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Abstract
This study evaluates the comparability of aggregated mobile phone data (MPD) derived 
from passive network signalling events and traditional travel survey data for urban trans-
port planning, using the province of Liège as a case study. Our analysis demonstrates that 
while MPD captures a higher density of origin–destination (OD) connections, it cannot 
fully replicate all flows observed in surveys, underscoring the need for a complementary 
approach between the two data sources. Key mobility indicators, including average trip 
rates, hourly trip volumes, and structural patterns in daily OD matrices, show strong align-
ment. This structural similarity is rigorously quantified using a Mean Structural Similar-
ity Index with a distance decay effect. Furthermore, Kolmogorov-Smirnov tests confirm 
comparable trip length distributions between the sources. While MPD-based population 
estimates closely match official 3:00 AM census counts, discrepancies in specific zones 
highlight potential pitfalls for real-time population mapping. Our findings confirm that 
MPD provides a robust and valuable complement to traditional surveys, particularly in 
contexts with limited or infrequent survey data. The study offers critical insights for in-
tegrating MPD into urban policy planning, emphasizing its utility for validation and its 
caveats for population estimation.

Keywords  Travel survey data · Mobile phone data · Origin–destination matrices · 
Population counts · Trip length distributions

Introduction

Traditional urban transport planning relies heavily on household travel survey (HTS) data, 
a method long hampered by fundamental methodological constraints. Although these con-
ventional surveys are relatively detailed, they are not only updated infrequently due to high 
costs, but their expense also results in low sampling rates. While early efforts could achieve 
sample sizes of 1–3% through face-to-face interviews (Stopher and Greaves 2007), even 
these rates are compromised by declining response rates across all survey modes, includ-
ing postal, telephone, and face-to-face methods (Mohammadian et al. 2010). The pursuit of 

1 3

http://orcid.org/0000-0002-8468-8652
http://orcid.org/0000-0002-3569-1003
http://orcid.org/0000-0003-2498-1838
http://orcid.org/0000-0003-3098-2693
https://doi.org/10.1007/s11116-025-10708-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s11116-025-10708-4&domain=pdf&date_stamp=2025-12-4


Transportation

larger samples is riddled with challenges: diary surveys rarely exceed 10% sampling rate, and 
expansive censuses face systematic issues related to privacy and confidentiality (Saadi et al. 
2018). Furthermore, the data collection process itself is tedious and time-consuming. Con-
sequently, even a modest 1–2% sample of households in a large urban population requires 
surveying several thousand people through household interviews (Chandrasekar 2015), and 
the resulting data remain susceptible to sampling bias and reporting errors (Bwambale et al. 
2021). Given these inherent limitations, a consensus has emerged that traditional surveys 
must evolve to ensure temporal and spatial comparability in the era of big data (Bonnel and 
Munizaga 2018; Cottrill et al. 2013; Kamenjuk et al. 2017). In this context, mobile phone-
based measures represent a promising alternative, offering a reasonable proxy for individual 
mobility and enormous potential for urban transport modelling (Calabrese et al. 2013). As 
they are less costly and have a high penetration rate compared with conventional survey 
methods, mobile phone data (MPD) have been increasingly applied to measure the spatio-
temporal changes in the population (Calabrese et al. 2011; Demissie et al. 2015; Ahas et al. 
2015; Kamenjuk et al. 2017). However, unlike travel surveys’ enriched sociodemographics 
or contextual information, MPD lacks ground truth to be validated against, which remains 
unresolved (Bonnel and Munizaga 2018).

In addition to data obtained from mobile phone network operators and passive data col-
lected from third-party smartphone applications, numerous trials of novel travel survey 
techniques have been conducted, including surveys facilitated by smartphones, GPS, WiFi, 
Bluetooth, or the Internet. However, there is no single data source or collection method 
that can meet all of the needs for determining mobility in the field of public travel policies; 
digital data sources and new data collection technologies cannot replace the conventional 
techniques of the survey by telephone or face-to-face in the short or medium term (five 
years hence) (Richard and Rabaud 2018). Harding et  al. (2021) indicated that until sig-
nificant improvements in mode inference algorithms arise, purely passive location-logging 
smartphone apps cannot serve as full-fledged automated travel survey instruments. In real-
ity, operational surveys with substantial sampling combined with smartphone and internet 
techniques, such as the Future Mobility Sensing system in Singapore (Zhao et al. 2015) 
in 2012/2013 and MOBIS, a national-scale transport pricing survey combining traditional 
survey methods and active GPS tracking (Molloy et al. 2023) in Switzerland, are valuable 
and have gained increased attention. Besides, data fusion has a great potential to contrib-
ute to higher travel survey data quality as it may reduce respondent burden and make the 
fieldwork of data production leaner (Kuhnimhof et al. 2024). Some data fusion approaches 
are observed to get the best of both traditional survey and MPD for transportation planning 
applications (Caceres et al. 2020a; Bwambale et al. 2021).

In particular, Kuhnimhof et  al. (2024) elaborated two types of MPD that are specifi-
cally interesting in the context of travel survey data production: (i) long-term individual 
smartphone location history data (i.e., GPS-based smartphone tracks) and (ii) aggregate 
mobile phone movement data (i.e., the number of mobile phones or SIM-cards moving 
between GSM-calls). The first MPD type (i) is very rich on the individual level but may 
yield insights into the mobility of a small and selective proportion of the population, as 
it seems unlikely that more than just a tiny fraction of respondents would be willing to 
share their timeline data. The second MPD type (ii) can be derived from billing (call detail 
records, CDR) or network signalling data offered by mobile phone providers. Similarly, 
Calabrese et al. (2014) classified MPD type (ii) as cellular network-based data and further 
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subdivided them into event-driven data and network-driven data. Event-driven data are col-
lected when mobile communication (i.e., calls and SMS) or internet usage (e.g., browsing 
the web, or checking the mail server) takes place. Di Lorenzo et  al. (2011) called these 
events network connections and demonstrated that they constitute a superset of the ones 
contained in the call details records. The definition of network-driven MPD has been refined 
across several key studies. The network-driven data (including periodic location updates, 
handover, and mobility location updates) given in Calabrese et al. (2014) are based on the 
Location Area (LA), which is a set of base stations that are grouped to optimize signalling. 
Wang et al. (2018) characterized network-driven data as information collected on a periodic 
basis without the trigger of events or when mobile phones move from one cell to another. 
Bonnel et al. (2018) then provided a more detailed taxonomy, classifying the handover and 
LA update as itinerancy events, and offering the inventory of the signalling data stream, not-
ing that it contains various event types. Critically, they highlighted that active user actions, 
including communication events and internet usage, also generate digital traces within this 
network signalling data.

