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Aims

Methods
and results

Conclusion

Artificial intelligence models can estimate a person’s age from ECG. The gap between the predicted ECG age and chrono-
logical age, predicted age deviation (PAD), has been associated with cardiovascular risk factors and mortality. However, re-
gression bias causes PAD to correlate with chronological age itself, potentially distorting these associations.

To investigate the bias introduced by age on PAD by comparing associations between PAD and a bias-corrected PAD (PADy,.)
with cardiovascular risk factors and survival outcomes.

ECG and cardiovascular risk data from Ziekenhuis Oost-Limburg (2002-23) were linked to mortality data from the Belgian
National Registry. A neural network was trained to predict age from ECGs. PAD,, corresponded to the residual of PAD re-
gressed on chronological age. Associations with risk factors were tested using > and ANOVA. Survival was analysed with
Kaplan—Meier curves and Cox proportional hazards models. We included 1258 993 ECGs from 234 586 patients, split
40:10:50 into training, validation, and test sets by patient. In the test set [mean age 56.4 + 16.9 years, mean absolute error
(MAE) 7.9], PAD correlated with age (r = —0.54) and showed inverse associations with most risk factors; conversely, higher
PADy, (r=0.00) was associated with higher prevalence of risk factors. Kaplan—Meier revealed that PAD,. above its MAE was
linked to lower survival, whereas PAD showed the opposite. Multivariate Cox showed each 1-year increase in both PAD and
PADy, was associated with a 1.4% increased mortality hazard.

PADy. is associated with cardiovascular risk factors and mortality, offering an age-independent biomarker of biological ageing.
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Introduction

Deep learning for electrocardiography (ECG) signal analysis has made
significant advancements in the last few years, as ECG offers a wealth
of physiological information in a non-invasive and cost-effective man-
ner.'® Among other outcomes, such as arrhythmia detection, ECG
has been widely used for the detection of biomarkers related to cardio-
vascular diseases, as they remain the leading cause of death worldwide.’
One such biomarker is age, one of the most important risk factors, in-
fluencing both disease development and prognosis.’® Ageing has been
found to affect the characteristics of the ECG, including the alteration
of the QRS complex and the orthogonal P-wave morphology.'™"?
Consequently, predicting the chronological age directly from a 10-s
12-lead ECG using deep learning has shown significant attention. As
an example, Attia et al.'* trained a 1D convolutional neural network
(CNN) on a dataset of 0.5 million ECG measurements and achieved
a mean absolute error (MAE) of 6.9 years with a standard deviation
(SD) of 5.6 and a correlation (r) of 0.84. Similar results have been ob-
tained in datasets across different geographical locations and healthcare
facilities.>"*"?

Interestingly, although the objective of these models was to predict the
chronological age, researchers have discovered that difference between
predicted ECG age and actual chronological age, predicted age deviation
(PAD), correlates with biological ageing.“k23 Unlike chronological age,
which simply reflects the time a person has been alive, biological age cap-
tures the cumulative effects of time, genetics, environment, lifestyle, and

(days)

other factors that affect ageing. As such, it is more closely linked with the
functional status of the organism.?* The concept of biological age offers a
more encompassing overall health measure as compared to chronologic-
al age.” In line with this, PAD seems to provide insight into the cardiovas-
cular health of an individual, showing that ECGs reflecting a positive PAD
of more than 68 years have a higher incidence of cardiovascular events
compared to those with small or negative PAD."*"*™"8 Furthermore, re-
search showed an increased risk for cardiovascular and overall mortality
in individuals with a positive PAD,V7-19.21-23 indicating an important role
of PAD as a predictor in overall mortality.

Although previous studies report great advancements into under-
standing the information embedded in PAD, thus far, its inherent correl-
ation with chronological age has not been addressed. Regression models
can be subject to a regression bias phenomenon, which leads to an over-
estimation of small values and an underestimation of large values.?® As
the model is trained to minimize the loss function across the dataset, it
tends to pull the predictions towards the central region, especially in
data distributions with more data near the average. In the case of age
models, younger individuals tend to get overestimated, while older indi-
viduals get underestimated, causing PAD to be dependent of age.”’*®
Such correlations, both at the sample and individual levels,?*° could ob-
scure the true clinical implications of the relationship between PAD and
clinical variables, especially when the variables of interest are also related
to age.”

