
weighted mean (Figure 13).
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The direct postratification weighted mean of log-mbzp corresponded to a geometric mean of:
exp(1.5671) = 4.79 pugg ' ert

Thus, post-stratification increased the geometric mean by 35.6 % relative to the unweighted esti-
mate. Imputing the 62 missing ISCED values to “Medium” and recomputing the weights left the
log-mean unchanged at 1.567, indicating negligible impact of the missing stratification data.

4.4.2 Survey-design weighted estimation; with and without clustering

Direct post-stratification weighting provides unbiased point estimates of the population mean (see
section 4.4.1), but no analytic variance. The survey-design framework overcomes this by treat-
ing the weights as inverse inclusion probabilities and applying Taylor-series linearization to derive
design-based standard errors (SEs) and confidence intervals (CIs).

Independent design - no clustering: Assuming an independent design—i.e. every child treated
as its own primary sampling unit, the log-scale SE was estimated at 0.048 for a log-scale mean =
1.5671 and a corresponding EU-standardised geometric mean of:

4.79 pgg tert [95 % CI: 4.37-5.26 pg g~ ' crt]

Weights span two orders of magnitude (3.4 x 1075-6.6 x 10~3; max / min ~ 194); max/min ca. 194),
yet the weight-only design effect appears modest (DEFF = 3.56), leaving an effective sample of
neg ~= 764. This may suggest that variance inflation is driven by the systematic post-stratification
adjustment across many cells rather than by a few outlying weights. Region-specific DEFFs were
highest in the West (0.55), followed by the South (0.23) and East (0.11), and lowest in the North
(0.02), indicating that variance inflation is greatest in strata where the study sample departs most
strongly from the EU-27 population distribution.

Weight-trimming sensitivity: Capping the heaviest 1 % of weights (99" percentile, 0.00306)
reduced the geometric mean to 4.67 ng g=! crt (95 % CI 4.33-5.03), a —2.6 % change, inside the
original CI. A 5 % cap (0.00126) lowered the estimate to 4.51 pg g=! crt (95 % CI 4.22-4.81), a
—6.0 % shift that likewise remains within the untrimmed CI. Hence extreme weights appear to exert
only modest influence, and the untrimmed estimate could be retained.

Clustering: Specifying cohort as the sampling cluster left the point estimate unchanged (1.5671)
but raised the log-scale SE to 0.28, widening the interval to:

4.79 pggtert [95 % CI: 2.76-8.32 png g~ ' crt]

Clustering by cohort increases the log-scale SE from 0.048 to 0.280 (a factor of 5.8). Thereby, intra-
cohort correlation, not extreme weights, is the principal source of uncertainty: the independent-
design CI slightly understates true variability, whereas the cluster-robust interval provides a more
conservative precision estimate for multi-site data.
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Sensitivity calibration for single-year age. Given that Eurostat data suggested an almost
even split of 6-12-year-olds across single ages, within every EU-27 region (Section 3.1), the existing
five-way post-stratification frequency weights were recalibrated to a synthetic region x age margin
that assigned one-seventh of each region’s weight to each age from 6 to 12 years. Recalibration was
first performed with rake() on the clustered design (cohorts as PSUs). As the HBM4EU sample
itself is not uniformly distributed across single years within regions (see Section 4.1), the additional
constraint required substantial weight adjustments. The EU-standardised geometric mean dropped
to:
3.33 pgg tert [95% CIL: 2.54-4.36],

a 30 % decrease relative to the main clustered estimate of 4.79 ng g~! crt. It should be highlighted
that the weights-only design effect rose from 3.14 to 5.29, thus reducing the effective sample size
substantially from neg ~ 867 to neg ~ 515.

Repeating the calibration without cohort clustering, it yielded an almost identical geometric mean
and a narrower CI:
3.33 ugg tert [95% CI: 3.06-3.62],

The additional age margin changed the point estimate substantially (—30 %); albeit it enlarged the
weights-only design effect from 3.14 to 5.29 (neg: 867 — 515), with the precision dropping sharply.
The six-way calibration was kept only as a sensitivity check, and the five-way weights remain the
primary design for all analysis and the following section as well.
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4.4.3 Raking (marginal calibration)

Raking was applied to the n = 2722 children with complete biomarker and auxiliary data, aligning
the sample with the marginal Eurostat distributions of region, sex, sampling season, DEGURBA
and household ISCED while preserving the weight total >, w; = n. On the probability scale the
calibrated weights ranged from 5.1x 1075 to0 6.5x 1073 (median 2.5x107%; IQR 1.2x107%-4.0x10~%)
(Figure 14). These correspond to 0.14-17.72 on the frequency scale (YXw; = n) and form a tighter
distribution than the full five-way post-stratification weights (Figure 13). The weights-only design
effect was DEFF = 3.14, giving an effective sample size neg &~ 867. Relative to the post-stratified
weights (see Section 4.4.2), raking lowered DEFF by about 12 %, indicating a modest gain in
precision without trimming or capping any weights.

600 A

4004

Count

lel—4 lel—3 lel—l
Log;o Raked probability weight

Figure 14: Histogram of log;, raked probability weights. Grey bars show the count per 0.2-dex
bin; red dashed lines mark the 1st, 5th, 95th and 99th percentiles.

The raked log-scale estimate and its SE were estimated as fiyaxe = 1.5247 (SE = 0.0421). Back-
transformation yielded the EU-standardised geometric mean:

1

4.59 pgg= crt  [95% CI: 4.23-4.99].

This value is 4.2 % lower than the post-stratified mean (4.79 ng g=! crt), yet lies inside its 95 %
CI (4.37-5.26 ng g~ ! crt), showing that marginal calibration leaves the central estimate essentially
unchanged.
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Clustering by cohort: Treating cohort as the PSU (ids = ~“cohort) left the point estimate the
same but widened the 95 % CI to 2.77-7.62 ng g~ ! crt (log-scale SE = 0.2580), suggesting, also
here, that intra-cohort correlation, drives the sampling variance.

Overall, raking appears to smooth the weight distribution and trims the design effect while preserv-
ing the EU-standardised geometric mean. It therefore offers a modest efficiency gain and could be
an alternative when fully post-stratified weights are highly variable or unstable.

5 Overview, Conclusions and Recommendations

5.1 Overview of estimation results - conclusions

Table 9 shows a tighter spread of EU-standardised/ post-stratified geometric means across all non-
clustered estimators. The direct post-stratified mean defines the upper bound, whereas the random-
intercept mixed model with analytic A SE defines the lower bound. Declaring cohorts as primary
sampling units widens substantially Cls, implying that between-study correlation may dominate
sampling variance. For the mixed-effects models, the three uncertainty estimation schemes behave
as expected: the analytic A method is computationally light, yielding the narrowest interval; MC-
fixed adds fixed-effect sampling error and widens the interval moderately; MC-full further injects a
random cohort effect in every replicate, producing the broadest (and most conservative) limits. The
choice of SE method influences precision rather than central tendency. Weight trimming or marginal
raking smooth the extreme tails of the weight distribution and shift the mean only marginally. In
contrast, adding a region x age calibration margin lowered the mean and almost halved the ef-
fective sample size, illustrating the bias—variance trade-off when additional population constraints
are imposed. Introducing biologically plausible two-way interactions (e.g. hereby region X season,
region x DEGURBA) in either OLS or mixed-effects frameworks leaves both means and intervals
very similar, indicating that any residual effect modification is minor relative to the main-effect
structure already modelled.

Overall, the mixed-effects model-based direct standardisation (with MC-fixed interval) may offer a
midpoint that recognises cohort heterogeneity; while the design-based clustered intervals provide
a conservative outer envelope. When a design-based alternative is preferred—or model fit proves
unstable—marginal raking could be a viable substitute: it smooths the heaviest weights and reduces
design effects relative to full post-stratification. Discussion on suggestions for future research and
for alternative methodologies is provided under section 5.3.
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Table 9: EU-27 geometric mean (pg g~ ! crt) for mbzp_impertlog across all estimation strategies

Type Estimator SE/SD method GM 95% CI ~ Comment

Descriptive (no weighting)
Unweighted mean - 3.53 - HBM4EU sample-based
Model-based direct standardisation (OLS; EU-27 grid)
OLS, Model 1 A 4.30 4.25-4.36 no interaction terms
OLS, Model 4 A 4.48 4.41-4.56 + 2-way interactions

Model-based direct standardisation (random-intercept mized effects; EU-27 grid)

A 4.02 3.73-4.34 no interaction terms
No interaction terms MC-fixed 4.01 2.92-5.51 no interaction terms
MC-full 3.99 1.46-10.9 no interaction terms
A 3.96 3.67-4.27 + 2-way interactions
with interactions MC-fixed 3.96 2.91-5.41 + 2-way interactions
MC-full 3.97 1.50-10.6 + 2-way interactions
Design-based (5-way strata)
Post-strat., independent — 4.79 4.37-5.26 DEFF 3.56; neg =~ 764; 1%
trim — 4.67, 5% trim —
4.51
Post-strat., cluster PSU — 4.79 2.76-8.32 cohorts as PSUs
Raked, independent - 4.59 4.23-4.99 DEFF 3.14; n.g~867
Raked, cluster PSU - 4.59 2.77-7.62 cohorts as PSUs

Design-based (6-way strata, with region x age calibration)
Calibrated, independent — 3.33 3.06-3.62 -

Calibrated, cluster PSU — 3.33 2.54-4.36 cohorts as PSUs; DEFF
5.29; neg~515

&interactions refer to both 2-way interactions: regionxseason and regionx DEGURBA.
b Five-way stratification uses region, sex, sampling season, DEGURBA and household
ISCED. A = analytic Delta-method SE; MC-fixed = Monte-Carlo SE that propagates fixed-
effect uncertainty only; MC-full = Monte-Carlo SE that additionally draws one cohort-level
random intercept u in each replicate. GM = geometric mean on the original concentration
scale.
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5.2 Methodological comparison: opportunities and limitations

Model-based approaches (A-B) hold on the transportability assumption: the covariate effects
estimated for the biomarker concentration in the HBM4EU sample remain valid for every demo-
graphic profile represented in the EU-27 reference grid. Design-based methods (C-E) assume
only that, once weighted, the sample represents the EU-27 population within each post-stratum;
no further model-based extrapolation is required.