In addition, Wang et al. (2018) noted that their taxonomy aligns with empirical obser-
vations that network-driven data offer higher temporal resolution and are more stable, as 
they capture passive movements absent in event-driven records. This binary classification 
is consistently used; for instance, Huang et al. (2019) adopted the event-driven and net-
work-driven definitions from Calabrese et  al. (2014). However, Huang et  al. (2019) fur-
ther clarified the field’s terminological landscape, observing that terms like “mobile phone 
data”, “mobile network data”, and “mobile positioning data” are similar terms used in the 
literature to denote mobile phone network data, while particularly differentiating these from 
GPS data. They also confirmed that network-driven data generally possess superior spatio-
temporal granularity. Crucially, Huang et al. (2019) provided a comprehensive and detailed 
inventory of network-driven data (which they also term signalling or sightings data), speci-
fying that it captures location updates triggered by a wide range of network events. These 
include: phone power cycles (on/off); LA updates; handovers during calls or data sessions; 
making/receiving calls, SMS, or accessing internet services (recording the user’s location 
without communication details); periodic location updates when a phone is idle. Event-
driven mobile data include Internet Protocol Detail Records (IPDR), which are also known 
as internet access logs, and CDR, which typically consist of the communication details such 
as phone number, type (calls or SMS), ID, a timestamp, and call duration, etc.

This paper adopts a clear, two-level taxonomy for MPD to resolve terminological incon-
sistencies. At the highest level, we employ the classification by Kuhnimhof et al. (2024). Our 
research focuses specifically on the second MPD type (ii). To further refine this category, we 
apply the established sub-classification from Calabrese et al. (2014), which divides cellular 
network-based data into event-driven and network-driven data. This integrated framework 
allows for precise discussion, acknowledging that “mobile phone data” is an umbrella term 
encompassing both high-resolution GPS from smartphones and aggregate data from cellular 
networks, which are distinct in their generation, applications, and biases.

MPD type (ii) is of primary concern in the context of data fusion as it can provide large 
amounts of origin–destination (OD) matrices but lacks individual sociodemographics. 
Although deriving complete trip characteristics (including modes, purposes, and temporal 
patterns) from MPD remains challenging due to both the lack of sociodemographic attributes 
and restricted raw data access (as cellular network-based data are typically licensable only 
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from telecom operators under strict privacy safeguards), their derived OD matrices remain 
indispensable for four-step and activity-based models, even when working with pre-aggre-
gated or anonymized datasets. In addition, MPD can provide relevant information in the 
context of population mapping, overcoming the limitations of traditional data sources such 
as censuses and surveys (Khodabandelou et al. 2016). Consequently, rigorously assessing 
the comparability and reliability of MPD against conventional travel demand data sources 
becomes critical for informing transport planning practice. This necessity is evidenced by 
the growing research efforts to benchmark MPD against established surveys. Our work con-
tributes to this effort by demonstrating how the passive, network-driven MPD can comple-
ment and validate traditional surveys. Such validation is essential for policymakers and 
planners who increasingly utilise MPD, as it ensures the validity of these new data sources 
against established standards before they are integrated into urban planning practice.

 The remainder of this paper is structured as follows: Sect. 2 provides a review of the 
relevant literature. Section 3 details the data and methodology employed. Section 4 presents 
the findings of the comparative analysis, and Sect. 5 discusses their implications. Finally, 
Sect. 6 concludes the study by summarizing the key findings and outlining directions for 
future research.

Literature review

To contextualise our research, this section synthesises existing studies that have compared 
MPD (Type ii) with traditional surveys. Di Lorenzo et  al. (2011) aggregated trips from 
millions of individual mobile phone users (with network connections) in the Boston Metro-
politan area and obtained an average of 5.0 one-way trips per day during the weekday and 
4.5 during the weekend. They compared them with the US National HTS, which evaluated 
this number as 4.2 during weekdays and 3.9 during weekends. Furthermore, when trips 
were aggregated at the census tract and county levels, the OD flows measured using MPD 
exhibited a strong correlation with the estimates from the US census.

Deville et al. (2014) applied phone call activity aggregated by towers from more than 1 
billion mobile phone call records from Portugal and France to estimate population densities 
at national scales. They then compared these outputs from MPD and remote sensing meth-
ods at night with baseline census-derived population densities. Pearson correlation coef-
ficients of 0.89 and 0.92 were found for MPD and remote sensing methods, respectively.

Alexander et al. (2015) inferred users’ homes and workplaces from CDR data for the 
Boston metropolitan area and benchmarked against the NHTS (National Household Travel 
Survey) departure time distribution. Additionally, they found that the CDR trips compared 
well with trips from two local household travel surveys by the time of day and purpose. The 
relative share of average weekday trips for each trip purpose is comparable for the CDR 
and survey data. Moreover, the total CDR and local survey trips implied comparable aver-
age weekday trips per person, namely, 3.50 and 4.24, respectively. Lastly, the correlation 
coefficients of the trip matrices improved significantly with aggregation to the town level 
compared with the tract level.

Çolak et al. (2015) discussed how cell phone data can be processed to inform a four-step 
transportation model. The illustrated data treatment approach used only CDR and population 
density to generate trip matrices in two metropolitan areas: Boston, Massachusetts, and Rio 
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de Janeiro, Brazil. It is worth noting that the spatial resolution of these datasets differs: Rio 
de Janeiro are provided at tower-level resolution, while Boston’s coordinates derive from 
a triangulation algorithm applied by the data provider. Furthermore, the validation sources 
differ. For Boston, census and travel diary survey commuting data were used, whereas for 
Rio de Janeiro, OD estimates by purpose and time of day were used. Consequently, a high 
correlation between the CDR and survey data based on the total number of trip productions 
and attractions was found in Boston, approaching a correlation coefficient of 1. In compar-
ing home-based work trips for each OD pair during the morning peak, a correlation of 0.84 
was observed for Rio de Janeiro, whereas Boston exhibited a correlation of 0.99.

