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Aims Artificial intelligence models can estimate a person’s age from ECG. The gap between the predicted ECG age and chrono
logical age, predicted age deviation (PAD), has been associated with cardiovascular risk factors and mortality. However, re
gression bias causes PAD to correlate with chronological age itself, potentially distorting these associations.

Objectives To investigate the bias introduced by age on PAD by comparing associations between PAD and a bias-corrected PAD (PADbc) 
with cardiovascular risk factors and survival outcomes.

Methods 
and results

ECG and cardiovascular risk data from Ziekenhuis Oost-Limburg (2002–23) were linked to mortality data from the Belgian 
National Registry. A neural network was trained to predict age from ECGs. PADbc corresponded to the residual of PAD re
gressed on chronological age. Associations with risk factors were tested using χ2 and ANOVA. Survival was analysed with 
Kaplan–Meier curves and Cox proportional hazards models. We included 1 258 993 ECGs from 234 586 patients, split 
40:10:50 into training, validation, and test sets by patient. In the test set [mean age 56.4 ± 16.9 years, mean absolute error 
(MAE) 7.9], PAD correlated with age (r = −0.54) and showed inverse associations with most risk factors; conversely, higher 
PADbc (r = 0.00) was associated with higher prevalence of risk factors. Kaplan–Meier revealed that PADbc above its MAE was 
linked to lower survival, whereas PAD showed the opposite. Multivariate Cox showed each 1-year increase in both PAD and 
PADbc was associated with a 1.4% increased mortality hazard.

Conclusion PADbc is associated with cardiovascular risk factors and mortality, offering an age-independent biomarker of biological ageing.

* Corresponding author. Tel: +3211268111, Email: myrte.barthels@uhasselt.be
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Deep learning for electrocardiography (ECG) signal analysis has made 
significant advancements in the last few years, as ECG offers a wealth 
of physiological information in a non-invasive and cost-effective man
ner.1–8 Among other outcomes, such as arrhythmia detection, ECG 
has been widely used for the detection of biomarkers related to cardio
vascular diseases, as they remain the leading cause of death worldwide.9

One such biomarker is age, one of the most important risk factors, in
fluencing both disease development and prognosis.10 Ageing has been 
found to affect the characteristics of the ECG, including the alteration 
of the QRS complex and the orthogonal P-wave morphology.11–13

Consequently, predicting the chronological age directly from a 10-s 
12-lead ECG using deep learning has shown significant attention. As 
an example, Attia et al.14 trained a 1D convolutional neural network 
(CNN) on a dataset of 0.5 million ECG measurements and achieved 
a mean absolute error (MAE) of 6.9 years with a standard deviation 
(SD) of 5.6 and a correlation (r) of 0.84. Similar results have been ob
tained in datasets across different geographical locations and healthcare 
facilities.5,14–19

Interestingly, although the objective of these models was to predict the 
chronological age, researchers have discovered that difference between 
predicted ECG age and actual chronological age, predicted age deviation 
(PAD), correlates with biological ageing.16–23 Unlike chronological age, 
which simply reflects the time a person has been alive, biological age cap
tures the cumulative effects of time, genetics, environment, lifestyle, and 

other factors that affect ageing. As such, it is more closely linked with the 
functional status of the organism.24 The concept of biological age offers a 
more encompassing overall health measure as compared to chronologic
al age.25 In line with this, PAD seems to provide insight into the cardiovas
cular health of an individual, showing that ECGs reflecting a positive PAD 
of more than 6–8 years have a higher incidence of cardiovascular events 
compared to those with small or negative PAD.14,16–18 Furthermore, re
search showed an increased risk for cardiovascular and overall mortality 
in individuals with a positive PAD,17–19,21–23 indicating an important role 
of PAD as a predictor in overall mortality.

