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A B S T R A C T

Introduction: In the light of the COVID-19 pandemic many countries are trying to widen their pandemic planning 
from its traditional focus on influenza. However, it is impossible to draw up detailed plans for every pathogen 
with epidemic potential. We set out to try to simplify this process by reviewing the epidemiology of a range of 
pathogens with pandemic potential and seeing whether they fall into groups with shared epidemiological traits.
Methods: We reviewed the epidemiological characteristics of 19 different pathogens with pandemic potential 
(those on the WHO priority list of pathogens, different strains of influenza and Mpox). We extracted data on key 
parameters (reproduction number serial interval, proportion of presymptomatic transmission, case fatality risk 
and transmission route) and applied an unsupervised learning algorithm. This combined Monte Carlo sampling 
with ensemble clustering to classify pathogens into distinct epidemiological archetypes based on their shared 
characteristics.
Results: From 154 articles we extracted 302 epidemiological parameter estimates. The clustering algorithms 
categorise these pathogens into six archetypes (1) highly transmissible Coronaviruses, (2) moderately trans
missible Coronaviruses, (3) high-severity contact and zoonotic pathogens, (4) Influenza viruses (5) MERS-CoV- 
like and (6) MPV-like.
Conclusion: Unsupervised learning on epidemiological data can be used to define distinct pathogen archetypes. 
This method offers a valuable framework to allocate emerging and novel pathogens into defined groups to 
evaluate common approaches for their control.

1. Introduction

Recent global epidemics of COVID-19 and Mpox have illustrated that 
we remain vulnerable to global biological incidents. Historically, 
pandemic preparedness strategies have been limited in scope. For 
instance, prior to COVID-19, the UK government’s sole pandemic plan 
was the 2011 Influenza Pandemic Preparedness Strategy (Rietveld et al., 
2024; Rt Hon the Baroness Hallett, 2024). This narrow focus left critical 
gaps in threat readiness that have been exploited by non-influenza 
pathogens such as SARS-CoV-2 and Mpox virus (MPV).

Given the potential health and economic impacts of pandemics, the 

way in which we plan for such risks needs to be revised. There are 26 
viral families known to infect humans (Looi, 2023), but only a fraction of 
these viruses will possess the ability for widespread transmission in the 
community (Adalja et al., 2019). Historically, this fraction has been 
listed, based on historical outbreaks and ranked to inform policy makers 
on which pathogens possess the highest pandemic potential. A list-based 
approach, while useful, is inflexible and is rooted in responding to 
yesterday’s pandemic rather than proactively planning.

Categorising pathogens based on shared epidemiological traits 
rather than using historical lists offers a more flexible and inclusive 
framework for pandemic planning (Adalja et al., 2019). A trait based 
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approach would facilitate proactive planning for emerging threats by 
categorising pathogens by characteristics, allowing planners to assess a 
wider breadth of scenarios and control measures rather than specific 
historical examples (Adalja et al., 2019).

To address these gaps, we propose classifying pathogens into ar
chetypes based on epidemiological traits. Using data collected from 
previous systematic reviews where possible, and individual papers and 
parameter estimation where necessary, we implement an unsupervised 
machine learning algorithm combining Monte Carlo sampling with 
ensemble clustering to identify relevant pathogen archetypes. By cate
gorising pathogens by their key epidemiological parameters, we show 
how pathogens can be grouped by shared characteristics which may 
point to common approaches for their control.

2. Methods

2.1. Review of epidemiological parameters

We selected 19 pathogens for review based on their epidemic or 
pandemic potential. This list was primarily guided by the World Health 
Organisation’s (WHO) R&D Blueprint (as of June 2024) (Prioritizing, 
2024) and included: SARS-CoV-2 (Wild-Type, Alpha, Delta, Omicron), 
SARS-CoV-1, MERS-CoV, Crimean-Congo hemorrhagic fever orthonair
ovirus (CCHFV), Ebola virus (EBOV), Marburg virus (MARV), Lassa 
virus (LASV), Nipah virus (NiV), Rift Valley fever virus (RVFV), Zika 
virus (ZIKV), Mpox virus (MPV), and several influenza A viruses (H1N1, 
H2N2, H3N2, H1N1pdm09, and A/H5N1).

We sought to identify quantitative estimates for parameters related 
to each pathogen’s transmission route(s), infection timeline, and 
severity. Key parameters included the reproduction number (R or R0), 
overdispersion parameter for the reproduction number (k), incubation 
period, latent period, infectious period, serial interval, case fatality risk 
(CFR), and infection fatality risk (IFR).

Our search strategy involved systematic queries of PubMed for peer- 
reviewed articles and

preprints. Search terms were structured around three components: 
pathogen name, parameter type, and "systematic review" 
(Supplementary Table S1). Studies were required to report quantitative 
estimates derived from primary epidemiological data within systematic 
reviews or meta-analyses. For pathogens lacking comprehensive sys
tematic reviews, we conducted targeted searches using pathogen- 
specific terminology, without a fixed strategy. We also included arti
cles that provided datasets allowing for parameter estimation.

2.2. Parameter estimation

We estimated key parameters that were not available from the 
literature review. Where appropriate, we estimated values for the in
cubation period, serial interval, R0 and proportion of presymptomatic 
transmission for selected pathogens. For the incubation period, we used 
the {EpiLPS} package (Gressani, 2021; Gressani et al., 2025, 2022) 
where publicly available data permitted. We estimated serial intervals 
by fitting lognormal and gamma distributions to the number of onsets 
for a given day, accounting for double censoring using the R package 
{primarycensored} (Charniga et al., 2024; Abbott et al., 2025). For R0, 
we used the package {epichains} (Abbott et al., 2025; Cases of Crimean, 
2021), to provide an estimate for CCHFV on the basis of data collected 
by the European Centre for Disease Prevention and Control (Cases of 
Crimean, 2021). Full methodological details are provided in the Sup
plementary Information.

2.3. Clustering of epidemiological parameters

We compiled epidemiological estimates for each pathogen across a 
set of core parameters, including R, serial interval (SI), CFR, k, incuba
tion period (IP), latent period, infectious period (Table 1), and 

transmission route. For each study, we reconstructed a full probability 
distribution from the reported summary statistics, applying Beta distri
butions for proportion outcomes (CFR) and Gamma distributions for 
non-negative continuous parameters (R and time to key events).

We performed a 5,000-iteration Monte Carlo simulation, using a non- 
parametric bootstrap-aggregation sampling method. In each of the 
Monte Carlo iterations, for a given pathogen and parameter, we 
resampled the available studies with replacement. A single random 
value was then drawn from each study’s distribution. The final param
eter value for that iteration was the average of these draws. Trans
mission routes were encoded as fixed binary indicators (presence/ 
absence) and were not subject to sampling.

Pathogens were clustered in two stages. First, for each Monte Carlo 
iteration, we performed an independent K-means clustering on the 
resulting pathogen parameter profiles. This yielded 5000 plausible 
clustering solutions, each reflecting uncertainty in the underlying 
epidemiological estimates. Second, to obtain a single robust set of 
pathogen archetypes, we applied consensus clustering by constructing a 
co-assignment matrix representing the proportion of iterations in which 
each pair of pathogens clustered together. Hierarchical clustering of this 
matrix produced the final consensus dendrogram. The number of clus
ters was selected using silhouette width (how well a pathogen fits its 
assigned cluster) and epidemiological interpretability (Hamerly and 
Elkan, 2003).

When presymptomatic transmission was included within the algo
rithm, we defined it as the probability that the serial interval is shorter 
than the incubation period, P (SI < IP). To estimate this for each path
ogen, we compiled SI and IP distributions. Within each Monte Carlo 
iteration, one SI distribution and one IP distribution were selected from 
the study selection. Using these distributions, we simulated 5000 paired 
SI–IP iterations. The final estimate for each iteration is the proportion of 
the 5000 pairs in which the sampled SI was less than the sampled IP. For 
influenza A subtypes data on SI and IP distributions were pooled.

2.3.1. Sensitivity analysis
We repeated the clustering using a restricted parameter set consist

ing R, SI, and CFR, with and without presymptomatic transmission. To 
determine how robust the pathogen classifications were to changes in 
the parameter space, and to evaluate the stability of pathogen groupings 
when the information content of the model was reduced.

To explore the flexibility and potential further application of our 
method, we performed an analysis on a widely available set of param
eters: R, incubation period, and CFR. This enabled the incorporation of a 
more diverse range of pathogens, including those with different trans
mission dynamics, and to investigate how they fit within this classifi
cation. We extended this to include pathogens with had been excluded 
from the original analysis (RVFV), food and water borne pathogens 
(Vibrio cholerae and Norovirus), viruses common in paediatrics (Measles 
virus, Enterovirus A71 and Human metapneumovirus), bioterrorism 
related pathogens (Yersinia pestis, Variola virus and Bacillus anthracis), 
other vector borne pathogens (SFTS virus and Chikungunya), and a 
retrovirus (Human immunodeficiency virus) (Supplementary Table S3).

3. Results

3.1. Parameter review

A total of 154 articles were retrieved (Supplementary Figure S1). 
This included 43 articles obtained through the initial search of system
atic reviews and 69 articles obtained from supplementary sources. 
Among these, one was a grey literature report published by the WHO. 
We extracted 302 parameter estimates from the articles identified 
(Fig. 1).

28 articles were identified that provided sufficient data to estimate 
the incubation period with the {EpiLPS} package. Additionally, 14 ar
ticles contributed pre-existing datasets that were incorporated into the 
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Table 1 
Epidemiological parameters of pandemic potential pathogens.

Pathogen Parameter Description Value Reference

A/H1N1 Basic 
reproduction 
number

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. All 
waves

Median: 1.8 (IQR: 1.47–2.27) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 
Confined settings

Median: 3.82 (IQR: 2.68–4.84) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 1st 
wave

Median: 1.81 (IQR: 1.50–2.28) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 2nd 
wave

Median:1.73 (IQR: 1.39–2.33) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 3rd 
wave

Median:1.70 (IQR: 1.55–1.76) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Dispersion 
parameter

Modelling, estimated using time series analysis, using a large 
household survey dataset conducted in Maryland late 1918

0.94 (95 % CI: 0.59–1.72) Fraser et al. 2011 (Fraser et al., 
2011)

Serial interval (d) Median of the mean generation time or serial interval used to 
estimate reproduction number.

Median: 3.3 (range: 1.5–6.0) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review for serial interval estimates for influenza up 
to 2013.

6 studies with a range of 
1.9–8.28 days

Vink et al. 2014 (Vink et al., 2014)

Incubation period 
(d)

Modelling study, estimated through the re-analysis of daily 
incidence data of cases on ships departing Australia in 1919

Lognormal distribution with 
mean of 1.34

Nishiura 2007 (Nishiura, 2007)

Latent period (d) Modelling study, viral excretion profile over time used directly 
to estimate latent period. (H1N1/H3N2)

Weibull distribution with mean 
of 1.60 (95 % CI: 1.50–1.70)

Cori et al. 2012 (Cori et al., 2012)

Infectious period 
(d)

Modelling study, viral excretion profile over time used directly 
to estimate infectious period. (H1N1/H3N2)

Weibull distribution with mean 
of 1.0 (95 % CI: 0.50–1.70)

Cori et al. 2012 (Cori et al., 2012)

Case fatality risk 
(%)

Modelling, referenced range of CFR’s for H1N1 pandemic. 1–4 Carrat et al. 2006 (Carrat et al., 
2006)

Pandemic Influenza Risk Management 
WHO Guidance. Estimated value (for 1918 pandemic)

2–3 WHO 2017 (WHO, 2017)

A/H1N1pdm09 Basic 
reproduction 
number

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates.

Median: 1.46 (IQR: 1.30–1.70) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 
Confined settings

Median: 1.96 (IQR: 1.50–2.23) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 1st 
wave

Median:1.47 (IQR: 1.31–1.71) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 2nd 
wave

Median: 1.48 (IQR: 1.30–1.66) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Dispersion 
parameter

Modelling seasonal influenza in Switzerland from 2003 to 2015 Mean: 7.38 (95 % CI: 
5.30–10.64)

Brugger and Althaus 2020 (Brugger 
and Althaus, 2020)

Serial interval (d) Median of the mean generation time or serial interval used to 
estimate reproduction number.

