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ABSTRACT 

This study examines droplet formation in ultrasonic spray coating (USSC) as a function of ink formulation (solvent, polymer, 
nanoparticles). First, acetone with polyvinylidene fluoride (PVDF) at concentrations from 0 to 4.5 wt.% is used to examine the 
effect of polymer additions. Additionally, acetone-based SiO2 nanofluids (0–10 g/L), are explored. Finally, the combination of both 
polymer (PVDF) and nanoparticles (SiO2 ) in acetone is studied. Droplet sizes are measured using Phase Doppler Anemometry 
under varying atomization power and flow rates. Machine Learning (ML) algorithms are employed to develop droplet size models 
from key spray parameters, including atomization power, flow rate, polymer concentration, and nanoparticle concentration. The 
model shows significantly higher accuracy than existing empirical models. The model is further validated on IPA-based inks 
with polyethylenimine (PEIE) or ZnO nanoparticles, and on acetone–cellulose acetate formulations, confirming its robustness 
across diverse ink systems. In addition to revealing the influence of coating parameters on the droplet formation and distribution, 
obtained both via experimental validation and ML, this study demonstrates that machine learning (ML) can be effectively applied 
to small experimental datasets, offering a robust framework for optimizing droplet formation and understanding key spray 
parameters in USSC for complex, unexplored inks enabling novel coating applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

Thin film functional coatings are a rapidly evolving field, gaining
interest due to their critical role in enhancing the efficiency
and functionality of electronic devices such as OLEDs, solar
panels, temperature, and strain sensors [ 1–4 ]. Together with
the transition to flexible electronics, ultra-thin, homogeneous
coatings are also beneficial for other fields of research, such as
anti-microbial, UV-resistant, self-cleaning, and other functional
coatings, where sustainability aspects of both the deposition
method as well as the use of eco-friendly materials in reduced
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amounts ( i.e ., ultrathin coatings) are required. Traditionally,
these films have been deposited using spin coating, as well as
vacuum techniques such as evaporation, sputtering, atomic layer 
deposition, and chemical vapor deposition [ 1, 5–7 ]. Although
effective, these methods tend to be environmentally unfriendly, 
energy-intensive, and expensive. 

As a more sustainable and green roll-to-roll compatible and cost-
effective alternative, solution processing techniques are gaining 
traction [ 8–10 ]. Ultrasonic spray coating (USSC) stands out for
its ability to coat large areas and complex 3D substrates with
Derivs License, which permits use and distribution in any medium, provided the original work 
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minimal material waste. USSC operates by generating a fine mist
of droplets (10–20 µm diameter) through ultrasound vibrations,
allowing for the deposition of coatings with thicknesses as low as
30 nm [ 10–12 ]. The technique’s ability to produce small droplets
with a narrow size distribution is beneficial for homogeneous
thin film deposition. The generated droplet size is essential
for the thickness and quality of the deposited layers. However,
numerous parameters influence the generated droplets and their
size distribution, with key factors including atomization power,
vibration frequency, and ink flow rate. 

Additionally, the formulation of ink plays a critical role [ 13, 14 ].
The choice of solvent affects volatility, evaporation rate, and
surface tension. Using polymers and/or nanoparticles introduces
higher viscosities with elastic behavior. These complex inks
can exhibit non-Newtonian behavior at the high shear rates
induced by the ultrasonic vibrating nozzle tip. The parameters
of complex inks are defined by their rheological properties,
including viscosity, shear-thinning or thickening behavior, den-
sity, and viscoelasticity. These properties can be described by
dimensionless numbers such as Weber (We), Ohnesorge (Oh),
Capillary (Ca), and Reynolds (Re) numbers [ 15 ]. 

Existing correlations for droplet size prediction were primarily
developed based on the capillary wave hypothesis, initially
derived from the work of Lord Kelvin [ 16, 17 ]. This hypothesis
posits that droplet formation is governed by the interplay of
surface tension and inertial forces, leading to the formation
of capillary waves on the liquid surface. However, cavitation
can play a role, influencing droplet size and distribution [ 18,
19 ]. This introduces additional complexity, which the traditional
capillary wave-based correlations do not fully account for. In
the available models, parameters such as viscosity, liquid flow
rate, and amplitude are not included, nor do they consider non-
Newtonian or complex fluids. Several experimental correlations
have been established using dimensionless numbers (e.g., In, We,
Oh) in conjunction with physical parameters (e.g., frequency,
density, surface tension), as demonstrated by researchers such
as R.J. Lang, R. Rajan, and T.D. Donelly, B. Avvaru, Y. Zhang,
K.A. Ramisetty, and S. Kooij [ 13, 14, 18–22 ]. These correlations
provide insights into how droplet size is influenced by spraying
parameters and ink characteristics. However, they are typically
valid only within specific parameter ranges and often do not
account for droplet size distribution or complex fluids. 

Additionally, the measurement techniques used when these
correlations were developed, though accurate for their time, are
now considered outdated. Modern droplet characterization tech-
niques (e.g., high-speed imaging, Phase Doppler Anemometry
(PDA), laser diffraction, and time shift techniques) offer much
higher precision [ 23, 24 ]. They can provide detailed information
on droplet size and/or velocity, along with their distribution. This
advancement in measurement technology opens up new possi-
bilities for developing more accurate and universally applicable
models, underscoring the need for a new model that is broadly
applicable and tailored to the specific requirements of thin film
deposition of functional films. Additionally, earlier studies did
not typically experiment with complex fluids, such as those
containing nanoparticles or polymers. These complex fluids are
particularly relevant for functional coatings and their advanced
applications. The behavior of such fluids under ultrasonic atom-
2 of 14
ization can differ significantly from that of simpler fluids due
to the high applied shear rates, requiring new correlations to
accurately predict droplet formation under these conditions. 

Our investigation includes a diverse range of inks, such as water,
acetone, and acetone with varying concentrations of polyvinyli- 
dene fluoride (PVDF). Additionally, the incorporation of SiO2 
nanoparticles at varying concentrations introduces another level 
of complexity to the study. Beyond droplet size characterization,
this research encompasses an analysis of rheological properties,
such as surface tension and viscosity, which are fundamental to
understanding droplet dynamics. By systematically exploring the 
influence of the spraying parameters and ink characteristics on
droplet formation, we aim to establish a comprehensive under-
standing of the interplay between ink composition, rheological 
characteristics, and process parameters. 

The outcomes of this investigation not only contribute to the
fundamental understanding of ultrasonic spray coating but also 
provide practical insights for optimizing coating processes across
diverse ink formulations. Machine learning performed excep- 
tionally well with these small datasets, resulting in high-quality
predictive models. These models were further evaluated using
new ink formulations, including isopropanol (IPA)-based inks 
containing ZnO nanoparticles and/or PEIE as a polymer next to,
alongside different concentrations of cellulose acetate in acetone. 
Therefore, this research lays the groundwork for optimizing the
deposition of thin films in applications where precise control over
coating properties is crucial, while also enabling the development
of simple analytical models. 