In this study, we aim to address this limitation by developing an
ECG-based age prediction model and investigating the regression bias
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between PAD and chronological age. We correlate PAD, both before and
after bias correction (PAD,,), with cardiovascular risk factors and survival
outcomes. By correcting for the dependence on chronological age, we
seek to uncover the true clinical utility of PAD ¢ and its relationship to
cardiovascular risk factors, as well as its potential as a predictor of mor-
tality. By embedding this tool within the existing care pathway, automat-
ically analysing ECGs during standard workflows, PAD,. may offer a
scalable and accessible approach to augment clinical decision-making,
guide preventive interventions and improve patient management deci-
sions without additional testing burden on patients or providers.

Methods

Data
Study design
This retrospective study used routinely collected clinical data extracted
from the electronic medical record (EMR) at Ziekenhuis Oost-Limburg
(ZOL) (Genk, Belgium). The dataset included 10-s 12-lead ECGs between
1 October 2002 and 31 December 2023 and was extracted from the MUSE
data management system, together with ECG-derived parameters and diag-
nostic labels provided by the GE Marquette 12SL software. Demographic
and clinical data were extracted from structured EMR records, medication
history, and patient questionnaires, including cardiovascular risk and intoxi-
cation profiles. Alongside each patient’s birthdate and sex, body mass index
(BMI) and four binary cardiovascular risk factors were included in this study:
Smoking, diabetes, hypertension, and hypercholesterolaemia.” Detailed in-
formation can be found in the supplementary materials (Supplement S7).
Mortality data were obtained from the Belgian National Registry.
Variables such as ethnicity and socioeconomic status were not systematic-
ally available in the EMR and were therefore not included in the analyses.
This study was reviewed and approved by the medical ethics committee
of Ziekenhuis Oost-Limburg. The developed model is not approved by legal
authorities (e.g. CE or FDA) and was, for this study, intended solely for re-
search purposes. The study was reported in accordance with the EHRA Al
checklist to ensure transparent and reproducible reporting of Al-based pre-
diction models in healthcare®? (see Supplement $40).

Outcomes

The primary outcome of the study was the patient’s chronological age, ex-
pressed as the time between the patient’s birthdate and the ECG acquisi-
tion date. The prediction model used the raw ECG waveform data as
input. The secondary outcome was all-cause mortality, modelled using sur-
vival analysis. Survival time was expressed as the time between the ECG ac-
quisition and time of death or censoring. Right-censoring was applied if the
patient was alive at the end of the observation period (maximum 7305 days
or 20 years). PAD was evaluated as a predictor of mortality, alongside the
chronological age and cardiovascular risk factors. All predictors were trea-
ted as fixed at the time of ECG acquisition, acknowledging that the risk fac-
tors may not strictly precede the ECG in time due to retrospective labelling.

Inclusion criteria

All patients with at least one eligible ECG during the study period were con-
sidered. ECG recordings were excluded if the patient was under 18 years of
age at the time of measurement or if the software indicated a measurement
failure (bad measurement quality, faulty measurement setup, inability to in-
terpret the ECG due to lack of QRS complexes, muscle tremor, and elec-
trode noise). Patients, along with their corresponding ECGs, were stratified
for sex and age at first measurement and randomly allocated to training, in-
ternal validation, and testing datasets in a 40:10:50 ratio. Given the magni-
tude of the dataset size, the test set was intentionally large to support
downstream statistical and survival analyses. Overlap between patients in
the training, validation, and test sets was prevented by ensuring all data
from the same patient appeared in only one dataset. To avoid bias caused
by overrepresentation of patients with multiple ECG measurements, train-
ing and evaluation of the age prediction model only considered the first
available ECG measurement within the inclusion period for each patient.

The statistical and survival analysis was performed on the test set, which
was further subselected by excluding patients with erroneous mortality in-
formation. Analysis concerning the risk factors only considered the first
ECG taken after 2018, as ZOL switched to a cross-departmental EMR in
October 2018 (most risk factors are digitally only recorded from this
date onwards).