Median: 2.8. (range: 1.90–7.0) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review for serial interval estimates for influenza up 
to 2013.

36 studies ranging from 1.9 to 5 
days

Vink et al. 2014 (Vink et al., 2014)

Estimates from household datasets with information on 
symptom onset dates.

Mean ranged from 1.7 to 3.7 
days, with a pooled mean of 2.8

Vink et al. 2014 (Vink et al., 2014)

Serial interval estimated from model fit of the serial interval to 
index case–to–case interval data

Normal distribution with mean 
of 2.1

Vink et al. 2014 (Vink et al., 2014)

Incubation period 
(d)

Modeling study, estimated using laboratory-confirmed swine 
influenza case-information in the UK 2009

Weibull distribution with mean 
of 1.66 (95 % CI: 1.42–1.90)

Tom et al. 2010 (Tom et al., 2011)

Modeling study, estimated using laboratory-confirmed swine 
influenza case-information in the UK 2009

Gamma distribution with mean 
of 1.65 (95 % CI: 1.41–1.89)

Tom et al. 2010 (Tom et al., 2011)

EpiLPS - Dataset from Lessler et al. 2009 (Lessler et al., 2009a) Semipar. Distribution with 
mean of 2.0 (95 % 
CrI:1.80–2.10)

Estimated

Modelling study - Outbreak of 2009 Pandemic Influenza A 
(H1N1) at a New York City School

Median: 1.4 days (95 % CI: 
1.0–1.8)

Lessler et al. 2009 (Lessler et al., 
2009b)

Latent period (d) Modelling study, estimated using data on laboratory-confirmed 
cases of pandemic H1N1 influenza reported in Ontario, Canada, 
between Apr. 13 and June 20, 2009

Mean: 2.62 (95 % CI: 
2.28–3.12)

Tuite et al. 2010 (Tuite et al., 2010)

(continued on next page)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Infectious period 
(d)

Modelling study, estimated using data on laboratory-confirmed 
cases of pandemic H1N1 influenza reported in Ontario, Canada, 
between Apr. 13 and June 20, 2009

Mean: 3.38 (95 % CI: 
2.06–4.69)

Tuite et al. 2010 (Tuite et al., 2010)

Case fatality risk 
(%)

Pandemic Influenza Risk Management 
WHO Guidance. Estimated value. 2009 pandemic

0.02 WHO 2017 (WHO, 2017)

Sero-epidemiological study. Prevalence of cross-reactive 
antibodies to H1N1pdm virus and rates of H1N1pdm infection

0.02 Van Kerkhove et al. 2013 (Van 
Kerkhove et al., 2013)

Infection fatality 
risk

Systematic review of published estimates of the case fatality risk 
of H1N1pdm09 up to 2013. Laboratory-confirmed cases

Point estimates 0–13,500 
deaths per 100,000 cases

Wong et al. 2013 (Wong et al., 
2013)

Symptomatic cases Point estimates 0–1200 per 
100,000 cases

Wong et al. 2013 (Wong et al., 
2013)

Infections Point estimates 1–10 per 
100,000 infections

Wong et al. 2013 (Wong et al., 
2013)

Symptomatic cases in children One death per 100,000 
symptomatic cases in children

Wong et al. 2013 (Wong et al., 
2013)

Symptomatic cases in the elderly Approximately 1000 deaths per 
100,000 symptomatic cases in 
the elderly,

Wong et al. 2013 (Wong et al., 
2013)

A/H2N2 Basic 
reproduction 
number

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates.

Median: 1.65 (IQR: 1.53–1.70) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Serial interval (d) Median of the mean generation time or serial interval used to 
estimate reproduction number.

Median: 3.5 (Range: 2.60–4.10) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Incubation period 
(d)

Systematic review of volunteer challenge studies Median: 2 (IQR: 2.00–2.50) Carrat et al. 2008 (Carrat et al., 
2008)

Latent period (d) Modelling study, assumed value Mean: 1.9 Elveback et al. 1976 (Elveback 
et al., 1976)

Infectious period 
(d)

Modelling study, assumed value Mean: 4.1 Elveback et al. 1976 (Elveback 
et al., 1976)

Case fatality risk 
(%)

Pandemic Influenza Risk Management 
WHO Guidance. Estimated value. (1957 pandemic)

0.2 WHO 2017 (WHO, 2017)

A/H3N2 Basic 
reproduction 
number

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates.

Median: 1.80 (IQR: 1.56–1.85) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 
Confined settings

Median: 1.39 Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 1st 
wave

Median: 1.56 Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review of the reproduction number for pandemic 
influenza. Combined estimates for the basic and effective 
reproductive numbers and presenting median estimates. 2nd 
wave

Median: 1.68 Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Serial interval (d) Median of the mean generation time or serial interval used to 
estimate reproduction number.

Median: 4.0 (Range: 2.95–4.10) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Systematic review for serial interval estimates for influenza up 
to 2013.

Mean values of 3.1 and 3.4 Vink et al. 2014 (Vink et al., 2014)

Estimates from household datasets with information on 
symptom onset dates.

Normal distribution with mean 
of 2.2

Vink et al. 2014 (Vink et al., 2014)

Incubation period 
(d)

Modelling study, estimated through analysis of an outbreak of 
influenza aboard a commercial airliner

Weibull distribution with mean 
of 1.48

Ferguson et al. 2005 (Ferguson 
et al., 2005)

Latent period (d) Modelling. Assumed value. Assumed to be same length as 
incubation period

Weibull distribution with mean 
of 1.48

Ferguson et al. 2005 (Ferguson 
et al., 2005)

Infectious period 
(d)

Modelling. Transmission model to estimate the main 
characteristics of influenza transmission in households

Gamma distribution with mean 
of 3.80 (95 % CI: 3.10–4.60)

Cauchemez et al. 2004 (Cauchemez 
et al., 2004)

Modelling. Transmission model to estimate the main 
characteristics of influenza transmission in households 
(Children)

Gamma distribution with mean 
of 3.60 (95 % CI: 2.30–5.20)

Cauchemez et al. 2004 (Cauchemez 
et al., 2004)

Modelling. Transmission model to estimate the main 
characteristics of influenza transmission in households (Adults)

Gamma distribution with mean 
of 3.9 (95 % CI: 3.20–4.90)

Cauchemez et al. 2004 (Cauchemez 
et al., 2004)

Case fatality risk 
(%)

Pandemic Influenza Risk Management 
WHO Guidance. Estimated value. (1964 pandemic)

0.2 WHO 2017 (WHO, 2017)

A/H5N1 Basic 
reproduction 
number

Modelling study, estimated Re in Vietnam 2004–2006. 0.0 (95 % CI: 0.0–0.42) Bettencourt and Ribeiro 2008 (
Bettencourt and Ribeiro, 2008)

Modelling study, estimated Re in Indonesia 2004–2006. 0.0 (95 % CI: 0.0–0.0) Bettencourt and Ribeiro 2008 (
Bettencourt and Ribeiro, 2008)

Modelling study, estimated Re in Indonesia 2005–2009. 0.1–0.25 (95 % CI: 0.0–0.40) Aditama et al. 2012 (Aditama et al., 
2012)

Modelling study, estimated lower limit on the local R0 in a 
household outbreak in Indonesia 2006.

1.14 (95 % CI: 0.61–2.14) Yang et al. 2007 (Yang et al., 2007)

Modelling. Estimated from previous human to human cases. 0.06 (95 % CI: 0.01–0.2) Ferguson et al. 2004 (Ferguson 
et al., 2004)

(continued on next page)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Serial interval (d) Median of the mean value of generation time or serial interval 
used to estimate reproduction number.

Mean: 7.8 (range: 6.0–9.5) Biggerstaff et al. 2014 (Biggerstaff 
et al., 2014)

Modelling. Estimated by fitting case data from Aditama et al. 
2012. Preprint

Median: 6.80 (95 % CrI: 
0.3–13.3)

Ward et al. 2024 (Ward et al., 
2024a)

Incubation period 
(d)

Review, median value from outbreaks in Thailand and Vietnam 
2004

Median: 4.0 (range: 2.0–8.0) Beigel et al. 2005 (Beigel et al., 
2005)

Estimated value. Retrospective descriptive study of 24 human 
cases in China 1997–2008

Median: 5.0 (range: 2.0–9.50) Huai et al. 2008 (Huai et al., 2008)

Estimated value, using survival analysis techniques. 43 human 
cases in China

Weibull distribution with mean 
of 3.30 (95 % CI: 2.70–3.90)

Cowling et al. 2013 (Cowling et al., 
2013)

Estimated value, 8 human cases in Eastern Turkey in 2006 Mean: 5 (Range: 4.0–7.0) Oner et al. 2006 (Oner et al., 2006)
Infectious period 
(d)

Modelling. Assumed value. Family Cluster, Indonesia 2006 Uniform distribution with mean 
of 9 (range 5–13)

Yang et al. 2007 (Yang et al., 2007)

Case fatality risk 
(%)

Systematic Review. Crude CFR 1997-2009 Median: 56.3 % (IQR: 
32.5–77.8)

Van Kerkhove et al. 2011 (Van 
Kerkhove et al., 2011)

Systematic review of individual case data. 1997–2015 (Overall) 53.5 Lai et al. 2016 (Lai et al., 2016)
Systematic review of individual case data. 1997–2015 (Clade 0) 31.6 Lai et al. 2016 (Lai et al., 2016)
Systematic review of individual case data. 1997–2015 (Clade 1) 58.6 Lai et al. 2016 (Lai et al., 2016)
Systematic review of individual case data. 1997–2015 (Clade 
2.1)

84.6 Lai et al. 2016 (Lai et al., 2016)

Systematic review of individual case data. 1997–2015 (Clade 
2.2)

33.2 Lai et al. 2016 (Lai et al., 2016)

Systematic review of individual case data. 1997–2015 (Clade 
2.3)

61.8 Lai et al. 2016 (Lai et al., 2016)

Systematic review of individual case data. 1997–2015 (Clade 7) 100 Lai et al. 2016 (Lai et al., 2016)
Infection fatality 
risk (%)

Adjusted CFR based on surveillance and seroprevalence studies 14–33 Li et al. 2008 (Li et al., 2008)

CCHFV Basic 
reproduction 
number

Estimated using epichains. Using data from cases of CCHFV 
infected in the European union/European Economic Area from 
2013 to 2024.

Median: 0.03 (95 % CrI: 
0.004–0.09)

Estimated

Serial interval (d) Estimated from fitting outbreak data reporting the interval 
between the onset of illness in successive cases.

Gamma distribution with mean 
of 12.0 days (95 % Crl: 
3.0–27.2)

Estimated

Incubation period 
(d)

EpiLPS – Dataset collected from review. Gamma distribution with mean 
of 5.70 (95 % CrI: 5.30–6.00)

Estimated

Case fatality risk 
(%)

Review of published reports of CCHF in Europe, Asia, middle 
east and Africa. 1944–2010

Mean: 30.6 Bente et al. 2013 (Bente et al., 2013)

Systematic review, CFR worldwide of confirmed cases 
1948–2018

Mean: 19.9 (IQR: 8–32) Belhadi et al. 2022 (Belhadi et al., 
2022)

Systematic review, Overall CFR (%) with ongoing CCHF 
infection up to 2020

11.7 % (95 % CI: 9.1–14.5) Belobo et al. 2021 (Belobo et al., 
2021)

Systematic review, fatality rate in the Arab world 1978–2021 Mean: 29 (range: 0–61) Perveen and Gulfaraz Khan 2022 (
Perveen and Khan, 2022)

Systematic review, CFR calculated from annual cases from 1944 
to 2017

Mean: 32.2 Nasirian 2020 (Nasirian, 2020)

EBOV Basic 
reproduction 
number

Systematic review. R0 reported as a range of central estimates, 
from database inception up to July 2023

0.05–12.00 Nash et al. 2024 (Nash et al., 2024)

Systematic review. Pooled mean of Ebola R0 in African 
countries from 1976 to February 2023.