Phithakkitnukoon et al. (2022) inferred large-scale temporary migration trips from CDR 
of mobile phone users in Portugal, and analyzed their spatial determinants based on urban 
assets derived from Google Places data. Trips that involve a temporary change of the place 
of residence and are potentially long-distance trips, such as annual holiday travel, business 
trips, and long-holiday travel, can be considered as temporary migration in this study. Infor-
mation about text messages and data usage (Internet) were not included in this anonymized 
CDR data. Statistically, the CDR-based population was highly comparable with the actual 
census data, with a relatively high correlation coefficient (R-value) of 0.94.

Bonnel et al. (2018) compared the trip matrices obtained from MPD with those obtained 
from the travel survey collected by phone using a representative sample of the Rhône-
Alpes region population. The signalling data contain several types of events: communica-
tion events (calls and SMS), handover and LA update, attach/detach events, and obviously 
data/internet connections. First, to be comparable to survey data, they chose their cellular 
data from 3:00 AM to the next working day, 3:00 AM, and aggregated the 77 traffic sectors 
into 14 macro zones so that most of the OD pairs have a sufficient number of trips. Then, 
they regressed the number of mobile phone trips by the number of survey trips and showed 
that the structure of the two matrices was very similar, with a coefficient of determination 
(R2) of 0.96 and a slope very close to 1. However, these very encouraging results were 
accompanied by other less satisfactory results in the case of some OD pairs for which the 
disparities attained 70 to 80%.

Caceres et al. (2020a, b) provided the main qualitative and quantitative findings derived 
from comparative analysis for MPD and HTS mobility matrices for the urban agglomera-
tion of Malaga, Spain. The data used for this study are based on aggregated and anonymised 
phone events collected, which consist of active interactions related to phone calls and text 
messages, as well as passive interactions that occur in the background (or idle status). Their 
qualitative discussions involved cost and time consumption, sample design, feasibility and 
timeliness, and level of detail. The quantitative findings highlighted demonstrations of simi-
larities between the two kinds of OD matrices based on Pearson’s coefficient and the Mean 
Structural SIMilarity (MSSIM) index. They concluded that the comparative analysis of 
sources was more consistent at the macro-zone level than at the transport zone level.

Landmark et al. (2021) compared the MPD-based OD matrices constructed using public 
transport data, turnpike logs, and traditional travel surveys for the region of the Oslo met-
ropolitan area. They aggregated data from a finer spatial level to a macro spatial level for 
comparison with travel surveys. Their phone data are based on CDR, IPDR, as well as cell 
tower switches (which occur when a device is moving and leads to a shift in the cell tower 
channelling the activity). They constructed an OD trip distribution difference matrix and 
conducted a correlation analysis, finding a match with an R2 of 0.82. Additionally, they 
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validated the population counts estimated with MPD against official population statistics. In 
most districts, the number of residents exceeded the number of mobile signals, which can 
be explained by the fact that not all residents own mobile phones.

Fekih et al. (2022) used the same MPD and travel survey source data as Bonnel et al. 
(2018). However, their comparison focused on analyzing travel demand differences at the 
temporal level and emitted trips from each geographical zone. They concluded that MPD 
could not correctly capture trips performed during the morning rush hours, leading to an 
underestimation of the total trip volume observed from MPD. However, the hourly global 
demand profiles and the total number of trips emitted by each zone, estimated from both 
data sources, were highly correlated.

Existing research demonstrates a progression in the types of MPD used for mapping 
population and trips. Early approaches often relied solely on CDR from event-driven data 
(where data are recorded only during the active phone use), as seen in Deville et al. (2014); 
Alexander et  al. (2015); Çolak et  al. (2015), and Phithakkitnukoon et  al. (2022). Subse-
quently, researchers began integrating broader MPD datasets; for instance, Di Lorenzo 
et al. (2011), combined CDR with events triggered by internet usage, while Landmark et al. 
(2021) utilized a mix of CDR, IPDR, and cell tower switches. Finally, a more recent and 
advanced category employs network-driven MPD derived from passive network signalling 
events, which offers a more comprehensive data stream for enhancing trip mapping, as dem-
onstrated by Bonnel and Munizaga (2018) and Caceres et al. (2020a).

The literature on MPD for transport planning is characterised by inconsistent terminol-
ogy, which hinders comparability across studies. While foundational work like that of Cal-
abrese et al. (2014) provided a clear classification of MPD, it appears that various literature 
may use different synonyms to refer to these data types. This ambiguity necessitates a clari-
fication of existing typologies. In response, our work provides a consolidated overview of 
MPD classifications to resolve synonymy and enhance cross-study comparability. To further 
clarify this landscape, we focus on network-driven MPD, which are generated from pas-
sive signalling transactions. Unlike CDR, which only log billable events, this data stream 
captures a phone’s interactions with the network simply by being powered on, including 
events like unanswered calls, switching the phone on and off, and location updates as noted 
by Bonnel et al. (2018). This results in a more continuous and comprehensive data source.

Empirical evidence demonstrates both the promise and limitations of MPD. Comparative 
studies demonstrate strong correlations between MPD-derived OD flows and conventional 
survey/census estimates, particularly when data are aggregated spatially (e.g., to census 
tracts or macro-zones) or temporally (e.g., daily trips). However, significant challenges 
remain. CDR-based studies, for instance, are dependent on users’ calling plans, making 
them less reliable for analysing specific periods like morning commutes (Gundlegård et al. 
2016; Çolak et al. 2015). More fundamentally, network-driven MPD also reveals persistent 
issues, including significant disparities in specific OD pairs and systematic underestimation 
of total trip volumes, especially during peak hours introduced by (Fekih et al. 2022). Fur-
thermore, as noted by Landmark et al. (2021), the validation of MPD is inherently limited 
by the lack of comprehensive ground-truth data. Given these considerations, it is essential to 
continue evaluating the degree of concordance between travel surveys and network-driven 
mobile phone-based measures.

This paper compares network-driven MPD with the web-based household travel surveys. 
Specifically, the MPD used in this study is derived from passive network signalling records, 
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which are distinct from mobile event-driven data. We do not employ CDR data in our analy-
sis. The results of this study can broaden our comprehension of aggregate MPD compared 
to a diary survey conducted over compatible periods. This study’s strength lies in directly 
comparing MPD and a web-based travel survey conducted within a compatible timeframe 
and geographical area. A key strength of this research lies in leveraging the compatible col-
lection of MPD and web-based travel surveys, providing a unique opportunity to assess their 
comparability more accurately. The main contributions of this paper are as follows: 

1.	 Our study uniquely compares network-driven MPD and web-based travel surveys con-
ducted concurrently in Liège, a combination previously underrepresented in transporta-
tion literature.