2 Results 

2.1 Rheological Results 

The rheological behavior of acetone-based solutions containing 
varying concentrations of PVDF and SiO2 nanoparticles was 
characterized using shear-dependent viscosity measurements 
(Figure S1–S4 ). Figure 1 summarizes the influence of PVDF, SiO2 ,
and their combination (with 2.25 wt.% PVDF) on the dynamic
viscosity at a shear rate of 100 s− 1 . 

An increasing concentration of PVDF in acetone results in a
nearly linear increase in viscosity, attributed to the increased
entanglement of polymer chains. Supplementary data (Figures 
S2 and S4 ) further reveal that solutions with higher PVDF
concentrations exhibit clear shear-thinning behavior, where vis- 
cosity decreases with increasing shear rate. This non-Newtonian 
behavior is typical for polymer solutions due to the alignment and
disentanglement of polymer chains under shear. 

By contrast, solutions of pure acetone with dispersed SiO2 
nanoparticles (Figure S3 ) exhibit nearly Newtonian behavior, 
with minimal change in viscosity over a wide range of shear
rates. When both SiO2 and PVDF are present (Figure S4 ), the
shear-thinning character is maintained and even enhanced, 
particularly at higher nanoparticle concentrations. This suggests 
that the combination of polymer and nanoparticles contributes
to a more complex microstructure that responds more strongly to
shear. 
Advanced Materials Technologies, 2025
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FIGURE 1 Viscosity of acetone-based solutions as a function of 
PVDF concentration (wt.%) and SiO2 concentration (g/L) at the shear rate 
of 500 s− 1 . Black squares represent viscosity variations with increasing 
PVDF concentrations. Red circles indicate viscosity changes with increas- 
ing SiO2 concentrations in pure acetone. Red triangles show viscosity 
changes with increasing SiO2 concentrations in acetone containing 2.25 
wt.% PVDF. The shaded areas represent the standard deviation ( ± 1 σ) from 

three independent measurements. 
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Interestingly, the viscosity trends of SiO2 in acetone and SiO2 
in 2.25 wt.% PVDF (Figure 1 ) are nearly parallel, indicating
that the incremental viscosity increase due to SiO2 is preserved
even in the presence of PVDF. Solutions with PVDF concentra-
tions above 4.5 wt.% could not be atomized at the maximum
applied power (4 W) and were therefore excluded from further
analysis. 

In addition to viscosity measurements, surface tension measure-
ments were performed to assess the interfacial behavior of the
inks (Figure 2 ). For increasing PVDF concentrations (Figure 2a ),
surface tension remained relatively constant, indicating that
PVDF has limited influence on interfacial tension. Similarly,
dispersing SiO2 nanoparticles in pure acetone (Figure 2b ) resulted
in only minor, non-systematic variations. 

2.2 Droplet Size and Size Distribution 

In this section, droplet sizes and size distributions were measured
using Phase Doppler Anemometry (PDA). While droplet velocity
and its distribution were also analyzed, they are not discussed fur-
ther, as measurements were performed directly at the nozzle exit,
in the region immediately after atomization and before interac-
tion with the shroud gas. As a result, shroud gas parameters such
as type, pressure, temperature, and nozzle-substrate distance are
not relevant to the measurer droplet characteristics. The focus of
this study is therefore on the droplet size and distribution of five
primary model inks: water, acetone, acetone with PVDF, acetone
with SiO2 nanoparticles, and acetone containing both PVDF and
SiO2 nanoparticles. In addition, acetone with cellulose acetate,
Advanced Materials Technologies, 2025
IPA, IPA with ZnO nanoparticles, and IPA with PEIE were used
for model validation. 

2.2.1 Water: Effect on Liquid Flow Rate and 
Atomization Power 

The water droplet size distribution showed a narrow and well-
def ined peak around the characteristic droplet diameter, as
presented in Figure 3c . All measurements in this figure were
performed at a constant atomization power of 2.5 W. The cor-
responding Sauter mean diameter (D32 ) increased systematically 
with the flow rate, rising from 22.1 µm at 0.2 mL/min to
30.3 µm at 4 mL/min (Figure 4a ). In this increasing trend the
presence of two distinct atomization regimes is evident: Initial
Atomization Regime ( ∼ 0.2–0.6 mL/min) : At flow rates below
0.2 mL/min, atomization is initially absent due to an insufficient
liquid supply to form a stable film on the nozzle tip. Once
the threshold is reached (at ∼ 0.2 mL/min in this case), droplet
formation begins, and D32 increases sharply. This rapid increase 
is associated with the gradual wetting of the nozzle surface. Fully
Wetted Film Regime ( > ∼ 0.6 mL/min) : Beyond approximately
0.6 mL/min, the nozzle becomes fully wetted. Further increase
in flow rate leads to thicker liquid films and larger droplets,
but the sensitivity of D32 to flow rate becomes less pronounced.
The system transitions to a more stable atomization regime,
where changes in D32 occur more gradually. This two-regime 
behavior is consistent with previous observations by Rajan and
Pandit [ 14 ]. 

The effect of atomization power on droplet size distribution and
Sauter mean diameter (D32 ) is shown in Figure 3b,d . As the power
increased from 1 to 4 W, while maintaining a 2.5 mL/min water
flow rate, a shift toward larger droplet sizes is observed in the
droplet size distribution (Figure 3c ). This behavior is expected, as
higher atomization power leads to increased ultrasonic vibration 
intensity. 

2.2.2 Acetone: Effect on Liquid Flow Rate and 
Atomization Power 

The droplet size distribution and atomization behavior of pure
acetone were analyzed under varying flow rates and atomization
powers. In comparison to water, the acetone droplet size dis-
tribution exhibits a similarly narrow and unimodal profile, yet
with a slightly smaller peak diameter than water (Figure S5c,d ).
This difference is consistent with the theoretical framework of
Rajan and Pandit, which predicted smaller droplet sizes for
fluids with lower surface tension [ 14 ]. Acetone has a significantly
lower surface tension ( ∼ 23 mN/m) than water ( ∼ 72 mN/m),
which reduces the capillary forces resisting droplet breakup, and
thus facilitates the formation of finer droplets under ultrasonic
excitation. 

The evolution of the Sauter mean diameter (D32 ) with increasing
flow rate is shown in Figure 3e (at a fixed power of 3 W). A
clear upward trend is observed, closely resembling the behavior
of water. In contrast, the influence of atomization power on
D32 is minimal for acetone, as shown in Figure 3f . Across a
power range of 2.5 to 4 W at a fixed flow rate (1.5 mL/min), the
3 of 14
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FIGURE 2 Surface tension measurements of acetone-based solutions with varying concentrations of PVDF and SiO2 nanoparticles. (a) Surface 
tension as a function of PVDF concentration in acetone. (b) Surface tension as a function of SiO2 concentration in pure acetone. (c) Surface tension as a 
function of SiO2 concentration in acetone containing 2.25 wt.% PVDF. The shaded regions represent the measurement spread (standard deviation) across 
repeated measurements. These results illustrate the influence of polymer and nanoparticle loading on the interfacial properties of the ink systems. The 
shaded areas represent the standard deviation ( ± 1 σ) from three independent measurements. 