Although previous studies report great advancements into under
standing the information embedded in PAD, thus far, its inherent correl
ation with chronological age has not been addressed. Regression models 
can be subject to a regression bias phenomenon, which leads to an over
estimation of small values and an underestimation of large values.26 As 
the model is trained to minimize the loss function across the dataset, it 
tends to pull the predictions towards the central region, especially in 
data distributions with more data near the average. In the case of age 
models, younger individuals tend to get overestimated, while older indi
viduals get underestimated, causing PAD to be dependent of age.27,28

Such correlations, both at the sample and individual levels,29,30 could ob
scure the true clinical implications of the relationship between PAD and 
clinical variables, especially when the variables of interest are also related 
to age.9,31

In this study, we aim to address this limitation by developing an 
ECG-based age prediction model and investigating the regression bias 
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between PAD and chronological age. We correlate PAD, both before and 
after bias correction (PADbc), with cardiovascular risk factors and survival 
outcomes. By correcting for the dependence on chronological age, we 
seek to uncover the true clinical utility of PAD(bc) and its relationship to 
cardiovascular risk factors, as well as its potential as a predictor of mor
tality. By embedding this tool within the existing care pathway, automat
ically analysing ECGs during standard workflows, PADbc may offer a 
scalable and accessible approach to augment clinical decision-making, 
guide preventive interventions and improve patient management deci
sions without additional testing burden on patients or providers.

Methods
Data
Study design
This retrospective study used routinely collected clinical data extracted 
from the electronic medical record (EMR) at Ziekenhuis Oost-Limburg 
(ZOL) (Genk, Belgium). The dataset included 10-s 12-lead ECGs between 
1 October 2002 and 31 December 2023 and was extracted from the MUSE 
data management system, together with ECG-derived parameters and diag
nostic labels provided by the GE Marquette 12SL software. Demographic 
and clinical data were extracted from structured EMR records, medication 
history, and patient questionnaires, including cardiovascular risk and intoxi
cation profiles. Alongside each patient’s birthdate and sex, body mass index 
(BMI) and four binary cardiovascular risk factors were included in this study: 
Smoking, diabetes, hypertension, and hypercholesterolaemia.9 Detailed in
formation can be found in the supplementary materials (Supplement S1). 
Mortality data were obtained from the Belgian National Registry. 
Variables such as ethnicity and socioeconomic status were not systematic
ally available in the EMR and were therefore not included in the analyses.

This study was reviewed and approved by the medical ethics committee 
of Ziekenhuis Oost-Limburg. The developed model is not approved by legal 
authorities (e.g. CE or FDA) and was, for this study, intended solely for re
search purposes. The study was reported in accordance with the EHRA AI 
checklist to ensure transparent and reproducible reporting of AI-based pre
diction models in healthcare32 (see Supplement S40).

Outcomes
The primary outcome of the study was the patient’s chronological age, ex
pressed as the time between the patient’s birthdate and the ECG acquisi
tion date. The prediction model used the raw ECG waveform data as 
input. The secondary outcome was all-cause mortality, modelled using sur
vival analysis. Survival time was expressed as the time between the ECG ac
quisition and time of death or censoring. Right-censoring was applied if the 
patient was alive at the end of the observation period (maximum 7305 days 
or 20 years). PAD was evaluated as a predictor of mortality, alongside the 
chronological age and cardiovascular risk factors. All predictors were trea
ted as fixed at the time of ECG acquisition, acknowledging that the risk fac
tors may not strictly precede the ECG in time due to retrospective labelling.

Inclusion criteria
All patients with at least one eligible ECG during the study period were con
sidered. ECG recordings were excluded if the patient was under 18 years of 
age at the time of measurement or if the software indicated a measurement 
failure (bad measurement quality, faulty measurement setup, inability to in
terpret the ECG due to lack of QRS complexes, muscle tremor, and elec
trode noise). Patients, along with their corresponding ECGs, were stratified 
for sex and age at first measurement and randomly allocated to training, in
ternal validation, and testing datasets in a 40:10:50 ratio. Given the magni
tude of the dataset size, the test set was intentionally large to support 
downstream statistical and survival analyses. Overlap between patients in 
the training, validation, and test sets was prevented by ensuring all data 
from the same patient appeared in only one dataset. To avoid bias caused 
by overrepresentation of patients with multiple ECG measurements, train
ing and evaluation of the age prediction model only considered the first 
available ECG measurement within the inclusion period for each patient. 

The statistical and survival analysis was performed on the test set, which 
was further subselected by excluding patients with erroneous mortality in
formation. Analysis concerning the risk factors only considered the first 
ECG taken after 2018, as ZOL switched to a cross-departmental EMR in 
October 2018 (most risk factors are digitally only recorded from this 
date onwards).