Mean: 1.95 (95 % CI: 
1.74–2.15)

Muzembo et al. 2024 (Muzembo 
et al., 2024)

Transmission in hospitals and funeral rites during the 
2013–2016 Ebola epidemic in West Africa (overall basic 
reproductive number)

Mean: 1.8 (range: 1.5–2) Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Zaire ebolavirus,2013–2016 epidemic in 
Nigeria (pooled mean).

Mean: 9.38 (95 % CI: 
4.16–14.59)

Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Zaire ebolavirus,2013–2016 epidemic in 
DRC (pooled mean)

Mean: 3.31 (95 % CI: 2.3–4.32) Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Sudan ebolavirus, 2000 outbreak in Uganda 
(pooled mean Ebola).

Mean: 2.0 (95 % CI: 1.25–2.76) Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Zaire ebolavirus, 2013–2016 epidemic in 
Liberia (pooled mean)

Mean: 1.83 (95 % CI: 
1.61–2.05)

Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Zaire ebolavirus,2013–2016 epidemic in 
Sierra Leonne (pooled mean)

Mean: 1.73 (95 % CI: 1.47–2.0) Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review, Zaire ebolavirus,2013–2016 epidemic in 
Guinea (pooled mean

Mean: 1.44 (95 % CI: 1.29–1.6) Muzembo et al. 2024 (Muzembo 
et al., 2024)

Systematic review of early modelling studies. 2013–2016 
Epidemic in four West African countries. median of the R0 
means reported.

Median: 1.78 (IQR: 1.44–1.78) Wong et al. 2017 (Wong et al., 
2017)

Dispersion 
parameter

Systematic review. K reported as a range of central estimates, up 
to July 2023

0.02–2.20 Nash et al. 2024 (Nash et al., 2024)

Serial interval (d) Systematic review, up to July 2023 (Pooled value). Mean: 15.4 (95 % CI: 
13.20–17.50)

Nash et al. 2024 (Nash et al., 2024)

Systematic review of early modelling studies. 2013–2016 
Epidemics in four West African countries. median of the means 
reported.

Median: 14.35 (IQR: 
12.28–16.35)

Wong et al. 2017 (Wong et al., 
2017)

Incubation period 
(d)

Systematic review up to July 2023. Pooled random effect Mean: 8.5 (95 % CI: 7.70–9.20) Nash et al. 2024 (Nash et al., 2024)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Latent period (d) Systematic review- 1976–2000. Data from individuals with 
single-day exposures

Mean: 12.27 Velásquez et al. 2015 (Velásquez 
et al., 2015)

Systematic review of early modelling studies. 2013–2016 
Epidemic in four West African countries. median of the means 
reported.

Median: 9.7 (IQR: 8.8–10.38) Wong et al. 2017 (Wong et al., 
2017)

Systematic review up to July 2023. Pooled random effect 0.10–31.20 Nash et al. 2024 (Nash et al., 2024)
Infectious period 
(d)

Systematic review up to July 2023. Pooled random effect and 
range of central estimates

Mean: 5.0 (95 % CI: 3.70–6.30) Nash et al. 2024 (Nash et al., 2024)

Systematic review of early modelling studies. 2013–2016 
Epidemic in four West African countries. median of the means 
reported

Median: 7 (IQR: 4–10) Wong et al. 2017 (Wong et al., 
2017)

Systematic review- 1976–2000. data from individuals with 
single-day exposures (Survivors)

Mean:9.4 Velásquez et al. 2015 (Velásquez 
et al., 2015)

Systematic review- 1976–2000. data from individuals with 
single-day exposures (fatal infections)

Mean: 5.33 Velásquez et al. 2015 (Velásquez 
et al., 2015)

Case fatality risk 
(%)

Systematic review up to July 2023. Mean CFR across all 
estimates

Mean: 57.8 Nash et al. 2024 (Nash et al., 2024)

Systematic review of Asian and African countries between 1999 
and June 2021, estimated pooled case fatality rates

61.1 (95 % CI: 50.26–71.85) Khan et al. 2022 (Khan et al., 2022)

LASV Effective 
reproduction 
number

Modelling. Estimated from published outbreaks and the number 
of LF hospitalized patients to Kenema Government Hospital in 
Sierra Leone. Pure human to human transmission

0.73 Lo Iacono et al. 2015 (Lo Iacono 
et al., 2015)

Serial interval (d) Estimated using Lo Iacono et al. 2015 (Lo Iacono et al., 2015) 
data combined with outbreak data. fitted to a lognormal 
distribution

Lognormal distribution with 
mean of 11.5 days (95 % Crl: 
0.9–34.6)

Estimated

Modelling study, referenced value (Lo Iacono et al. 2015 (Lo 
Iacono et al., 2015))

Gamma distribution with mean 
of 7.8

Zhao et al. 2020 (Zhao et al., 2020)

Incubation period 
(d)

Systematic review, range of central estimates reported Range: 7.0–12.80 Doohan et al. 2024 (Doohan et al., 
2024)

EpiLPS – Dataset from Akhmetzhanov et al. 2019 (
Akhmetzhanov et al., 2019)

Lognormal distribution with 
mean of 12.6 (95 % CrI: 
11.8–13.8)

Estimated

Latent period (d) Modelling study, Referenced value Lognormal distribution with 
mean of 10.0 (Range: 5–21)

Tuite et al. 2019 (Tuite et al., 2019)

Infectious period 
(d)

Modelling study, Referenced value Lognormal distribution with 
mean of 10.0 (Range: 6–17)

Tuite et al. 2019 (Tuite et al., 2019)

Case fatality risk 
(%)

Systematic review, CFR for imported Lassa fever cases in non- 
endemic countries outside West Africa. 1969–2019

35.1 Wolf et al. 2020 (Wolf et al., 2020)

Systematic review, overall fatality rate in sub-Saharan Africa 
1972-2020

29.7 (95 % CI: 22.3–37.5) Kenmoe et al. 2020 (Kenmoe et al., 
2020)

Systematic review, pooled estimate up to 2023 33.1 (95 % CI: 25.7–41.5) Doohan et al. 2024 (Doohan et al., 
2024)

Infection fatality 
risk (%)

Crude estimate of the overall case-fatality rate 1 % Dwalu et al. 2024 (Dwalu et al., 
2024)

MARV Basic 
reproduction 
number

Modelling study, R0 estimated using previous Marburg 
outbreaks

Median: 0.81 (95 % CI: 
0.08–1.83)

Qian et al. 2023 (Qian et al., 2023)

Modelling study, R0 estimated for the 2005 epidemic in Angola 1.59 (95 % CI: 1.53–1.66) Ajelli and Merle 2012 (Ajelli and 
Merler, 2012)

Dispersion 
parameter

Modelling study, K estimated from 18 chains of transmission 
from the outbreak in DRC.

negative binomial distribution 
with a range of 0.52–0.67

Qian et al. 2023 (Qian et al., 2023)

Serial interval (d) Modelling. Estimated using Identified discernible infector- 
infectee pairs from line list data and obtained the difference 
between the dates of infection of each pair.

Gamma distribution with mean 
of 9.2

Qian et al. 2023 (Qian et al., 2023)

Incubation period 
(d)

Modelling study, estimated range of cental values 5.0–10.0 Qian et al. 2023 (Qian et al., 2023)
EpiLPS - Dataset from Pavlin 2014 (Pavlin, 2014) Weibull distribution with mean 

of 6.90 (95 % CrI: 6.20–7.60)
Estimated

Modelling study, estimated from pooled data from all Marburg 
cases between 1967 and 2008

Median: 7 (range: 2.0–13.0) Pavlin 2014 (Pavlin, 2014)

Latent period (d) Modelling study, latent period estimated using the average viral 
load in non-human primates

Mean: 3 Ajelli and Merle 2012 (Ajelli and 
Merler, 2012)

Modelling study, estimated by fitting the epidemic curve of 
MARV cases during the epidemic in Angola (assumes incubation 
period is same length as latent period)

Mean: 6.50 (95 % CI: 6.0–7.0) Bettencourt 2009 (Bettencourt, 
2009)

Infectious period 
(d)

Modelling study, estimated by fitting the epidemic curve of 
MARV cases during the epidemic in Angola

Mean: 3.0 (95 % CI: 3.0–4.0) Bettencourt 2009 (Bettencourt, 
2009)

Case fatality risk 
(%)

Systematic review, from database inception to March 2023 
(estimated pooled total random)

61.9 (95 % CI: 38.8–80.6) Cuomo-Dannenburg et al. 2024 (
Cuomo-Dannenburg et al., 2024)

MERS-CoV Basic 
reproduction 
number

Systematic review, Saudi Arabia or Middle East area data Range: 0.45–0.98 Park et al. 2018 (Park et al., 2018)
Systematic review, South Korea data (Early stage) Range: 2.5–8.09 Park et al. 2018 (Park et al., 2018)
Modelling. Referenced value derived from Cauchemez et al. 
2014

Median: 0.95 (95 % CI: 0.6–1.3) Peak et al. 2017 (Peak et al., 2017)

Dispersion 
parameter

Systematic review, point estimates of k Range: 0.06 (95 % CI: 
0.03–0.09) to 2.94 (95 % CI: 
0.23-infinity)

Wang et al. 2021 (Wang et al., 
2021)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Serial interval (d) Modelling. Outbreak in a hospital in Saudi Arabia. Estimated 
using symptom onset times in the patient of infected–infector 
pairs. Outbreak period covers interventions being introduced

Lognormal distribution with 
mean of 7.60 (95 % CI: 
2.50–23.10)

Assiri et al. 2013 (Assiri et al., 2013)

Modelling study, Outbreak in two hospitals in South Korea. 
Estimated using symptom onset times in the patient of 
infected–infector pairs. Outbreak period covers interventions 
being introduced

Gamma distribution with 
median of 14.60 (95 % CI: 
12.90–16.50)

Park et al. 2016 (Park et al., 2016)

Modelling study, estimated by analysing 119 cases in South 
Korea

Gamma distribution with mean 
of 12.60 (95 % CI: 12.10–13.10)

Cowling et al. 2015 (Cowling et al., 
2015)

Incubation period 
(d)

EpiLPS – Dataset from Cauchemez et al. 2014 (Cauchemez et al., 
2014)

Lognormal distribution with 
mean of 5.40 (95 % CrI: 
4.50–6.50)

Estimated

Systematic review up to 2017 Range: 4.50–7.80 Park et al. 2018 (Park et al., 2018)
Latent period (d) Modelling assumed value. Deemed unlikely that a case will 

cause any subsequent infections prior to 7 days after infection
7.0 Lessler et al. 2014 (Lessler et al., 

2014)
Infectious period 
(d)

Modelling study. Assumed value. Maximum duration of 
infectiousness

Uniform distribution with 
median of 16.43 (95 % CI: 
9.59–24.5)

Peak et al. 2017 (Peak et al., 2017)

Case fatality risk 
(%)

Systematic review, up to 2017. Mortality rate in South Korea Range: 14.5–47.8 Park et al. 2018 (Park et al., 2018)
Systematic review, up to 2017. Mortality rate in Saudi Arabia Range: 22–69.2 Park et al. 2018 (Park et al., 2018)
Systematic review, up to 2017. Mortality rate from multiple 
areas.

Range: 26.6–59.4 Park et al. 2018 (Park et al., 2018)

MPV Basic 
reproduction 
number

Systematic review of the 2022 Mpox outbreak. Pooled mean Mean: 1.8 (95 % CI: 1.7–1.9) Okoli et al. 2024 (Okoli et al., 2024)
Systematic review. Analysis of active surveillance data collected 
in the DRC between 1980 and 1984.

0.8 Beer et al. 2019 (Beer and Rao, 
2019)

Dispersion 
parameter

Modelling study, DRC 1980-1984. Estimated by analysing chain 
size data.

0.36 (95 % CI: 0.14–1.47) Blumberg and Lloyd-Smith 2013 (
Blumberg and Lloyd-Smith, 2013)

Modelling study 2022 Mpox outbreak. Estimated using genomic 
and epidemiological metadata.

0.3 (95 % CI: 0.18–0.54) Paredes et al. 2024 (Paredes et al., 
2024)

Serial interval (d) Systematic review of the 2022 Mpox outbreaks. Pooled mean. Mean of 8.5 (95 % CI: 7.3–9.9) Okoli et al. 2024 (Okoli et al., 2024)
Estimate from 17 case-contact pairs in the United Kingdom 
2022

Mean of 9.8 (95 % CI: 5.9–21.4) WHO 2022 (Second meeting of the 
International Health Regulations, 
20052025)

Modelling study 2022 Mpox outbreak UK. PCR confirmed cases 
between 6 May and 1 August 2022.