FIGURE 3 Overview of droplet size distribution and Sauter mean diameter (D32 ) evolution for different ink formulations in ultrasonic spray 
coating. (a,b) D32 as a function of flow rate and atomization power for water, showing an increase in droplet size with higher flow rates and a weaker 
correlation with power. (c,d) Droplet size distributions of water at different flow rates and atomization power levels, exhibiting a unimodal distribution 
with a peak around 10–20 µm. (e,f) Evolution of D32 with flow rate and atomization power for acetone with PVDF. D32 increased with flow rate, while 
atomization power introduces fluctuations at higher PVDF concentrations. (g,h) Droplet size distributions of acetone + PVDF, revealing bimodal and 
trimodal distributions at higher polymer concentrations. (i,j) Effect of flow rate and atomization power on D32 for acetone with SiO2 nanoparticles, 
exhibiting a similar increasing trend with flow rate but with greater variability due to the presence of nanoparticles. (k,l) Droplet size distributions of 
acetone + SiO2 nanoparticles, indicating a broader and more heterogeneous distribution compared to pure acetone. (m,n) D32 trends for acetone with 
both SiO2 nanoparticles and 2.25 wt.% PVDF, showing increased droplet sizes with flow rate and an irregular response to atomization power due to 
complex interactions between nanoparticles and polymer viscosity. (o,p) Corresponding droplet size distributions, which exhibit strong multimodal 
behavior, highlighting the complex atomization dynamics of highly viscous and nanoparticle-laden formulations. 

4 of 14 Advanced Materials Technologies, 2025

 2365709x, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adm

t.202502104, W
iley O

nline L
ibrary on [06/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 4 Comparison of the 6-feature and 8-feature machine learning models with experimental data for predicting droplet size (D32 ) across 
three different ink systems: pure SiO2 in acetone, PVDF in acetone, and a combined system of SiO2 + 2.25 wt.% PVDF in acetone. (a) Full dataset with 
all datapoints sorted by increasing D32 . Experimental data are shown with error bars, and model predictions are plotted for both 6-feature and 8-feature 
models. (b–i) Subsets of the data split by ink formulation and parameter: (b,c) 0 wt.% PVD, D32 as a function of flow rate and power; (d,e) 10 g/L SiO2 , 
D32 as a function of flow rate and power; (f,g) 4.5 wt.% PVDF, D32 as a function of flow rate and power; (h,i) 10 g/L SiO2 + 2.25 wt.% PVDF, D32 as a 
function of flow rate and power. Both models show good agreement with experimental trends, with the 6 feature model performing comparably to the 
more complex 8-feature model across all formulations. These results highlight the generalization capacity of the models and their ability to capture the 
influence of polymer and nanoparticle concentrations on droplet formation behavior. 
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mean droplet size remains nearly constant within the margin of
error. This stability indicates that for low-viscosity, low-surface-
tension solvents, such as acetone, the primary breakup dynamics
are already well established at moderate power levels. Further
increases in ultrasonic intensity do not significantly alter the
droplet formation process. This contrasts with water, where
droplet sizes increase with power, likely due to enhanced capillary
wave formation and thicker film dynamics under higher acoustic
forces. 

The droplet size distributions (Figure S5c,d ) confirm this observa-
tion. Acetone distributions remain narrow and unimodal across
all power levels, with the peak consistently centered around a
slightly smaller size than water. The similarity in distribution
shape – narrow, monotonic peaks with limited broadening.
Acetone and water share the same fundamental atomization
mechanism, although differing fluid properties, such as surface
tension and viscosity, modulate this mechanism. 

2.2.3 Acetone + PVDF: Effect on Flow Rate, 
Atomization Power, and PVDF Concentration 

The mean droplet size (D32 ) increases with higher flow rates
across all PVDF concentrations. This trend is consistent from 0.5
to 2.5 mL/min (Figure 3e , at a fixed power of 3 W), as higher flow
rates results in a larger volume of liquid being atomized, leading
to larger droplets. Regarding droplet size distribution density,
at 0 wt.% PVDF (pure acetone) (Figure 3g ), the distribution is
narrow, with a peak around 10–15 µm, and broadens slightly
with increased flow rate. With increasing PVDF concentration
(Figure 3h ), the peak shifts and broadens further. 
Advanced Materials Technologies, 2025
Higher PVDF concentrations produce larger droplets due to 
increased solution viscosity (2.4E-4 to 2.2E-3 Pa.s for pure acetone
and 4.5 wt.% PVDF, respectively, see Figure S2 ). The droplet
size distributions show multiple peaks, indicating bimodal and 
trimodal distributions. For instance, at 4.5 wt.% PVDF and
lower power settings (2 W appears to be the lower atomization
limit, as observed in Figure S6f ), a primary peak is observed
at approximately 10 µm, and a secondary peak is observed
around 20 µm. The observed bimodal/trimodal droplet size 
distributions in PVDF—acetone solutions (Figure 3h ) may be
partially attributed to the copolymeric nature and molecular 
heterogeneity of the PVDF used. Dyneon PVDF 11008/0001
is a copolymer of vinylidene fluoride and hexafluoropropy- 
lene, resulting in a molecular weight distribution. This char-
acteristic can lead to variations in local viscosity and phase
behavior, potentially causing multiple atomization mechanisms 
to occur simultaneously, resulting in distinct droplet size 
populations. 

2.2.4 Acetone + SiO2 Nanoparticles: Effect on Flow 

Rate, Atomization Power, and SiO2 Concentration 

The trends observed for acetone with SiO2 nanoparticles follow 

a similar pattern to those seen with pure acetone or water. As
shown in Figure 3i , the Sauter mean diameter (D32 ) increased
with flow rate, which aligns with expectations based on liquid
film formation and droplet detachment dynamics. The increase 
in droplet size with flow rate is consistent. 

Unlike PVDF-containing formulations, the droplet size distribu- 
tion remains unimodal, as seen in Figure (3 k-l). The absence
5 of 14
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of bimodal or trimodal behavior suggests that the presence of
nanoparticles alone at these concentrations does not significantly
alter the fundamental droplet breakup mechanisms. Instead, the
distribution profile is more comparable to that of pure acetone,
with a well-defined peak and a gradual broadening as the flow
rate increased. 

A notable effect, however, is observed when examining the
influence of atomization power (Figure 3j ). Unlike the unclear
trend observed in PVDF-containing formulations, an increase
in atomization power leads to a more pronounced decrease in
droplet size. This suggests that in low-viscosity, nanoparticle-
loaden systems, higher power effectively enhances atomization
efficiency, likely by increasing the intensity of capillary wave
formation and secondary breakup processes (Movie S1 ). The
decreased droplet size at higher power levels suggests that
the presence of nanoparticles does not hinder the atomization
process but, but instead follows similar trends to those base
fluids. 