Dataset splitting
Data extraction from the ZOL database resulted in 1 449 360 ECG record
ings from 254 326 patients. After applying the exclusion criteria, 1 258 993 
ECGs from 234 586 patients remained, from which the first ECG was se
lected, obtaining a training set of 93 849 ECGs, a test set of 117 539 
ECGs, and a validation set of 23 378 ECGs. The test set was further refined 
for the statistical and survival analysis by removing patients with no 
mortality information, resulting in 117 354 ECGs for the general analysis 
and 64 807 ECGs for the analysis including the risk factors (Figure 1).

Data preprocessing
The ECGs were acquired at a sampling rate of either 250 or 500 Hz (de
pending on the settings at the time of measurement) and were resampled 
to 500 Hz for further analysis. No further preprocessing was applied. 
Patterns of missingness within the data were examined and will be further 
detailed in the supplementary materials (Supplement S2).

Model
We developed a deep learning model for ECG-based age prediction, in
spired by the work of Attia et al.14 The network consists of eight sequential 
blocks of convolutional, batch normalization, and max pooling layers to ex
tract temporal features from the ECG signals for each lead. A spatial block 
aggregates information across the different leads, and two final fully con
nected layers together with a linear activation function produce the final 
age estimate. The model input consists of the raw ECG and is given by a 
12 by 5000 matrix (ECG recorded for 10 s at 500 Hz) and was trained 
to optimize the mean squared error loss. Full architectural details and hy
perparameters are provided in the supplementary materials (Supplement 
S3).

Evaluation
Age prediction model performance
In the primary analysis, the performance of the age prediction model was 
evaluated using the MAE, the Pearson correlation coefficient (r), and the 
intercept and the slope of a linear regression between the predicted 
ECG-age and the chronological age. Performance was further compared 
across subgroups determined by sex, age and heart rhythm (derived from 
the diagnostic labels provided by the 12L GE Marquette software: sinus 
rhythm, atrial fibrillation, and atrial flutter or other rhythms). Statistical sig
nificance was assessed using a non-parametric bootstrap test, generating 
5000 different samples, and the Monte Carlo P-value was calculated.

Saliency mapping was used to identify electrocardiographic regions that 
were most influential on age prediction. The map was calculated for the me
dian wave of all ECG leads and was averaged over a sample of 4096 patients.

Predicted age deviation analysis
In the secondary analysis, we examined the relationship between PAD and 
cardiovascular risk factors as well as mortality. We explicitly investigate 
the regression bias between the chronological age and PAD, as it may af
fect the apparent relationship between PAD and the risk factors of interest 
(BMI, smoking, arrhythmias, hypertension, hypercholesterolaemia, and 
diabetes) as well as mortality, as these variables are also related to chrono
logical age.

Correction
A bias corrected version of PAD was defined as the residual of the regression 
of the age deviation on chronological age. The linear correlation is mitigated 
by imposing a correction of the data using Beheshti’s method.29 Given the 

Artificial intelligence-predicted ECG age gap as a biomarker                                                                                                                                  3
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/advance-article/doi/10.1093/ehjdh/ztaf137/8355018 by H
asselt U

niversity user on 14 January 2026



ECG predicted age (PA) and the chronological age (CA), a fitted regression 
model can be expressed asPA = α + β × CA + ε . The corrected pre
dicted age (PAc) and the corrected PAD (PADc) were computed as:

PAc = PA − (α + β × CA) + CA 

PADc = PAc − CA = PA − (α + β × CA) 

The remaining non-linear relationship across different ages is removed using 
age-level bias correction (PADbc).

30 By subtracting the mean PADc (MPADc), 
corresponding to each integer chronological age value, from PADc itself, any 
residual correlation will be eliminated.