Gamma distribution with mean 
of 8.0 (95 % CI: 6.5–9.8)

Ward et al. 2022 (Ward et al., 2022)

Incubation period 
(d)

Systematic review, analysis of 18,275 Mpox cases during the 
2022 outbreak

Median: 7.0 (IQR: 3–21) Chenchula et al. 2023 (Chenchula 
et al., 2023)

Systematic review of the 2022 Mpox outbreaks. Pooled mean 
(up to Dec 2022)

Mean: 7.8 (95 % CI: 6.6–9.0) Okoli et al. 2024 (Okoli et al., 2024)

Systematic review of the 2022 Mpox outbreaks. Pooled mean 
(up to May 2022)

Mean: 7.4 (95 % CI: 6.4–8.4) Okoli et al. 2023 (Okoli et al., 2023)

Systematic review of previous Mpox outbreaks. Pooled mean Mean: 12.9 (95 % CI: 
10.4–15.5)

Okoli et al. 2023 (Okoli et al., 2023)

Systematic Review, analysis of outbreaks pre and post 2022 Mean: 7.9 (Range: 1–21) Hatami et al. 2023 (Hatami et al., 
2023)

Modelling study 2022 Mpox outbreak USA. May–August 2022 Lognormal distribution with 
mean of 5.6 (95 % CI: 4.3–7.8)

Madewell et al. 2023 (Madewell 
et al., 2023)

EpiLPS – dataset from Miura et al. 2022 (Miura et al., 2022) Weibull distribution with mean 
of 7.6 (95 % CrI: 6.5–9.9)

Estimated

Modelling study 2022 Mpox outbreak UK. PCR confirmed cases 
between 6 May and 1 August 2022.

Lognormal distribution with 
mean of 8.9 (95 % CI: 7.9–9.9)

Ward et al. 2022 (Ward et al., 2022)

Latent period (d) Modelling study, assumed value from viral shedding data 
(Preprint)

3.0 Asakura et al. 2024 (Asakura et al., 
2024)

Infectious period 
(d)

Modelling study, assumed value from documented duration of 
illness

21 Endo et al. 2022 (Endo et al., 2022)

Modelling study, May-June 2022 MSM. Estimated infectious 
period while not refraining from sexual contacts (Netherlands)

6.0 (95 % CI: 4.4–7.8) Xiridou et al. 2023 (Xiridou et al., 
2024)

Modelling study, July 2022 MSM. Estimated infectious period 
while not refraining from sexual contacts (Netherlands)

2.6 (95 % CI: 2.0–4.3) Xiridou et al. 2023 (Xiridou et al., 
2024)

Modelling study, assumed value based on viral shedding data 
(Preprint)

10.0 Asakura et al. 2024 (Asakura et al., 
2024)

Case fatality risk 
(%)

Systematic review - CFR of outbreaks. From discovery to 2019 Mean: 8.7 (95 % CI: 7.0–10.8) Bunge et al. 2022 (Bunge et al., 
2022)

Systematic review - CFR of Central African clade outbreaks. 
From discovery to 2019

Mean:10.6 (95 % CI: 8.4–13.3) Bunge et al. 2022 (Bunge et al., 
2022)

Systematic review - CFR of West African clade outbreaks. From 
discovery to 2019

Mean: 3.6 (95 % CI: 1.7–6.8) Bunge et al. 2022 (Bunge et al., 
2022)

Systematic review - CFR of West African clade, African 
countries only. From discovery to 2019

Mean: 4.6 (95 % CI: 2.1–8.6) Bunge et al. 2022 (Bunge et al., 
2022)

Systematic review 1950–2022. CFR when hospital care is 
available

0.03 (95 % CI: 0.0–0.44) DeWitt et al. 2022 (DeWitt et al., 
2022)

Systematic review 1980–2022, CFR in hospitalised patients 4 (95 % CI:1–9 %) Benites-Zapata et al. 2022 (
Benites-Zapata et al., 2022)

NiV Basic 
reproduction 
number

Review of hospital-based surveillance and outbreak 
investigations in Bangladesh from 2001 to 2014. Hospital-based 
surveillance implemented in 2007

0.33 (95 % CI: 0.19–0.59) Nikolay et al. 2019 (Nikolay et al., 
2019)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Review of hospital-based surveillance and outbreak 
investigations in Bangladesh. R0 for cases identified 
2007–2014. Hospital-based surveillance implemented in 2007

0.23 (95 % CI: 0.11–0.46) Nikolay et al. 2019 (Nikolay et al., 
2019)

Review of hospital-based surveillance and outbreak 
investigations in Bagladesh. R0 for primary cases between 2001 
and 2014. Hospital-based surveillance implemented in 2007

0.30 (95 % CI: 0.15–0.61) Nikolay et al. 2019 (Nikolay et al., 
2019)

Review of hospital-based surveillance and outbreak 
investigations in Bangladesh 2001–2014. R0 for cases 
hospitalized > 7 days since symptom onset or not hospitalised. 
Hospital-based surveillance implemented in 2007

0.60 (95 % CI: 0.07–4.97) Nikolay et al. 2019 (Nikolay et al., 
2019)

Dispersion 
parameter

Modelling study, referenced value 0.06 Bradbury et al. 2023 (Bradbury 
et al., 2023)

Serial interval (d) Review of hospital-based surveillance and outbreak 
investigations in Bangladesh from 2001 to 2014. Serial interval 
estimated using epidemiologically linked transmission pairs. 
Bangladesh 2001–2014. Hospital-based surveillance 
implemented in 2007

Gamma distribution with mean 
of 12.7

Nikolay et al. 2019 (Nikolay et al., 
2019)

Incubation period 
(d)

EpiLPS – Dataset from Nikolay et al. 2019 (Nikolay et al., 2019) Gamma distribution with mean 
of 9.4 (95 % CrI: 8.7–10.1)

Estimated

Systematic review up to 30 May 2019. Incubation period in the 
Philippines 2014

Median: 8.0 (Range: 4–20) Hegde et al. 2023 (Hegde et al., 
2024)

Systematic review up to 30 May 2019. Incubation period in 
Bangladesh

Median: 9.0 (Range: 6–14) Hegde et al. 2023 (Hegde et al., 
2024)

Systematic review up to 30 May 2019. Incubation period in 
India

Median: 10.0 (Range: 6–18) Hegde et al. 2023 (Hegde et al., 
2024)

Infectious period 
(d)

Review of hospital-based surveillance and outbreak 
investigations in Bangladesh from 2001 to 2014. Assumed 
maximum infectious period for contact tracing

15 Nikolay et al. 2019 (Nikolay et al., 
2019)

Case fatality risk 
(%)

Systematic review, overall random effect meta-analysis. 
1999–2014 (Bangladesh, India, Malaysia, Singapore, 
Philippines)

61 (95 % CI: 45.7–75.4) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, Bangladesh random effect meta-analysis 
from Bangladesh 2001–2014

67.9 (95 % CI: 47.7–85.4 %) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, random effect meta-analysis from India 
2001

71.3 (95 % CI: 63.2–78.8) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, random effect meta-analysis from Malaysia 
1998–1999

32.6 % (95 % CI: 25.8–39.8) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, random effect meta-analysis from the 
Philippines 2014

81.8 (95 % CI: 52.7–99.5) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, random effect meta-analysis from Singapore 
1999

2.9 (0.0–11.9) Kenmoe et al. 2019 (Kenmoe et al., 
2019)

Systematic review, CFR in Singapore 1999. Pig imports from 
Malaysia banned; abattoirs closed; preventive control measures 
in hospitals

8.3 Hegde et al. 2024 (Hegde et al., 
2024)

Systematic review, CFR in Malaysia 1998–1999. Pig culling and 
transport ban; active surveillance for encephalitis cases; 
protective equipment for all persons who have exposure to pigs; 
education campaign

40 Hegde et al. 2024 (Hegde et al., 
2024)

Systematic review, CFR in the Philippines 2014. Contact tracing 
implemented

53 Hegde et al. 2024 (Hegde et al., 
2024)

Systematic review, CFR in Bangladesh 2001–2014 78 Hegde et al. 2024 (Hegde et al., 
2024)

Systematic review, CFR in India 2001–2018 93 Hegde et al. 2024 (Hegde et al., 
2024)

Systematic review, CFR in Bangladesh and Malaysia 1999-2016 61 (95 % CI: 45.7–75.4) Suman et al. 2024 (Suman et al., 
2024)

RVF Incubation period 
(d)

Systematic review of incubation periods up to 2011. Pooled 
estimate

Lognormal distribution with 
median of 4.0 (95 % CI: 
3.40–4.90)

Rudolph et al. 2014 (Rudolph et al., 
2014)

EpiLPS – Dataset collected from outbreak reports with reported 
exposure and symptom onset times

Semipar. with mean of 4.0 
(95 % CrI: 3.3–4.5)

Estimated

Case fatality risk 
(%)

Systematic review, pooled estimate in Africa 1997-2020 27.5 (95 % CI: 8.0–52.5) Ebogo-Belobo et al. 2023 (
Ebogo-Belobo et al., 2023)

SARS-CoV-1 Basic 
reproduction 
number

Modelling study. Median estimate from study estimated using 
exponential doubling times of several epidemics in 2003. 
Without control measures. Data from Lipsitch et al. 2003 (
Lipsitch et al., 2003)

Mean: 2.9 (95 % CI: 2.2–3.6) Peak et al. 2017 (Peak et al., 2017)

Modelling, R0 estimate at the start of the epidemic in Hong 
Kong (excluding superspreading events)

2.7 (95 % C): 2.2–3.7) Riley et al. 2003 (Riley et al., 2003)

Modelling. Estimated R0 from outbreak at the National Taiwan 
University Hospital

Lognormal distribution with 
mean of 2.65

Chen et al. 2006 (Chen et al., 2006)

Modelling, estimated R0 distribution for SARS Median 1.1 (IQR: 0.43–2.41) Chowell et al. 2004 (Chowell et al., 
2004)

Modelling estimated R0 distribution Toronto 2003 (after 
implementing control measures). 77 % of cases exposed in 
hospital setting

Median:0.58 (IQR: 0.24–1.18) Chowell et al. 2004 (Chowell et al., 
2004)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Modelling study, estimated R0 distribution Hong Kong 2003 Median: 1.1 (IQR: 0.44–2.29) Chowell et al. 2004 (Chowell et al., 
2004)

Modelling study, estimated R0 distribution Singapore 2003 Median: 1.17 (IQR: 0.47–2.47) Chowell et al. 2004 (Chowell et al., 
2004)

Dispersion 
parameter

Systematic review, range of k estimates Range: 0.12 (90 % CI: 
0.08–0.42) to 0.20 (95 % CI: 
0.13–0.27)

Wang et al. 2021 (Wang et al., 
2021)

Serial interval (d) Modelling study, estimated by analysing 205 probable cases 
reported in Singapore (after interventions were implemented)

Weibull distribution with mean 
of 8.4

Lipsitch et al. 2003 (Lipsitch et al., 
2003)

Modelling study, estimated by analysing 205 probable cases 
reported in Singapore (before full-scale interventions)

Mean 10.0 Lipsitch et al. 2003 (Lipsitch et al., 
2003)

Incubation period 
(d)

Systematic review, pooled analysis Lognormal distribution with 
median of 4.0 (95 % CI: 
3.6–4.4)

Lessler et al. 2009 (Lessler et al., 
2009a)

EpiLPS – Dataset from Tsang et al. 2003 (Tsang et al., 2003) Semipar with mean of 4.70 
(95 % CrI: 3.90–5.50)

Estimated

Latent period (d) Modelling study referenced value. Assumed to be the same as 
the incubation period and a fixed value

6.5 Becker et al. 2005 (Becker et al., 
2005)

Modelling study. Assumed to be a fixed value. 6.81 Klinkenberg et al. 2006 (
Klinkenberg et al., 2006)

Modelling study assumed value. Average time of progression 
from latent infection to infectious