A. Model-based direct standardisation (OLS; EU-27 grid)
o Fits OLS to log(mbzp/crt); optional 2-way interactions.
e Predicts all reference grid cells and aggregates with EU-27 weights.
 Limits: linearity, homoscedastic errors, no between-cohort variance (02=0); Delta SE ignores
weight and imputation uncertainty.
B. Model-based direct standardisation (random-intercept mixed model; EU-27 grid)
o Adds a cohort-level random intercept (u); optional two-way interactions.

o SE estimation: A (analytic); MC-fixed (propagates fixed-effect error); MC-full (propagates
fixed-effect plus random-intercept error). Uncertainty in the calibration weights still ignored.

e Limits: assumes normally distributed u and no random slopes; all SE methods treat &2
as fixed; MC-full yields the widest interval and is computationally slower because the same
random intercept is applied to every grid cell.

C. Direct post-stratification (design-based)
e Re-weights every child to its five-way stratum; makes no parametric assumptions.

o Limits: variance must be obtained by Taylor linearisation or replicate weights; cohort cluster-
ing is ignored; sparse cells inflate weights; cannot predict for strata absent from the sample.

D. Survey-design estimation (post-stratified weights)

o Uses the same five-way post-stratification weights as in (C), but embeds them in a survey
design object. The analyst can specify either an independent design or a clustered design
(cohort as the primary sampling unit) and must report the design effect (DEFF) and the
implied effective sample size Neg.

e Limits: treating cohorts as PSUs can inflate confidence intervals several-fold; adding further
margins or trimming extreme weights alters the DEFF and may erode precision; no parametric
model is fitted, so interaction tests are unavailable; SEs still omit uncertainty in the calibration
margins and in any imputed values.

E. Raking calibration (marginal weighting)

o Iteratively adjusts the original post-stratification weights so the weighted sample matches each
Eurostat marginal (region, sex, season, DEGURBA, ISCED). This typically lowers the design
effect and tames extreme weights without ad-hoc trimming; the new weights can be analysed
directly, with or without cohort-clustered SEs.

o Limits: aligns single margins only—unmodelled interactions may leave residual bias; conver-
gence can fail or inflate weights if some cells are very sparse; SEs still ignore uncertainty in
the Eurostat margins and any imputation.
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5.3 Ideas for future research - EU level reference values

To further investigate obtaining EU-level reference values that are both design-consistent and policy-
relevant in forthcoming biomonitoring initiatives (e.g., the PARC-aligned studies), the following
methodological recommendations or further research suggestions are given:

e Provision of cohort-specific survey design weights prior to data harmonisation.
Each contributing study should supply probability (or post-stratification) weights before pool-
ing, so that all downstream estimates remain design-consistent.

e Dual reporting of model-based and design-based estimates and intervals. For exam-
ple, mixed-effects direct standardisation (with MC-fixed SEs) can be presented as an efficient,
cohort-aware estimate, while a raked, cluster-robust survey design could offer an assumption
check and a conservative envelope.

¢ Adopt finer margins, where feasible. Depending on data availability, Eurostat country-
level proportions (rather than broad regional totals) could be explored in the weighting grid
to correct for countries that are over- or under-represented in HBM4EU; this may improve
the accuracy of the EU-level reference value without aiming at country-specific estimates.

e Use joint margins if available. If Eurostat may provide cross-tabulations, iterative propor-
tional fitting could be applied, removing residual interaction bias without ad-hoc trimming.

o Age calibration and broader age coverage. Age-specific counts (per region) for both
sexes were even within the 6-12 yr span and an centered-age reference grid was used hereby.
When regionxage was added as an additional calibration margin under the survey-design
methods, it brought negligible loss of precision. One should further explore the inclusion of
age margins also to the other age groups: teenagers and adults, where hormonal changes
and behaviour may create sex-specific, age-dependent exposure trajectories that the current
children-only grid cannot capture.

e Alternative modelling strategies. Two complementary routes can be pursued:

(i) Design-based GLMs (svyglm). Providing EU-level marginal coefficients with sandwich
standard errors that reflect both calibration weights and cohort clustering—mno cross-
population “transportability” assumption is required. Limits: cannot separate between-
and within-cohort variance; precision drops if a few extreme weights dominate.

(ii) Generalised estimating equations (GEE / GEE2). Yield comparable population-average
effects while relaxing the independence-of-PSU assumption; sandwich SEs stay valid even
when the working correlation is misspecified. Limits: cluster-level variance components
and BLUPs are unavailable, very small PSUs inflate SEs, and efficiency falls when the
chosen correlation departs notably from reality.
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Appendix

A Additional graphs
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Figure 15: Boxplots of log-mbzp (11g/g creatinine) across key strata - HBM4EU: children

43



Std. residuals

Std. residuals

Figure 16:

-4

Fitted (mod0)

(a)

Fitted (mod_int)

(c)

Sample Quantiles

Sample Quantiles

Diagnostic plots for the baseline (panels
c—d) random-intercept models (see section 4.3). Panel (a) and (c) show standardized conditional

Normal Q-Q Plot

1 §o00
~
o
o~
!
bl o
00
o |
T
o
T T T T T T
-3 -2 -1 0 1 3
Theoretical Quantiles
Normal Q-Q Plot
© -
<
§0°
©
—
~
o
Y9 P
_—
T4
o
o |
T
o
T T T T T
-3 -2 -1 0 1 3

Theoretical Quantiles

(d)

a-b) and with 2-way interactions (panels

residuals versus fitted values; panels (b) and (d) show QQ-plots against a N(0, 1) reference.
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OLS Model 1: Residuals vs Fitted OLS Model 1: QQ—plot
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Figure 17: Diagnostic plots for the ordinary-least-squares models (see section 4.2). Top row:
Model 1 (main effects only). Bottom row: Model 4 (region X season and region x DEGURBA
interactions). Each row shows standardized residuals vs. fitted values (left) and the corresponding

QQ-plot (right).
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Figure 18: Distribution of cohort—level BLUPs for the baseline (a) and with interactions (b)
random—intercept models. Each panel shows a histogram of the estimated intercepts over-laid with
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Figure 19: Cluster-level influence measures: Cook’s distance per cohort in the baseline mixed-
effects model. The horizontal dashed line at (4/n) indicates the conventional influence threshold.
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B Additional tables

Table 10: For information only: full set of biomarkers included in the HBM4EU Children dataset

Variable Biomarker (full name) Characteristics
*mbzp* *mono-benzyl phthalate* *Primary metabolite of benzyl butyl
phthalate (BBzP)*
mibp mono-isobutyl phthalate Primary metabolite of di-isobutyl phthalate
(DiBP)
mnbp mono-n-butyl phthalate Primary metabolite of di-n-butyl phthalate
(DnBP)
mehp mono-2-ethylhexyl phthalate Primary metabolite of di-2-ethylhexyl
phthalate (DEHP)
oh-mehp mono-(2-ethyl-5-hydroxyhexyl) phthalate | Secondary metabolite of DEHP
oxo-mehp mono-(2-ethyl-5-oxohexyl) phthalate Secondary metabolite of DEHP
CcX-mepp mono-(2-ethyl-5-carboxypentyl) phthalate | Secondary metabolite of DEHP
mcoch mono-(2-ethyl-5-carboxyhexyl) phthalate | Secondary metabolite of DEHP
mep monoethyl phthalate Primary metabolite of diethyl phthalate
(DEP)
mhnp mono-(4-hydroxy-nonyl) phthalate Secondary metabolite of di-n-octyl phthalate
(DnOP)
mcop mono-cyclohexyl phthalate Primary metabolite of di-cyclohexyl
phthalate (DCHP)
oh-midp mono-(2-ethyl-5-hydroxyhexyl) isodecyl Secondary metabolite of di-isodecyl
phthalate phthalate (DIDP)
cx-midp mono-(2-ethyl-5-carboxypentyl) isodecyl Secondary metabolite of DIDP
phthalate
mhnch mono-(3-hydroxy-n-hexyl) phthalate Secondary metabolite of di-n-hexyl phthalate
(DnHP)
oh-midp: mono-(2-ethyl-5-hydroxyhexyl)
. isodecyl phthalate .
sum-midp sum of 2 secondary DIDP metabolites

cx-midp: mono-(2-ethyl-5-carboxypentyl)
isodecyl phthalate

sum-minch

oh-minch: mono-(2-ethyl-5-hydroxyhexyl)
cyclohexyl phthalate
cx-minch: mono-(2-ethyl-5-carboxypentyl)
cyclohexyl phthalate

sum of 2 secondary DINCH metabolites

sum-minp

mhnp: mono-(4-hydroxy-nonyl) phthalate
mcop: mono-cyclohexyl phthalate

sum of 2 metabolites:
(mhnp secondary from DnOP; mcop primary
from DCHP)

sum-ohcxmehp

oh-mehp: mono-(2-ethyl-5-hydroxyhexyl)
phthalate
cx-mepp: mono-(2-ethyl-5-carboxypentyl)
phthalate

sum of 2 secondary DEHP metabolites
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sum-
ohoxocxmehp

oxo-mehp: mono (2-ethyl-5-oxohexyl)
phthalate

oh-mehp: mono (2-ethyl-5-hydroxyhexyl)
phthalate

mehp: mono-2-ethylhexyl phthalate
cx-mepp: mono (2-ethyl-5-carboxypentyl)
phthalate

sum of 1 primary (MEHP) and
3 secondary DEHP metabolites

sumohoxomehp

oxo-mehp: mono-(2-ethyl-5-oxohexyl)
phthalate

oh-mehp: mono-(2-ethyl-5-hydroxyhexyl)
phthalate

sum of 2 secondary DEHP metabolites

sumohoxomehptwo

oxo-mehp: mono-(2-ethyl-5-oxohexyl)
phthalate

oh-mehp: mono-(2-ethyl-5-hydroxyhexyl)
phthalate

mehp: mono-2-ethylhexyl phthalate

sum of 1 primary (mehp) and 2 secondary
(oh-mehp, oxo-mehp) DEHP metabolites

sum-eightphthal

mbzp: mono-benzyl phthalate

mibp: mono-isobutyl phthalate

mnbp: mono-n-butyl phthalate

mep: monoethyl phthalate

mehp: mono-2-ethylhexyl phthalate
oh-mehp: mono-(2-ethyl-5-hydroxyhexyl)
phthalate

oxo-mehp: mono-(2-ethyl-5-oxohexyl)
phthalate

cx-mepp: mono-(2-ethyl-5-carboxypentyl)
phthalate

sum of 8 phthalate metabolites:

e 4 primary (mbzp, mibp, mnbp, mep)

o 4 DEHP metabolites (mehp [primary],
oh-mehp, oxo-mehp, cx-mepp [3 secondary])

mibp: mono-isobutyl phthalate

sum of 3 primary low-molecular-weight

sumlmwphthal mnbp: mono-n-butyl phthalate ;
metabolites
mep: monoethyl phthalate
mbzp: mono-benzyl phthalate
mehp: mono-2-ethylhexyl phthalate
oh-mehp: mono-(2-ethyl-5-hydroxyhexyl) | sum of 5 high-molecular-weight metabolites:
sumhmwphthal phthalate e mbzp (pri'mary from (BBzP)
oxo-mehp: mono-(2-ethyl-5-oxohexyl) e mehp (primary), oh-mehp, oxo-mehp,
phthalate cx-mepp (DEHP metabolites; 3 secondary)
cx-mepp: mono-(2-ethyl-5-carboxypentyl)
phthalate
bdcippms Ibizill(;ie:;i;:hloro—Zpropyl) phosphate primary metabolite of
tris(1,3-dichloro-2-propyl) phosphate
(TDCIPP), an organophosphate flame
retardant
dphpms diphenyl phosphate monoester primary metabolite of triphenyl phosphate