MPACc(i) =

1
Ni

􏽘Ni

j=1

PADc, j(i), for i ϵ {min (CA), 95}

1
k

􏽘k

1

1
Nm

􏽘Nm

j=1

PADc, j(m), for i > 95

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PADbc = PADc − MPADc 

With Ni the total number of samples at age i for i ≤ 95, m the unique ages for 
i > 95, Nm the total number of samples at age m and k the number of unique 
ages when i > 95. MPADc for i > 95 is represented by an age-band mean 
({min (m), max(m)} rather than an age-level as the dataset becomes very 
sparse (see Supplement S2, Supplementary material online, Figure S2) and 
the age-levelMPADc(i), for i > 95 becomes unstable or undefined. We as
sessed the effect of the bias correction by performing the risk factor and sur
vival analysis on both PAD and PADbc. Parameters α and β as well as MPADc 
were estimated on the validation set.

Risk factor analysis
PAD and PADbc were categorized into three groups: (bias corrected) underes
timated age deviation (UAD(bc)), (bias corrected) small age deviation (SAD(bc)), 
and (bias corrected) overestimated age deviation (OAD(bc)). Group cutoffs 
were set based on the MAE of the validation set of the respective age deviation, 
PAD, or PADbc. Within each group, differences in distribution of the risk factors 
were examined. For binary risk factors, a χ2 test was performed. For the con
tinuous variable, a one-way ANOVA was applied. P-values were adjusted using 
the Bonferroni method to control for multiple testing.

Survival analysis
Kaplan–Meier. Survival functions were estimated for each of the PAD/ 
PADbc groups. Confidence intervals (CIs) were calculated using the log-log 

transformation, and group differences were assessed with the non- 
parametric logrank test.

Cox proportional hazards model. To investigate the relationship be
tween the continuous PAD/PADbc and survival, a Cox proportional hazards 
model was fitted adjusting for chronological age, termed simple model. A 
second model, termed risk factor model, included the risk factors (BMI, 
smoking behaviour, hypercholesterolaemia, hypertension, heart rhythm, 
and diabetes) as additional covariates to evaluate the incremental effect 
of PAD/PADbc when these factors are known.

We applied diagnostic methods to evaluate the assumptions underlying 
the Cox model. The functional form of the Martingale residuals with respect 
to the covariates of interest were examined to assess whether each covariate 
maintained a linear relationship with the log hazard; non-random patterns or 
curvature in the residuals would indicate the need for transformation or al
ternative modelling approaches. Schoenfeld residual plots were used to de
tect any systematic relationship between the covariates and time, which 
would suggest a violation of the proportional hazards assumption. In addition, 
plots of the log(-log(survival)) function against log(time) were used to visually 
evaluate proportional hazards; non-parallel curves would suggest that hazard 
ratios (HRs) vary over time. Finally, model goodness-of-fit was assessed using 
Cox–Snell residuals. A close alignment between the cumulative hazard of 
these residuals and the 45-degree reference line suggests an adequate model 
fit, while systematic deviations indicate potential misspecification.

Results
Data
Baseline patient demographics of the train, internal validation, and test 
set, as well as for the survival analysis with and without risk factors, are 
available in the supplementary materials (see Supplementary material 
online, Tables S1 and S2). Missing data were observed for smoking 
and BMI and were assumed to follow a missing at random mechanism, 
supported by observed associations with other recorded variables. 
Multiple imputation using predictive mean matching was performed 
to account for missingness. Full details of the imputation strategy, diag
nostics, and sensitivity analyses are provided in the supplementary 
materials (Supplement S2).

Age prediction model performance
Model performance was evaluated using the MAE and Pearson correl
ation coefficient (r) across the training (MAE: 5.8 ± 4.5 years, r: 0.90), 

Figure 1 Patient flow diagram.
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internal validation (MAE: 8.0 ± 6.4 years, r: 0.79), and test sets (MAE: 
7.9 ± 6.4 years, r: 0.80). The model was moderately overtrained on 
the trainset. Scatter plots of the chronological age vs. PA and PAD de
rived from the test set are presented in Figure 2. A systematic deviation 
is observed, with a negative correlation between the chronological age 
and PAD (r = −0.54), consistent with the regression bias, overestimating 
age in younger patients and underestimating in older patients.

Subgroup performance metrics are shown in Table 1, including MAE 
stratified by sex, age group, and heart rhythm category. Statistical sig
nificance was assessed using a non-parametric bootstrap with 5000 
samples. MAE was significantly lower in male patients compared to fe
male patients. The age subanalysis confirmed the regression bias: both 
younger patients (<35 years) and older patients (>85 years) exhibited 
higher MAEs than patients closer to the mean age of the test set. Finally, 
patients with sinus rhythm had the lowest MAE, increasing for those 
with atrial fibrillation, atrial flutter, or other arrhythmias. The saliency 
map reveals that the P wave is most influential on the age prediction 
(see Supplementary material online, Figure S1).