Dataset splitting

Data extraction from the ZOL database resulted in 1 449 360 ECG record-
ings from 254 326 patients. After applying the exclusion criteria, 1 258 993
ECGs from 234 586 patients remained, from which the first ECG was se-
lected, obtaining a training set of 93849 ECGs, a test set of 117539
ECGs, and a validation set of 23 378 ECGs. The test set was further refined
for the statistical and survival analysis by removing patients with no
mortality information, resulting in 117 354 ECGs for the general analysis
and 64 807 ECGs for the analysis including the risk factors (Figure 7).

Data preprocessing

The ECGs were acquired at a sampling rate of either 250 or 500 Hz (de-
pending on the settings at the time of measurement) and were resampled
to 500 Hz for further analysis. No further preprocessing was applied.
Patterns of missingness within the data were examined and will be further
detailed in the supplementary materials (Supplement $2).

Model

We developed a deep learning model for ECG-based age prediction, in-
spired by the work of Attia et al."* The network consists of eight sequential
blocks of convolutional, batch normalization, and max pooling layers to ex-
tract temporal features from the ECG signals for each lead. A spatial block
aggregates information across the different leads, and two final fully con-
nected layers together with a linear activation function produce the final
age estimate. The model input consists of the raw ECG and is given by a
12 by 5000 matrix (ECG recorded for 10s at 500 Hz) and was trained
to optimize the mean squared error loss. Full architectural details and hy-
perparameters are provided in the supplementary materials (Supplement
S$3).

Evaluation
Age prediction model performance
In the primary analysis, the performance of the age prediction model was
evaluated using the MAE, the Pearson correlation coefficient (r), and the
intercept and the slope of a linear regression between the predicted
ECG-age and the chronological age. Performance was further compared
across subgroups determined by sex, age and heart rhythm (derived from
the diagnostic labels provided by the 12L GE Marquette software: sinus
rhythm, atrial fibrillation, and atrial flutter or other rhythms). Statistical sig-
nificance was assessed using a non-parametric bootstrap test, generating
5000 different samples, and the Monte Carlo P-value was calculated.
Saliency mapping was used to identify electrocardiographic regions that
were most influential on age prediction. The map was calculated for the me-
dian wave of all ECG leads and was averaged over a sample of 4096 patients.

Predicted age deviation analysis

In the secondary analysis, we examined the relationship between PAD and
cardiovascular risk factors as well as mortality. We explicitly investigate
the regression bias between the chronological age and PAD, as it may af-
fect the apparent relationship between PAD and the risk factors of interest
(BMI, smoking, arrhythmias, hypertension, hypercholesterolaemia, and
diabetes) as well as mortality, as these variables are also related to chrono-
logical age.

Correction

A bias corrected version of PAD was defined as the residual of the regression
of the age deviation on chronological age. The linear correlation is mitigated
by imposing a correction of the data using Beheshti's method.”” Given the
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Figure 1 Patient flow diagram.

ECG predicted age (PA) and the chronological age (CA), a fitted regression
model can be expressed asPA = a + f X CA + & . The corrected pre-
dicted age (PA.) and the corrected PAD (PAD,) were computed as:

PAc. = PA — (@ + f X CA) + CA
PAD. = PAc. — CA = PA — (a + f X CA)
The remaining non-linear relatlonshlp across different ages is removed using
age-level bias correction (PAD,).*® By subtracting the mean PAD, (MPAD,),

corresponding to each integer chronological age value, from PAD, itself, any
residual correlation will be eliminated.

PAD, (i), for i€ {min(CA), 95}
MPAC(i) =

z

m

1
N ADCV/(m), for i> 95

PADy. = PADC — MPAD,

=

i

II‘M

With N; the total number of samples at age i for i < 95, m the unique ages for
i> 95, N, the total number of samples at age m and k the number of unique
ages when i> 95. MPAD, for i > 95 is represented by an age-band mean
({min (m), max(m)} rather than an age-level as the dataset becomes very
sparse (see Supplement S2, Supplementary material online, Figure S2) and
the age-levelMPAD,(i), for i> 95 becomes unstable or undefined. We as-
sessed the effect of the bias correction by performing the risk factor and sur-
vival analysis on both PAD and PAD,.. Parameters o and f as well as MPAD,
were estimated on the validation set.