2.2.5 Acetone + PVDF + SiO2 Nanoparticles: Effect on 

Flow Rate, Atomization Power, and SiO2 Concentration 

For the formulation containing both PVDF and SiO2 nanopar-
ticles, the observed trends closely resemble those of acetone
with PVDF alone. As seen in Figure 3m , D32 increased with the
flow rate, following the same liquid film thickening mechanism
previously described. Similarly, no distinct trend is observed
with atomization power (Figure 3n ), as viscosity-driven effects
predominate over variations in ultrasonic energy. 

However, a key difference emerges in the droplet size distribution
(Figure 3o,p ). The presence of both PVDF and SiO2 nanoparticles
results in a more pronounced bimodal or trimodal distribu-
tion, compared to PVDF-only formulations. This suggests that
while PVDF increased viscosity and leads to the formation of
larger primary droplets, the addition of nanoparticles further
enhances secondary droplet formation, possibly through local-
ized film instabilities and micro-scale interactions between the
polymer matrix and dispersed SiO2 particles, inducing shear
thinning. 

At higher PVDF concentrations ( > 2.25 wt.%), the bimodal and
trimodal droplet size distributions become increasingly evident,
suggesting a more complex breakup mechanism. This can be
attributed to the pronounced shear-thinning behavior observed
in these polymer-rich solutions (Figure S2 ), where viscosity
decreases with increasing shear rate. Such non-Newtonian behav-
ior alters the local flow dynamics within the jet, facilitating
heterogeneous deformation and breakup. 

Moreover, the presence of nanoparticles further increased the
viscosity and introduced microstructural heterogeneities, espe-
cially when combined with PVDF. These heterogeneities may
amplify local instabilities during atomization, promoting the for-
mation of distinct droplet size populations. The synergistic effect
of polymer-induced elasticity and particle-induced disruption
supports the hypothesis that the interplay of viscoelastic and
heterogeneous flow properties leads to multiple droplet breakup
regimes within a single formulation. 
6 of 14
2.3 Results and Discussion: Machine Learning 
Models 

Although empirical models have been presented in the literature,
(Table S1 ) their applicability to the current spray coating examples
seems to perform relatively poorly [ 13, 14, 18–22 ]. For that reason,
we decided to approach the problem using a small dataset
machine learning (ML) method, to determine simple analytical 
models which only depend on the machine parameters of the
setup: (a) flow rate, Q , (b) power, P , and (c) concentration of
nanoparticles/polymers, Cx [ 27 ]. Within the context of ML, these
variables are referred to as features. The predicted properties
include (I) the mean Sauter diameter, µD 32 , (II) the mean diameter,
µD 10 , and (III) the mean droplet velocity, µv , which are referred to
as targets within the ML context. Since µD 32 and µD 10 have a similar
physical meaning and are formally related, we expect the models
for these two targets to be similar in shape, providing a source
of expert knowledge during feature selection. However, for the
third target, µv , no meaningful model could be established due to
poor predictive performance, in contrast to the diameter-related 
targets (Figure S12 ). Therefore, µv is not further discussed in this
work 

The datasets available in this work are relatively limited from the
ML perspective, although they are of the typical size commonly
found in standard laboratory investigations. The three data sets
considered are used as obtained from experiments ( cf ., Table 4
and cf ., Section 4.1 . Ink Formulations). To efficiently handle
the small size of the datasets, we will utilize small data ML
methods. In the past, we have demonstrated that such ensemble
methods consistently yield the highest quality models available, 
with the inference cost comparable to that of a single base
model instance [ 25 ]. This approach has been successfully used
to create simple analytical models for ink-formulations based on
fewer than 30 datapoints [ 26 ]. In the current work, our approach
was extended to include Dominance Importance, in addition to
Ensemble Importance for feature selection ( cf ., Section 4.1 . Ink
Formulations) [ 27, 28 ]. 

2.3.1 Modeling the Mean Sauter Diameter µD 32 and the 
Mean Diameter µD 10 

For each of the three data sets (PVDF, SiO2 NP, and SiO2 
NP + PVDF), specialized models are obtained as described in
( cf ., Section 4.1 . Ink Formulations). Starting from an 11-feature
complex model, features are iteratively removed based on their
ensemble and dominance importance (Tables S2–S19 ), in some
cases extended with trends observed for top-performing sub-
models generated for the APDI. While reducing the number of
features in the models, the quality measures (MAE and RMSE for
both in-bag and out-of-bag data) generally showed further slight
improvements, as can be seen in Tables S28–S33 . An improvement
of the out-of-bag quality indicates an improved generalizability of
the model and should be aimed for. Furthermore, if this coincides
with a (slight) decrease in quality for in-bag measures, this may
indicate that the reduced model also has reduced overfitting,
which is another aspect to strive for when using ML. Finally,
if the quality measure remains roughly constant upon removal
of features, this removal is beneficial as it increases the quality
of measures based on information theory. As a result of these
Advanced Materials Technologies, 2025
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model reductions, three unique models are obtained, one for each
data set, for µD 32 (Equations 1–3 ) and µD 10 (Equation S1–S3 ). The
trained coefficients are presented in Tables S34–S39 , and allow for
the construction of analytical models. For µD 32 these are 

𝜇PVDF D32 = 20 . 053 + 5 . 543Q + 2 . 474CPVDF − 0 . 250PCPVDF 

− 0 . 520eQ − 0 . 861eCPVDF − P (1)

𝜇
Si O2 NP 

D32 = 21 . 242 + 5 . 359Q − 2 . 22 × 10 − 4 C3 
Si O2 

− 0 . 345P − 0 . 438eQ (2)

𝜇
Si O2 NP +PVDF 
D32 = 23 . 807 + 5 . 142Q + 1 . 60 × 10 − 3 C3 

Si O2 

− 0 . 279CSi O2 
− 0 . 075P − 0 . 371eQ (3)

As can be seen from the three equations above, there are
equivalent terms (e.g., Q and eQ ), as well as some distinct terms
(e.g., 𝑒𝐶𝑃𝑉 𝐷𝐹 − 𝑃 ). The origin of the latter partially stems from the
different composition of the spray coating substance. 

As the models for µD 32 were developed in lock-step, providing
additional domain knowledge for each other, the selected features
are the same. However, interestingly also the coefficients turn
out to be comparable in size and trends, as one would expect for
physically related parameters. The fact that no identical shape
was obtained for the three different datasets indicates that these
models may be too specialized. As the three data sets only contain
four independent variables, a general model can be constructed
by considering all unique features present in the three equa-
tions. This gives rise to a general 8-feature model, which when
trained on the combination of the three data sets results in the
following models for µD 32 (Equation 4 for µD 32 and Equation S4
for µD 10 ). 