(TPHP), an organophosphate flame
retardant
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C R-code

—----Methodology----

----Methodology 3.1 Part 1----

#using Eurostat data with both males and females, 6-12 yrs, only EU27

#loading DOI: 10.2908/demo_pjan

eurostat_ages_MF_EU <- "/Users/vivif/R/demo_pjan__males AND females_all ages._ONLY EU.xlsx"
#loading dataset from HBM4EU

data_HBMC <- read.xlsx("C:/Users/vivif/R/CHILDREN_PEH_2023_19c-UH-2024-05-06-16-07.x1sx", sheet = 1)

# Importing the raw data (for ages: 6-12)

sheets <- 2:8

ages <- 6:12

age_dfs <- lapply(sheets, function(i) {
read_excel(eurostat_ages_MF_EU, sheet = i)})

# Annotating each data frame with its age
age_dfs <- Map(function(df, a) mutate(df, age = a), age_dfs, ages)

# Combining all data into one data frame
combined_data_MF_ages_EU <- bind_rows(age_dfs)

# Aggregating the population across all age groups (6-12) for each country
aggregated_data_MF_ages_EU <- combined_data_MF_ages_EU %>}

group_by (Countries) %>%

summarise(total_population_6_12_MF_EU = sum(Population, na.rm = TRUE))

# Creating region mapping for only EU-27 using a compact list + stack approach
regions <- list(
West
North = c("Denmark","Estonia","Finland","Ireland","Latvia","Lithuania","Sweden"),
East
South

c("Austria","Belgium","France","Germany","Luxembourg","Netherlands"),

c("Bulgaria","Czechia","Hungary","Poland","Romania","Slovakia"),

c("Croatia","Cyprus","Greece","Italy","Malta","Portugal","Slovenia","Spain")

region_mapping_EU27 <- stack(regions) %>%
rename( Countries = values,
region = ind )
# Merging aggregated data with region mapping
combined_MF_ages_EU27 <- left_join(
aggregated_data_MF_ages_EU,
region_mapping_EU27,
by = "Countries")

#group by region and sum the population
aggregated_by_region_EU <- combined_MF_ages_EU27 >
group_by(region) %>%
summarise (total_population = sum(total_population_6_12_MF_EU, na.rm = TRUE))

# age{region distribution - all ages from 6 to 12 yrs

age_region_dist <- combined_data_MF_ages_EU >
left_join(region_mapping_EU27, by = "Countries") %>%
group_by(region, age) %>%
summarise(count = sum(Population, na.rm = TRUE), .groups = "drop") %>%
group_by(region) %>%

49



mutate(prop = count / sum(count)) %>%
ungroup ()

----Methodology 3.1 Part 2----

#using Eurostat data to identify DEGURBA distributions, only EU27
#loading ‘Distribution of population by DEGURBA, dwelling type (total) and income group(total)’
#D0I:10.2908/ilc_1vhoO1, % per country, per DEGURBA

# DEGURBA percentages by class

degurba_percent <- list(
Urban = "1 Cities",
‘Towns & Suburbs® = "2 Towns& suburbs",
Rural = "3 Rural") %>%

purrr::imap_dfr(~ read_excel("degurba_population percentage by country_EU27.xlsx", sheet

mutate (DEGURBA = .y))

# Total pop and children EU27 only
overall_pop <- read_excel("Total population per EU country.xlsx", sheet = 2)

children_pop <- read_excel("Total population per EU country_for 6-12 yrs old.xlsx")

# Merging population data, calculating ratio

pop_combined <- overall_pop %>%

inner_join(children_pop, by = "Countries", suffix = c("_total", "_children")) %>%

mutate(ratio = Population_children / Population_total)

# Merging with DEGURBA
combined_estimates <- degurba_percent %>%

left_join(pop_combined, by = "Countries") %>%

mutate(estimated_children = Population_total * (‘Population perc.¢ / 100) * ratio)

# Adding region info

combined_estimates_f <- combined_estimates %>

1

eft_join(region_mapping EU27, by = "Countries")

# Aggregating

aggregated_by_region_deg <- combined_estimates_f %>%
group_by (region, DEGURBA) %>%
summarise(total_population = sum(estimated_children, na.rm = TRUE), .groups = "drop")

# R

-Methodology 3.1 Part 3----
eading education dataset from Eurostat

edu_data <- read_excel("eurostat_edu level_experimental_household.xlsx",
sheet = 2) %>%
rename (Country= 1, TertiaryExclShort = ‘Tertiary education excluding short cycle‘)

# Summarizing into Low / Medium / High ISCED groups;summing rowwise into 3 groups:
# - Low Education: ISCED levels 0--2 (Early childhood, Primary, Lower secondary)
# - Medium Education: ISCED levels 3--4 (Upper secondary, Post-secondary non-tertiary)
# - High Education: ISCED $\ge5$5 (Short-cycle tertiary, Tertiary excluding short-cycle)
edu_data_summary <- edu_data %>’
rowwise() %>%
mutate(

LowEducation = sum(c_across(c(
‘Early childhood education‘,
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‘Primary education‘,
‘Lower secondary education®
)), na.rm = TRUE),
MediumEducation = sum(c_across(c(
‘Upper secondary education‘,
‘Post-secondary non-tertiary education®
)), na.rm = TRUE),
HighEducation = sum(c_across(c(
‘Short-cycle tertiary education‘,
TertiaryExclShort)), na.rm = TRUE)) %>% ungroup()

library(dplyr)
# Normalising education shares to sum to 100 per country
normalized_edu <- edu_data_summary %>%

mutate(
Total = LowEducation + MediumEducation + HighEducation,
LowEducation_norm = (LowEducation / Total) * 100,

MediumEducation_norm= (MediumEducation/ Total) * 100,

HighEducation_norm = (HighEducation / Total) * 100
) B>k
dplyr: :select(

Country,

LowEducation_norm,

MediumEducation_norm,

HighEducation_norm)

# joining total child population per EU27 country, with normalized education shares
edu_pop <- aggregated_data_MF_ages_EU %>/
rename (Country = Countries) %>/
left_join(normalized_edu, by = "Country")
# adding region info for each country
edu_pop_reg <- edu_pop %>%
left_join(region_mapping_EU27, by = c("Country" = "Countries")) %>%
# re-factoring ’region’ so that its levels are North|South|West|East
mutate(region = factor(region, levels = c("North","South","West","East")))

edu_pop_reg_class <- edu_pop_reg %>%
mutate (
LowCount = total_population_6_12_MF_EU * LowEducation_norm / 100,
MedCount = total_population_6_12_MF_EU * MediumEducation_norm/ 100,
HighCount = total_population_6_12_MF_EU * HighEducation_norm / 100)

aggregated_by_region_edu <- edu_pop_reg_class %>%
group_by(region) %>%

summarise (
Low = sum(LowCount, mna.rm = TRUE),
Medium = sum(MedCount, na.rm = TRUE),
High = sum(HighCount, na.rm = TRUE),

.groups = "drop")
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----Methodology 3.2----
# - External EU-27 margins ----—------—-——---
# 1. Region external proportions (Eurostat; children 6 to 12 yrs)
external_region <- aggregated_by_region_EU %>%
mutate (
region = factor(region,
levels = c("North","South","West","East")),
region_prop = total_population / sum(total_population)) %>%
arrange(region)
print (external_region)
#table with raw counts, then normalized to proportions (region_prop)
#North ~8.46%, South ~27.4%, West ~44%, East ~20.2Y%

# 2. Sex external proportions (Eurostat; children 6{12 yrs)
# Function to sum ages 6{12 in a given Excel file
sum_ages_6_12 <- function(path) {
sheets <- 2:8
dfs <- lapply(sheets, function(i) {
read_excel(path, sheet = i) ¥%>%
dplyr: :select(Population)
b
bind_rows(dfs) %>%
summarise(total = sum(Population, na.rm = TRUE)) %>’
pull(total)}
# File paths
male_file <- "demo_pjan__males across all ages.xlsx"
female_file <- "demo_pjan__females across all ages.xlsx"

# total counts for each sex
male_tot <- sum_ages_6_12(male_file)
female_tot <- sum_ages_6_12(female_file)

# external sex margin (M as reference level)

external_sex <- tibble(

factor(c("M", "F"), levels = c("M", "F")),
count = c(male_tot, female_tot)

) h>%

mutate (

sex

sex_prop = count / sum(count))
# Approximately: M “51.4%, F "48.6%

# 3. Sampling season: using numeric values (1, 2, 3, 4) representing Spring, Summer, Autumn, Winter
external_season <- tibble(
samplingseason = factor(1:4,

levels 1:4,

labels = c("Spring","Summer","Autumn","Winter")),

season_prop = rep(0.25, 4))
#assuming equal 25} in spring/summer/autumn/winter

# 4. DEGURBA external proportions across the EU (based on Eurostat data)
external_degurba <- aggregated_by_region_deg %>%
group_by(region) %>%
mutate(region_degurba_prop = total_population / sum(total_population)) %>%
ungroup() %>%