2.	 We introduce an innovative methodological framework employing MSSIM, signifi-
cantly enhancing the structural comparison accuracy of OD matrices compared to tra-
ditional statistical metrics.

3.	 We demonstrate that MPD can robustly validate and complement traditional travel sur-
veys, especially valuable in contexts where survey samples are small or infrequent.

4.	 We highlight the importance and potential pitfalls of using MPD for real-time urban 
population estimates, with direct implications for urban policy planning, validating 
MPD against official census benchmarks.

These contributions demonstrate the potential of MPD to complement and enhance tradi-
tional travel surveys, offering new insights for transport policy and planning.

Data and methods

Data

We used three primary data sources (Table 1) to explain the comparability. The first source 
is MPD, including aggregated hourly mean OD matrices and extrapolated population pres-
ent in each mobile phone cell for the province of Liège. OD matrices were provided by the 
regional government (SPW Mobilité et Infrastructures) in the form of hourly mean matrices 
(7 days × 24 h × 2 periods).

The MPD originates from the network operator Proximus, which holds about 40% of 
the market share in 2022 mobile phone operations in Belgium. Proximus processes over a 
billion transactions daily to derive the OD matrices. Each transaction of an individual Proxi-
mus user is geolocated using the coordinates of the antenna segment where it occurs, creat-
ing a Voronoi diagram representing Proximus’ cellular coverage in Belgium. Therefore, data 

Table 1  Comparison of three data sources
Data Spatial resolution of the finest 

granularity
Geographical coverage Timeframe

MPD NSI6 (sub-commune) Province of Liège in 
Belgium

15.01.2018–
08.02.2018,
23.02.2018–18.03.2018

MONITOR Household postal code Belgium 03.2016 to 09. 2017
STATBEL 
population

100 m by 100 m grid Belgium 2016
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is not stored per transaction per user, but as registration by cellular location per user with a 
time stamp of start (first appearance of the user on this cellular location) and a time stamp 
end (last appearance of the user on this cellular location). When a user performs several 
consecutive transactions on the same cell location, these transactions are grouped together. 
To comply with privacy regulations, reports resulting from this Proximus contract can only 
contain data relating to groups of at least 30 people, to exclude any risk identification.

Transactions are classified into ‘staying points’, where an individual remains for more 
than an hour. This means that the individual must perform two or more transactions on this 
cell location with at least one hour between the first and the latest. Other transactions where 
the individual stays for less than an hour are defined as ‘transit points’. These movements 
are mapped to generate flow trajectories from origins to destinations.

Aggregation of this data is conducted in both space and time, allowing data to be reported 
hourly, daily, or averaged over several days. This method provides detailed insights into 
user movements and enables the creation of comprehensive OD matrices that reflect the 
travel behaviour of the entire user base. The two periods for which the hourly means were 
tabulated concern regular and holiday weeks (the Carnival and Easter holidays). Besides, 
SPW provides population data in the form of half-hourly changes in population in each 
cell derived from MPD for the day considered (7 days × 48 half-hours × 2 periods). The 
extrapolation takes into account factors, including the level of activity of users observed, 
Proximus market share, GSM penetration, and number of inhabitants in the research area. 
The province of Liège has been split into 310 zones (Fig. 1 provided by SPW) representing 
the unions of polygons built from the Voronoi diagram. The black delineations in Fig. 1 
show the 84 municipalities in the province of Liège; the coloured ones are the 310 mobile 
phone cells.

Fig. 1  Delineation of floating mobile data Proximus cells in the province of Liège
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Due to privacy legislation, we were only provided with the aggregate OD matrices and 
could not access the raw MPD with individuals’ trip information. Notwithstanding, we can 
compare the mobile phone-based origin–destinations with the locations described by STAT-
BEL (Belgian Statistical Office). We used STATBEL’s NSI coding system, which assigns a 
numeric code to each administrative unit, to check how closely they match. As a result, 270 
out of 310 mobile phone zones have the same NSI6 codes as STATBEL’s sub-communes 
(360 in the province of Liège). However, when we spatially aggregated the 310 mobile 
phone zones back to the municipality level, we made a comparable visualization with 84 
municipalities (NSI5) from STATBEL (Fig. 2). After that, we computed the spatial inter-
section ratios of Fig. 2. The result shows that around 75% of zone pairs have at least 70% 
spatial matches. A more elaborate comparison discussion can be found in Gong et al. (2021).

The second data is from a Belgian national mobility survey called MONITOR, con-
ducted entirely online from March 2016 to September 2017. A sample of 10,632 Belgians 
was interviewed to reflect the Belgian population based on age, gender, activity, and region 
of residence. To compare with mobile phone-based OD matrices, we derived OD matrices 
obtained from MONITOR. Since we focused on the province of Liège, trips whose origins 

Fig. 2  Mobile phone cells compared with STATBEL (Belgian Statistical Office) zones at the municipality 
level
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or destinations are not inside the research area have been filtered out. After the data clean-
ing and preprocessing, MONITOR daily trips were prepared, including 1167 trips from 
410 participants throughout the province. The population sample represents 0.037% of the 
province’s total population. We applied weights of MONITOR to scale the sample popula-
tion up to the true population level and presented the weighted percentage by age group in 
Table 2. Since MONITOR begins tracking at age six, we compared its age groups to the 
actual population starting from six years old as well. Kolmogorov–Smirnov (K–S) tests 
were performed to examine whether populations are drawn from the same age distribution. 
Consequently, the p-value is 0.963, showing that there is no significant difference between 
the official distribution and the MONITOR distribution. Although the K-S test indicates that 
the observed differences are statistically non-significant, they may still reflect underlying 
disparities caused by survey sampling procedures and potential selection biases inherent in 
web-based approaches, particularly among younger and older demographic groups.

The last source is the official population data that can be downloaded from STATBEL. 
We chose a vector file of the population according to the km2 grid showing the population 
residing in Belgium in 2016 on a grid of a square area with sides of 1 km. We cut the grid 
into a smaller (100 m by 100 m) one and retained the value of the larger grid that it was 
associated with using the ArcGIS Create Fishnet tool. As mobile phone cells differ from bor-
oughs, we approximated the official population at a spatial level of mobile phone cells based 
on the new grid data. After that, MPD can be validated against official population statistics.