Risk factor analysis

PAD and PADy, were categorized into three groups: (bias corrected) underes-
timated age deviation (UAD ), (bias corrected) small age deviation (SAD ),
and (bias corrected) overestimated age deviation (OAD). Group cutoffs
were set based on the MAE of the validation set of the respective age deviation,
PAD, or PADy,. Within each group, differences in distribution of the risk factors
were examined. For binary risk factors, a y? test was performed. For the con-
tinuous variable, a one-way ANOVA was applied. P-values were adjusted using
the Bonferroni method to control for multiple testing.

Survival analysis

Kaplan—Meier. Survival functions were estimated for each of the PAD/
PAD,, groups. Confidence intervals (Cls) were calculated using the log-log

52,540 patients (202,918 ECGS) with
no ECGs after 01/10/2018
209,403 ECGs with time of
3 measurement before 01/10/2018

Risk factor analysis
215,095 ECGs
64,807 patients Select Ist ECG

transformation, and group differences were assessed with the non-
parametric logrank test.

Cox proportional hazards model. To investigate the relationship be-
tween the continuous PAD/PAD,,. and survival, a Cox proportional hazards
model was fitted adjusting for chronological age, termed simple model. A
second model, termed risk factor model, included the risk factors (BMI,
smoking behaviour, hypercholesterolaemia, hypertension, heart rhythm,
and diabetes) as additional covariates to evaluate the incremental effect
of PAD/PAD,. when these factors are known.

We applied diagnostic methods to evaluate the assumptions underlying
the Cox model. The functional form of the Martingale residuals with respect
to the covariates of interest were examined to assess whether each covariate
maintained a linear relationship with the log hazard; non-random patterns or
curvature in the residuals would indicate the need for transformation or al-
ternative modelling approaches. Schoenfeld residual plots were used to de-
tect any systematic relationship between the covariates and time, which
would suggest a violation of the proportional hazards assumption. In addition,
plots of the log(-log(survival)) function against log(time) were used to visually
evaluate proportional hazards; non-parallel curves would suggest that hazard
ratios (HRs) vary over time. Finally, model goodness-of-fit was assessed using
Cox—Snell residuals. A close alignment between the cumulative hazard of
these residuals and the 45-degree reference line suggests an adequate model
fit, while systematic deviations indicate potential misspecification.

Results
Data

Baseline patient demographics of the train, internal validation, and test
set, as well as for the survival analysis with and without risk factors, are
available in the supplementary materials (see Supplementary material
online, Tables S1 and $2). Missing data were observed for smoking
and BMI and were assumed to follow a missing at random mechanism,
supported by observed associations with other recorded variables.
Multiple imputation using predictive mean matching was performed
to account for missingness. Full details of the imputation strategy, diag-
nostics, and sensitivity analyses are provided in the supplementary
materials (Supplement S2).

Age prediction model performance

Model performance was evaluated using the MAE and Pearson correl-
ation coefficient (r) across the training (MAE: 5.8 + 4.5 years, r: 0.90),
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Figure 2 Scatter plot of (A) ECG predicted age and (B) predicted age deviation by chronological age. The diagonal and the horizontal line represent
the exact mapping. The orange dotted line represents the regression line found in the data.

internal validation (MAE: 8.0 + 6.4 years, r: 0.79), and test sets (MAE:
7.9 + 6.4 years, r. 0.80). The model was moderately overtrained on
the trainset. Scatter plots of the chronological age vs. PA and PAD de-
rived from the test set are presented in Figure 2. A systematic deviation
is observed, with a negative correlation between the chronological age
and PAD (r = —0.54), consistent with the regression bias, overestimating
age in younger patients and underestimating in older patients.