5.0 Lipsitch et al. 2003 (Lipsitch et al., 
2003)

Infectious period 
(d)

Modelling study. Assumed value. Average duration of 
infectiousness

Mean: 5.0 (Range: 1–5) Lipsitch et al. 2003 (Lipsitch et al., 
2003)

Modelling study referenced value. Symptomatic period 
assumed to be infectious period

Gamma distribution with mean 
of 16.3

Lloyd-Smith et al. 2003 (
Lloyd-Smith et al., 2003)

Modelling study, estimated value Gamma distribution with mean 
of 9.25

Fraser et al. 2004 (Fraser et al., 
2004)

Modelling study referenced value. Effective infectious period 9.0 Becker et al. 2005 (Becker et al., 
2005)

Modelling study referenced value. Effective infectious period 3.87 Klinkenberg et al. 2006 (
Klinkenberg et al., 2006)

Case fatality risk 
(%)

Epidemiology review article 9.55 (95 % CI: 8.94–10.2) Hui et al. 2004 (Hui et al., 2004)

SARS-CoV-2 
(Wild type)*

Basic 
reproduction 
number

Systematic review of R0 values from January 1 to August 31, 
2020 (World)

Mean: 2.69 (95 % CI: 
2.40–2.98)

Ahammed et al. 2021 (Ahammed 
et al., 2021)

Systematic review of R0 values from January 1 to August 31, 
2020 (Asia)

Mean: 2.59 (95 % CI: 
2.19–2.94)

Ahammed et al. 2021 (Ahammed 
et al., 2021)

Systematic review of R0 values from January 1 to August 31, 
2020 (Europe)

Mean: 2.70 (95 % CI: 
2.26–3.13)

Ahammed et al. 2021 (Ahammed 
et al., 2021)

Systematic review of R0 values from January 1 to August 31, 
2020 (North America)

Mean: 3.69 (95 % CI: 
1.46–5.92)

Ahammed et al. 2021 (Ahammed 
et al., 2021)

Systematic Review of transmission-Dynamic Models in Wuhan. 
R0 before the lockdown on the 23rd of January 2020

Median: 3.77 (IQR: 2.78–5.13) Lin et al. 2020 (Lin et al., 2020)

Systematic Review of transmission-Dynamic Models in Wuhan. 
R0 post lockdown starting on the 23rd of January 2020

Median: 1.88 (IQR: 1.41–2.24) Lin et al. 2020 (Lin et al., 2020)

Systematic review and meta-analysis of Epidemiologic, clinical, 
and laboratory findings. 1st December 2019–16 th July 2020.

Mean: 3.32 (95 % CI: 
3.24–3.39)

Xie et al. 2020 (Xie et al., 2020)

Systematic Review and Meta-Analysis December 2019 up to 
March 2020

Mean: 2.99 (95 % CI: 
2.71–3.27)

Izadi et al. 2022 (Izadi et al., 2022)

Dispersion 
parameter

Systematic review of superspreading in a mix of countries from 
January to December 2020

Mean: 0.55 (95 % CI: 
0.30–0.79)

Du et al. 2022 (Du et al., 2022)

Serial interval (d) Systematic review of serial intervals 2020–2023 Mean: 4.82 (95 % CI: 
4.50–5.14)

Xu et al. 2023 (Xu et al., 2023)

Incubation period 
(d)

Systematic review of Incubation periods 2020–2023 Mean: 6.50 (95 % CI: 
5.88–7.12)

Xu et al. 2023 (Xu et al., 2023)

EpiLPS - Using dataset from Backer et al. 2020 (Backer et al., 
2020)

Lognormal distribution with 
mean of 4.40 (95 % CrI: 
4.0–4.80)

Estimated

Modelling study, based on exposure information on COVID-19 
cases in China

Weibull distribution with mean 
of 6.94

Xin et al. 2022 (Xin et al., 2022)

Systematic Review of transmission-Dynamic Models in Wuhan. 
December 2019 and 21 February 2020

Median: 5.9 (IQR: 4.78–6.25) Lin et al. 2020 (Lin et al., 2020)

Latent period (d) Modelling, estimated based on exposure information on COVID- 
19 cases in China

Gamma distribution with mean 
of 5.48 (95 % CI: 5.06–5.86)

Xin et al. 2022 (Xie et al., 2020)

Modelling, estimated based on exposure information on COVID- 
19 cases in China

Lognormal distribution with 
mean of 5.51

Xin et al. 2022 (Xie et al., 2020)

Modelling, estimated based on exposure information on COVID- 
19 cases in China (symptomatic cases)

Gamma distribution with mean 
of 5.53 (95 % CI: 5.09–5.99)

Xin et al. 2022 (Xie et al., 2020)

Modelling, estimated based on exposure information on COVID- 
19 cases in China (asymptomatic cases)

Gamma distribution with mean 
of 5.24 (95 % CI: 4.30–6.14)

Xin et al. 2022 (Xie et al., 2020)

Infectious period 
(d)

Modelling, estimated from infectiousness profiles from a sample 
of 77 transmission pairs

Weibull distribution with mean 
of 9.3 (95 % CI: 7.8–10)

He et al. 2020 (He et al., 2020)

Modelling. Assumed that latent and the infectious period is 
approximately equal to the incubation period and the length of 
hospital stay.

12.53 Zhu et al. 2021 (Zhu et al., 2021)

(continued on next page)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Systematic Review of transmission-Dynamic Models in Wuhan 
December 2019 and 21 February 2020

Median: 9.94 (IQR: 3.93–13.5) Lin et al. 2020 (Lin et al., 2020)

Case fatality risk 
(%)

Systematic review of CFR’s worldwide from January 1 to 
August 31, 2020

Mean: 2.67 (95 % CI: 
2.25–3.13)

Ahammed et al. 2021 (Ahammed 
et al., 2021)

Systematic Review and Meta-Analysis December 2019 up to 
March 2020

Mean: 3.29 Izadi et al. 2020 (Izadi et al., 2022)

Systematic review and meta-analysis of Epidemiologic, clinical, 
and laboratory findings. 1st December 2019–16 th July 2020

4.4 Xie et al. 2020 (Xie et al., 2020)

Systematic Review of transmission-Dynamic Models in Wuhan 
December 2019 and 21 February 2020

Median: 2.94 (IQR: 2.25–5.4) Lin et al. 2020 (Lin et al., 2020)

Infection fatality 
risk (%)

IFR from Japanese citizens who were evacuated from Wuhan on 
29–31 January 2020

Range: 0.3–0.6 Nishiura et al. 2020 (Nishiura et al., 
2020b)

Crude risk of death among all infected individuals in Wuhan city 
January-February, 2020

0.07 (95 % CI: 0.05–0.09) Mizumoto et al. 2020 (Mizumoto 
et al., 2020)

Estimating infection fatality ratio accounting for seroreversion. 
During the first wave of COVID-19 across different settings

0.49–2.53 Brazeau et al. 2022 (Brazeau et al., 
2022)

SARS-CoV-2 
(Alpha)

Basic 
reproduction 
number

Modelling, transmissibility model of Alpha variant in the United 
Kingdom fitted until the 24th of December 2020.

Alpha variant has a 43–90 % 
higher reproduction number

Davies et al. 2021 (Davies et al., 
2021)

Serial interval (d) Systematic review of serial intervals 2020–2023 Mean: 3.47 (95 % CI: 
2.52–4.41)

Xu et al. 2023 (Xu et al., 2023)

Modelling. Estimated using household clusters from week 12/ 
2021 until 22/2021 in Germany

Gamma distribution with mean 
of 4.5 (95 % CI: 4.46–4.54)

Heiden and Buchholz 2022 (An der 
Heiden and Buchholz, 2022)

Incubation period 
(d)

Systematic review of Incubation periods 2020–2023 Mean: 4.92 (95 % CI: 
4.53–5.30)

Xu et al. 2023 (Xu et al., 2023)

Latent period (d) Epidemiological analysis. Assumed value as the ratio of mean 
duration of the latent and incubation periods

Median: (95 % CI: 0.23 
(0.04–0.50)

Hart et al. 2022 (Hart et al., 2022)

Infectious period 
(d)

Epidemiological analysis. Assumed value of symptomatic 
infectious period

Gamma distribution with a 
mean of 3.5 (95 % CI: 1.9–5.8)

Hart et al. 2022 (Hart et al., 2022)

Case fatality risk 
(%)

Systematic review of CFR’s worldwide from January 1, 2020, 
and March 31, 2023

2.62 (95 % CI: 2.0–3.23) Xia et al. 2024 (Xie et al., 2020)

Infection fatality 
risk (%)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly partly vaccinated. Ages 20–39 years

0.03 (95 % CI: 0.03–0.1) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly partly vaccinated. 40–59 years

0.37 (95 % CI: 0.29–0.56) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly partly vaccinated. 60 + years

6.42 (95 % CI: 4.69–7.44) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

SARS-CoV-2 
(Delta)

Basic 
reproduction 
number

Review of R0 from May to July 2021 using studies from China 
and the UK.

Mean: 5.08 (range: 3.20–8.0) Liu and Rocklöv 2021 (Liu and 
Rocklöv, 2021)

Dispersion 
parameter

Modelling study. Calculated using 1344 transmission pairs from 
the 11th of July to the 24th of July 2021 in South Korea. (Mask 
mandate, active case finding and immediately isolating 
laboratory-confirmed COVID-19 patients and exposed persons 
by using digital QR codes, 4-person limit for gatherings was 
implemented beginning July 19, 2021)

Negative binomial distribution 
with mean of 0.64 (95 %CI: 
0.57–0.72)

Ryu et al. 2022 (Ryu et al., 2022)

Modelling study. Calculated using 2384 transmission pairs from 
the 25th of July to the 15th of August 2021 in South Korea. 
(Mask mandate, active case finding and immediately isolating 
laboratory-confirmed COVID-19 patients and exposed persons 
by using digital QR codes, 4-person limit for gatherings was 
implemented beginning July 19, 2021)

Negative binomial distribution 
with mean of 0.85 (95 % CI: 
0.75–0.98)

Ryu et al. 2022 (Ryu et al., 2022)

Modelling study. Using a likelihood-based estimating 
framework based on 126 observations from May to December 
2021 in Guangdong, China. Under intense control measures

Negative binomial distribution 
with mean of 0.26 (95 % CI: 
0.16, 0.41)

Zhao et al. 2022 (Zhao et al., 2022)

Serial interval (d) Systematic review of serial intervals 2020–2023 Mean: 3.59 (95 % CI: 
3.26–3.92)

Xu et al. 2023 (Xu et al., 2023)

Modelling. Estimated value using household clusters from week 
27/2021 until 49/2021 in Germany

Gamma distribution with mean 
of 4.19 (95 % CI: 4.16–4.22)

Heiden and Buchholz 2022 (An der 
Heiden and Buchholz, 2022)

Incubation period 
(d)

Systematic review of Incubation periods 2020–2023 Mean: 4.63 (95 % CI: 
4.11–5.15)

Xu et al. 2023 (Xu et al., 2023)

EpiLPS- Data set from Backer et al. 2022 (Backer et al., 2022) Lognormal distribution with 
mean of 4.30 (95 % CrI: 
4.10–4.50)

Estimated

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China

Gamma distribution with mean 
of 5.04 (95 % CI: 4.83–5.33)

Li et al. 2024 (Li et al., 2024)

Latent period (d) Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China

Gamma distribution with mean 
of 4.40 (95 % CI: 4.24–4.63)

Li et al. 2024 (Li et al., 2024)

Infectious period 
(d)

Viral shedding dynamics in fully vaccinated adults in the USA Median: 6.0 (IQR: 5.0–8.0) Garcia-Knight et a. 2022 (
Garcia-Knight et al., 2022)

Case fatality risk 
(%)

Systematic review of CFR’s worldwide from January 1, 2020, 
and March 31, 2023

2.01 (95 % CI: 1.88–2.14) Xia et al. 2024 (Xia et al., 2024)

Systematic review of confirmed case-fatality risk. 18 January 
2021 to December 2021

0.46 (95 % CI: 0.2–0.73) Yuan et al. 2023 (Yuan et al., 2023)

(continued on next page)
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Table 1 (continued )

Pathogen Parameter Description Value Reference

Infection fatality 
risk (%)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly was prioritised for vaccination and 
were fully vaccinated before the end of July 2021. Ages 20–39 
years

0.01 (95 % CI: 0.01–0.01) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly was prioritised for vaccination and 
were fully vaccinated before the end of July 2021. Ages 40–59 
years

0.12 (95 % CI: 0.1–0.16) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly was prioritised for vaccination and 
were fully vaccinated before the end of July 2021. Ages 
60 + years

0.95 (95 % CI: 0.7–1.1) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

Infection fatality risk in England at the end of the Delta period 
(November 2021)

0.11 (95 % CI: 0.08–0.15) Ward et al. 2024 (Ward et al., 
2024b)

SARS-CoV-2 
(Omicron)

Basic 
reproduction 
number

Rapid review of R0 from November 2021 to December 2021 
(Mix of countries)

Mean: 9.5 (IQR: 7.25–11.88) Liu and Rocklöv 2022 (Liu and 
Rocklöv, 2022)

Effective 
reproduction 
number

Rapid review of RE from November 2021 to January 2022 (Mix 
of countries).