02



left_join(
# grab just the two columns by name
external_region[ , c("region", "region_prop") 1,
by = "region"
) h>h
mutate(weighted = region_degurba_prop * region_prop) %>%
group_by (DEGURBA) %>%
summarise (
degurba_prop = sum(weighted, na.rm = TRUE),

.groups = "drop"
) B>
mutate (
DEGURBA = factor(
DEGURBA,

levels = c("Urban", "Towns & Suburbs", "Rural")))

# approximate proportions: Urban ~0.385, Towns ~0.333, Rural 70.282

# 5. ISCED external proportioms:
external_isced <- aggregated_by_region_edu %>%
# a) Pivoting to long form, one row per region{ISCED level
pivot_longer(

cols = c(Low, Medium, High),
names_to = "isced_hh",
values_to = "count") %>%

# b) Computing each region’s within-region ISCED share
group_by(region) %>%
mutate (

region_total sum(count) ,
region_isced_prop = count / region_total) %>%
ungroup() %>%
# c) Attaching the EU-wide region_prop for each region
left_join(
# force dplyr::select() to avoid masking issues
external_region >, dplyr::select(region, region_prop),
by = "region"
) W%
# d) Multiplying the within-region ISCED share by that region’s EU weight
mutate(
weighted = region_isced_prop * region_prop) %>%
# e) Summing across all regions, grouping by ISCED level
group_by (isced_hh) %>%
summarise (
weighted_total = sum(weighted, na.rm = TRUE),
.groups = "drop") %>%
# f) Converting to true EU-wide proportions
mutate (
isced_prop = weighted_total / sum(weighted_total))
# approximately: Low ~26%, Medium ~41.9%, High “32.1%
#coercing isced_hh to a factor
external_isced <- external_isced %>%
mutate(
isced_hh = factor(isced_hh, levels = c("Low","Medium","High")))

## Building the reference grid "average EU child"
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# Creating a cross-product combination of all external margins
ref_grid_base <- tidyr::crossing(
external _region,
external_sex,
external_season,
external_degurba,
external_isced) %>%
mutate(
ageyears = 9,
overall_weight = region_prop * sex_prop * season_prop * degurba_prop * isced_prop) %>%
rename (degurba = DEGURBA) %>%
dplyr::select(region, sex, ageyears, samplingseason, degurba, isced_hh, overall_weight)

# Check that weights sum to 1:
sum(ref_grid_base$overall_weight)

#PLOT for weights distribution - reference grid
## quick EDA of overall_weight

# numeric summary

summ_w <- ref_grid_base %>/

summarise(min = min(overall_weight),
pl = quantile(overall_weight, 0.01),
p5 = quantile(overall_weight, 0.05),

median= median(overall_weight),
mean = mean(overall_weight), # approx 1/288 = 0.00347

p95 = quantile(overall_weight, 0.95),
p99 = quantile(overall_weight, 0.99),
max = max(overall_weight),

N_heavy = sum(overall_weight > 0.01)) # cells > 1 %
print (round(summ_w, 5))

# histogram on a loglO scale
ggplot(ref_grid_base, aes(x = overall_weight)) +
geom_histogram(
binwidth = 0.1,
colour = "black",
fill = "grey70") +
scale_x_logl0(
labels = label_scientific(digits = 1)) +
labs(
x = "Cell weight (loglO scale)",
y = "Frequency") +
theme_minimal (base_size = 11) +
theme (
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border = element_blank())

# where do the heaviest cells live?

top_cells <- ref_grid_base %>/
arrange(desc(overall_weight)) %>%
slice_head(n = 10) # top 10 largest weights

print (top_cells, n = 10)
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#----Methodology 3.3--—-—
#----Methodology 3.3.1--—-
##Prediction & Overall Aggregation for simple linear model

#checking for any values beyong LOD and LOQ limits
any (data_HBMC$mbzp_impcrtlog %in% c(-1, -2, -3))

#Study data: filtering, recodimg, *centering for agex*
dataHBMC_filtered <- data_HBMC %>%

filter(between(ageyears, 6, 12), region %in¥% 1:4) %>% # keep 6{12 yrs, EU-27 regions
mutate (
region = factor(region, 1:4, c("North","South","West","East")),
degurba = factor(degurba, 1:3, c("Urban","Towns & Suburbs","Rural")),
isced_hh = factor(isced_hh, 1:3, c("Low","Medium","High")),
sex = factor(sex, c("M","F")),

samplingseason = factor(samplingseason, 1:4,
c("Spring", "Summer","Autumn","Winter")),

age_c = ageyears - 9)

# Fitting a basic linear model (no interactions) to the filtered study data, estimating coefficients from the study
1m_base <- 1m(
mbzp_impcrtlog ~ region + sex + age_c +
degurba + isced_hh + samplingseason,
data = dataHBMC_filtered)
summary (1m_base)
confint (1lm_base)

# predicting on the 288-cell reference grid (adding age_c = 0)
pred_grid <- ref_grid_base %>/
mutate(age_c = 0) %>% # grid represents a 9-years-old midpoint
bind_cols(predict(lm_base, newdata = ., se.fit = TRUE)) %>%
rename (predicted = fit, se_pred = se.fit)

# EU-wide mean and standard error (weights already sum to 1)
eu_mean <- with(pred_grid, sum(predicted * overall_weight))
eu_se <- with(pred_grid, sqrt(sum((overall_weight) "2 * se_pred~2)))

# geometric mean on the original scale

eu_geo_mean <- exp(eu_mean)

# 95 7 confidence interval on the original scale
ci_geo <- exp(eu_mean + c(-1.96, 1.96) * eu_se)

cat("--- BASE LINEAR MODEL (centred age) ---\n",
sprintf ("EU-wide mean 1n-MBzP : %.4f (SE = %.4f)\n", eu_mean, eu_se),
sprintf ("EU geometric mean : %.4f pg g-creatinine\n", eu_geo_mean),
sprintf ("95%% CI (geo-scale) : [%.4f, %.4f]1\n", ci_geo[1], ci_geo[2]))

#----Methodology 3.3.2----

library(lmtest) # lrtest
library(broom) # tidy / confint
library(dplyr)

library(tibble)
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library(emmeans) # emmeans, emtrends
library(purrr)

# 1lm_base includes the centred age term age_c = ageyears - 9

# Fitting one-by-one 2-way interaction models

int_terms <- c(
"region:samplingseason", region x season

"region:age_c", region x age (centred)

"region:degurba", region x DEGURBA

#
#
"sex:age_c", # sex x age (centred)
#
# season x DEGURBA)

"samplingseason:degurba"

int_models <- setNames(
lapply (int_terms, function(trm)
update (lm_base, paste(". ~ . +", trm))),
int_terms)
all_models <- c(Base = list(lm_base), int_models)

#AIC & LR comparisons
compare_tbl <- tibble(
Model = names(all_models),

daf = sapply(all_models, function(m) attr(logLik(m), "df")),

AIC = sapply(all_models, AIC)) %>%

mutate (
DeltaAIC = AIC - AIC[Model == "Base"],
LR_df = c(NA, sapply(int_models, function(m) lrtest(lm_base, m)$Df[2])),
LR_chi = c(NA, sapply(int_models, function(m) lrtest(lm_base, m)$Chisq[2])),

p_value = c(NA, sapply(int_models, function(m) lrtest(lm_base, m)$‘Pr(>Chisq) ‘[2])))

cat ("\n### AIC and likelihood-ratio comparison\n")
print (compare_tbl, digits = 3)

# Coefficient tables (all models), with 95% CIs
coef_df <- function(fit, level = 0.95) {

summ <- summary(fit)$coefficients

ci <- confint(fit, level = level)

tibble(
term = rownames (summ) ,
Estimate = summ[, "Estimate"],
Std_Error = summ[, "Std. Error"],
t_value = summ[, "t value"],
p_value = summ[, "Pr(>|tl)"],

CI_lower = cil, 11,
CI_upper = cil, 2]
)}

for (nm in names(all_models)) {
cat ("\n### Coefficients for", nm, "\n")
print(coef_df(all_models[[nm]]), digits = 4)}

## Biologically interpretable contrasts via emmeans (for all tested interactions)
emm_to_df <- function(obj, by_var) {

out <- as.data.frame(summary(obj, infer = TRUE))

names (out) <- tolower(names(out))
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est_col
se_col

out %>%

dplyr:

dplyr:
dplyr:

<- grep("" (emmean|estimate|.*\\.trend)$", names(out), value = TRUE) [1]
<- grep(""(se$l|se\\.trend$)", names (out), value = TRUE) [1]

all_of(est_col),
all_of(se_col)) %>%
:mutate(across(all_of (by_var), as.character), .before = 1) %>%

:rename (estimate

se

:select(all_of (by_var), estimate, se, df, lower.cl, upper.cl, p.value)}

contr_tables <- list()

# 1. Winter{Spring by region (region x season)

emm_rs <-

ws_con <-

emmeans (int_models[["region:samplingseason"]],
~ samplingseason | region)
contrast (emm_rs,

list("Winter{Spring" = c(-1, 0, 0, 1)),

adjust = "none")

contr_tables[["region:samplingseason"]] <-

emm_to_df (ws_con, "region") %>%

mutate(contrast = "Winter{Spring", .before = 1)

# 2. Age slope by region (region x age_c)

sl_ra <- emtrends(int_models[["region:age_c"]],

~ region, var = "age_c")

contr_tables[["region:age_c"]] <-

emm_to_df(sl_ra, "region") %>%

mutate (measure = "Age slope (A log / yr)", .before = 1)

# 3. Age slope by sex (sex x age_c)

sl_sa <- emtrends(int_models[["sex:age_c"]],

~ sex, var = "age_c")

contr_tables[["sex:age_c"]] <-
emm_to_df (sl_sa, "sex") %>%

mutate(measure = "Age slope (A log / yr)", .before

1)

# 4. Rural{Urban by region (region x DEGURBA)

emm_rd <-

ru_con <-

emmeans (int_models[["region:degurba"l],
~ degurba | region)
contrast(emm_rd,
list ("Rural{Urban" = c(-1, 0, 1)),
adjust = "none")

contr_tables[["region:degurba"]] <-

emm_to_df (ru_con, "region") %>%

mutate(contrast = "Rural{Urban", .before = 1)