Subgroup performance metrics are shown in Table 1, including MAE
stratified by sex, age group, and heart rhythm category. Statistical sig-
nificance was assessed using a non-parametric bootstrap with 5000
samples. MAE was significantly lower in male patients compared to fe-
male patients. The age subanalysis confirmed the regression bias: both
younger patients (<35 years) and older patients (>85 years) exhibited
higher MAEs than patients closer to the mean age of the test set. Finally,
patients with sinus rhythm had the lowest MAE, increasing for those
with atrial fibrillation, atrial flutter, or other arrhythmias. The saliency
map reveals that the P wave is most influential on the age prediction
(see Supplementary material online, Figure S1).

Age deviation analysis

Correction

Based on the regression results, PAD. was obtained using Beheshti’s
method, accounting for the sample level correlation (a=17.7, f=
0.675, Figure 3A). MPAD, revealed the remaining non-linear relationship
across ages (Figure 3B) and was further subtracted from PAD, to obtain
PADy, (validation set MAE: 6.7 + 5.3 years; test set MAE: 6.6 + 5.3 years;
Figure 3C).

Risk factors analysis

Table 2 represents the distribution of the risk factors across the PAD
and PAD,. groups, respectively, for the complete case per comorbid-
ity. Significant differences (P < 0.001) were observed across the differ-
ent groups, with mostly opposing trends between PAD and PAD,,.. For
both PAD and PAD,, mean BMI and smoking prevalence increased
from the underestimated age deviation (UAD ) to overestimated
(OAD o)) groups. However, for PAD,,, the prevalence of diabetes,

Table 1 Mean absolute error (MAE) and standard
deviation (SD) across different subgroups

MAE SD

Gender

Male 7.81 6.28

Female 8.07 6.51
Age

<35 years 9.28 7.81

35-60 years 7.25 5.67

60-85 years 7.79 6.19

>85 years 14.8 7.90
Heart rhythm

Sinus 7.86 6.31

Atrial fibrillation 8.94 7.10

Other 9.45 777

hypertension and hypercholesterolaemia, and non-sinus rhythms in-
creased or remained unchanged across the same groups, while a de-
creasing trend was seen in PAD. This discrepancy likely reflects
confounding by chronological age, which is correlated with these vari-
ables (r=0.17 for diabetes, r=0.37 for hypertension, r=0.29 for
hypercholesterolaemia and r=-0.17 for sinus rhythm), but not
with BMI (r=-0.01) or smoking (r=—0.03). These findings were
confirmed after accounting for the missingness in BMI and smoking
(see Supplement S2, Supplementary material online, Figures S4 and
$5 and Supplementary material online, Tables S6 and S7).

Survival analysis

Kaplan—Meier

Diverging patterns between PAD and PAD,. groups were observed
when modelling survival using Kaplan—Meier curves. PAD,, (Figure 4A)
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Figure 3 (A) Scatter plot of sample-level corrected age deviation (PAD,) by chronological age. (B) Mean age-level bias of age deviation (MPAD,) by
chronological age after sample-level correction. (C) Scatter plot of sample-level and individual-level corrected age deviation (PADy,) by chronological age.

showed significantly better survival in the UAD,, group compared to the
OADy, group (P < 0.001). In contrast, PAD (Figure 4B) showed the re-
verse trend, highlighting confounding by chronological age (r=0.45
with mortality).

Cox proportional hazards model

Contrary, Cox proportional hazards models showed a general agree-
ment between both PAD and PADy, results. In the simple model, adjust-
ing only for chronological age, both PAD and PAD, were significantly
associated with increased mortality risk (Table 3). PAD,. demonstrated
a HR of 1.020 per year (95% Cl: 1.018-1.021, P < 0.001), correspond-
ing to a 2.0% increase in risk per unit increase, while PAD showed a simi-
lar HR of 1.019 (95% ClI: 1.017-1.021, P<0.001). The effect of
chronological age was modelled using a piecewise linear transformation
(age <50 and > 50 years), based on diagnostics of the functional form
using martingale residuals and model comparison using AIC (see

Supplementary material online, Table S3). The PAD,. model showed
that for patients under 50, each year of age increased risk by 7.7%
(HR =1.077), compared to 10.2% for those over 50 (HR =1.102).
Similar results were found for PAD. Lastly, model discrimination was
good, with a C-index of 0.812 (SE: 0.001) for both PAD and PAD,.
and proportional hazards assumptions were met with no substantial
violations (see Supplement S5, Supplementary material online, Figures
§9-518).

