

Title: Synthesis and Thermokinetic Analysis of Thermochromic VO₂ Particles for Smart Window Applications

Authors: K. Elen^{1,2,3*}, L. Calvi², L. Leufkens^{4,5}, R. Habets^{4,5}, D. Mann^{2,4,5}, P. Buskens^{2,4,5}, A. Hardy^{1,2,3}, M. K. Van Bael^{1,2,3}

¹ imec vzw, imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium

² Hasselt University, imo-imomec, Design and Synthesis of Inorganic Materials (DESINe), Agoralaan Building D, B-3590 Diepenbeek, Belgium

³ EnergyVille, Thor Park 8320, B-3600 Genk, Belgium

⁴ The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands

⁵ Brightlands Materials Center, Urmonderbaan 22, 6167 RD Geleen, The Netherlands

* ken.elen@uhasselt.be

Conference: TCM - TOEO 2025

Location: Rethymno, Crete, Greece

Date: 19/10/2025 - 23/10/2025

Abstract: Vanadium dioxide (VO₂) is often suggested as one of the most promising thermochromic materials for energy-efficient smart window applications due to its ability to undergo a reversible, structural phase transition (SPT) from monoclinic VO₂(M) to tetragonal rutile VO₂(R) at 68°C. This transition is accompanied by a distinct change in near-infrared (NIR) optical transmittance, enabling solar modulation without external power input. However, its practical implementation is hampered by complications such as high switching temperature, optical haze due to large particle size, and reduced functionality by doping and processing. In this work, we report on the scalable synthesis, processing, and thermokinetic characterization of undoped and W-doped VO₂ particles, targeting their application as thermochromic pigments for smart windows. [1,2]

Undoped and W-doped VO₂ powders were synthesized via reduction of V₂O₅ using oxalic acid in aqueous medium, followed by a controlled two-step calcination process. Undoped VO₂ exhibited a switching enthalpy close to the theoretical maximum (55 J·g⁻¹) and a narrow hysteresis. The introduction of W dopants in the VO₂ crystal lattice lowered the SPT temperature at an average rate of 23°C per at% of W. Doped VO₂ particles containing 2 at% of W exhibited an SPT temperature of 21°C while maintaining a high switching enthalpy of 37.5 J·g⁻¹. The large initial particle size of 24 µm was successfully reduced by subsequent bead milling yielding sub-micron VO₂ particles of approximately 120 nm, though partial amorphization led to a 30-40% crystallinity loss, effectively halving the switching enthalpy.

Using the Friedman isoconversional method, the thermodynamic and kinetic profiles of the SPT were investigated as functions of particle size and doping percentage. The activation energy for the phase transition of VO₂(M) to VO₂(R) decreased from 1610 to 381 kJ·mol⁻¹ upon bead milling, correlating with a loss in enthalpy. This processing step also introduced a kinetic asymmetry in the reversible phase transition, where the transition of VO₂(R) to VO₂(M) demonstrates a lower activation energy compared to the opposite transition. W-doping introduced additional structural defects, further modulating switching kinetics. Below 2 at-% W, transitions remained quasi-symmetric. Above this threshold asymmetry emerged, with this time a lower activation energy for the transition of VO₂(M) to VO₂(R). These observations

illustrate that the defects induced by bead milling or by W-doping display a different effect on the SPT.

The milled VO₂ particles were mixed into PVB to make laminates of two glass plates with the nanocomposite thermochromic film as interlayer. The optimal laminates exhibited a luminous transmittance of 54.7% and a solar modulation of 9.4%. Moderate visible light scattering was attributed to the presence of particles exceeding 100 nm in size. A comparison of the switching kinetics between the VO₂ powders and the nanocomposite laminates revealed comparable phase transition rates.

These results illustrate that precise control over VO₂ particle size, crystallinity, and defect structure is critical for optimizing thermochromic performance in smart window applications. The successful integration of VO₂ particles into composite films demonstrates their potential for energy-efficient glazing solutions reducing energy consumption in buildings.

This work has received financial support from the European Fund for Regional Development through the Interreg Vlaanderen-Nederland project U-SAVE, co-funded by the VLAIO network “Flanders Innovation & Entrepreneurship”.

[1] L. Calvi et al. “A comparative study on the switching kinetics of W/VO₂ powders and VO₂ coatings and their implications for thermochromic glazing” *Solar Energy Materials and Solar Cells* (2021) 110977

[2] L. Calvi et al. “Thermochromic glass laminates comprising W/VO₂ nanoparticles obtained by wet bead milling: An in-depth study of the switching performance” *Solar Energy Materials and Solar Cells* (2023) 112350