Methods

To address the lack of detailed insight into the compilation of mobile phone-based OD 
matrices and population extrapolation, we undertook additional comparative analyses. 
These were based on data aggregation into comparable statistics at the municipality level for 
three reasons. First, spatially, mobile phone cells can find the main match at the municipal-
ity level instead of the sub-commune level. Second, OD matrices derived from both MPD 
and MONITOR are overdispersed at their collected spatial granularity. Moreover, the online 
survey data is not as temporally precise as the MPD. The finer the spatial resolution, the 
higher the probability that the number of trips will fall below the required threshold, such as 
a non-zero value. Aggregation at the macro level can improve the correlation between MPD 
and travel surveys that align with existing related works.

Thus, we started by comparing mobile phone-based OD matrices in the regular week 
with those constructed using MONITOR. The departure time from the origin and the arrival 
time at the destination have been considered in the study. First, we compared the ongo-
ing hourly number of trips (departures minus arrivals). Next, we demonstrated the sparsity 
of OD matrices, detected the level of similarity, and constructed a distribution difference 
matrix to quantify the discrepancies between the two OD matrices. We used the structural 
similarity index (MSSIM) (Djukic et  al. 2013), including distance decay effect (Caceres 
et al. 2020b), to capture the underlying structural similarity between two OD matrices:

Table 2  Sample population by age groups in MONITOR
Group 1 2 3 4 5 6 7
Age 6–11 12–14 15–17 18–34 35–49 50–64 65+
MONITOR percentage (%) 8.97 2.07 3.20 31.45 21.44 20.60 12.26
STATBEL Percentage (%) 2.76 1.39 1.46 16.27 21.47 23.18 33.47
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MSSIM(A, B) = 1

M

M∑
j=1

SSIM(aj , bj)� (1)

Here we compared the similarity between MPD and MONITOR OD matrices by consider-
ing the OD pairs (trip flows between zones) at the municipality level. The MSSIM index 
ranges from − 1 to 1, with a value of 1 indicating a perfect match. Let us consider two square 
matrices A and B of size n × n, and a (window/kernel) square box a (and b) of size k × k 
that slides over the full matrix.

	
SSIM(a, b) = 2 · µa · µb + C1

µ2
a + µ2

b + C1
· 2 · σab + C2

σ2
a + σ2

b + C2
� (2)

At each step, we can compute Equ. 2, which includes three statistical metrics µa(b), σa(b) 
and σab to obtain SSIM(a, b). C1 and C2 are constants estimated from the literature. They 
ensure enough stability when the moments are close to 0.
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where µj  is the weighted average of the jth window, wl
j  is the weight of cell l of the jth 

window, al
j  is the element l of the jth window, dl is the Euclidean distance between the 

central cell and the lth cell, σ is the variance of the distances between the central cell and 
all the other cells.

	
wl

j = exp
(

d2
l

σ

)
� (6)

The distance between two OD pairs is given by

	 d(ODpairi, ODpairk) =
√

(xOi − xOk)2 + (yOi − yOk)2 + (xDi − xDk)2 + (yDi − yDk)2� (7)

where x and y indicate geographic coordinates of the controids of origin and destination cell 
towers.

Moreover, we performed correlation analyses for OD trips, origins and destinations from 
two data sources. Results are explained in the “Measuring (dis)similarity between MPD 
and MONITOR OD matrices” subsection. After that, we examined the comparability of 
trip length distributions between two data sources in the “Trip length distributions” subsec-
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tion. Finally, we validated mobile phone-based extrapolated population presence using the 
official population statistics from STATBEL for the 84 municipalities (in the “Validation of 
MPD against population statistics” subsection).

Comparative analysis

Overall trip rate

Based on MPD collected during regular weeks, we derived an average of 1.9 trips per 
day per inhabitant in the province of Liège. Excluding inhabitants under 12 years old, the 
derived trip rate is 2.2, which aligns with the population carrying mobile phones with SIM 
cards. The trip rate was calculated by dividing the total number of trips in MPD-based OD 
matrices by the province’s actual population size. In the corresponding year, the province of 
Liège had a registered population of 1,102,531. According to the national mobility survey 
MONITOR, Belgians make an average of 2.2 daily trips, comparable with the average trip 
rate derived from MPD. We compared the two OD matrices based on a two-sample t-test 
(t-statistic= − 0.42, p-value=0.67), indicating that the average trip rate of the travel survey 
data does not significantly differ from the MPD trip rate.

Hourly ongoing trips

Figure 3 (left) presents the normalized cumulative trip departures and arrivals derived from 
both MPD and MONITOR. Normalization was performed using the hourly cumulative 
value divided by the maximum value. Slight deviations are observed between departures 
and arrivals since not all travellers return to their origins at the end of a 24-hour period. 
Unlike other times of the day, the MPD-based OD matrices provide a total trip value for 
the period from midnight to 5:00 AM. To obtain the hourly mean values for this period, we 
divided the total trip value by five. The number of trips during this period is relatively small 
for the travel survey data, starting from 5:00 AM, when the first trip departures are captured 
in the travel survey data (see Fig. 3).

Figure 3 (right) presents the net difference between hourly cumulative trip departures 
and arrivals over a full day for both MPD and MONITOR. In general, the two curves have 
a similar pattern. However, the variability in travel survey data during the daytime is more 
significant than in MPD. In particular, there are more departures than arrivals at 7:00 AM 

Fig. 3  Cumulative inbound and outbound trips (left) and ongoing trips (right) in the province of Liège
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and 4:00 PM, whereas there are more arrivals than departures from 0:00 AM to 5:00 AM 
in MPD. We can observe that MPD exhibits a clear bimodal distribution of trips, aligning 
with conventional morning and afternoon peak periods observed in urban mobility studies. 
In contrast, the travel survey data show greater variability throughout the day, potentially 
reflecting reporting errors (e.g., respondents omitting short/regular trips) and sampling limi-
tations. This difference can be explained by the sparsity in OD matrices. From 0:00 AM 
to 5:00 AM, ongoing trips derived from MPD are negative, showing that the number of 
arrivals (from the previous day) is much higher than departures during this period, while 
ongoing trips derived from MONITOR do not have any negative values and have one more 
peak at noon than MPD during the day. Since our MPD is derived from network signalling 
records, idle mobile devices periodically pinging towers when stationary (e.g., at homes/
hotels) could inflate arrival counts. In addition, the MPD’s higher arrival-to-departure ratio 
during late-night/early-morning hours may stem from night-shift workers returning home 
or travelers arriving via late-night transit, which is often underreported in surveys. Further-
more, MPD undersamples short-duration trips (e.g., lunch breaks, errands) due to technical 
thresholds for trip detection while travel surveys explicitly capture short, purpose-driven 
trips (e.g., lunch breaks, school pickups, errands) that dominate midday.