In the risk factor Cox models, adjusting for additional cardiovascular
risk factors using multiple imputations (Table 4), the association with
PAD,, remained significant (HR: 1.014), with a C-index of 0.838, indicat-
ing that PADj, captures mortality risk beyond established cardiovascular
risk factors. Chronological age retained a strong association with mor-
tality, increasing by 5.1% and 12.0% per year for those below and above
50, respectively. Male sex (HR: 1.267), smoking (HR: 1.490), diabetes
(HR: 1.688), hypertension (HR: 1.450), and non-sinus rhythm (HR:
1.259) were also significantly associated with higher mortality.
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Table 2 Presence of risk factors for the different bias corrected predicted age deviation (PAD, ) groups and predicted
age deviation (PAD) groups (represented after the /)

Variables Unit UAD,/UAD SAD,/SAD OAD,./OAD Test statistic P-value
PAD,/PAD PAD,/PAD

Patients % 21.0/21.7 58.8/59.5 20.1/18.7 — —

n 13 634/14 085 38128/38574 13045/12 148 — —
BMI mean + std 26.5 +4.93/ 27.5 +5.15/ 282+ 576/ F: 314.3/332.7 <0.001/<0.001

265+473 27.5+5.17 282 +595

Diabetes % 19.4/24.0 22.0/22.3 26.8/20.9 7%:219.8/36.3 <0.001/<0.001
Hypertension % 55.2/69.6 63.3/62.4 69.7/56.6 2% 601.3/475.6 <0.001/<0.001
Hypercholesterolaemia % 43.1/52.2 47.3/48.2 49.6/38.1 2% 129.1/556.1 <0.001/<0.001
Smoking % 43.4/40.8 46.2/47.2 48.5/48.7 2% 66.9/202.2 <0.001/<0.001
Sinus rhythm % 97.4/94.1 95.8/95.6 90.1/94.1 2% 87441753 <0.001/<0.001

P-values are corrected using the Bonferroni method. n, total number of patients. UADp, SADy., and OAD,,, (bias corrected) underestimated, small, and overestimated age deviation,
respectively.
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Figure 4 Kaplan—Meier estimates for the (A) corrected and (B) uncorrected predicted age deviation (PADp. and PAD) groups: underestimated (pur-
ple, UAD,. and UAD), small (yellow, SAD,. and SAD), and overestimated age deviation (orange, OADp. and OAD). The P-value refers to the log-rank test
for difference in survival between groups.
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Table 3 Cox proportional model based on
chronological age and the corrected predicted age
deviation (PAD,.) (above) as well as the predicted age
deviation (PAD) (below)

Table 4 Cox proportional hazards model based on
chronological age, patient risk factors, and the bias
corrected predicted age deviation (PAD,.) (above) as
well as the predicted age deviation (PAD) (below)

Variables HR 95% CI P-value
PADp, 1.020 1.018, 1.021 <0.001
Chronological age (<50) 1.077 1.073, 1.081 <0.001
Chronological age (>50) 1.102 1.100, 1.103 <0.001
PAD 1.020 1.018, 1.021 <0.001
Chronological age (<50) 1.082 1.078, 1.086 <0.001
Chronological age (>50) 1111 1.110, 1.113 <0.001

95% Cl, 95% confidence intervals; HR, hazard ratio.

Interestingly, higher BMI was associated with lower mortality risk (HR:
0.956), and hypercholesterolaemia was inversely related to risk (HR:
0.574). Results were nearly identical for PAD, confirming that once
chronological age is accounted for, residual age-related bias is mini-
mized. Complete case model diagnostics and imputation analyses are
presented in the supplementary materials (Supplement S5,
Supplementary material online, Figures $19-521, and Supplementary
material online, Tables $8-S13).

Discussion

In this study, we investigated whether the difference between predicted
ECG age and true chronological age, termed PAD, could serve as a
proxy for biological ageing and cardiovascular health, while explicitly ad-
dressing the confounding effect introduced by its correlation with
chronological age. Although previous research has already demon-
strated that PAD is associated with increased cardiovascular risk and
mortality, the impact of the regression bias, causing the correlation be-
tween the age deviation and chronological age, has largely been over-
looked and could obscure true clinical value.