Mean: 3.4 (IQR: 0.88–9.40) Liu and Rocklöv 2022 (Liu and 
Rocklöv, 2022)

Dispersion 
parameter

Modelling. 427 laboratory-confirmed cases from 25 November 
to 31 December 2021 in South Korea. (BA.1)

0.10 (95 % CI: 0.08–0.13) Guo et al. 2022 (Guo et al., 2022)

Modelling. 67 epidemiologic linked cases from 2 to 21 January 
2022 in Hong Kong (border control, physical distancing and 
contact tracing in place) (BA.1,2)

0.33 (95 % CI: 0.17–0.62) Guo et al. 2022 (Guo et al., 2022)

Serial interval (d) Systematic review of serial intervals 2020–2023 Mean: 3.21 (95 % CI: 
2.94–3.48)

Xu et al. 2023 (Xu et al., 2023)

Incubation period 
(d)

Systematic review of Incubation periods. (BA.1) Mean: 3.49 (95 % CI: 
3.13–4.86)

Xu et al. 2023 (Xu et al., 2023)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China

Gamma distribution with mean 
of 3.41 (95 % CI: 3.27–3.58)

Li et al. 2024 (Li et al., 2024)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China. (BA.1)

Gamma distribution with mean 
of 3.42 (95 % CI: 3.00–3.89)

Li et al. 2024 (Li et al., 2024)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China. (BA.2)

Gamma distribution with mean 
of 3.39 (95 % CI: 3.24–3.55)

Li et al. 2024 (Li et al., 2024)

EpiLPS - Dataset from Backer et al. 2022 (Backer et al., 2022) Lognormal distribution with 
mean of 3.30 (95 % CrI: 
3.20–3.50)

Estimated

Latent period (d) Cross-sectional study in China, with 114 cases with COVID-19 
Omicron variant BA.1.1 between January 2022 and February 
2022

Gamma distribution with mean 
of 3.13 (95 % CI: 2.82–3.48)

Xin et al. 2023 (Xin et al., 2022)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China

Gamma distribution with mean 
of 2.58 (95 % CI: 2.48–2.68)

Li et al. 2024 (Li et al., 2024)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China. (BA.1)

Gamma distribution with mean 
of 2.50 (95 % CI: 2.27–2.76)

Li et al. 2024 (Li et al., 2024)

Modelling, estimated from infected individuals with clear 
transmission chains and infectors from epidemiological survey 
reports in China. (BA.2)

Gamma distribution with mean 
of 2.58 (95 % CI: 2.48–2.69)

Li et al. 2024 (Li et al., 2024)

Infectious period 
(d)

Transmission period after symptom onset date (Spain). BA.1 Mean: 0.5 (IQR: − 1.0–2.0) Águila-Mejía et al. 2022 (Del 
Águila-Mejía et al., 2022)

Time to first negative viral culture (USA). (BA.2, 5, XBB) Median: 4.0 (IQR: 3.0–4.0) Edelstein et al. 2023 (Edelstein 
et al., 2023)

Case fatality risk 
(%)

Systematic review of CFR’s worldwide from January 1, 2020, 
and March 31, 2023

0.7 (95 % CI: 0.67–0.73) Xia et al. 2024 (Xia et al., 2024)

Systematic review confirmed case-fatality risk. 18 January 2021 
to December 2021

0.04 (95 % CI: 0–0.61) Yuan et al. 2023 (Yuan et al., 2023)

Systematic review, patient deaths/omicron patients. From 14/ 
11/2021–07/03/2022

0.21 Ahmad et al. 2024 (Ahmad et al., 
2024)

Infection fatality 
risk (%)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly fully vaccinated. Ages 20–39 years

0 (95 % CI: 0–0) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly fully vaccinated. Ages 40–59 years

0.02 (95 % CI: 0.01–0.04) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

IFR for six epidemic waves in Osaka Japan from February 2020 
to January 2022. Elderly fully vaccinated. Ages 60 + years

1.26 (95 % CI: 0.9–2.54) Zhang and Nishiura 2023 (Zhang 
and Nishiura, 2023)

Infection fatality risk in England at the end of the Omicron BA.1 
and Omicron BA.2 period (April 2022)

0.06 (95 % CI: 0.04–0.08) Ward et al. 2024 (Ward et al., 
2024b)

ZIKV Basic 
reproduction 
number

Review of R0 across global climate zones (1980–2018) Mean: 3.02 (range: 0.16–9.40) Liu et al. 2020 (Liu et al., 2020)
Estimated R0 values for the outbreak in Miami 2016 Lognormal distribution with 

mean of 1.88 (95 % CI: 
1.53–2.32)

Liu et al. 2020 (Liu et al., 2020)

(continued on next page)
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analysis.

3.2. Epidemiological characteristics

3.2.1. Transmission dynamics
We extracted 63 estimates for the reproduction number, which 

varied across pathogens and outbreaks due to differences in settings and 
the implementation of control measures (Table 1). One additional esti
mate was derived, with the median R₀ for CCHFV estimated at 0.03 
(95 % CrI: 0.004–0.09) based on cases reported in the European Union 
between 2013 and 2014 (Supplementary figure S4).

A total of 15 estimates for the dispersion parameter (k) were 
extracted, revealing varying degrees of heterogeneity in transmission. 
SARS-CoV-1, SARS-CoV-2, MERS-CoV and NiV exhibited particularly 

low k values, indicating a high potential for superspreading events, 
whereas influenza displayed greater uniformity in transmission. Patho
gens such as EBOV were reported to have a wide range of estimates 
suggesting the degree of superspreading may be dependent on outbreak 
setting (Table 1).

3.2.2. Time to key events
We extracted 51 estimates for the incubation period and provided 13 

additional estimates based on publicly available data. The length of the 
incubation period varied across pathogens, with pandemic influenza 
exhibiting the shortest incubation period. In contrast, pathogens pri
marily transmitted through contact with infected body fluids, such as 
LASV, EBOV, and CCHF, had the longest incubation periods (Table 1).

For the serial interval, we extracted 33 estimates. As with the 

Table 1 (continued )

Pathogen Parameter Description Value Reference

Reproduction number for ZIKV sexual transmission Median: 0.136 (95 % CI: 
0.009–0.521)

Gao et al. 2016 (Gao et al., 2016)

Serial interval (d) Systematic review, serial symptom onset interval in 15 couples 
via sexual transmission

Median: 12.0 (IQR:10.0–14.50) Counotte et al. 2018 (Counotte 
et al., 2018)

Incubation period 
(d)

Systematic review up to 2016. Pooled analysis Lognormal distribution with 
median of 5.90 (95 % CI: 
4.40–7.60)

Lessler et al. 2016 (Lessler et al., 
2016)

EpiLPS - Dataset from lessler et al. 2016 (Lessler et al., 2016) Semipar. with mean of 6.7 
(95 % CI: 5.8–7.6)

Estimated

Latent period (d) Modelling study. Referenced value. Assumed that human latent 
period is equivalent to the intrinsic incubation period and is a 
constant value

6.8 Agudelo et al. 2022 (Agudelo and 
Ventresca, 2022)

Modelling study Referenced value. Assumed that latent period 
is equivalent to the incubation period

Gamma distribution with mean 
of 3.9

Kucharski et al. 2016 (Kucharski 
et al., 2016)

Infectious period 
(d)

Systematic review up to 2016. Time period that Zika virus is 
detectable in blood

Mean: 9.9 Lessler et al. 2016 (Lessler et al., 
2016)

Modelling study. Referenced value Gamma distribution with mean 
of 5.0

Kucharski et al. 2016 (Kucharski 
et al., 2016)

Systematic review, range of zika virus shedding in male genital 
tract

Range: 3–69 Moreira et al. 2017 (Moreira et al., 
2017)

Case fatality risk 
(%)

Systematic review, CFR in the Americas up to 2018 Median: 0.02 (range: 
0.002–0.324)

Cardona-Ospina et al. 2019 (
Cardona-Ospina et al., 2019)

* SARS-CoV-2 wild type is defined as articles published regarding the first wave of COVID-19 prior to the emergence of the Alpha variant.

Fig. 1. Distribution of parameter estimates from the literature search. From 154 articles we extracted 302 parameter estimates. 63 for the reproduction number, 15 
for the dispersion parameter, 51 for the incubation period, 33 for the serial interval, 27 for the latent period, 33 for the infectious period, 59 for the CFR, and 21 for 
the IFR.
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incubation period, serial intervals were shortest for pandemic influenza 
and SARS-CoV-2 and longest for contact-transmitted pathogens 
(Table 1). Additionally, we estimated serial intervals for LASV and 
CCHF, with mean values of 11.5 days (95 % CrI: 0.9–34.6) 
(Supplementary Figure S2) and 12.0 days (95 % CrI: 3.0–27.2) 
(Supplementary Figure S3), respectively.

For the latent and infectious periods, we extracted 27 and 33 esti
mates, respectively. These durations showed notable variation between 
pathogens, highlighting differences in disease progression (Table 1).

3.2.3. Severity and mortality risk
We extracted 59 estimates for the case fatality rate (CFR) and 21 for 

the infection fatality rate (IFR). CFR estimates exhibited a broad range 
across pathogens, reflecting varying levels of disease severity (Table 1). 
Additionally, CFR varied within pathogens, with substantial heteroge
neity between studies, outbreaks and age groups. For instance, NiV 
outbreaks with implemented control measures reported lower CFR es
timates (Table 1).

Compared to CFR, fewer IFR estimates were reported. IFR values 
were consistently lower than CFR estimates for the same pathogen and 
demonstrated age-dependent variation (Table 1)

Fig. 2. Hierarchical clustering with R0, serial interval, k, incubation period, latent and infectious period, case fatality risk and transmission route. A) The optimal 
number of consensus clusters determined by maximizing the average silhouette width. The optimal number of clusters is identified as K= 5 indicated by the red 
asterisk. B) The co-assignment matrix, visualised as a heatmap, displays the proportion of the 5000 Monte Carlo iterations in which each pair of pathogens was 
assigned to the same cluster. C) The final, stable classification of 18 pathogens based on their epidemiological and transmission characteristics. The horizontal branch 
lengths represent the dissimilarity between clusters, with shorter branches indicating a higher frequency of co-assignment in the underlying Monte Carlo simulations.
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3.3. Ensemble clustering

We evaluated consensus clustering under the full parameter set, 
including and excluding the proportion of presymptomatic transmission 
(Fig. 2 & Supplementary Figure S9). Although presymptomatic trans
mission estimates were generated for all pathogens, these values were 
highly uncertain, in some cases extending beyond realistic bounds 
(Supplementary Table S2). For this reason, and because their inclusion 
did not materially improve cluster stability, the clustering solution 
excluding presymptomatic transmission (Fig. 2) was retained as the 
primary group.

The silhouette analysis (Fig. 2A) suggested that five clusters maxi
mised average silhouette width; however, one of the resulting groups 
combined SARS-CoV-1, SARS-CoV-2 (WT) and MPV, which is poten
tially epidemiologically conflicting. The co-assignment heatmap 
(Fig. 2B) shows instability within this cluster: while SARS-CoV-1 and 
SARS-CoV-2 (WT) co-assign in 89 % of Monte Carlo iterations, MPV co- 
assigns with both, slightly more than half of the time.