# 5. Rural{Urban by season (season x DEGURBA)

emm_sd <-

emmeans (int_models[["samplingseason:degurba"]],
~ degurba | samplingseason)

ru_seas <- contrast(emm_sd,

list ("Rural{Urban" = c(-1, 0, 1)),
adjust = "none")

contr_tables[["samplingseason:degurba"]] <-

emm_to_df (ru_seas, "samplingseason") %>%
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mutate(contrast = "Rural{Urban", .before = 1)

for (nm in names(contr_tables)) {
cat ("\n### Contrast results for", nm, "\n")
print (contr_tables[[nm]], digits = 4)}

## 2-way interactions candidate
mod_two_int <- update(
1lm_base,
. + region:samplingseason + region:degurba)
#AIC and LR test
delta_aic_two <- AIC(mod_two_int) - AIC(1lm_base)
cat ("\n### Combined model: region:samplingseason + region:degurba\n")
cat(sprintf("AIC = %.1f  (AAIC = %.1f relative to main effects)\n",
AIC(mod_two_int), delta_aic_two))

1r_two_int <- lrtest(lm_base, mod_two_int)
print(lr_two_int)

# CONTRASTS FOR THE COMBINED MODEL (region:season + region:degurba)
## Helper: convert an emmeans / contrast summary to tidy tibble
emm_to_df <- function(obj, by_var) {

out <- as.data.frame(summary(obj, infer = TRUE))

names (out) <- tolower (names(out))

est_col <- grep("” (emmean|estimate|.*\\.trend)$", names(out), value = TRUE) [1]

se_col <- grep(""(se$|se\\.trend$)", names (out), value = TRUE) [1]
out %>%
dplyr: :rename(estimate = all_of (est_col),
se = all_of(se_col)) %>%

dplyr: :mutate(across(all_of (by_var), as.character), .before = 1) %>/
dplyr::select(all_of(by_var), estimate, se, df,
lower.cl, upper.cl, p.value)}

# a) Winter { Spring contrast by REGION (degurba = "Urban")
emm_rs <- emmeans (
mod_two_int,
~ samplingseason | region,
at = list(degurba = "Urban") # hold other factor at reference
)
ws_con <- contrast(
emm_rs,
list("Winter{Spring" = c(-1, 0, 0, 1)), # Spring, Summer, Autumn, Winter
adjust = "none"
) %>h
emm_to_df ("region") %>%
mutate(contrast = "Winter{Spring", .before = 1)

# b) Rural { Urban contrast by REGION (samplingseason = "Spring")
emm_rd <- emmeans(

mod_two_int,

~ degurba | region,
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at = list(samplingseason = "Spring") # season at reference)

ru_con <- contrast(

emm_rd,
list("Rural{Urban" = c(-1, 0, 1)), # Urban, Towns&Suburbs, Rural
adjust = "none") %>%

emm_to_df ("region") %>%
mutate(contrast = "Rural{Urban", .before = 1)

# c) Combining and keeping only significant rows (p < .05)

key_contrasts <- bind_rows(ws_con, ru_con) %>%
mutate(across(where(is.numeric), round, 3)) %>%
filter(p.value < 0.05)

# EU-standardised means: base + selected interactions

eu_summary <- function(fit, grid = grid_int) {
pr <- predict(fit, newdata = grid, se.fit = TRUE)
wt <- grid$overall_weight

tibble(
mean = sum(pr$fit * wt),
se = sqrt(sum((wt"2) * pr$se.fit"2)))}

eval_models <- list(

Base = 1m_base,

INT_region_season = update(lm_base, . ~ . + region:samplingseason),
INT_region_degurba = update(lm_base, . ~ . + region:degurba),

INT_both = update(lm_base, . ~ . + region:samplingseason + region:degurba))

eu_results_int <- imap_dfr(
eval_models,

~ eu_summary(.x) %>% mutate(model = .y),
.id = NULL
) h>h

relocate (model) %>%

mutate(
geo_mean = exp(mean),
geo_lwr = exp(mean - 1.96 * se),
geo_upr = exp(mean + 1.96 * se))

cat ("\n### EU-standardised results (log and original scale)\n")
print(eu_results_int, digits = 4)

#----Methodology 3.3.3----

#————- MIXED MODELS-----

library(1lme4) # 1lmer (), VarCorr()
library(MASS) # mvrnorm()
library(dplyr)

library(broom) tidy (), glance()
library(car) vif ()

library(influence.ME) influence diagnostics

H H O R

library(purrr) imap_dfr (for sensitivity block)
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# Objects already in memory
# *x dataHBMC_filtered { HBM4EU children, ages 6{12, recoded factors
# x ref_grid_base { 288-cell EU-27 reference grid (+ overall_weight))

# Pre-processing
dataHBMC_filtered <- dataHBMC_filtered %>%

mutate (
cohort = factor(cohort), # 11 study IDs
age_c = ageyears - 9) # centred age (mid-point = 9 y)

ref_grid_base_mixed <- ref_grid_base ’>%
mutate(age_c = 0) # grid represents a 9-year-old child

w_mixed <- ref_grid_base_mixed$overall_weight # numeric(288); sum = 1

#----convenience helpers----
#Helper: extract random-intercept variance (o2_u)
get_sigma_u2 <- function(fit, grp = "cohort") {
as.numeric(VarCorr(fit) [[grpl][1, 1]) # first (and only) element of 1x1 vcov}
}
#Helper: intraclass-correlation coefficient (ICC)
icc <- function(fit) {
sig_u2 <- get_sigma_u2(fit)
sig_e2 <- sigma(fit)~2
sig_u2 / (sig_u2 + sig_e2)}

# Helper: Delta-method + Monte-Carlo SE on a design grid ---------------

# Returns a list with means & SEs (Delta, MC-fixed, MC-full)

#  fit : lmer() object

# grid : data.frame with same factor levels as fit

# weights : numeric vector, length = nrow(grid), summing to 1

mixed_SE <- function(fit, grid, weights, n_sims = 5000, seed = 2025) {
stopifnot (isTRUE(all.equal (sum(weights), 1, tol = 1le-12)))

# fixed-effects component on the grid

X <- model.matrix(delete.response(terms(fit, fixed.only = TRUE)), grid)
b <- fixef(fit)

V <- vcov(fit)

xb <- as.numeric(X %*J b) # linear predictor (P part)
se_xb <- sqrt(rowSums((X %x% V) * X)) # sqrt(diag(X V XT))
sig_u2 <- get_sigma_u2(fit) # random-intercept variance

# Delta-method
mu_delta <- sum(xb * weights)
se_delta <- sqrt(sum(weights™2 * (se_xb"2 + sig_u2)))

# Monte-Carlo

set.seed(seed)

beta_draws <- MASS::mvrnorm(n_sims, mu = b, Sigma = V)
xb_mat <- X %*% t(beta_draws)

mu_fix <- colSums(xb_mat * weights)

se_fix <- sd(mu_fix)
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u_draws <- rnorm(n_sims, sd = sqrt(sig_u2))
xb_full <- sweep(xb_mat, 2, u_draws, "+")
mu_full <- colSums(xb_full * weights)
se_full <- sd(mu_full)

list(mu_delta = mu_delta, se_delta = se_delta,
mu_fix = mean(mu_fix), se_fix = se_fix,
mu_full = mean(mu_full), se_full = se_full)}

# Helper: print one result block
print_mixed_res <- function(res, label) {
cat("\n|", label, "|\n", sep = "")
with(res, {
cat (sprintf ("A-method : mean

%.4f  SE
cat(sprintf ("MC fixed : mean = .4f SE
cat(sprintf("MC full : mean = J%.4f SE

%.4f\n", mu_delta, se_delta))
%.4f\n", mu_fix, se_fix))
%.4f\n", mu_full, se_full))})}

# Baseline mixed model
mod0 <- lmer (mbzp_impcrtlog ~ region + sex + age_c +
degurba + isced_hh + samplingseason +
(1 | cohort),
data = dataHBMC_filtered, REML = FALSE)
cat(sprintf ("Baseline ICC = %.3f\n", icc(mod0)))

res_mod0 <- mixed_SE(mod0, ref_grid_base_mixed, w_mixed)

print_mixed_res(res_modO, "Baseline mixed model")

cat(sprintf ("\nA-GM = %.4f (95%% CI %.4f { %.4f)\n",
exp(res_modO$mu_delta),
exp(res_modO$mu_delta - 1.96 * res_modO$se_delta),
exp(res_modO$mu_delta + 1.96 * res_modO$se_delta)))

## Diagnostics modO

fitted0 <- fitted(mod0); stdresO <- resid(mod0) / sigma(modO)

plot(fitted0, stdresO, xlab = "Fitted (mod0)", ylab = "Std. residuals"); abline(h=0,lty=2)
qgnorm(stdres0); qqline(stdresO, col="red")

blupsO <- ranef (mod0)$cohort[, 1]

hist(
blupsO0,
breaks = "FD",
prob = TRUE,
xlab = "Random-intercept BLUPs (mod0O)",
main = NULL)

lines(density(blups0), lwd = 1.5)

cd0 <- cooks.distance(influence(mod0, group="cohort", prune.fixed = TRUE))
plot(cdO, type="h", xaxt="n", xlab="Cohort",

ylab="Cook’s D (mod0)"); axis(l, at=seq_along(cdO),

labels=rownames(cd0)); abline(h=4/length(cd0), col="red", lty=2)

# Leave-one-cohort-out sensitivity
# Helper: EU-standardised mean & SE for a fitted mode
eu_mean_se <- function(fit, grid, weights) {
pr <- predict(fit, newdata = grid, re.form = NA, se.fit = TRUE)
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se_tot <- sqrt(pr$se.fit"2 + get_sigma_u2(fit))
tibble(mean = sum(pr$fit * weights),
se = sqrt(sum(weights"2 * se_tot~2)))}

# Build a grid compatible with the data in ‘dat®
make_grid <- function(dat) {
ref_grid_base_mixed %>%

filter(region %in} unique(dat$region),
samplingseason %inJ, unique(dat$samplingseason),
degurba %in% unique(dat$degurba),
isced_hh %in’ unique(dat$isced_hh),
sex %in’% unique(dat$sex))}

