

P653

IgD-CD27- double negative (DN) B cells in multiple sclerosis: a non-exhausted, pro-inflammatory subset with DN1 predominance

Lien Beckers^{1,2}, Gwendoline Montes diaz^{1,2}, Hanne Coenen^{1,2}, Paulien Baeten^{1,2}, Bieke Broux^{1,2}, Luisa Maria Villar Guimerans³, Bart Van Wijmeersch^{1,2,4}, Veronica Popescu^{1,2,4}, O. Gerlach^{5,6}, Stephanie Knippenberg⁵, R.M.M. Hupperts^{5,6}, Somers veerle^{1,2}, Judith Fraussen^{1,2}

¹University MS Center (UMSC), Hasselt, Belgium, ²Department of Immunology and Infection, Biomedical Research Institute, UHasselt - Hasselt University, Hasselt, Belgium, ³Department of Immunology, Hospital Universitario Ramón y Cajal, Madrid, Spain, ⁴Noorderhart, Rehabilitation and MS Center, Pelt, Belgium, ⁵Academic MS Center Zuyderland, Zuyderland Medical Center, Sittard-Geleen, Netherlands, ⁶School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands

Introduction: Pro-inflammatory immunoglobulin (Ig) D-CD27- double negative (DN) B cells are abnormally elevated in the peripheral blood (PB) and cerebrospinal fluid (CSF) of MS patients. In aging, DN B cells were described as senescent/exhausted memory cells. Recently, three DN subsets have been described: DN1 (CD11c⁺CD21⁺CXCR5⁺T-bet⁺), DN2 (CD11c⁺CD21⁺CXCR5⁺T-bet⁺), and DN3 (CD11c⁺CD21⁺CXCR5⁺).

Objectives/Aims: Here, we studied the subset distribution, activation potential and migration capacity of DN B cells in MS patients.

Methods: The frequency of DN subsets (DN1-3) and expression of T-bet, CD80, chemokine receptors (CXCR3/CXCR5) and adhesion molecules (LFA-1/VLA-4/ALCAM) was measured in paired PB and CSF of MS patients (n=4) and PB of MS patients (n=47/53, respectively) and healthy controls (HC, n=48/25, respectively) using flow cytometry. B cells of MS patients (n=6) and HC (n=6) were stimulated in vitro (CD40ligand + interleukin(IL)-4/CpG2006 + IL-2/CpG2006+IL-21+interferon(IFN)- γ) to evaluate their activation (CD80/CD86) and proliferation (CFSE) potential. B cell receptor (BCR) signaling (SYK/ERK/PLC γ 2) was analyzed in DN subsets from HC (n=6) and MS patients (n=1) by phosphoflow. Migration of MS B cells towards the

pro-inflammatory chemokines CXCL10 and CXCL13 was studied using a chemotaxis assay (n=7) and a blood-brain barrier (BBB) model (n=6).

Results: DN1 was identified as the major DN subset, both in PB ($72.2 \pm 12.1\%$) of MS patients and HC ($74.7 \pm 11.1\%$), and in CSF ($56.0 \pm 9.4\%$) of MS patients. This was confirmed by the expression of T-bet, characteristic of DN2 cells, in only 22.4% of MS DN B cells. Moreover, DN3 cells tended to be increased in MS CSF ($35.3 \pm 6.5\%$) compared to PB ($10.4 \pm 2.0\%$). MS DN B cells exhibited an activated and migratory phenotype with increased CXCR3⁺ and CD80⁺ frequencies and decreased CXCR5⁺ cells in CSF compared to PB. Following in vitro stimulation, MS DN B cells proliferated and upregulated CD80 and CD86 expression, suggesting that they are not senescent/exhausted cells. Furthermore, DN1 cells showed BCR responsiveness indicated by ERK, SYK and PLC γ 2 phosphorylation. DN B cell migration over the BBB was demonstrated in vitro and by expression of pro-inflammatory chemokine receptors and adhesion molecules.

Conclusion: DN B cells in MS are predominantly DN1 cells and have pro-inflammatory phenotypic, activation and migration characteristics emphasizing a potential contribution to MS pathology.

Disclosure of interest: L. Beckers, G. Montes Diaz, H. Coenen, P. Baeten, B. Broux, LM. Villar, B. Van Wijmeersch, V. Popescu, O. Gerlach, S. Knippenberg, R. Hupperts, V. Somers, J. Fraussen: nothing to disclose

a