When the dendrogram was instead cut at K= 6 (Fig. 3), it resolved 
into more epidemiologically coherent clusters, with all major pathogen 
groups forming stable, internally consistent archetypes across the 
ensemble of Monte Carlo simulations. Given this, the six-cluster solution 
was selected as the final consensus classification. The characteristics of 
each archetype are detailed in Table 2.

The dendrogram from Fig. 2 is cut at K = 4, 5, and 6 clusters to show 
how pathogen groupings change as the tree is partitioned at different 
resolutions. Stable groupings appear where pathogens remain together 
across multiple values of K, whereas splits or reassignments indicate less 
well-defined relationships within the consensus structure.

3.4. Archetype characterisation

3.4.1. Highly transmissible Coronaviruses
Archetype 1 contains the SARS-CoV-2 Delta and Omicron variants, 

which form a distinct high-transmission respiratory group. These path
ogens have the highest reproductive number among all clusters (mean R 

Fig. 3. Hierarchical clustering with R0, serial interval, k, incubation period, latent and infectious period, case fatality risk and transmission route. K= 4, 5, 6.
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of 7.38 (95 % CI: 3.50–11.40) short serial intervals (3.55 (95 % 
CI:2.99–4.20), and relatively short latent and infectious periods. The 
CFR is low (0.1 (95 % CI: 0.0–0.2)).

3.4.2. Moderately transmissible Coronaviruses
Archetype 2 comprises SARS-CoV-1 and the wild-type strain of SARS- 

CoV-2. These pathogens exhibit lower transmissivity (1.36 (95 % CI: 
1.22–3.37)), longer serial intervals (6.36 (95 % CI: 2.17–16.38)), and 
longer infectious periods compared with Archetype 1. CFR displays a 
wider interval from 0.2 % to 10 %

3.4.3. High-severity contact and zoonotic pathogens
Archetype 3 groups EBOV and MARV. These pathogens have very 

high CFRs (60 (95 % CI: 43–78)), with the interval for human-to-human 
transmissibility ranging from 0.38 to 4.11. They display long serial, 
incubation and latent periods.

3.4.4. Influenza viruses
Archetype 4 contains A/H1N1 and A/H1N1pdm09. These pathogens 

show moderately high transmissibility (1.88 (95 % CI:1.44–2.85)), short 
incubation periods (1.50 (95 % CI:1.34–1.85)) and short infectious pe
riods (2.13 (95 % CI: 0.56–4.42)). CFRs are low (0.1 % (95 % CI: 
0.0–0.3)).

3.4.5. MERS-CoV-like
Archetype 5 consists solely of MERS-CoV. The pathogen is charac

terised by a long serial interval (12.41 (95 % CI:7.67–16.50)), long in
fectious period (16.01 (95 % CI: 9.45–24.27)), and very high CFR (39 % 
(CI:26–53)). Transmissibility is varied with the confidence interval 
ranging from 0.42 to 3.0.

3.4.6. MPV-like
Archetype 6 consists of MPV. MPV exhibits moderate incubation 

(8.58 (95 % CI:6.62–11.13)) and infectious periods (6.36 (95 % CI: 
3.19–10.00)). Moderate contact driven transmissibility (1.30 (95 % CI: 
0.80–1.85)), and a CFR of 5.4 % (95 % CI: 2.4–8.3).

3.4.7. Sensitivity analysis
To assess the robustness of the consensus clustering, we repeated the 

analysis using a reduced parameter set consisting of R, SI, and CFR, with 
(Supplementary Figures S5 and S6) and without presymptomatic 
transmission (Supplementary Figures S7 and S8). In both scenarios, 
pathogens grouped into larger and less clearly defined clusters, reflect
ing the limited discriminatory power of these parameters when used in 

isolation. When presymptomatic transmission was introduced SARS- 
CoV-2 viruses formed their own cluster separate to the Influenza A vi
ruses (Supplementary Figures S5 & S7). Additionally, LASV also 
changed clusters when this parameter was added.

We assessed the flexibility of the framework by applying it to a more 
diverse range of pathogens using a core set of widely applicable pa
rameters: R, IP, CFR, and transmission route. The framework incorpo
rated and classified a wide variety of additional pathogens 
(Supplementary Figure S11).

4. Discussion

We reviewed key epidemiological parameters for 19 pathogens with 
pandemic potential and applied clustering algorithms to identify path
ogen archetypes that share similar characteristics. Our findings suggest 
that grouping pathogens based on transmission traits could provide a 
pragmatic approach to pandemic preparedness.

The most frequently reported parameters were the incubation 
period, reproduction number, and CFR. However, data availability was 
uneven, with SARS-CoV-2 and influenza accounting for nearly half of all 
estimates. Parameter estimates varied both across pathogens and within 
studies of the same pathogen, aligning with previous reviews (Nash 
et al., 2024). Notably, R, serial interval, and CFR estimates were highly 
context dependent. For example, MERS-CoV R estimates ranged from 
5.4 (95 % CI: 4.61–6.19) in an uncontrolled hospital outbreak to 0.14 
(95 % CI: 0.04–0.26) with control measures in place (Park et al., 2018). 
Similarly, influenza A/H1N1 R₀ estimates were higher in confined set
tings compared to overall estimates (Biggerstaff et al., 2014). Likewise, 
EBOV estimates varied by country during the 2013–2016 epidemic 
(Muzembo et al., 2024). Serial interval estimates also decreased when 
control measures were implemented, with the serial interval of 
SARS-CoV-2 decreasing post epidemic peak in China correlating with 
decreased time to isolation (Xu et al., 2023).

There were considerable differences in CFR estimates between out
breaks of the same pathogen. Influenza A/H5N1 varies by clade (Lai 
et al., 2016). MPV varies when hospital care is available (DeWitt et al., 
2022) or when comparing outcomes from outbreaks in Africa to out
breaks in the United States (Bunge et al., 2022). Varying estimates for 
NiV highlights how CFR can vary depending on country, strain and the 
control measures implemented, with the CFR being lower in Singapore 
(1999) compared to Malaysia (1998–1999) (Hegde et al., 2024). These 
examples illustrate that parameter estimates are generated across a wide 
range of contexts, and the importance of contextualising parameter es
timates when applying them to modelling efforts.

Table 2 
Archetype characterisation of Fig. 3 when K= 6.

Cluster Pathogens Archetype parameters (mean (95 % CI)) Transmission 
route

R k Serial interval 
(d)

Incubation 
period (d)

Latent period 
(d)

Infectious 
period (d)

CFR (%)

1 COVID-19 (Delta 
and Omicron)

7.38 
(3.50–11.40)

0.41 
(0.10–0.82)

3.55 
(2.99–4.20)

4.09 
(3.33–5.03)

3.57 
(2.51–4.60)

4.94 
(3.06–7.74)

0.1 
(0.0–0.2)

Respiratory 
(n = 2)

2 COVID-19 (WT), 
SARS-CoV-1

1.36 
(1.22–3.37)

0.36 
(0.14–0.74)

6.36 
(2.17–16.38)

5.08 
(3.85–6.64)

5.77 
(5.01–6.71)

8.33 
(4.63–12.07)

0.6 
(0.2–10)

Respiratory 
(n = 2)

3 EBOV, MARV 1.88 
(0.38–4.11)

0.57 
(0.18–1.06)

11.92 
(3.47–17.18)

7.52 
(4.37–9.34)

8.71 
(6.06–12.27)

5.03 
(3.07–8.38)

60 
(43–78)

Animal to human 
(n = 2) 
Direct contact 
(n = 2)

4 A/H1N1, A/ 
H1N1pdm09

1.88 
(1.44–2.85)

4.43 
(0.65–10.15)

2.73 
(2.12–3.38)

1.50 
(1.34–1.85)

2.14 
(1.51–3.04)

2.13 
(0.56–4.42)

0.1 
(0.0–0.3)

Respiratory 
(n = 2)

5 MERS-CoV 1.40 
(0.42–3.08)

4.41 
(0.0–49.01)

12.41 
(7.67–16.50)

6.71 
(5.73–8.03)

7.00 
(7.00–7.00)

16.01 
(9.45–24.27)

39 
(26–53)

Animal to human 
(n = 1) 
Respiratory 
(n = 1)

6 MPV 1.30 
(0.80–1.85)

0.48 
(0.23–1.01)

9.69 
(7.38–13.97)

8.58 
(6.62–11.13)

3.00 
(3.00–3.00)

6.36 
(3.19–10.00)

5.4 
(2.4–8.3)

Animal to human 
(n = 1) 
Direct contact 
(n = 1)
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Our clustering analysis identified six pathogen archetypes, each with 
shared characteristics that could inform the development of group- 
based, rather than pathogen-specific, control strategies (Fig. 3). Given 
that key interventions like contact tracing and case isolation are directly 
influenced by parameters such as R, the serial interval, and the pro
portion of presymptomatic transmission (Nishiura et al., 2020a; Fraser 
et al., 2004). Pathogen-specific planning however, is and will remain 
useful. Clustering pathogens with shared epidemiology would allow for 
specific plans to be adapted for pathogens that share similar charac
teristics. A dual approach would ideally allow for both in depth prepa
ration for known risks and breadth in preparedness for a wider range of 
pathogens.

The archetypes proposed are a result of the quality, context, and 
variability of the underlying input parameters. Without classifying 
pathogens by setting and context, the archetypes must try and capture 
the range of plausible epidemiological behaviours that a pathogen can 
exhibit across different settings. However, this may bias the central 
tendency for parameters like R upwards, potentially misrepresenting a 
pathogen’s behaviour in more common scenarios. Therefore, the use of 
this framework is to outline a plausible parameter range for each 
archetype. Archetype 3 (EBOV and MARV) for example spans 0.38–4.11 
with a mean of 1.88. When planning for an EBOV/MARV-like pathogen 
there may be settings where transmission is limited (Nash et al., 2024) or 
uncontrolled (Muzembo et al., 2024). Likewise for a MERS-CoV-like 
pathogen in community settings transmission potential may be small, 
however in hospital settings there is a greater risk of secondary trans
mission (Park et al., 2018). Therefore, capturing the heterogeneity of 
these estimates is important to effectively plan for these pathogens.

Presymptomatic transmission was excluded from the main analysis 
as the estimates proved too uncertain to be meaningfully interpreted 
(Supplementary Table S2). The values for SARS-CoV-2 variants and MPV 
were broadly consistent with published ranges (Tindale et al., 2020; 
Casey-Bryars et al., 2021; Ward et al., 2022). Others showed biologically 
implausible estimates, such as MERS-CoV. This estimation is highly 
influenced by uncertainty in serial interval and incubation period esti
mates (Slifka and Gao, 2020). Because of the sensitivity to the under
lying distributions, even small uncertainties or inconsistencies in the 
source data can produce large fluctuations in the presymptomatic esti
mates. Although including presymptomatic transmission in the clus
tering process (Supplementary Figures S5 & S9) produced some shifts in 
cluster membership, the consensus structure remained broadly robust. 
Given these issues, the presymptomatic transmission parameter was 
omitted from the primary clustering analysis to avoid overinterpreting 
estimates stemming from data uncertainty.

The estimates generated for the serial interval and R0 for LASV and 
CCHFV respectively are subject to considerable uncertainty. Human-to- 
human transmission for these pathogens is best studied in hospital set
tings, where nosocomial outbreaks have been documented. Identifying 
transmission for these pathogens in community or household settings is 
particularly difficult as it is hard to distinguish between vector/animal- 
to-human from human-to-human transmission. As a result, estimation of 
transmission parameters will largely rely on hospital-based outbreaks, 
as used in this study. Whilst these estimates are subject to significant 
uncertainty, they provide a feasible basis for inference. As such utilising 
these parameters within our framework (Supplementary figure S5 & S7) 
introduces additional uncertainty, which is a limitation for this method.