Sparsity of OD matrices

An absence of trips between an OD pair indicates that these two zones are not generating or 
attracting trips from each other. The sparsity in OD matrices is due to a combination of sev-
eral factors, including localised travel patterns where most trips occur within nearby zones 
rather than between distant ones, the distribution of residential, commercial, and industrial 
areas, varying transportation infrastructure capabilities, and typical travel distances by dif-
ferent modes. The data collection methods also play a role in shaping the sparsity of an 
OD matrix, and this factor is of interest in this comparative analysis. Figure 4 presents the 
ratio between the number of reported trips in MONITOR by residents of a zone and the 
population living in the corresponding zone, expressed as the number of reported trips per 
1k inhabitants. It is evident that several zones have missing values and that this ratio varies 
across space. Few zones exhibit a ratio of 5 or more.

If we identify either null (missing values) or zero ones as zero number of trips in OD 
matrices, MPD has 2088 OD pairs with non-zero daily mean trip flows, while MONITOR 
has 433. By comparing MPD and MONITOR OD matrices cell by cell, we found that only 
388 non-zero cells in the survey-based matrix correspond to non-zero cells in the MPD-
based matrix. Despite the impression that MPD captures mobility in a higher percentage of 
OD connections, MPD cannot cover all possible OD flows either (388 < 433), indicating 
that MPD and travel survey data should complement each other. If we define the sparsity of 
an OD matrix as the number of zero-value pairs divided by the total number of pairs, then 
the sparsity of the survey-based matrix (0.94) is higher than that of the mobile phone-based 
matrix (0.70), which can be seen in Fig. 5. Blue cells (logarithmic scale) of matrices repre-
sent OD pairs with non-zero trips, the rest are OD pairs with zero trips.

Next, we normalized daily trip values by origin so that the sum along the columns (des-
tinations) equals 1. The same was applied to trips by destination. To quantify the discrepan-
cies in cellwise trips with respect to origins and destinations between the two data sources, 
we constructed distribution difference matrices. To know which zone originates/attracts no 
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trips, the trip number threshold was set as zero. As a result, 70 out of 84 municipalities 
were identified based on 388 non-zero OD pairs. Figure 6 shows the cellwise difference 
based on the difference between MPD and MONITOR. Blank cells represent OD pairs 
that have no matched trips observed for MPD and MONITOR. Deep green cells show that 
MPD has higher trip generation/attraction shares than MONITOR and are often found for 
intrazonal trips. Red cells demonstrate that MONITOR has higher trip generation/attraction 
shares than MPD. The analysis reveals systematic differences between MPD and survey trip 
patterns. MONITOR records a lower share for intrazonal OD pairs, as MPD’s continuous 
tracking may capture short movements that surveys underreport. The presence of blank 
cells, indicating no trips recorded by either source, highlights the unique mobility patterns 
captured by each method. These divergences reflect fundamental differences in how each 
source operationalises “trips" rather than a matter of superiority–with MPD capturing physi-
cal tower connections and surveys recording perceived travel episodes. This suggests that 
the combined use of MPD and surveys could offer a more comprehensive understanding of 
mobility.

Fig. 5  Sparsity of matrices based on the 84 zones of MONITOR (left) and MPD (right)

 

Fig. 4  Spatial sparsity: ratio of reported trips (MONITOR) to population
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Measuring (dis-)similarity between MPD and MONITOR OD matrices

Evaluation using statistical metrics

First, we conducted a statistical comparison considering the 388 OD pairs with non-zero 
trip flows for both MPD and MONITOR. Trip flows from the two sources correlate with 
a coefficient of determination R2 of 0.680 and a Pearson correlation coefficient of 0.893. 
To enhance readability, we represented each point in Fig. 7a on a logarithmic scale of the 
trip count. The blue line is the diagonal. We can observe more deviations between MPD 
and MONITOR for low trip counts, which is logical as MPD is based on signalling detec-
tion, and the derived trip flow in Fig. 7a is an average of daily trips during a week, while 
survey data is collected based on a stratified random sample and collects data continuously 
throughout the year.

Second, we compared total trip generation and attraction for the identified 70 municipali-
ties. Each point represents a zone’s total trip generation (Fig. 7b) and attraction (Fig. 7c) 
on a logarithmic scale. We derived R2/Pearson correlation coefficient of 0.919/0.927 and 
0.959/0.964 for trip generation and attraction, respectively. The size of each point is deter-
mined by the population of the municipality divided by 300. MONITOR tends to slightly 
underestimate trips that originated from/arrived in more populated zones (identified by 
larger dots), while MPD overestimates trips in less populated zones. Besides, MPD and 
MONITOR are less correlated based on trips that originated/arrived in sparsely populated 
zones.

Note that the derived R2 measures are strongly driven by the largest number of flows if 
the sparsity of the OD matrix is relatively high. This is the case for the MPD and MONITOR 
OD matrices. Only two OD pairs out of 388 have intrazonal daily flows above 100k and one 
above 200k. They are Verviers and Liège, the municipalities with the most dense population 
in the province of Liège. Another interesting finding from survey-based OD trips is that we 
observed the shares of three OD flows are 100%, meaning that only one destination exists 
for the given origin at the municipality level. The reason behind this is the missing OD trips 
in travel survey data, which is not insignificant for an OD matrix. Among three OD flows, 

Fig. 6  Cellwise difference in trip generation shares (left) and trip attraction shares (right) between MPD 
and MONITOR
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there are two interzonal flows. However, when we checked the complete mobile phone-
based OD matrices, the top share of OD flows was always the intrazonal flow. Nevertheless, 
destinations in these two interzonal flows are still relatively more attractive to origins than 
other external destinations.