𝜇
𝑔 𝑒𝑛 , 8 

𝐷32 = 21 . 783 + 5 . 339 𝑄 − 0 . 448 𝑃 + 1 . 429𝐶𝑃𝑉𝐷𝐹 − 0 . 065𝐶𝑆 𝑖𝑂2 

− 6 . 62 × 10 − 4 𝑃𝐶𝑃𝑉𝐷𝐹 − 0 . 445𝑒𝑄 − 0 . 682𝑒𝐶𝑃𝑉 𝐷𝐹 − 𝑃 

+ 1 . 61 × 10 − 3 𝐶3 
𝑆 𝑖𝑂2 

(4)

It is interesting to note that the coefficients of common features
such as Q and eQ as well as the intercepts are roughly the
average of the coefficient values found for the specialized models.
However, when considering that the general model is a linear
combination of the specialized models, trained on the combined
data sets, this becomes less unexpected. This stands in stark
contrast with the coefficient for the P , CPVDF feature, which
reduced one to three orders of magnitude, indicating this feature
may not be as essential expected from the specialized models. As
our aim is to find a model as generally applicable as possible, we
trained each of the four models (i.e., three specialized and one
general) for each of four data sets (i.e., three individual data sets
and the combined data set). As shown in Tables S40 and S41 , the
specialized model and its associated data set, which we refer to as
native combinations, yield the best performance. The generalized
models exhibits a slight loss in performance on the individual
datasets, which is not entirely unexpected, as these models must
be more general to fit all datasets well. 
Advanced Materials Technologies, 2025
Considering the different models in detail again, we also note
a significant variation in the size of the various coefficients.
However, in parallel there is often a similar and opposite variation
in the potential feature values. To gain a clearer understanding
of the contribution of each feature to the overall prediction, we
consider the product of the feature coefficients and the average
feature values. These values can be compared as absolutes, or
relative to the sum of all these terms in the model (Table S42 ). This
highlights two features which only contribute a very small part of
the overall prediction: PCPVDF and 𝐶3 

𝑆 𝑖𝑂2 
. Furthermore, the calcu- 

lated Ensemble and Dominance Importance values indicate that 
these features are suitable for removal (Tables S43 and S44 ). From
Table S42 it is also clear that the feature 𝐶𝑆 𝑖𝑂2 provides a marginal
contribution to the overall prediction. However, removing of this
feature would eliminate all possible dependence on the SiO2 
nanoparticle concentration, which is at odds with the EI of this
feature, which is 100% (in contrast to the previous two features).
Furthermore, there is a significant difference in concentrations 
considered for PVDF and SiO2 nanoparticles. Assuming the same 
model but with a SiO2 nanoparticle concentration similar to 
PVDF, the contribution to the prediction would be similar to that
of the PVDF concentration. This provides us with an important
argument to retain this feature. Removal of the PCPVDF and
𝐶3 
𝑆 𝑖𝑂2 

features gives rise to our final general models with only 6
features (Equation 5 for µD 32 and Equation S5 for µD 10 , Supporting
Information). 

𝜇
gen , 6 
𝐷32 = 21 . 700 + 5 . 343 𝑄 − 0 . 408 𝑃 + 1 . 427 𝐶PVDF − 0 . 065 𝐶Si 𝑂2 

− 0 . 447 𝑒𝑄 − 0 . 680 𝑒𝐶PVDF − 𝑃 (5) 

A comparison of the different machine learning models is
presented in Figure 4 . Overall, all models perform very well, with
predicted D32 values closely matching the experimental data and 
typically falling well within the experimental error margins. In
the few cases where deviations occur particularly for datapoints
with very narrow error bars, the models still provide reasonably
accurate estimates. For the majority of data points, the predictions
of the 6-feature, 8-feature, and native models nearly overlap,
showing only minimal variation. 

When sorting the datapoints by increasing experimental D32 
values, it becomes clear that the models exhibit no systematic
bias: the predictions oscillate around the experimental values 
while successfully capturing the overall trend (Figure S12 ). This
same behavior is observed in the D10 predictions, further confirm-
ing the model’s reliability. Notably, in Figure 4a , the 6-feature
model appears to exhibit slightly smaller deviations from the
experimental data compared to the 8-feature model, suggesting
a more stable and generalizable performance across the full
dataset. 

These findings highlight that the model performance is not
merely a function of dataset size or algorithm complexity, but
also depends strongly on the nature of the data and the quality
of the feature space. Even with fewer input features, the 6-
feature model provides comparable, or in some cases superior
predictive accuracy, supporting its use as a more efficient yet
reliable approach for droplet size prediction in complex ink
systems. 
7 of 14
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FIGURE 5 Comparison between experimental results and the 6-feature machine learning model for droplet size (D32 ) prediction across various 
concentrations of cellulose acetate in acetone. Panels show Sauter mean diameters at five different concentrations: 0 wt.% (a,b), 1.82 wt.% (c,d), 3.5 wt.% 

(e,f), 5 wt.% (g,h), and 5.2 wt.% (i,j). For each concentration, D32 is plotted as a function of flow rate (left) and atomization power (right). Panels (k–l) 
display droplet size distributions for 5 wt.% cellulose acetate in acetone, measured using Phase Doppler anemometry (PDA). (k) Increasing flow rate 
results in a clear shift toward larger droplet sizes. (l) Increasing power has only a minimal effect on the distribution shape and peak size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2365709x, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adm

t.202502104, W
iley O

nline L
ibrary on [06/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C
2.3.2 Evaluation of ML Model with New Complex Inks 

To evaluate the robustness and generalizability of the developed
machine learning model, additional experiments were conducted
using new and untrained combinations of solvents, polymers,
and nanoparticles. The aim was to assess the model’s ability to
accurately predict droplet size (D32 ) under unfamiliar conditions.

2.3.2.1 Solvent Validation – IPA and Water. 2-propanol
(IPA) was tested as a new solvent, both as a pure fluid and
in combination with ZnO nanoparticles and the polymer PEIE.
In all IPA-based experiments, the model significantly deviated
from the experimental results, as expected with a new, untrained
solvent. Instead of the predicted decrease of D32 with increasing
atomization power, as was observed with acetone (Figure S13 ),
2-propanol showed a clear increase in droplet size. A similar
trend was seen with water (Figure S15 ), which was also not
included in the training data. These findings indicate that the
model can’t be effectively extrapolated to untested solvents
with different physicochemical properties, such as viscosity and
surface tension. Adding ZnO nanoparticles and the polymer PEIE
in IPA yielded in the same conclusion, as the solvent was not
suitable for the model. This emphasizes that the model is sensitive
to the solvent properties and would require training or feature
extension for broader applicability. Importantly, in the case of
water, the model failed particularly at the higher flow rate of
4 mL/min (Figure S15 ) because the model was only trained up to
2.5 mL/min with acetone. The use of PEIE in IPA as the polymer
system resulted in a clear increasing trend in droplet size with
increasing atomization power (Figure S14 ). Due to the different
physicochemical nature of both the polymer and the solvent, an
8 of 14
inverse and more pronounced effect was observed compared to
acetone-based inks, with or without PVDF (Figure 3 ). 

2.3.2.2 Polymer Validation – Cellulose Acetate. Cellu- 
lose acetate in acetone was included as a validation experiments
at multiple concentrations (1.82, 3.5, 5.0, and 5.2 wt.%) (Figure 5 ).
Across all concentrations, the 6-feature model accurately pre- 
dicted both the trend and magnitude of the Sauter mean diameter
(D32 ) as the flow rate and atomization power increased. The
increase in droplet size with higher polymer concentration and
flow rate is consistent with the expected rise in viscosity and
film thickness at the nozzle tip. For power, the model correctly
captured the relatively moderate influence compared to flow rate,
especially at higher polymer concentrations. 