These findings highlight the potential for this framework to serve as 
an adaptable tool for classifying and assessing pathogens beyond those 
included in this study. We extended the number of pathogens in the 
sensitivity analysis (Supplementary Figure S11) to include pathogens 
with different characteristics to the original selection. Highlighting that 
the framework could be used to classify water-borne pathogens, 
bioterrorism-related pathogens and pathogens with extended delay pe
riods such as HIV. Additional work should address the impact of key 
interventions across each archetype. Moreover, the framework should 
be continuously updated as new epidemiological data emerge, refining 

the clustering methods and integrating additional pathogens, including 
both novel and emerging threats. To that end, the development of a 
global, standardised repository for epidemiological parameters would 
enable the rapid integration of data on novel and emerging threats.

Further research should be directed to explore the use of machine 
learning techniques to group pathogens. Our analysis reflects a set of 
decisions and assumptions that could reasonably be handled differently. 
Exploring how cluster membership changes under different approaches 
would help identify which aspects of the clustering are robust and which 
are most dependent on methodological choices. Such comparative work 
would support the development of more generalisable frameworks for 
future pandemic preparedness.

5. Conclusion

Documenting epidemiological parameters is crucial for effective 
outbreak risk analysis. We provide 302 parameter estimates for 19 
pathogens, offering a valuable foundation for modelling their spread 
and containment. However, key transmission parameters such as the 
dispersion parameter and latent period remain underreported, high
lighting the need for further research to strengthen outbreak prepared
ness. Our clustering approach demonstrates a practical framework for 
evaluating plausible parameter ranges across groups of similar patho
gens. By maintaining a dynamic classification system, public health 
preparedness efforts can shift away from a reactive, pathogen-specific 
focus toward a more anticipatory, trait-based strategy for managing 
future infectious disease risks.
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Del Águila-Mejía, J., Wallmann, R., Calvo-Montes, J., Rodríguez-Lozano, J., Valle- 
Madrazo, T., Aginagalde-Llorente, A., 2022. Secondary Attack Rate, Transmission 
and Incubation Periods, and Serial Interval of SARS-CoV-2 Omicron Variant, Spain. 
Emerg. Infect. Dis. 28, 1224–1228.

DeWitt, M.E., Polk, C., Williamson, J., Shetty, A.K., Passaretti, C.L., McNeil, C.J., et al., 
2022. Global monkeypox case hospitalisation rates: A rapid systematic review and 
meta-analysis. EClinicalMedicine 54, 101710.

Doohan, P., Jorgensen, D., Naidoo, T.M., McCain, K., Hicks, J.T., McCabe, R., et al., 
2024. Lassa fever outbreaks, mathematical models, and disease parameters: a 
systematic review and meta-analysis. Lancet Glob. Health 12, e1962–e1972.

Du, Z., Wang, C., Liu, C., Bai, Y., Pei, S., Adam, D.C., et al., 2022. Systematic review and 
meta-analyses of superspreading of SARS-CoV-2 infections. Transbound. Emerg. Dis. 
69, e3007–e3014.

Dwalu, E., Jetoh, R.W., Shobayo, B.I., Pewu, I., Taweh, F., Wilson-Sesay, H.W., et al., 
2024. Trend of Lassa fever cases and factors associated with mortality in Liberia, 
2016 - 2021: a secondary data analysis. Pan Afr. Med J. 47, 22.

Ebogo-Belobo, J.T., Kenmoe, S., Abanda, N.N., Bowo-Ngandji, A., Mbaga, D.S., 
Magoudjou-Pekam, J.N., et al., 2023. Contemporary epidemiological data of Rift 
Valley fever virus in humans, mosquitoes and other animal species in Africa: A 
systematic review and meta-analysis. Vet. Med Sci. 9, 2309–2328.

Edelstein, G.E., Boucau, J., Uddin, R., Marino, C., Liew, M.Y., Barry, M., et al., 2023. 
SARS-CoV-2 virologic rebound with nirmatrelvir-ritonavir therapy: An observational 
study: An observational study. Ann. Intern Med 176, 1577–1585.

J. Ward et al.                                                                                                                                                                                                                                    Epidemics 54 (2026) 100882 

17 



Elveback, L.R., Fox, J.P., Ackerman, E., Langworthy, A., Boyd, M., Gatewood, L., 1976. 
An influenza simulation model for immunization studies. Am. J. Epidemiol. 103, 
152–165.

Endo, A., Murayama, H., Abbott, S., Ratnayake, R., Pearson, C.A.B., Edmunds, W.J., 
et al., 2022. Heavy-tailed sexual contact networks and monkeypox epidemiology in 
the global outbreak, 2022. Science 378, 90–94.

Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., et al., 
2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. 
Nature 437, 209–214.

Ferguson, N.M., Fraser, C., Donnelly, C.A., Ghani, A.C., Anderson, R.M., 2004. Public 
health. Public health risk from the avian H5N1 influenza epidemic. Science 304, 
968–969.

Fraser, C., Cummings, D.A.T., Klinkenberg, D., Burke, D.S., Ferguson, N.M., 2011. 
Influenza transmission in households during the 1918 pandemic. Am. J. Epidemiol. 
174, 505–514.

Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M., 2004. Factors that make an 
infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101, 6146–6151.

Gao, D., Lou, Y., He, D., Porco, T.C., Kuang, Y., Chowell, G., et al., 2016. Prevention and 
Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A 
Mathematical Modeling Analysis. Sci. Rep. 6, 28070.

Garcia-Knight, M., Anglin, K., Tassetto, M., Lu, S., Zhang, A., Goldberg, S.A., et al., 2022. 
Infectious viral shedding of SARS-CoV-2 Delta following vaccination: A longitudinal 
cohort study. PLoS Pathog. 18, e1010802.

Gressani, O., 2021. EpiLPS: A Fast and Flexible Bayesian Tool for. Estim. Epidemiol. 
Parameters.

Gressani, O., Torneri, A., Hens, N., Faes, C., 2025. Flexible Bayesian estimation of 
incubation times. Am. J. Epidemiol. 194, 490–501.

Gressani, O., Wallinga, J., Althaus, C.L., Hens, N., Faes, C., 2022. EpiLPS: A fast and 
flexible Bayesian tool for estimation of the time-varying reproduction number. PLoS 
Comput. Biol. 18, e1010618.

Guo, Z., Zhao, S., Ryu, S., Mok, C.K.P., Hung, C.T., Chong, K.C., et al., 2022. 
Superspreading potential of infection seeded by the SARS-CoV-2 Omicron BA.1 
variant in South Korea. J. Infect. 85, e77–e79.

Hamerly, G., Elkan, C., 2003. Learning the k in k-means. Adv. Neural Inf. Process. Syst. 
16.

Hart, W.S., Miller, E., Andrews, N.J., Waight, P., Maini, P.K., Funk, S., et al., 2022. 
Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological 
analysis. Lancet Infect. Dis. 22, 603–610.

Hatami, H., Jamshidi, P., Arbabi, M., Safavi-Naini, S.A.A., Farokh, P., Izadi-Jorshari, G., 
et al., 2023. Demographic, Epidemiologic, and Clinical Characteristics of Human 
Monkeypox Disease Pre- and Post-2022 Outbreaks: A Systematic Review and Meta- 
Analysis. Biomedicines 11. https://doi.org/10.3390/biomedicines11030957.

He, X., Lau, E.H.Y., Wu, P., Deng, X., Wang, J., Hao, X., et al., 2020. Temporal dynamics 
in viral shedding and transmissibility of COVID-19. Nat. Med 26, 672–675.

Hegde, S.T., Lee, K.H., Styczynski, A., Jones, F.K., Gomes, I., Das, P., et al., 2024. 
Potential for person-to-person transmission of henipaviruses: A systematic review of 
the literature. J. Infect. Dis. 229, 733–742.

Huai, Y., Xiang, N., Zhou, L., Feng, L., Peng, Z., Chapman, R.S., et al., 2008. Incubation 
period for human cases of avian influenza A (H5N1) infection, China. Emerg. Infect. 
Dis. 14, 1819–1821.

Hui, D.S.C., Chan, M.C.H., Wu, A.K., Ng, P.C., 2004. Severe acute respiratory syndrome 
(SARS): epidemiology and clinical features. Post. Med J. 80, 373–381.

Izadi, N., Taherpour, N., Mokhayeri, Y., Sotoodeh Ghorbani, S., Rahmani, K., Hashemi 
Nazari, S.S., 2022. Epidemiologic Parameters for COVID-19: A Systematic Review 
and Meta-Analysis. Med J. Islam Repub. Iran. 36, 155.

Kenmoe, S., Demanou, M., Bigna, J.J., Nde Kengne, C., Fatawou Modiyinji, A., Simo, F.B. 
N., et al., 2019. Case fatality rate and risk factors for Nipah virus encephalitis: A 
systematic review and meta-analysis. J. Clin. Virol. 117, 19–26.

Kenmoe, S., Tchatchouang, S., Ebogo-Belobo, J.T., Ka’e, A.C., Mahamat, G., Guiamdjo 
Simo, R.E., et al., 2020. Systematic review and meta-analysis of the epidemiology of 
Lassa virus in humans, rodents and other mammals in sub-Saharan Africa. PLoS 
Negl. Trop. Dis. 14, e0008589.

Khan, S.A., Imtiaz, M.A., Islam, M.M., Tanzin, A.Z., Islam, A., Hassan, M.M., 2022. Major 
bat-borne zoonotic viral epidemics in Asia and Africa: A systematic review and meta- 
analysis. Vet. Med Sci. 8, 1787–1801.

Klinkenberg, D., Fraser, C., Heesterbeek, H., 2006. The effectiveness of contact tracing in 
emerging epidemics. PLoS One 1, e12.

Kucharski, A.J., Funk, S., Eggo, R.M., Mallet, H.-P., Edmunds, W.J., Nilles, E.J., 2016. 
Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of 
the 2013-14 French Polynesia Outbreak. PLoS Negl. Trop. Dis. 10, e0004726.

Lai, S., Qin, Y., Cowling, B.J., Ren, X., Wardrop, N.A., Gilbert, M., et al., 2016. Global 
epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a 
systematic review of individual case data. Lancet Infect. Dis. 16, e108–e118.

Lessler, J., Ott, C.T., Carcelen, A.C., Konikoff, J.M., Williamson, J., Bi, Q., et al., 2016. 
Times to key events in Zika virus infection and implications for blood donation: a 
systematic review. Bull. World Health Organ 94, 841–849.

Lessler, J., Reich, N.G., Cummings, D.A.T., 2009b. New York City Department of Health 
and Mental Hygiene Swine Influenza Investigation Team, Nair HP, Jordan HT, et al. 
Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. N. Engl. 
J. Med 361, 2628–2636.

Lessler, J., Reich, N.G., Brookmeyer, R., Perl, T.M., Nelson, K.E., Cummings, D.A.T., 
2009a. Incubation periods of acute respiratory viral infections: a systematic review. 
Lancet Infect. Dis. 9, 291–300.

Lessler, J., Rodriguez-Barraquer, I., Cummings, D.A.T., Garske, T., Van Kerkhove, M., 
Mills, H., et al., 2014. Estimating Potential Incidence of MERS-CoV Associated with 

Hajj Pilgrims to Saudi Arabia, 2014. PLoS Curr. 6. https://doi.org/10.1371/currents. 
outbreaks.c5c9c9abd636164a9b6fd4dbda974369.

Li, F.C.K., Choi, B.C.K., Sly, T., Pak, A.W.P., 2008. Evidence-based public health policy 
and practice: Finding the real case-fatality rate of H5N1 avian influenza. 
J. Epidemiol. Community Health (1979) 62, 555–559.

Li, Y., Jiang, X., Qiu, Y., Gao, F., Xin, H., Li, D., et al., 2024. Latent and incubation 
periods of Delta, BA.1, and BA.2 variant cases and associated factors: a cross- 
sectional study in China. BMC Infect. Dis. 24, 294.

Lin, Y.-F., Duan, Q., Zhou, Y., Yuan, T., Li, P., Fitzpatrick, T., et al., 2020. Spread and 
Impact of COVID-19 in China: A Systematic Review and Synthesis of Predictions 
From Transmission-Dynamic Models. Front Med 7, 321.

Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., et al., 2003. 
Transmission dynamics and control of severe acute respiratory syndrome. Science 
300, 1966–1970.

Liu, Y., Lillepold, K., Semenza, J.C., Tozan, Y., Quam, M.B.M., Rocklöv, J., 2020. 
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