# Cohort-removal scenarios

scenarios <- list(

keep_all = dataHBMC_filtered,

drop_4 = filter(dataHBMC_filtered, cohort != "4"),

drop_10 = filter(dataHBMC_filtered, cohort != "10"),

drop_4_10 = filter(dataHBMC_filtered, !cohort %inJ, c("4", "10")))

sensitivity_tbl <- purrr::imap_dfr(scenarios, function(dat, label) {
grid <- make_grid(dat)
wt  <- grid$overall_weight / sum(grid$overall_weight) # renormalise Zw = 1

fit <- 1lmer(mbzp_impcrtlog ~ region + sex + age_c +
degurba + isced_hh + samplingseason +
(1 | cohort),
data = dat, REML = FALSE)

eu <- eu_mean_se(fit, grid, wt)
mutate(eu, scenario = label, .before = 1)})

print(sensitivity_tbl, digits = 4)

# ----Interaction model----

mod_int <- lmer (mbzp_impcrtlog ~ region * samplingseason +

region * degurba + sex + age_c + isced_hh + (1 | cohort),
data = dataHBMC_filtered, REML = FALSE)

cat(sprintf ("Interaction ICC = %.3f\n", icc(mod_int)))

print (anova(mod0, mod_int))

res_int <- mixed_SE(mod_int, ref_grid_base_mixed, w_mixed)

print_mixed_res(res_int, "Interaction model")

cat (sprintf("\nA-GM = %.4f (95%% CI %.4f { %.4f)\n",
exp(res_int$mu_delta),
exp(res_int$mu_delta - 1.96 * res_int$se_delta),
exp(res_int$mu_delta + 1.96 * res_int$se_delta)))

## Interaction-model diagnostics

fittedI <- fitted(mod_int); stdresI <- resid(mod_int) / sigma(mod_int)

plot(fittedI, stdresI, xlab="Fitted (mod_int)", ylab="Std. residuals"); abline(h=0,1lty=2)
qgnorm(stdresI); qqline(stdresI, col="red")

blupsI <- ranef(mod_int)$cohort[, 1]

hist(
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blupsI,
breaks = "FD",

prob = TRUE,
xlab = "Random-intercept BLUPs (mod_int)",
main = NULL )

lines(density(blupsI), lwd = 1.5)

## VIF table

Im_fixed_int <- lm(mbzp_impcrtlog ~ region * samplingseason +
region * degurba + sex + age_c + isced_hh, data = dataHBMC_filtered)
print (vif(lm_fixed_int))

# Cook’s distance plot for the interaction model omitted
# (rank deficiency in several leave-one-cohort fits made the metric unstable)

# - diagnostics of OLS for comparison ------
# OLS baseline (Model 1) and full interaction (Model 4)
1ml <- I1m(mbzp_impcrtlog ~ region + sex + age_c +
degurba + isced_hh + samplingseason,
data = dataHBMC_filtered)

1m4 <- 1m(mbzp_impcrtlog ~ region * samplingseason +
region * degurba + sex + age_c + isced_hh,
data = dataHBMC_filtered)

# Quick base-R residual diagnostics, without observation numbers
par(mfrow = c(2, 2))

plot(1ml, which = 1, id.n 0, main = "OLS Model 1: Residuals vs Fitted")
plot(lml, which = 2, id.n 0, main = "OLS Model 1: QQ-plot")

plot(1m4, which = 1, id.n = 0, main = "OLS Model 4: Residuals vs Fitted")
plot(1m4, which = 2, id.n = 0, main = "OLS Model 4: QQ-plot")

par (mfrow = c(1, 1)) # reset layout

#----Methodology 3.4----

#---3.4.1

# Direct post-stratification weighted mean calculation
library(dplyr)

library(forcats)

# Helper: recoding stratification variables to match the Eurostat reference grid

recode_strata <- function(df) {

at %>%
mutate(
region = factor(region, 1:4, c("North","South","West","East")),
degurba = factor(degurba, 1:3, c("Urban","Towns & Suburbs","Rural")),
isced_hh = factor(isced_hh, 1:3, c("Low","Medium","High")),
sex = factor(sex, c("M","F")),

samplingseason = factor(samplingseason, 1:4,
c("Spring", "Summer", "Autumn","Winter")))}
# Helper: computing per-observation weights from the reference grid
compute_weights <- function(df, ref_grid) {
at ¥%>%
left_join(ref_grid, by = c("region","sex","samplingseason","degurba","isced_hh")) %>%
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group_by(region, sex, samplingseason, degurba, isced_hh) %>%

mutate (obs_weight_raw = overall_weight / n()) %>%

ungroup() %>%

mutate (obs_weight = obs_weight_raw / sum(obs_weight_raw, na.rm = TRUE))}

# Preparing datasets and missingness check
# (a) restricting to age 6{12 & EU-27
full_data <- data_HBMC %>%
filter (between(ageyears, 6, 12), region %in% 1:4)

# (b) dropping missing biomarker

missing_bio <- sum(is.na(full_data$mbzp_impcrtlog))

message (sprintf ("Excluded ’%d records with missing MBzP", missing_bio))
data_clean <- full_data %>, filter(!is.na(mbzp_impcrtlog))

# (c) recoding factors & dropping stratification-missing
data_poststrat <- data_clean %>%
recode_strata() %>%

drop_na(region, sex, samplingseason, degurba, isced_hh)
message (sprintf ("Post-stratification sample size: %d", nrow(data_poststrat)))

# Computing direct post-stratification weighted mean
weights_complete <- compute_weights(data_poststrat, ref_grid_base)

# check: distribution of observation weights
summary (weights_complete$obs_weight)

weighted_mean_complete <- sum(
weights_complete$mbzp_impcrtlog * weights_complete$obs_weight,
na.rm = TRUE)

#"Distribution of Post-stratification Weights"
# Computing percentiles on the original scale, then log-transform
pcts_d <- quantile(weights_complete$obs_weight,

probs = c(0.01, 0.05, 0.95, 0.99))

# plot
ggplot (weights_complete, aes(x = loglO(obs_weight))) +
geom_histogram(binwidth = 0.2,
fill = "grey70",
colour = "black") +
geom_vline(xintercept = loglO(pcts_d),
linetype = "dashed",
colour = "red") +
scale_x_continuous(
breaks = seq(
floor(min(loglO(weights_complete$obs_weight))),
ceiling(max(loglO(weights_complete$obs_weight))),
by =1
),
labels = function(x) sprintf("le¥+.0f", x)
) +
labs(
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X = expression(Log[10] ""Post-stratification weight"),
y "Count",
title = NULL) +

theme_classic(base_size = 13)

# UNWEIGHTED geometric mean
# a. Unweighted on the full biomarker-complete sample (n = 2 784)
log_mean_full <- mean(data_clean$mbzp_impcrtlog, na.rm = TRUE)
geo_mean_full <- exp(log_mean_full)
cat (sprintf (
"Full unweighted (n = %d): log-mean = %.4f -+ GM = J,.2f pg/g crt\n",
nrow(data_clean), log_mean_full, geo_mean_full))
# b. Unweighted on the post-stratification sample (n = 2 722)
log_mean_ps <- mean(data_poststrat$mbzp_impcrtlog, na.rm = TRUE)
geo_mean_ps  <- exp(log_mean_ps)
cat (sprintf (
"Restricted unweighted (n = %d): log-mean = %.4f -+ GM = %.2f pg/g crt\n\n",
nrow(data_poststrat), log_mean_ps, geo_mean_ps))

# sensitivity analysis: imputing missing ISCED -+ "Medium"
weights_imp <- data_clean %>%
recode_strata() %>%
mutate(isced_hh = fct_na_value_to_level(isced_hh, "Medium")) %>%
drop_na(degurba) %>/
compute_weights(ref_grid_base)

weighted_mean_imp <- sum(
weights_imp$mbzp_impcrtlog * weights_imp$obs_weight,
na.rm = TRUE)

delta_pct <- 100 * (weighted_mean_imp - weighted_mean_complete) /
weighted_mean_complete

# Report

geo_mean_complete <- exp(weighted_mean_complete)
geo_mean_imp <- exp(weighted_mean_imp)

cat (sprintf (

"Weighted geometric mean (complete) = %.2f pg g! (log = %.4f)\n\

Weighted geometric mean (imputed) = %.2f pg g* (log = %.4f; A = %.2£%%)\n",
geo_mean_complete, weighted_mean_complete,
geo_mean_imp, weighted_mean_imp, delta_pct))

#---3.4.2

# Survey-design estimation | log-scale mean, SE & GM + CI

library(survey)

# taking the post-stratified data + weights already made:

# data_poststrat (n=2722, with mbzp_impcrtlog) and weights_complete
weights_ps <- weights_complete

data_ps <- data_poststrat

# building the survey design(s)
# independent (each child its own PSU)
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des_ind <- svydesign(

ids = "1,

weights = “obs_weight,
data = weights_ps,
nest = TRUE)

# helper: extracting log-scale mean & SE

log_est <- function(des) {
m <- svymean(“mbzp_impcrtlog, des, na.rm = TRUE)
c(mu = as.numeric(coef(m)), se = as.numeric(SE(m)))}

# helper: extracting geometric mean + 95% CI
gm_ci <- function(des) {

L <- svymean(“mbzp_impcrtlog, des, na.rm = TRUE)

mu <- as.numeric(coef (L))

se <- as.numeric(SE(L))

gm <- exp(mu)

ci <~ exp(mu + c(-1.96, +1.96) * se)

c(GM = gm, L = ci[1], U = ci[2])}

# a. independent design
ind_log <- log_est(des_ind)
ind_gm <- gm_ci(des_ind)

cat("=== Independent (no clustering) ===\n")

cat(sprintf("Log-scale mean = %.4f (SE = %.4f)\n",
ind_log["mu"], ind_log["se"]))

cat(sprintf ("Geometric mean = %.2f pg/g crt (95%% CI: %.2f{%.2f)\n\n",
ind_gm["GM"], ind_gm["L"], ind_gm["U"]))

# b. clustered design (cohort as PSU), if you have a ’cohort’ column
if ("cohort" %in} names(weights_ps)) {

weights_ps$cohort <- factor(weights_ps$cohort)

des_clu <- svydesign(

ids “cohort,
weights = “obs_weight,

data

weights_ps,
TRUE)
clu_log <- log_est(des_clu)

nest
clu_gm <- gm_ci(des_clu)

cat("=== Clustered (by cohort) ===\n"

cat(sprintf("Log-scale mean = %.4f (SE = %.4f)\n",
clu_log["mu"], clu_log["se"]))

cat(sprintf ("Geometric mean = %.2f pg/g crt (95%% CI: %.2f{%.2f)\n\n",
clu_gm["GM"], clu_gm["L"], clu_gm["U"]))}