Importantly, the results confirm the model’s strong generalization
capability to previously untrained polymers, as long as they are
dissolved in known solvents and fall within the learned parameter
space. This demonstrates the model’s applicability to a broader
class of ink systems with similar rheological behavior, even when
the specific polymer chemistry differs from that used during
training. 

In addition to mean droplet sizes, the droplet size distributions
were also examined at 5 wt.% cellulose acetate under varying
flow rates and powers (Figure 5k,l ). As the flow rate increased,
a clear shift toward larger droplet sizes was observed, indicating
more complete nozzle wetting and thicker liquid films, which
promote the formation of larger droplets. In contrast, increasing
the atomization power caused minimal change in distribution
shape or peak location, reinforcing the observation that power
Advanced Materials Technologies, 2025
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plays a secondary role in controlling droplet size for these ink
systems. 

2.4 Conclusion and Outlook of Validation 

The validation experiments conducted with various untrained ink
formulations have revealed valuable insights into the capabili-
ties and current limitations of the developed machine learning
model. 

The model performed poorly (Figure S14 ) on inks based on
untrained solvents such as isopropanol (IPA) and water. In these
cases, predicted trends for droplet size (D32 ) diverged significantly
from experimental observations, particularly at higher flow rates
or varying power levels. These discrepancies highlight that the
model is currently sensitive to solvent-specific properties and
does not generalize well beyond the trained solvent (acetone).
Similarly, the inclusion of ZnO nanoparticles, which were not
represented in the training set, led to inaccurate predictions, indi-
cating that nanoparticle effects must be explicitly incorporated
into future models. 

However, the model showed promising generalization to new
polymer systems, most notably cellulose acetate in acetone.
Across multiple concentrations, the model accurately predicted
both the trend and absolute values of D32 . This is a significant
result, demonstrating that the model is capable of extrapolating
to unseen polymers when the solvent remains consistent and
within the trained domain. These results suggest that rheological
behavior, particularly viscosity, may be a more critical feature
than the exact chemical identity of the polymer. 

The findings underline the need to enhance the model’s robust-
ness by: expanding the training data to include a broader range of
solvents, polymer types, and nanoparticle systems and incorpo-
rating rheological and physicochemical properties (e.g., viscosity,
surface tension, density) directly into the feature set. Increasing
the range of flow rates and atomization powers to prevent failure
during extrapolation. 

The 6/8 feature model demonstrates strong potential for practical
use in droplet prediction for polymer-based inks in acetone,
however, further refinement is required to reliably handle new
solvents and additive types. The successful cellulose acetate
results present an encouraging path forward for developing more
universal models that are adaptable to diverse ink formulations
in ultrasonic spray coating. 

3 Conclusion 

This study presents a comprehensive investigation into droplet
formation in ultrasonic spray coating by combining detailed
experimental analysis using PDA with data-driven predictive
modeling via machine learning. Through systematic variation
of spray parameters (flow rate, atomization power) and ink
formulations (solvent, polymer, nanoparticle concentration), we
have provided new insights into the fundamental mechanisms
that govern droplet size and distribution. 
Advanced Materials Technologies, 2025
A key strength of this work lies in the use of PDA, which
enabled not only the determination of average droplet sizes
(D32 ), but also the full droplet size distributions. As a result, we
could distinguish between unimodal, bimodal, and even trimodal 
droplet populations. The number and shape of distribution peaks
were found to depend strongly on the polymer concentration and
the liquid flow rate, while atomization power and nanoparticle
addition had a more secondary influence. Particularly at higher
PVDF concentrations and moderate flow rates, multimodal dis-
tributions emerged, indicating complex atomization dynamics 
beyond simple capillary wave breakup. 

The behavior of different solvents also shows clear distinctions.
For instance, water and IPA displayed an increasing D32 trend
with power, whereas acetone shows a decreasing trend, sug-
gesting that the solvent’s physicochemical properties strongly 
modulate atomization behavior. However, the effect of flow rate
remained consistent across all formulations, with higher flow 

rates generally resulting in larger droplet sizes and distributions. 

These results highlight that the ideal set of process parame-
ters must be carefully selected for each ink formulation and
application. For example, a narrow and uniform droplet size dis-
tribution is generally preferred to ensure homogeneous coatings. 
In water-based systems, excessive flow rate or power resulted in
broad distributions. For acetone-based inks, droplet uniformity 
was compromised at low power or excessively high polymer
concentrations. 

The machine learning model developed in this study serves
as a powerful tool to predict how spray parameters influence
droplet size. Among the models tested, the 6-feature model
proved to be consistently accurate and robust, often performing
as well as the 8-feature version. Importantly, this work offers an
experimental and data-driven study on droplet size distributions
in ultrasonic spray coating, particularly for complex, multi-
component inks, an area that remains relatively underexplored 
in the literature. The integration of machine learning adds a new,
valuable layer of understanding, offering a predictive framework 
to support both scientific exploration and industrial process
optimization. 

While current limitations exist, particularly for untrained sol- 
vents or nanoparticles the model’s potential is clearly demon-
strated. With further training on a broader range of fluids and
rheological properties, it could evolve into a widely applicable
tool for tailoring spray parameters to achieve optimal coating
performance in advanced thin-film deposition. 

4 Experimental Section/Methods 

4.1 Ink Formulations 

The ink formulations consisted of various combinations of 
solvents, polymers, and nanoparticles. A full overview of all
materials and their properties is provided in Table 1 , while the cor-
responding ink concentrations are summarized in Table 2 . Poly-
mers used included polyvinylidene fluoride (PVDF), polyethylen- 
imine (PEIE), and cellulose acetate, dissolved in solvents such
as acetone or isopropanol (IPA). Nanoparticles such as silicon
9 of 14
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TABLE 1 Materials used and their properties. 

Component Material Details 

PVDF 3 M, Dyneon Fluoroplastics 11008/0001, Mw = 1.67 × 105 g/mol 
PEIE Polyethylenimine, 80% ethoxylated solution, 37 wt.% H2 O 

Cellulose Acetate ACROS, average Mw = 100 000 g/mol 
SiO2 Nanoparticles SkySpring Nanomaterials, 99.8%, 10–20 nm, surface-modified 

(hydrophobic & oleophilic) 
ZnO Nanoparticles Sigma–Aldrich, 10–15 nm, dispersed in IPA, 99.99% purity 
Solvents Acetone (analytical grade), Milli-Q Water, 2-Propanol (IPA) 

TABLE 2 Ink formulations and concentrations. 

Ink Type 
Polymer Concentration 

(wt.%) 
Nanoparticle 

Concentration (g/L) Solvent 

PVDF in Acetone 0.75, 1.5, 2.25, 3, 3.75, 4.5 — Acetone 
Cellulose Acetate 0, 1.82, 3.5, 5.0, 5.2 — Acetone 
SiO2 in Acetone — 0.5, 1, 5, 10 Acetone 
SiO2 + PVDF 2.25 0.5, 1, 5, 10 Acetone 
PEIE in IPA 0, 2.34, 4.68 — IPA 

ZnO in IPA — 2.08 IPA 
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dioxide (SiO2 ) and zinc oxide (ZnO) were also included in specific
ink formulations. Polymer-based inks were prepared by stirring
the solutions in closed bottles at 50◦C until complete dissolution.
All inks were then characterized for droplet size and rheological
behavior. 