Age deviation analysis
Correction
Based on the regression results, PADc was obtained using Beheshti’s 
method, accounting for the sample level correlation (α = 17.7, β =  
0.675, Figure 3A). MPADc revealed the remaining non-linear relationship 
across ages (Figure 3B) and was further subtracted from PADc to obtain 
PADbc (validation set MAE: 6.7 ± 5.3 years; test set MAE: 6.6 ± 5.3 years; 
Figure 3C).

Risk factors analysis
Table 2 represents the distribution of the risk factors across the PAD 
and PADbc groups, respectively, for the complete case per comorbid
ity. Significant differences (P < 0.001) were observed across the differ
ent groups, with mostly opposing trends between PAD and PADbc. For 
both PAD and PADbc, mean BMI and smoking prevalence increased 
from the underestimated age deviation (UAD(bc)) to overestimated 
(OAD(bc)) groups. However, for PADbc, the prevalence of diabetes, 

hypertension and hypercholesterolaemia, and non-sinus rhythms in
creased or remained unchanged across the same groups, while a de
creasing trend was seen in PAD. This discrepancy likely reflects 
confounding by chronological age, which is correlated with these vari
ables (r = 0.17 for diabetes, r = 0.37 for hypertension, r = 0.29 for 
hypercholesterolaemia and r = −0.17 for sinus rhythm), but not 
with BMI (r = −0.01) or smoking (r = −0.03). These findings were 
confirmed after accounting for the missingness in BMI and smoking 
(see Supplement S2, Supplementary material online, Figures S4 and 
S5 and Supplementary material online, Tables S6 and S7).

Survival analysis
Kaplan–Meier
Diverging patterns between PAD and PADbc groups were observed 
when modelling survival using Kaplan–Meier curves. PADbc (Figure 4A) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Mean absolute error (MAE) and standard 
deviation (SD) across different subgroups

MAE SD

Gender

Male 7.81 6.28

Female 8.07 6.51
Age

<35 years 9.28 7.81

35–60 years 7.25 5.67
60–85 years 7.79 6.19

>85 years 14.8 7.90

Heart rhythm

Sinus 7.86 6.31

Atrial fibrillation 8.94 7.10

Other 9.45 7.77

Figure 2 Scatter plot of (A) ECG predicted age and (B) predicted age deviation by chronological age. The diagonal and the horizontal line represent 
the exact mapping. The orange dotted line represents the regression line found in the data.
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showed significantly better survival in the UADbc group compared to the 
OADbc group (P < 0.001). In contrast, PAD (Figure 4B) showed the re
verse trend, highlighting confounding by chronological age (r = 0.45 
with mortality).

Cox proportional hazards model
Contrary, Cox proportional hazards models showed a general agree
ment between both PAD and PADbc results. In the simple model, adjust
ing only for chronological age, both PAD and PADbc were significantly 
associated with increased mortality risk (Table 3). PADbc demonstrated 
a HR of 1.020 per year (95% CI: 1.018–1.021, P < 0.001), correspond
ing to a 2.0% increase in risk per unit increase, while PAD showed a simi
lar HR of 1.019 (95% CI: 1.017–1.021, P < 0.001). The effect of 
chronological age was modelled using a piecewise linear transformation 
(age ≤ 50 and > 50 years), based on diagnostics of the functional form 
using martingale residuals and model comparison using AIC (see 

Supplementary material online, Table S3). The PADbc model showed 
that for patients under 50, each year of age increased risk by 7.7% 
(HR = 1.077), compared to 10.2% for those over 50 (HR = 1.102). 
Similar results were found for PAD. Lastly, model discrimination was 
good, with a C-index of 0.812 (SE: 0.001) for both PAD and PADbc 

and proportional hazards assumptions were met with no substantial 
violations (see Supplement S5, Supplementary material online, Figures 
S9–S18).