# c. trimming sensitivity
trim_report <- function(pct) {
cap <- quantile(weights_ps$obs_weight, pct)
df <- weights_ps
df$obs_weight <- pmin(df$obs_weight, cap)
df$obs_weight <- df$obs_weight / sum(df$obs_weight)
des_trim <- svydesign(ids="1, weights="obs_weight, data=df, nest=TRUE)
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t_gm <- gm_ci(des_trim)

delta <- 100*(t_gm["GM"] - ind_gm["GM"])/ind_gm["GM"]

cat(sprintf ("Trim %2.0f%% (cap=%.4f): GM = %.2f (95%% CI %.2f{%.2f), A = %.2f%%\n",
pct*100, cap, t_gm["GM"], t_gm["L"], t_gm["U"], delta))}

cat("=== Trimming sensitivity ===\n")
trim_report (0.99)
trim_report(0.95)

## SENSITIVITY: add a REGION x AGE margin to the 5-way post-strat weights ##
## clustered \five-way" post-stratified design (baseline)

dat_ageSens <- data_ps »>% # + rows n = 2 722, already recoded
mutate (
w_post = weights_ps$obs_weight, # probability weights (X = 1)
cohort = factor(cohort)) # 11 PSUs
N_ageSens <- nrow(dat_ageSens) # sample size on the frequency scale

dat_ageSens$w_pop <- dat_ageSens$w_post * N_ageSens # Lw_pop = n

des_post_clu_ageSens <- svydesign(

ids = “cohort,

weights = "w_pop, # five-way post-strat FREQ weights
data = dat_ageSens,

nest = TRUE)

## Target table: REGION x AGE (uniform 6{12 within each region)
# only uses strata that exist in the sample
# ensures YFreq = n and IYXFreq_region = region’s sample size
# A. distinct region{age strata observed in the data
obs_cells <- dat_ageSens %>%
distinct(region, ageyears)
# B. frequency-scale sample size per region
region_totals <- dat_ageSens %>%
count (region, name = "region_N") # Lregion_N = N_ageSens
# C. distribute each region’s total equally across its observed age strata
pop_ageReg_ageSens <- obs_cells %>%
left_join(region_totals, by = "region") %>%
group_by (region) %>%
mutate(Freq = region_ N / n()) %>% # n() = # age-years present
ungroup() %>%
select(region, ageyears, Freq)

## check
stopifnot (abs (sum(pop_ageReg_ageSens$Freq) - N_ageSens) < 1le-6)

## raking the design to the REGION x AGE margin (keeps cohort PSUs)
des_ageReg_ageSens <- rake(
des_post_clu_ageSens,

design

sample.margins list(“region + ageyears),
population.margins = list(pop_ageReg_ageSens),

list(maxit = 200, epsilon = le-6))

control

## Age-standardised EU geometric mean + 95 J, CI
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gm_obj <- svymean(“mbzp_impcrtlog, des_ageReg_ageSens)
mu_log <- coef(gm_obj) [1]
se_log <- SE(gm_obj) [1]

GM_age <- exp(mu_log)
CI_age <- exp(mu_log + gnorm(c(.025, .975)) * se_log)

## 4Weight-only DEFF and effective n

prob_w <- weights(des_ageReg_ageSens) / sum(weights(des_ageReg_ageSens))
DEFF  <- N_ageSens * sum(prob_w"2)

n_eff <- round(N_ageSens / DEFF)

## Comparison with the main five-way post-strat x cohort estimate
GM_main <- exp(coef (svymean(“mbzp_impcrtlog, des_post_clu_ageSens)) [1])

delta <- 100 * (GM_age - GM_main) / GM_main

## Concise summary

cat ("\n===== AGE-CALIBRATED EU MBzP (REGION x AGE, 11 COHORTS) =====\n")

cat (sprintf ("Geometric mean = %.2f pg g* crt (95 %% CI %.2f { %.2f)\n",
GM_age, CI_agel[1], CI_agel2]))

cat(sprintf("Weight-only DEFF =%.2f =+ n_eff Y%d\n", DEFF, n_eff))

cat(sprintf ("Change vs main (%.2f) = %.1f %/\n", GM_main, delta))

## AGE-CALIBRATED (REGION x AGE) { UNCLUSTERED SENSITIVITY
## Five-way post-strat design *without* PSUs
des_post_ind <- svydesign(

ids =1, # <-- independence

weights = "w_pop, # same frequency weights L = n
data = dat_ageSens, #n=2722

nest = TRUE)

## REGION x AGE target (same pop_age, Reg_ageSens as before)
## (code identical)

## Calibration
des_ageReg_ind <- rake(
design = des_post_ind,
sample.margins = list(“region + ageyears),
population.margins = list(pop_ageReg_ageSens),
list(maxit = 200, epsilon = 1le-6))

control

## GM & CI

gm <- svymean(“mbzp_impcrtlog, des_ageReg_ind)

gm_u <- exp( coef(gm)[1] )

ci_u <- exp( coef(gm)[1] + gnorm(c(.025,.975))*SE(gm) [1] )

## weight-only DEFF
p_w <- weights(des_ageReg_ind)/sum(weights(des_ageReg_ind))
deff <- N_ageSens*sum(p_w"2); n_eff <- round(N_ageSens/deff)

cat (sprintf (
"\nUNclustered age-raked GM
gm_u, ci_ul1], ci_u[2]))
cat (sprintf ("Weight-only DEFF

%.2f pg/g crt  (95%% CI %.2f { %.2f)\n",

%.2f =+ n_eff Yd\n", deff, n_eff))
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#---3.4.3

#RAKING (marginal calibration to Eurostat proportions)

## Base (unclustered, unit-weight) design

rake_design_base <- svydesign(ids = "1, weights = ~1, data = data_ps)

## Helper to guarantee factor-level consistency
check_levels <- function(var, pop_tbl) {
if (!identical(levels(data_ps[[var]]), levels(pop_tbl[[var]l])))
stop(sprintf("Level mismatch in ’%s’", var), call. = FALSE)}

## Eurostat targets, re-scaled to N
N <- nrow(data_ps)

rake_pop_region <- data.frame(region = external_region$region,

Freq = external_region$region_prop * N)
rake_pop_sex <- data.frame(sex = external_sex$sex,

Freq = external_sex$sex_prop * N)

rake_pop_season <- data.frame(samplingseason = external_season$samplingseason,

Freq external_season$season_prop * N)
external_degurba$DEGURBA,

external_degurba$degurba_prop * N)

rake_pop_degurba <- data.frame(degurba

Freq

rake_pop_isced <- data.frame(isced_hh external_isced$isced_hh,

Freq external_isced$isced_prop * N)

## Check that every factor in the sample has the same levels
## as the corresponding Eurostat table

lapply(list(region = rake_pop_region,
sex = rake_pop_sex,
samplingseason = rake_pop_season,
degurba = rake_pop_degurba,
isced_hh = rake_pop_isced),

\(tbl) check_levels(names(tbl)[1], tbl))

## raking (iterative proportional fitting)
rake_design <- rake(

design rake_design_base,

sample.margins list(“region, “sex, ~samplingseason, ~degurba, ~“isced_hh),

population.margins = list(rake_pop_region, rake_pop_sex, rake_pop_season,
rake_pop_degurba, rake_pop_isced))

# Weight diagnostics (probability-scale DEFF, etc.)
freq_w <- weights(rake_design) #L =N

data_ps$obs_weight <- freq w / sum(freq_w) # probability weights & = 1
prob_w <- data_ps$obs_weight

cat("Probability-weight range :",
formatC(range(prob_w), format = "e", digits = 2), "\n")

deff_w <- N * sum(prob_w"2) # weights-only DEFF
n_eff <- N / deff_w
cat("Weights-only DEFF =", round(deff_w, 2),

"(n_eff ", round(n_eff), ")\n\n")
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## Point estimate on log scale and back-transform
rake_est <- svymean(“mbzp_impcrtlog, rake_design)
mu_log  <- coef(rake_est) [1]

se_log <- SE(rake_est) [1]

gm <- exp(mu_log)

gm_ci <- exp(mu_log + gnorm(c(.025, .975)) * se_log)

cat(sprintf("Log scale: p = %.4f (SE = %.4f)\n", mu_log, se_log))
cat(sprintf("Raked GM = %.2f ng/g crt (95%% CI: %.2f{%.2f)\n",
gm, gm_cil[1], gm_ci[2]))

## Cluster-robust CI (cohort as PSU)
if ("cohort" %in’ names(data_ps)) {

data_ps$rake_wt <- freq_w # frequency weights ¥ = N

# probability weights already in data_ps$obs_weight

rake_design_cl <- svydesign(ids = “cohort, weights = “rake_wt,
data = data_ps, nest = TRUE)

cl_est <- svymean(“mbzp_impcrtlog, rake_design_cl)
cl_ci <- exp(coef(cl_est)[1] + c(-1.96, 1.96) * SE(cl_est)[1])

cat(sprintf ("Clustered GM CI = %.2f { %.2f pg/g crt\n",
cl_ci[1], cl_cil[2]1))}

## Histogram of raked weights (probability scale)
pct <- quantile(prob_w, probs = c(.01, .05, .95, .99))
gegplot(data.frame(w = prob_w), aes(x = loglO(w))) +
geom_histogram(binwidth = 0.2, fill = "grey70", colour = "black") +
geom_vline(xintercept = loglO(pct), linetype = "dashed", colour = "red") +
scale_x_continuous(breaks = seq(floor(min(loglO(prob_w))),
ceiling(max(logl0(prob_w))), 1),
labels = function(x) sprintf("lel+.0f", x)) +
labs(x = expression(Log[10]~"Raked probability weight"),
y = "Count") +
theme_classic(base_size = 13)

#Section 4.1

# ===EDA===
library(dplyr)
library(ggplot2)

#BOXPLOTS
# EDA dataset: dropping only missing outcome, keep ages 6{12 & EU-27 regions
eda_all <- data_HBMC %>%
filter(
between(ageyears, 6, 12),
region %in% 1:4,
lis.na(mbzp_impcrtlog)
) >

recode_strata() # turns region, sex, samplingseason, degurba, isced_hh into factors