We developed a deep learning-based model to predict chronological
age from 12-lead ECGs, achieving an age prediction performance
(MAE: 7.9 + 6.4 years) comparable to state-of-the-art ECG-based
models."*"®"? Performance varied slightly between sexes, while higher
errors were observed in non-sinus rhythm groups. Saliency map ana-
lysis suggested a possible explanatory mechanism: the P wave was indi-
cated as most influential on the age prediction. Its absence, a hallmark of
atrial fibrillation,® likely contributed to the reduced performance.
Similar results were shown in Ott et al.>* Larger prediction errors oc-
curred in the youngest (<30 years) and oldest (>85 years) participants,
alongside a pronounced negative correlation between chronological
age and PAD (r= —0.54), indicating the regression bias in the model.?
Although this bias does not invalidate the neural network’s predictions,
it may confound downstream analyses, particularly when relating PAD
to outcomes that are themselves age-dependent. To better understand
and quantify this effect in the context of cardiovascular disease and
mortality, we applied a bias correction to remove both linear and non-
linear associations between PAD and chronological age.

We then compared the distribution of cardiovascular risk factors
across subgroups defined by PAD and PAD,.. Higher PAD,,. was asso-
ciated with increased prevalence of hypertension, hypercholesterol-
aemia, diabetes, and non-sinus rhythm diagnosis, whereas opposite
trends were observed for PAD. Notably, each of these risk factors
was itself found to be correlated with age. Both PAD and PAD,. were
associated with higher BMI and increased prevalence of smoking,

Variables HR 95% CI P-value
PADp 1.014 1.010, 1.017 <0.001
Sex (M) 1.267 1197, 1.341 <0.001
BMI 0.956 0.950, 0.962 <0.001
Smoking 1490 1.406, 1.578 <0.001
Diabetes 1.688 1.597,1.784 <0.001
Hypertension 1.450 1.326, 1.586 <0.001
Hypercholesterolaemia 0.574 0.543, 0.608 <0.001
Heart rhythm (non-sinus) 1.259 1.157,1.369 <0.001
Chronological age (<50) 1.051 1.043, 1.059 <0.001
Chronological age (>50) 1.120 1.116, 1.124 <0.001
PAD 1.013 1.009 1.016 <0.001
Sex (M) 1.266 1.196, 1.339 <0.001
BMI 0.955 0.949, 0.962 <0.001
Smoking 1.490 1.406, 1.580 <0.001
Diabetes 1.690 1.599,1.787 <0.001
Hypertension 1453 1.328, 1.589 <0.001
Hypercholesterolaemia 0.559 0.543, 0.608 <0.001
Heart rhythm (non-sinus) 1.266 1.164,1.377 <0.001
Chronological age (<50) 1.054 1.046, 1.062 <0.001
Chronological age (>50) 1.126 1.122,1.130 <0.001

95% Cl, 95% confidence intervals; HR, hazard ratio.

factors that are largely independent of age. These results suggest that
PAD,, provides a more biologically meaningful value of declining cardio-
vascular health than PAD. They further illustrate the potential of mis-
leading or contradictory associations when PAD is interpreted
without adjusting for its age dependency.

Survival analysis using Kaplan—Meier estimates further highlighted the
confounding impact of age. Both PAD and PAD,,. showed associations
with mortality; however, the direction of association was reversed.
Higher PAD was paradoxically associated with improved survival, while
increasing PADj,, was associated with reduced survival, demonstrating a
more consistent and interpretable relationship with survival, independ-
ent of age. Interestingly, in Cox proportional hazards models, where
chronological age could be included as a covariate, PAD and PAD,,
yielded similar results.