In the risk factor Cox models, adjusting for additional cardiovascular 
risk factors using multiple imputations (Table 4), the association with 
PADbc remained significant (HR: 1.014), with a C-index of 0.838, indicat
ing that PADbc captures mortality risk beyond established cardiovascular 
risk factors. Chronological age retained a strong association with mor
tality, increasing by 5.1% and 12.0% per year for those below and above 
50, respectively. Male sex (HR: 1.267), smoking (HR: 1.490), diabetes 
(HR: 1.688), hypertension (HR: 1.450), and non-sinus rhythm (HR: 
1.259) were also significantly associated with higher mortality. 

Figure 3 (A) Scatter plot of sample-level corrected age deviation (PADc) by chronological age. (B) Mean age-level bias of age deviation (MPADc) by 
chronological age after sample-level correction. (C) Scatter plot of sample-level and individual-level corrected age deviation (PADbc) by chronological age.
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Table 2 Presence of risk factors for the different bias corrected predicted age deviation (PADbc) groups and predicted 
age deviation (PAD) groups (represented after the /)

Variables Unit UADbc/UAD SADbc/SAD OADbc/OAD Test statistic 
PADbc/PAD

P-value 
PADbc/PAD

Patients % 

n

21.0/21.7 58.8/59.5 20.1/18.7 — —

13 634/14 085 38 128/38 574 13 045/12 148 — —

BMI mean + std 26.5 ± 4.93/ 27.5 ± 5.15/ 28.2 ± 5.76/ F: 314.3/332.7 <0.001/<0.001
26.5 ± 4.73 27.5 ± 5.17 28.2 ± 5.95

Diabetes % 19.4/24.0 22.0/22.3 26.8/20.9 χ2: 219.8/36.3 <0.001/<0.001

Hypertension % 55.2/69.6 63.3/62.4 69.7/56.6 χ2: 601.3/475.6 <0.001/<0.001
Hypercholesterolaemia % 43.1/52.2 47.3/48.2 49.6/38.1 χ2: 129.1/556.1 <0.001/<0.001

Smoking % 43.4/40.8 46.2/47.2 48.5/48.7 χ2: 66.9/202.2 <0.001/<0.001

Sinus rhythm % 97.4/94.1 95.8/95.6 90.1/94.1 χ2: 874.4/75.3 <0.001/<0.001

P-values are corrected using the Bonferroni method. n, total number of patients. UADbc, SADbc, and OADbc, (bias corrected) underestimated, small, and overestimated age deviation, 
respectively.

Figure 4 Kaplan–Meier estimates for the (A) corrected and (B) uncorrected predicted age deviation (PADbc and PAD) groups: underestimated (pur
ple, UADbc and UAD), small (yellow, SADbc and SAD), and overestimated age deviation (orange, OADbc and OAD). The P-value refers to the log-rank test 
for difference in survival between groups.
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Interestingly, higher BMI was associated with lower mortality risk (HR: 
0.956), and hypercholesterolaemia was inversely related to risk (HR: 
0.574). Results were nearly identical for PAD, confirming that once 
chronological age is accounted for, residual age-related bias is mini
mized. Complete case model diagnostics and imputation analyses are 
presented in the supplementary materials (Supplement S5, 
Supplementary material online, Figures S19–S21, and Supplementary 
material online, Tables S8–S13).

Discussion
In this study, we investigated whether the difference between predicted 
ECG age and true chronological age, termed PAD, could serve as a 
proxy for biological ageing and cardiovascular health, while explicitly ad
dressing the confounding effect introduced by its correlation with 
chronological age. Although previous research has already demon
strated that PAD is associated with increased cardiovascular risk and 
mortality, the impact of the regression bias, causing the correlation be
tween the age deviation and chronological age, has largely been over
looked and could obscure true clinical value.