The structural similarity index (MSSIM)

The conventional statistical metrics to measure similarity, such as the Pearson correlation 
coefficient and/or the coefficient of determination, may not fully capture the similarity in 
the presence of sparse matrices. To deepen the analysis, we used the structural similarity 
index (MSSIM), including distance decay effect, to capture the underlying structural simi-

Fig. 7  Correlation of OD trip flows (a), trip generation (b), and trip attraction (c) between MPD and 
MONITOR
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larity between two OD matrices. The MSSIM index ranges from − 1 to 1, with a value of 
1 indicating a perfect match. We compared the MPD and MONITOR OD matrices using 
four different window sizes (3, 5, 7, and 9). To ensure that the observed similarity is due to 
an existing underlying similarity structure rather than chance, we also systematically com-
pared random matrices with MPD. In Fig. 8, we observed that the MSSIM indicator clearly 
captures the underlying structure, as the metric is consistently more than double compared 
to random matrices. The MSSIM is 0.68 if k=3, which shows that MPD and MONITOR OD 
matrices are similar.

Trip length distributions

We compared trip length distributions between MPD and MONITOR. Although both data 
sources can provide trips that originate from the province of Liège and arrive in other prov-
inces, and the trips that depart from other provinces eventually arrive in the province of 
Liège, the comparison requires more details to define a trip’s length whose origin or des-
tination is located outside the given zone. Therefore, we only chose trips with origins and 
destinations located in the province. In addition, travel survey data provides only one-day 
trip plans for each respondent, which makes it challenging to construct multi-day trip plans. 
To compare on an equal basis, we considered daily mean OD flows of MPD in the regular 
week and Euclidean distances between origin and destination centroids to compute trip 
length distributions. Figure 9 shows that MONITOR trip length distributions fit well with 
those of MPD. However, MONITOR has a lower proportion of short-distance trips (< 2 km) 
and a higher proportion of long-distance trips (>10 km). MONITOR records a lower share 
for intrazonal and short-distance OD pairs, as MPD’s continuous tracking may capture short 
movements that surveys underreport. In contrast, MONITOR exhibits higher shares for cer-
tain longer OD pairs, which is likely because surveys explicitly record purpose-driven long 
trips, such as occasional leisure, while MPD may miss trips that lack tower handovers or 
occur in areas with sparse coverage. When using Euclidean distances between antenna cell 
centroids, MPD systematically overestimated short-distance trips (<2 km). This bias was 
substantially reduced by implementing network-based shortest path distances (derived from 
OSM), which better reflect actual travel routes (see Fig. 4 in Gong et al. (2021)).

In addition, K–S tests were performed to examine whether mobile phone-based and 
surveyed trip length distributions at the municipality level are drawn from the same dis-
tribution. For each municipality, the trip length distribution of trips originating in that 

Fig. 8  Comparison of MSSIM between MPD and 
MONITOR, and between MPD and random data
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municipality is computed. Most of the p-values (94.4%) vary from 0.357 to 1.0, indicating 
a similar distribution for municipalities between MPD and MONITOR trip lengths. There 
is only one zone with a p-value less than 0.05, which has only one interzonal destination 
reported in MONITOR.

Validation of MPD against population statistics

To further validate the MPD, we compared the population presence in traffic analysis zones 
to official population statistics from STATBEL. Population presence in traffic analysis zones 
fluctuates as people travel between different places during the day. However, we can assume 
that the count should correspond to national population statistics at some point in the day 
(Landmark et  al. 2021). To validate this assumption, we compared the population from 
STATBEL and the extrapolated population based on MPD for different time slots (24  h 
of the day × 7 days) in a regular week. The absolute deviation is defined as the difference 
between the STATBEL and MPD population counts for each mobile phone cell. In par-
ticular, some time slots, such as 3:00 AM, were selected to present the difference and sum-
marised in Table 3. Notably, the median population differences across all cells are smaller 
during nighttime hours compared to the daytime periods. This expected pattern reflects 
greater residential stability at night, as most individuals return to their primary residences 
during these hours, thereby improving the alignment between mobile phone-derived popu-
lation estimates and official statistics.

Figure 10 presents the absolute population differences at 3:00 AM for all mobile phone 
cells. In this visualization, the positive difference represents the number of residents 
exceeding the population present in the zone extracted from MPD, and a negative differ-
ence indicates that the MPD-estimated population is smaller than the census-based resident 
population. While a majority of cells show close alignment, systematic biases emerge in 
specific zones: some cells have persistent positive differences (dark green in Fig. 10) indi-
cating underestimation of the population by MPD relative to official STATBEL census data, 
and some have persistent negative ones (dark pink in Fig. 10) indicating overestimation.

We chose two representative cells called Bruyeres (darkest green) and Eupen (darkest 
pink), respectively, to further evaluate the mobile phone-based population during the night-
time hours. Figure 11a and b shows the percentage of population difference, normalised 
by population figures from STATBEL, for these two cells from 7:00 PM to 4:30 AM over 

Fig. 9  Comparison of trip length distributions 
between MONITOR and MPD
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the course of a week. We can see that the extrapolated population based on MPD for these 
two cells has a 40 to 50% bias to the population estimated from STATBEL. The former cell 
is one of the residential areas in the province’s capital city, Liège. The latter is the whole 
capital of the German-speaking Community of Belgium. Regarding the population density, 
the former is much higher than the latter. The population is underestimated by MPD in Fig. 
11a and overestimated in Fig. 11b.

In addition, we plotted the normalised hourly population difference for all mobile phone 
cells from 7:00 PM to 4:30 AM over the course of a week as 11c. Most of them lie between 
− 0.5 and 0.5. The red dashed line is the median value. Values smaller than − 1 mean that the 
STATBEL population is much smaller than the mobile phone-based extrapolated popula-
tion, which takes a smaller proportion in this study.

Discussion

Comparing MPD and travel surveys is challenging as the definition of a “trip” differs 
between the two data sources. Trips reported in the travel survey have the respondents’ self-
reported departure and arrival times and locations. Mobile phone users’ trip properties have 
to be characterised by various methodologies based on mobile devices connecting to cell 
towers and the inference of mobility patterns. In this study, we discuss aggregated MPD and 
travel surveys through a systematic comparative analysis. The methods we used to evaluate 
mobile phone-based OD matrices are robust and can be employed to derive similar results 
from other travel surveys. We assess the similarities and differences between MPD and 
MONITOR and between MPD and the population census as discussed below.