4.2 Rheological Measurements 

Viscosity measurements of the inks were performed using a
Discovery HR-3 TA Instruments rheometer, configured with a gap
of 1000 µm, at a temperature of 25◦C, and the shear rate ranged
from 5 to 500 1/s. Surface tension was determined with an OCA
SCA20 instrument using a 2.08 mm needle and acetone as the
solvent. Measurements were performed at 22.3◦C, applying the
Young-Laplace fitting method. The pendant drop method was
employed, starting with an initial drop volume of approximately
15 µL. Several hundreds of data points were recorded, from which
the average value was obtained. 

4.3 Ultrasonic Spray Coating Apparatus 

Ultrasonic spray coating was performed using a Sonotek Impact
nozzle operating at 120 kHz, chosen for its capability to provide
uniform atomization of ink formulations. Different atomization
powers and flow rates were explored, with flow rates ranging from
0.2 to 4 mL/min and power settings from 1 to 4 W. 
10 of 14
4.4 Droplet Size Measurement and Analysis 

Droplet velocity and size were analyzed using a 1-D Phase
Doppler Anemometry (PDA) system from Dantec Dynamics. The 
optical setup included a fiber-flow laser transmitter operating at
a wavelength of 532 nm (green laser) with a maximum power
of 300 mW, a 40 MHz frequency shift provided by the Bragg
cell, and a Burst Spectrum Analyzer (BSA) configured with a
photomultiplier sensitivity of 800 V, signal gain of 6 dB, a velocity
center at 2.84 m/s, and a velocity span of 22.75 m/s. The focal
length of the emission unit lens was set to 310 mm, allowing
droplet size measurements to range from 1 to 56.2 µm when
the angle between the emission and receiving units is set to
45 degrees [ 29 ]. The focal length of the receiver lens was a
112 mm. 

Measurements were conducted in a controlled environment 
within a box equipped with float glass windows. Each measure-
ment involved analyzing 10 000 droplets to ensure statistical
accuracy, and each measurement was performed three times to
ensure experimental repeatability. The probe volume of the PDA
system was located 3 mm downstream from the atomization
tip. At this position, the shroud gas had not yet influenced
the droplets, as it is introduced approximately 3 mm further
downstream. Therefore, it does not influence the measured 
droplet characteristics. 

To better represent the droplet size distribution, including larger
droplets that deposit significantly more ink locally, we calculated
Advanced Materials Technologies, 2025
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FIGURE 6 (a) Schematic representation of the machine learning 
workflow used for droplet size prediction. The pipeline includes data 
preparation, feature generation, model selection, and ensemble averaging 
to generate interpretable analytical models. (b) Hyperparameter opti- 
mization for the prediction of the mean Sauter diameter ( µD32 ) for the 
PVDF dataset. Lasso-regularized polynomial models up to 10th order 
are compared to a non-regularized linear model using input features: 
flow rate (Q), power (P), and polymer concentration (CPVDF ). Root Mean 
Square Error (RMSE) is shown for training (red) and out-of-bag (OOB, 
blue) samples. Error bars indicate the 95% confidence interval. 
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characteristic droplet sizes, such as the Sauter mean diameter
(D32 ), from the sampled droplets (Equation ( 6 )). 

D32 =
∑N 

i = 1 ni di 
3 

∑N 

i = 1 ni di 
2 

(6)

4.5 Methodology: Machine Learning 

The Machine Learning (ML) models are created using the scikit-
learn-based AMADEUS framework, previously developed by one
of the authors [ 25, 30, 31 ]. With this framework, pasting type
ensemble models of 1000 base instances are generated [ 32 ].
Each instance is trained on a different random 80/20 split of
the in-bag and out-of-bag parts of the entire dataset, resulting
in 1000 different base instances. The ensemble model is then
constructed as a single base instance equal to the average of the
1000 trained base model instances. The quality of the predictions
on the out-of-bag data points determines the quality of the
ensemble model. We consider linear and polynomial regression
models as base model types, and use LASSO regularization
[ 33 ]. The whole workflow is shown in Figure 6a . It consists
of two parts: the first focuses on data preparation, and the
second focuses on model generation. The data preparation
phase involves selecting hyperparameters for Lasso regulariza-
tion and generating features based on polynomial models. The
model generation process begins with an 11 feature model,
which is iteratively reduced in size to yield a simple analytical
model. 

4.5.1 Hyperparameter Tuning 

Due to the small size and the specific nature of the datasets
studied, the regularization strength hyperparameter α could not
be optimized using automated functionality, as the optimiza-
tion process consistently triggered convergence warnings and
pushed α toward zero, effectively eliminating regularization.
This behavior, along with other signs of overfitting, justified
manual tuning. Instead, it is selected based on the comparison
of four values ( α = 1.0, 0.1, 0.01, and 0.001) while optimising
polynomial models up to order ten for the µD 32 target of the
most extensive dataset available (PVDF). As shown in Figure 6b ,
strong regularization ( α = 1.0) results a deterioration of the
model compared to a simple linear regression model using
the three basic features: flow rate (Q), power (P), and PVDF
concentration (CPVDF ). Very weak regularization ( α = 0.001),
on the other hand retains too many features in the polynomial
model, and shows clear signs of overfitting. For models of
polynomial order larger than three, the OOB quality stagnates,
for all values of α. Considering the results of the OOB quality
for Lasso regularized polynomial models up to order 3, the best
balance between high quality (low RMSE) and regularisation
strength (high α) is obtained for α = 0.01. To achieve maximal
transferability between the various models, we therefore choose
to use the hyperparameter value α = 0.01 for all datasets and
targets. 
Advanced Materials Technologies, 2025
4.5.2 Feature Generation 

Polynomial models evaluated during hyperparameter tuning 
demonstrated that higher predictive accuracy can be achieved 
compared to simple linear regression using the three main input
features: flow rate (Q, in mL/min), atomization power (P, in W),
and the concentration of either the polymer (CPVDF , in wt.%)
or added nanoparticles (CSiO2 , in g/L), denoted as (Q, P, Cx ).
However, polynomial models quickly grow in the number of
features, leading to overfitting when dealing with small datasets.
For example, starting from three base features, a third-order
polynomial model already includes 20 fitting coefficients (one 
intercept and 19 feature terms), while a tenth-order model
contains as many as 286 coefficients. The number of relevant
11 of 14
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TABLE 3 Initial features for the PVDF dataset. 

Features 

dataset target 0 1 2 3 4 5 6 7 8 9 10 
PVDF µD 32 , µD 10 Q Cx eQ eP 𝑒𝐶𝑥 QP PCx 𝑄𝑒𝐶𝑥 𝑒(𝑃−𝐶𝑥 ) 𝑒(𝐶𝑥 − 𝑃 ) 𝐶3 

𝑥 

µv Q Cx QP 𝑒𝐶𝑥 
1 

1 −𝐶𝑥 
QPCx Q2 PCx QCx Q2 Cx PCx 𝐶3 

𝑥 

TABLE 4 Description of datasets. 