We developed a deep learning-based model to predict chronological 
age from 12-lead ECGs, achieving an age prediction performance 
(MAE: 7.9 ± 6.4 years) comparable to state-of-the-art ECG-based 
models.14–16,19 Performance varied slightly between sexes, while higher 
errors were observed in non-sinus rhythm groups. Saliency map ana
lysis suggested a possible explanatory mechanism: the P wave was indi
cated as most influential on the age prediction. Its absence, a hallmark of 
atrial fibrillation,33 likely contributed to the reduced performance. 
Similar results were shown in Ott et al.34 Larger prediction errors oc
curred in the youngest (<30 years) and oldest (>85 years) participants, 
alongside a pronounced negative correlation between chronological 
age and PAD (r = −0.54), indicating the regression bias in the model.26

Although this bias does not invalidate the neural network’s predictions, 
it may confound downstream analyses, particularly when relating PAD 
to outcomes that are themselves age-dependent. To better understand 
and quantify this effect in the context of cardiovascular disease and 
mortality, we applied a bias correction to remove both linear and non- 
linear associations between PAD and chronological age.

We then compared the distribution of cardiovascular risk factors 
across subgroups defined by PAD and PADbc. Higher PADbc was asso
ciated with increased prevalence of hypertension, hypercholesterol
aemia, diabetes, and non-sinus rhythm diagnosis, whereas opposite 
trends were observed for PAD. Notably, each of these risk factors 
was itself found to be correlated with age. Both PAD and PADbc were 
associated with higher BMI and increased prevalence of smoking, 

factors that are largely independent of age. These results suggest that 
PADbc provides a more biologically meaningful value of declining cardio
vascular health than PAD. They further illustrate the potential of mis
leading or contradictory associations when PAD is interpreted 
without adjusting for its age dependency.

Survival analysis using Kaplan–Meier estimates further highlighted the 
confounding impact of age. Both PAD and PADbc showed associations 
with mortality; however, the direction of association was reversed. 
Higher PAD was paradoxically associated with improved survival, while 
increasing PADbc was associated with reduced survival, demonstrating a 
more consistent and interpretable relationship with survival, independ
ent of age. Interestingly, in Cox proportional hazards models, where 
chronological age could be included as a covariate, PAD and PADbc 

yielded similar results.
Previous research has demonstrated associations between PAD 

and CV risk factors and mortality. Similar to this work, Hirota et al. ap
plied a linear bias correction and found that a PADc > 6 years had a re
duced survival probability of 7.35% at 3 years compared to a negative 
PADc < −6 years of 5.23%.35 In other studies, lower survival probability 
was found for PAD > 6–9 years with survival curves directly adjusted for 
age and sex.17,18 ,23,19,21 In contrast, our analysis reports PAD without 
age adjustment, to better isolate and interpret the intrinsic value of 
PAD itself. To enable comparison with prior research, supplementary 
materials include age-adjusted survival curves across the PAD groups 
(see Supplement S4, Supplementary material online, Figures S6–S8). 
Consistent with earlier findings, our age-adjusted survival curves 
show better survival in the UAD group compared to the OAD.

Our findings align with previous work in the brain age literature, 
where similar bias correction strategies have been recom
mended28,31,35: (1) regressing out chronological age from age deviation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Cox proportional hazards model based on 
chronological age, patient risk factors, and the bias 
corrected predicted age deviation (PADbc) (above) as 
well as the predicted age deviation (PAD) (below)

Variables HR 95% CI P-value

PADbc 1.014 1.010, 1.017 <0.001
Sex (M) 1.267 1.197, 1.341 <0.001

BMI 0.956 0.950, 0.962 <0.001

Smoking 1.490 1.406, 1.578 <0.001
Diabetes 1.688 1.597, 1.784 <0.001

Hypertension 1.450 1.326, 1.586 <0.001

Hypercholesterolaemia 0.574 0.543, 0.608 <0.001
Heart rhythm (non-sinus) 1.259 1.157, 1.369 <0.001

Chronological age (≤50) 1.051 1.043, 1.059 <0.001

Chronological age (>50) 1.120 1.116, 1.124 <0.001
PAD 1.013 1.009 1.016 <0.001

Sex (M) 1.266 1.196, 1.339 <0.001

BMI 0.955 0.949, 0.962 <0.001
Smoking 1.490 1.406, 1.580 <0.001

Diabetes 1.690 1.599, 1.787 <0.001

Hypertension 1.453 1.328, 1.589 <0.001
Hypercholesterolaemia 0.559 0.543, 0.608 <0.001

Heart rhythm (non-sinus) 1.266 1.164, 1.377 <0.001

Chronological age (≤50) 1.054 1.046, 1.062 <0.001
Chronological age (>50) 1.126 1.122, 1.130 <0.001