Fig. 10  Absolute population difference between 
STATBEL and MPD at 3:00 AM
 

Hour Median Mean Std. Dev.
0:00 − 23 148 1812
3:00 8 250 1855
9:00 149 238 1886
14:00 190 210 2187
19:00 − 37 117 1797

Table 3  Statistics of population 
differences for all cells in the 
province of Liège
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The web-based travel survey has a relatively small number of respondents for the prov-
ince of Liège, which is less than 0.04% of the population. Therefore, the sparsity of the 
survey-based OD matrix is relatively high and will increase if we expand the analysis to an 
hourly level. That’s why we focused on the comparison of OD matrices at the daily level. 
In general, Fig. 6 shows that MPD and MONITOR have a similar trip generation/attrac-
tion share looking into OD matrices, apart from intrazonal trips and OD cells with possi-
bly missing values. About 85% of OD pairs have differences (MPD minus MONITOR) in 
trip generation/attraction, the relative differences lying in the range of [ − 20%, 20%]. The 
extremely high difference with respect to origins and destinations happened in intrazonal 
trips or interzonal trips from MONITOR with only one destination existing for the given 
origin. This can be explained by the effect that travel survey data cannot observe all possible 
OD pairs. Nevertheless, we can see OD trip flows from MPD strongly correlate with travel 
survey data, especially with respect to aggregate departures from origins and arrivals in des-
tinations. Moreover, unlike the linear correlation coefficient, which is more influenced by 
the sparsity of matrices, Fig. 8 shows that the MSSIM index captures the similar structural 
aspects of MPD OD pairs related to MONITOR OD pairs at a daily level.

The MPD given in this study is aggregated by transactions of individual Proximus users 
defined by a time stamp and cellular localisation. Only when an individual remains for 
more than an hour will the transaction be classified into ‘staying points’; otherwise, the 

Fig. 11  Nighttime-only population differences from 7:00 to 4:30 AM for a week: a in Bruyeres, b in 
Eupen, and c for all mobile phone cells
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transaction will be classified into ‘transition points’. Theoretically, MPD does not represent 
short-duration trips well such as going out for a walk, due to the definition of trips less than a 
relatively small time threshold. However, from Figs. 6 and 9, we can see that trips stemming 
from MPD present higher proportions of short-distance trips than the travel survey. Another 
reason for more short-distance trips shown in Fig. 9 may be our decision to compute the trip 
length based on municipalities’ centroids. This approach allows us to compare trip length 
distributions on an equally spatial basis. The observed levels of spatial granularity for MPD 
and MONITOR given in Table 1 are not the same. If we switch to a finer level of zoning-
system granularity instead of the municipality level, the results of trip length distributions 
can be slightly improved.

MPD offers additional benefits in terms of measuring population dynamics. Usually, the 
census population will be used to upscale the mobile phone estimation, which is unknown 
to us in this research. By contrast, we can observe a better match at night when comparing 
the mobile phone-extrapolated population with official population statistics. However, for 
most of the cells, the number of residents exceeds the number estimated by MPD during 
the day, which can be explained by the fact that not all residents own mobile phones and 
are active at home during the day. One of the exceptions is the biggest conurbation area for 
the province (deep green in Fig. 10), with a strong underestimation of the population from 
MPD during a whole week, while MPD always overestimates the other less populated but 
important cultural city (deep pink in Fig. 10). The place of the largest conurbation area at the 
municipality level is the capital city of the province of Liège, which has the most dominant 
effect on trip generation and attraction shown in Fig. 7.

The comparison results indicate that the variability in the survey-based OD matrices is 
extremely large, which aligns with findings of Cools et al. (2010a) that accurate OD matri-
ces are not attainable from travel surveys. Only when half of the population is required is an 
acceptable OD matrix obtained at the provincial level. Clearly, the development of the web-
based travel survey MONITOR was influenced by human, material, and financial consider-
ations; however, it also led to a significantly increased variability in the survey. Therefore, it 
is imperative to incorporate additional data sources and methods, such as GPS-based smart-
phone tracking, machine learning-based data fusion, and mode inference algorithms, which 
could complement traditional surveys and MPD, enhancing realism and accuracy in captur-
ing mobility behavior shifts. Cools et al. (2010b) offer an overview of potential methods 
for calibrating transport planning tools at the data level, model level, OD matrix level and 
assignment level by utilizing MPD. This example illustrates the approach of fusing MPD 
into travel demand models based on travel surveys. A direct combination of travel survey 
data with MPD is given in Gregg et al. (2024), who employ a machine learning approach 
calibrated with passenger survey data to infer the air travel purpose and airport access mode 
for MPD. Notwithstanding, this research assumes that features available from the surveys 
can also be observed or inferred through mobile network data. Besides, their MPD includes 
passengers’ and trips’ details such as passenger sociodemographics. Although our current 
MPD lacks sociodemographic detail, our validation demonstrates that caution is warranted 
when inferring detailed sociodemographics from aggregated MPD alone, emphasising that 
our validation highlights potential inaccuracies or biases in MPD extrapolation to individual 
characteristics. The MPD validation analysis in this research also demonstrates that we can-
not fully trust the inferences derived from MPD. Moreover, data transparency remains one 
of the barriers preventing the broader application of MPD in conjunction with travel sur-
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veys. These challenges highlight the necessity of setting standards regarding the suitability 
of auxiliary data that give enough information to be able to formulate strong hypotheses 
about people’s travel (Kuhnimhof et al. 2024).

Conclusion

This work evaluates the comparability of MPD and travel survey-based OD matrices by 
highlighting their underlying strengths and drawbacks. The novelty is the comprehensive 
comparison of OD trips between the web-based travel survey and MPD, and these two data 
sets are collected within a compatible year and area.

Comparable average trip rates, hourly ongoing trips, and trip length distributions were 
found. More uncertainties lie in the difference of OD matrices normalized by origin and 
dynamics of population estimation by MPD. We hope to improve the robustness of valida-
tion by learning the procedure of mobile phone estimations and improving the temporal 
resolution, which is unfortunately impossible due to the mobile data legacy. In addition, 
the quality of data collection and sampling rate for web-based travel surveys should be 
enhanced.

The findings suggest that MPD can effectively complement traditional travel surveys 
for urban transport planning. The strong correlations and similar patterns observed in the 
comparisons validate the potential of MPD to provide rich and timely insights into travel 
behaviour and population dynamics.

Future research should address the identified discrepancies, improve data integration 
methods, and explore the potential of combining multiple data sources for a more compre-
hensive understanding of urban mobility.
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