# Boxplot by Region
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ggplot(eda_all %>% filter(!is.na(region)),
aes(x = region, y = mbzp_impcrtlog)) +
geom_boxplot (outlier.shape = 21, outlier.fill = "white") +
labs(

X = "Region",
y = expression(log™MBzP~ (nug/g creatinine)),
title = NULL

) +

theme_minimal ()

data_ps %>% group_by(region) %>}, summarise(
med = median(mbzp_impcrtlog),
Q1 = quantile(mbzp_impcrtlog, .25),
Q3 = quantile(mbzp_impcrtlog, .75),
min = min(mbzp_impcrtlog) ,
max = max(mbzp_impcrtlog))

# similar for DEGURBA, Household ISCED, sampling season and sex boxplots

#sampling years and cohorts
library(forcats)
library(viridis) # for scale_fill_viridis_c()
# ordering countries by their first sampling year
country_order <- dataHBMC_plots %>/
group_by (country) %>%
summarise(first_year = min(samplingyear), .groups = "drop") %>%
arrange (first_year) %>%
pull(country)

# heat-map

dataHBMC_plots %>%
count (country, samplingyear) %>%
mutate(country = factor(country, levels = country_order)) %>%
ggplot(aes(x = samplingyear, y = country, fill = n)) +

geom_tile(colour = "white") +
scale_x_continuous(breaks = 2014:2021, labels = 2014:2021,
expand = c(0, 0)) +

scale_fill_viridis_c(name
labs(title = NULL,
x = "Year", y = "Country") +

"Participants") +

theme_minimal (base_size = 14) +

theme (
axis.text.x = element_text(angle = 45, hjust = 1),
panel.grid = element_blank())

#COHORT violion plot
# Violin + boxplot overlay
ggplot(eda_all %>J, filter(!is.na(cohort)),
aes(x = factor(cohort),
y = mbzp_impcrtlog,
£ill = factor(cohort))) +
geom_violin(trim = TRUE, alpha = 0.6, color = NA) +
geom_boxplot(width = 0.1, outlier.shape = NA,
fill = "white", color = "black") +
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scale_fill_brewer(palette = "Set3") +

labs(
X = "Cohort",
y = expression(log”MBzP~ (ng/g~creatinine)),
title = NULL

) +

theme_classic() +

theme (

axis.text.x element_text(angle = 45, hjust = 1),

legend.position = "none")

eda_all %>%
filter('is.na(cohort)) %>%
group_by (cohort) %>%

summarise (
n =nQ,
med = median(mbzp_impcrtlog),
Q1 = quantile(mbzp_impcrtlog, .25),
Q3 = quantile(mbzp_impcrtlog, .75),
min = min(mbzp_impcrtlog),
max = max(mbzp_impcrtlog))

#As for HBM4EU comparisons vs Eurostat data
#REGION distribution of the sample
library(scales)

# sample counts by Region

sample_region <- eda_all %>/
count (region) %>%
mutate(count_m = n / 1e6)

# pastel palette

cols <- c(

West = "#DECBE4",
North = "#CBD5E8",
East = "#B3E2CD",

South = "#FDBF6F")

# plotting raw counts
ggplot (sample_region, aes(region, n, fill = region)) +
geom_col(width = 0.7) +
scale_y_continuous(
labels = comma,
expand = expansion(mult = c(0, 0.05))
) +
scale_fill_manual(values = cols, guide = "none") +
labs(
X NULL,
y = "HBM4EU: number of children (6-12 yrs)",
title = NULL
)+
theme_minimal (base_size = 13) +
theme (
panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
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panel.background = element_blank())

sample_region <- eda_all %>%
count (region) %>%
mutate (

pct = round(n / sum(n) * 100,

#AGE distribution within HBM4EU

# Preparing sample age{region dist

sample_age_region <- eda_all %>%
group_by(region, ageyears) %>/

summarise(count = n(), .groups =
group_by(region) %>%
mutate(prop = count / sum(count)

ungroup ()

# Plot
ggplot (sample_age_region, aes(x
geom_col(width = 0.8) +

facet_wrap(~ region, nrow

2) +
cols,

scale_fill_manual (values
scale_y_continuous (
labels = percent_format(1),

expand = expansion(mult = c(O,
) +
labs(

x = "Age (years)",

y = "% within region",

title = NULL
) +
theme_minimal (base_size = 13) +
theme (

panel.grid.major = element_bl

panel.grid.minor element_bl

strip.background element_re
strip.text

axis.text.x

eda_all %>%
group_by(region, ageyears) %>%

sample_age_region <-

summarise(n = n(), .groups = "dr

group_by (region) %>%
mutate(pct = round(n / sum(n) *

ungroup ()

element_text (face
element_text(size

1))

ributions

"dI‘OP") %>Y%

) %%

factor(ageyears), y = prop, fill

guide = "none") +

0.05))
ank(),
ank(),
ct(fill = "white", colour = NA),
= "bold"),
= 10))

op") %>%

100, 1)) %>%

#DEGURBA distribution within HBM4EU
# Aggregating sample by region x DEGURBA

sample_region_deg <- eda_all %>%
filter(!is.na(degurba)) %>%
group_by(region, degurba) %>%

summarise (n
group_by(region) %>%
mutate (

pct n / sum(n),

n(), .groups = "drop") %>%

# share within region
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n_thousands = n / 1000 # count in thousands
) %>

ungroup ()

# plotting raw counts (in thousands), same with Eurostat palette

euro_palette <- c(

"Urban" = "lightblue",
"Towns & Suburbs" = "lightgreen",
"Rural" = "lightpink")

# Plotting percentages with the same Eurostat palette
ggplot (sample_region_deg, aes(x = region, y = pct, fill = degurba)) +
geom_col(position = "dodge", width = 0.7) +
scale_y_continuous (
labels = percent_format(1),
expand = expansion(mult = c(0, 0.05))

) +
scale_fill_manual(values = euro_palette) +
labs(
X = NULL,
y = "Share (%) within region",
title = NULL
) +
theme_minimal (base_size = 13) +
theme (
panel.grid = element_blank(),

legend.title = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1))

degurba_summary <- sample_region_deg %>%
mutate (
pct = round(pct * 100, 1) # convert to percent with 1 decimal
) Wh

select(region, degurba, n, pct)

#ISCED distribution within HBM4EU
# Summary sample by region x ISCED
sample_region_edu <- eda_all %>/
filter(!is.na(isced_hh)) %>%
count (region, isced_hh) %>
group_by (region) %>%
mutate(pct = n / sum(n)) %>%
ungroup ()
print (sample_region_edu)

sample_region_edu <- eda_all %>%
filter(!is.na(isced_hh)) %>%
count (region, isced_hh) %>
group_by(region) %>%
mutate(pct = n / sum(n)) %>%
ungroup() %>%
# re-ordering region and education levels
mutate (
region = factor(region, levels = c("North","South","West","East")),
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isced_hh = factor(isced_hh, levels = c("High","Medium","Low")))

ggplot(sample_region_edu,

aes(region, pct, fill = isced_hh)) +

geom_col(position = "dodge", width = 0.7) +

scale_x_discrete(limits

scale_y_continuous(labels = scales::percent_format(1l), expand = expansion(mult

scale_fill_manual (

= c("North","South","West","East")) +

# ensures x—axis order

values = c("High"="#ccebc5","Medium"="#b3cde3","Low"="#fbbdae"),

name = "Education level"
) +
labs(
x = NULL,
y = "Share within region",

title = NULL
) +
theme_minimal (base_size
theme (

panel.grid

axis.text.x = element_

element _

= 13) +

blank(),
text (angle = 45, hjust = 1))

#age-outcome scatter + (LOESS plot)

# ageyears numeric

eda_all <- eda_all %>} mutate(ageyears = as.numeric(as.character(ageyears)))

ggplot(eda_all, aes(x = ageyears, y = mbzp_impcrtlog)) +

geom_point(alpha = 0.3,

size = 1) +

geom_smooth(method = "loess", span = 0.75, se = TRUE) +

labs(
X

"Age (years)",

y = expression(log™MBzP~ (pg/g”creatinine))

) +

theme_classic(base_size

= 13)

#additional data for age-outcome HBM4EU

#Summary stats by age

age_summary <- eda_all %>’

group_by (ageyears) %>%
summarise(

n = n(Q),

mean = mean(mbzp_impcrtlog, na.rm = TRUE),

median = median(mbzp_impcrtlog, na.rm = TRUE),

sd = sd(mbzp_impcrtlog, na.rm = TRUE),

Q1 = quantile(mbzp_impcrtlog, 0.25, na.rm = TRUE),
Q3 = quantile(mbzp_impcrtlog, 0.75, na.rm = TRUE))

# Linear model (log-MBzP ~ age)

Im_age <- lm(mbzp_impcrtlog ~ ageyears, data = eda_all)

summary (1m_age)

# Quadratic model to test nonlinearity

1m_age2 <- 1lm(mbzp_impcrtlog ~ ageyears + I(ageyears~2), data =

anova(lm_age, lm_age2)

#Reference-Grid Cell Weights on a log-scale

#Numeric summary of grid weights
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c(0,0.05))) +



summ_w <- ref_grid_base %>%

summarise (

min = min(overall_weight),

pl = quantile(overall_weight, 0.01),
p5 = quantile(overall_weight, 0.05),
median = median(overall_weight),

mean = mean(overall_weight),

p95 = quantile(overall_weight, 0.95),
p99 = quantile(overall_weight, 0.99),
max = max(overall_weight),

N_heavy= sum(overall_weight > 0.01))
print (round(summ_w, 5))

# percentiles

gs <- ref_grid_base %>/
pull(overall_weight) %>/
quantile(c(0.01, 0.05, 0.95, 0.99))

#Plot with dashed lines at percentiles

ggplot(ref_grid_base, aes(x = loglO(overall_weight))) +
geom_histogram(binwidth = 0.1, fill = "grey70", color = "black") +
geom_vline(

xintercept = logl0(gs),

linetype = "dashed",
color = "red"
) +

scale_x_continuous(
breaks = seq(
floor (min(loglO(ref_grid_base$overall_weight))),
ceiling(max(loglO(ref_grid_base$overall_weight))),
by = 1),
labels = function(x) sprintf("le%+d", x)) +
labs(
x = expression(Log[10] “Cell~Weight),
y = "Count") +
theme_classic()
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