Name Size Features 

PVDF 70 Q , P , CPVDF 

SiO2 NP 38 Q , P , CNP 

SiO2 NP + PVDF 50 Q , P , CNP 
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features can be reduced through regularization, reducing the risk
of overfitting. In the case of small datasets and the ensemble
models constructed in this work, the regularization results in
some features being relevant for some of the base model instances
but not for others. Furthermore, some polynomial features will be
relevant more often than others, indicating that these are more
important for a global model. The Amadeus framework tracks
the frequency at which a polynomial feature is retained within
the ensemble, thereby providing a measure of importance for
this specific polynomial feature. We refer to this as Ensemble
Importance (EI). A feature with an EI of 100% will have a non-
zero coefficient in each of the base model instances present in
the ensemble. In comparison, a feature with an EI of 75% will
have a coefficient of zero (due to regularization) in 25% of the base
model instances in the ensemble. An EI of 0% means a polynomial
feature is regularized away in each and every base model instance
within the ensemble. 

Investigation the features with the highest EI for polynomial
models up to order 10 provides insight into possible more complex
and relevant features to consider. This approach was successfully
used in the past [ 26 ]. In the current work, such a study is
performed for each of the three targets and, for each of the three
datasets. The analysis for the µD 32 and µD 10 targets is performed
in parallel for each dataset, resulting in a single set of generated
features per dataset for both µD 32 and µD 10 models. In addition,
knowledge obtained from the largest dataset (PVDF), which is
studied first, is also considered during the feature generation for
the models for the smaller datasets. The initial set of 11 features
generated for PVDF model generation is shown Table 3 . 

Datasets: In the current work, three datasets are considered
( cf ., Table 4 . Description of datasets.). As the PVDF dataset
is the largest, it was modelled first, providing additional
insights for the feature selection and creation with the other
datasets. 

4.5.3 Data Preparation 

Although the data values can be used as they are in any ML
approach, it is well known that more robust models are obtained
12 of 14
when all features have values in similar ranges. Although this
is roughly the case for the three base features, it is not the case
for the newly generated features, where differences can be orders
of magnitude (as will be seen when the analytical models are
constructed). In this work, we constructed and applied a standard
scaler to the entire dataset, as previous research has shown that
for small datasets, a standard scaler constructed solely based
on the training data is extremely volatile [ 25 ]. In a sense, we
consider the application of the standard scaler to occur outside
the ML context, with the ML training receiving a well-behaved
multifeatured dataset by default. 

4.5.4 Model Quality 

Within this work, model quality is evaluated using the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE),
both on the in-bag (or training) and out-of-bag (OOB) datasets.
The latter provides a measure for the generalizability of the model
(i.e. how well it is expected to perform for unknown data). The
OOB quality measures is always lower than the in-bag quality
measures, and too significant differences between the two could
be a sign of overfitting. When creating new ML models, a new
model with lower in-bag quality but the same OOB quality as
before may be a superior model as it overfits less, and thus it may
better represent the underlying global reality. 

4.5.5 Feature Importance 

In this work, we consider four measures to determine feature
importance. These measures can also be viewed in the context
of ML model interpretability, where the goal is to decompose the
prediction of a complex ML model into the contributions made
by each feature. 

Inter Actional Dominance Importance (IADI): The decrease in 
MAE when removing a feature fi from a full N-feature model. 

Average Partial Dominance Importance (APDI): The average 
decrease in MAE due to the removal of the feature fi , considering a
set of submodels differing only in the presence of feature fi .In the
current work, an exhaustive set of sub-models with up to three
features removed was used. 

Ensemble Importance (EI): The fraction of model instances that
retain the feature fi under regularisation (i.e. the associated 
coefficient is not reduced to zero). 

Sub-model Ensemble Importance (SEI): The fraction of sub-
models, generated for APDI, including feature fi , for which
feature fi has an EI greater than 95%. 
Advanced Materials Technologies, 2025
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Dominance Importance measures are generally defined in terms
of the R2 quality measure, but they are equally applicable to other
quality measures [ 27, 28 ]. The advantage of using the MAE (or
RMSE) over R2 is that the result also has a quantitative meaning.
As MAE and RMSE have the same units as the target of interest,
the IADI and APDI will as well. In addition, we chose the sign
to reflect the direct impact of the feature fi . For IADI and APDI,
features with positive values improve the quality of the model’s
quality. In contrast, a negative value indicates the quality of the
model improves if the feature is removed. Note that this sign
convention is opposite to what is done by, for example, Ceder
and co-workers [ 28 ]. Finally, we chose to use the MAE OOB
quality measure to determine the IADI and APDI, which are used
in a qualitative fashion. The feature importance values for the
different models generated are presented in Table S2–S19 . 

4.5.6 Model Generation 

With the hyperparameter set, an experimental dataset available,
and an initial set of complex features selected, ensemble models
are generated using 1000 base model instances trained on random
80/20 in-bag out-of-bag splits of the dataset. One split per
base model instance, means 1000 random splits of the dataset.
The base model is a linear regression model that utilize the
11 previously selected complex features ( cf ., Table 3 ). This is
equivalent to having a complex non-linear regression model using
the three base features, but computationally much more efficient.
Although 11 features may be limited when considering complex
ML tasks, this is still a lot for the small datasets considered. Thus,
we aim to reduce this number as much as possible, with minimal
loss in quality. We therefore iteratively modify the 11-feature set by
removing the least relevant features (or introducing new potential
candidate features). The evolution of the models and their quality
measures are presented in Tables S27–S33 . With regard to the
µD 32 and µD 10 models it needs to be noted that these two are
always considered as a pair for each dataset, based on the known
relation. The relevance of the features is determined in each
iteration cycle based on Dominance Importance and Ensemble
Importance measures [ 27, 28 ]. When no more features can be
removed without a significant loss in model quality, the iterative
process ends, and the learned average coefficients of the final
model are transformed back to create a simple analytical model,
ready for use in lab conditions. Since each feature fi is standard
scaled from an experimental feature gi via Equation 7 

𝑓𝑖 =
𝑔𝑖 − 𝜇𝑖 
𝜎𝑖 

(7)

with µi the mean and σi the standard deviation of the feature
values. As such, the ML regression model 

𝑧 = 𝑏 +
∑

𝑖 

𝑎𝑖 𝑓𝑖 (8)

with intercept b and coefficients ai , can be reformulated as 

𝑧 = 𝑏′ +
∑

𝑖 

𝑎′
𝑖 
𝑔𝑖 (9)

where 𝑎′
𝑖 
= 𝑎𝑖 

𝜎𝑖 
and 𝑏′ = 𝑏 −

∑
𝑖 

𝑎𝑖 𝜇𝑖 

𝜎𝑖 
. The values for µi , σi , ai and b

for the final models are listed in Tables S34–S39 . 
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