95% CI, 95% confidence intervals; HR, hazard ratio.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Cox proportional model based on 
chronological age and the corrected predicted age 
deviation (PADbc) (above) as well as the predicted age 
deviation (PAD) (below)

Variables HR 95% CI P-value

PADbc 1.020 1.018, 1.021 <0.001
Chronological age (≤50) 1.077 1.073, 1.081 <0.001

Chronological age (>50) 1.102 1.100, 1.103 <0.001

PAD 1.020 1.018, 1.021 <0.001
Chronological age (≤50) 1.082 1.078, 1.086 <0.001

Chronological age (>50) 1.111 1.110, 1.113 <0.001

95% CI, 95% confidence intervals; HR, hazard ratio.
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or (2) including age as a covariate in downstream analyses. We advocate 
the same for ECG-based age metrics to ensure their valid interpret
ation for future clinical analysis.

These results highlight that, when adequately modelled, PADbc is a 
biologically informative measure, attempting to capture the physiologic
al divergence between an individual’s apparent biological age and their 
chronological age. Unlike traditional biological age estimations that re
quire the integration of multiple categorical or continuous variables,36

PADbc offers a single, interpretable marker directly extracted from a 
widely available, non-invasive, low-cost clinical tool. The ECG, currently 
used for acute diagnosis, may thus also serve as a scalable biomarker of 
biological ageing.

Limitations
This study is best understood in terms of its limitations. First, the data
set used for model development and analysis was collected from a sin
gle tertiary care centre. As such, findings may not generalize to broader 
or more diverse populations. Additionally, as variables such as ethnicity 
and socioeconomic status were not systematically available, fairness 
analysis was precluded, which could potentially conceal performance 
disparities across underrepresented populations. Furthermore, medi
cation effects were not accounted for in this analysis, as the data acqui
sition in this retrospective study did not allow for granularity between 
disease diagnosis and treatment exposure (see supplement S4). Certain 
cardiovascular medications could influence ECG morphology and, by 
extension, model predictions for medication-specific populations. 
Structure data collection and external validation across diverse popula
tions and healthcare settings would allow to identify underperforming 
subpopulations. By increasing the representation of these subgroups in 
the training group, the generalizability of the model would increase. 
Techniques such as Federated Learning could be adopted to access 
this sensitive data in a privacy-preserving way.37 Second, while bias cor
rection was applied to account for its dependency on chronological age, 
the correction itself is influenced by the accuracy of the prediction 
model. In settings where model performance is suboptimal, the correl
ation between age and PAD may be artificially inflated, potentially lead
ing to overcorrection or misinterpretation.38 Third, while consistent 
risk factor associations lend credibility to the findings, the lack of ground 
truth for the age deviations makes validation challenging.32,35,39 Lastly, 
the timing and frequency of risk factor measurements relative to the 
ECG recording were not standardized. This temporal misalignment 
may have weakened the precision of associations between PAD(bc) 

and specific clinical characteristics. Future studies should aim to incorp
orate temporally aligned data by using longitudinal cohort designs with 
synchronized data collection, strengthening causal interpretations.

Future directions
Future research should explore ways to enhance its clinical utility and 
generalizability. At the population level, it should prioritize validating 
PADbc in larger and more diverse populations, ideally across multiple 
clinical settings and healthcare systems. At the individual level, further 
investigation into intra-individual variability and the temporal dynamics 
with respect to outcome may allow to monitor lifestyle and therapeutic 
intervention and define its role in preventative care and clinical decision 
making. Ultimately, randomized controlled trials in multiple settings will 
be required to determine whether using PADbc in clinical practice im
proves patient outcomes or alters clinician behaviour meaningfully.40

Conclusion
Our study supports previous findings associating ECG-based age pre
diction with both cardiovascular risk factors and mortality risk, but de
monstrates that the correlation between PAD and chronological age 

can obscure its interpretation. After applying bias correction, meaning
ful associations were identified, especially when chronological age could 
not be explicitly accounted for. Future studies should focus on incorp
orating and validating PADbc in more diverse populations, integrating 
longitudinal data, and exploring its potential role as a biomarker for bio
logical age in personalized risk stratification and preventive care.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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