Previous research has demonstrated associations between PAD
and CV risk factors and mortality. Similar to this work, Hirota et al. ap-
plied a linear bias correction and found that a PAD > 6 years had a re-
duced survival probability of 7.35% at 3 years compared to a negative
PAD, < —6 years of 5.23%.° In other studies, lower survival probability
was found for PAD > 6—9 years with survival curves directly adjusted for
age and sex."”"® 2*"%2! |n contrast, our analysis reports PAD without
age adjustment, to better isolate and interpret the intrinsic value of
PAD itself. To enable comparison with prior research, supplementary
materials include age-adjusted survival curves across the PAD groups
(see Supplement S4, Supplementary material online, Figures S6-S8).
Consistent with earlier findings, our age-adjusted survival curves
show better survival in the UAD group compared to the OAD.

Our findings align with previous work in the brain age literature,
where similar bias correction strategies have been recom-
mended?®3"%%: (1) regressing out chronological age from age deviation
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or (2) including age as a covariate in downstream analyses. We advocate
the same for ECG-based age metrics to ensure their valid interpret-
ation for future clinical analysis.

These results highlight that, when adequately modelled, PAD,. is a
biologically informative measure, attempting to capture the physiologic-
al divergence between an individual’s apparent biological age and their
chronological age. Unlike traditional biological age estimations that re-
quire the integration of multiple categorical or continuous variables,*®
PAD,, offers a single, interpretable marker directly extracted from a
widely available, non-invasive, low-cost clinical tool. The ECG, currently
used for acute diagnosis, may thus also serve as a scalable biomarker of
biological ageing.

Limitations

This study is best understood in terms of its limitations. First, the data-
set used for model development and analysis was collected from a sin-
gle tertiary care centre. As such, findings may not generalize to broader
or more diverse populations. Additionally, as variables such as ethnicity
and socioeconomic status were not systematically available, fairness
analysis was precluded, which could potentially conceal performance
disparities across underrepresented populations. Furthermore, medi-
cation effects were not accounted for in this analysis, as the data acqui-
sition in this retrospective study did not allow for granularity between
disease diagnosis and treatment exposure (see supplement $4). Certain
cardiovascular medications could influence ECG morphology and, by
extension, model predictions for medication-specific populations.
Structure data collection and external validation across diverse popula-
tions and healthcare settings would allow to identify underperforming
subpopulations. By increasing the representation of these subgroups in
the training group, the generalizability of the model would increase.
Techniques such as Federated Learning could be adopted to access
this sensitive data in a privacy-preserving way.>” Second, while bias cor-
rection was applied to account for its dependency on chronological age,
the correction itself is influenced by the accuracy of the prediction
model. In settings where model performance is suboptimal, the correl-
ation between age and PAD may be artificially inflated, potentially lead-
ing to overcorrection or misinterpretation.*® Third, while consistent
risk factor associations lend credibility to the findings, the lack of ground
truth for the age deviations makes validation challenging. 33> Lastly,
the timing and frequency of risk factor measurements relative to the
ECG recording were not standardized. This temporal misalignment
may have weakened the precision of associations between PAD
and specific clinical characteristics. Future studies should aim to incorp-
orate temporally aligned data by using longitudinal cohort designs with
synchronized data collection, strengthening causal interpretations.

Future directions

Future research should explore ways to enhance its clinical utility and
generalizability. At the population level, it should prioritize validating
PAD, in larger and more diverse populations, ideally across multiple
clinical settings and healthcare systems. At the individual level, further
investigation into intra-individual variability and the temporal dynamics
with respect to outcome may allow to monitor lifestyle and therapeutic
intervention and define its role in preventative care and clinical decision
making. Ultimately, randomized controlled trials in multiple settings will
be required to determine whether using PADy, in clinical practice im-
proves patient outcomes or alters clinician behaviour meaningfully.*°

Conclusion

Our study supports previous findings associating ECG-based age pre-
diction with both cardiovascular risk factors and mortality risk, but de-
monstrates that the correlation between PAD and chronological age

can obscure its interpretation. After applying bias correction, meaning-
ful associations were identified, especially when chronological age could
not be explicitly accounted for. Future studies should focus on incorp-
orating and validating PAD,. in more diverse populations, integrating
longitudinal data, and exploring its potential role as a biomarker for bio-
logical age in personalized risk stratification and preventive care.

Supplementary material

Supplementary material is available at European Heart Journal — Digital
Health.
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