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Abstract: Hybrid testing provides an efficient and less costly way to explore the response of
structural systems to realistic dynamic or seismic loading. However, the required equipment to
execute hybrid tests are high-cost tools. To get insight in the hybrid testing methodology, a small-
scale set-up has been developed in this project.

An Arduino UNO controls the system that imposes the displacement to a linear actuator. Connecting
the small-scale set-up, i.e., the Arduino UNO, to a PC allows imposing a time history to the physical
substructure. A load cell measures the restoring force which will be communicated to the PC by the
Arduino UNO using the serial monitor. Numerical integration based on the Gravouil-Combescure
scheme with Classic Lagrange Multipliers (CLM) determines the displacement for the next time step.
A correction on the measured restoring forces is applied to mitigate experimental errors.

This paper describes hot spots of the methodology and the results of a demonstrative experimental
test using a MATLAB and Python implementation. The experiment consists of a 4 degree of freedom
(DOF) numerical model combined with a 1 DOF physical specimen. The installed linear actuator
only has one gearing option, which leads to a possible overshooting loop.

Interesting conclusions can be drawn from the analysis of the small-scale set-up in view of its future
upscaling and implementation of the hybrid test method at laboratory scale. Firstly, the linear
actuator requires a non-negligible amount of time to reach the imposed displacement which imposes
boundary conditions in the directives. Secondly, a velocity-controlled actuator is essential in the
exploitation of hybrid testing. Thirdly, the displacement tolerance influences the stability of the
system. If one increases the displacement tolerance, the risk of an overshooting loop decreases.
However, the accuracy might be influenced. Good balance must therefore be found between stability
and accuracy.
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1 Introduction

1.1 Hybrid test principles

This paper details the development of a small-scale set-up to execute low-cost hybrid tests. The term hybrid
test covers physical-numerical simulations of seismic response, in which a part of a structure is isolated and
tested experimentally. This specimen, or physical substructure (PS), contains a region of interest while the
remainder of the structure, the numerical substructure (NS), is simulated numerically. A time stepping analysis
algorithm solves the coupled equations of motion, which determines the displacement to impose on the PS.
The measured restoring forces serve as input values for the next time step.

Hybrid tests offer a powerful way of verifying the performance of seismic-resisting structural systems and can
provide valuable data for the development and calibration of nonlinear numerical models of structures and
elements (McCrum & Williams, 2016).

Full-scale hybrid test equipment contains expensive tools. Furthermore, preparing, executing and break down
a full-scale hybrid test requires a high amount of time, space and resources. Hence, a small-scale set-up
provides an ideal opportunity to get acquainted with hybrid testing without wasting resources.

1.2 Background of hybrid testing

McCrum and Williams (2016) issues the history of different hybrid testing methods, e.g., pseudo-dynamic
testing, real-time hybrid testing (RTHT) etc. Takanashi et al. (1975) introduced conventional pseudo-dynamic
testing, while Dermitzakis and Mahin (1985) defined the concept of substructured pseudo-dynamic testing.
Pseudo-dynamic testing entails the application of slowly varying forces to a structural model.

Numerical integration techniques compute displacements for the next time step, which are then imposed on
the PS. Once the computed displacements are applied, restoring forces will be measured and utilized to
compute the next time step. Figure 1 illustrates the substructure pseudo-dynamic test method. This approach
permits to physically examine only the most critical zone of a structure, resulting in cost reduction compared
to quasi-static testing. Pseudo-dynamic testing is time-consuming, as each time step requires computational
determination, which allows relaxation. Therefore, pseudo-dynamic testing only applies for rate-independent
experiments.

RTHT provides the possibility for rate-dependent experiments. Nonetheless, RTHT introduces control issues,
i.e., delay because of numerical simulation, communication protocols and actuator properties.

R,

L) (D) [
¢ Numerical integration
k2 ks

E Miizy + Chigey + Riey = Fiy

L \ul(t)

Uiy R
9
k, ki

I

Numerical component Experimental component

Figure 1. Schematic of pseudo-dynamic test method (McCrum and Williams, 2016).
The equation of motion, as formulated in Eq. (1), is solved over a series of time steps At, i.e., at the (i + 1)th
step of:
Mii; 1 + Cityyq + Ry + R = Fry (1)

where M is the mass matrix, ii;,, the nodal acceleration vector, € the damping matrix, 1., the nodal velocity
vector, RY,; the restoring force vector for the NS, R!,, the restoring vector for the PS, u;,, the nodal
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displacement vector and F;,, the external excitation force applied to the system. For a linear NS, RY,, =
KNul (KN is the NS stiffness matrix and ul, , is the NS nodal displacement vector).

Pseudo-dynamic testing involves the physical measurement of the stiffness term while modelling inertial and
damping forces numerically. Thus, pseudo-dynamic testing requires a slow loading rate to not induce damping
or inertia responses. An extended timescale is used to execute a pseudo-dynamic test, providing time required
for numerical integration of the equation of motion and communicating and imposing the resulting
displacements by the actuators. Therefore, time-dependent behaviour is not recorded.

Conventional pseudo-dynamic consists of a ramp-hold load pattern. Magonette (2001) introduced the
continuous pseudo-dynamic method, allowing the actuator to avoid the hold period. However, in the early
stages of its development, continuous hybrid testing ran into overshooting issues (Takanashi (1987),
Takanashi and Fenves (2006)).

1.3 Experimental errors

Shing and Mahin (1987) observed that experimental errors tend to increase during the step-by-step integration
process. This study revealed that the rate of cumulative error growth is significantly influenced by the natural
frequency of the specimen and the integration time step. Particularly, as the natural frequency and time step
increase, the rate of cumulative error growth also expands, signifying an elevated sensitivity to experimental
errors in higher modes of MDOF systems compared to their lower equivalents.

Bursi and Shing (1996) provides an overview of implicit time-stepping algorithms utilized in pseudo-dynamic
tests. It focuses on the examination of a-C, a modified Newton iteration-based algorithm developed by Shing
and Vannan (1991), and a-OSM (Operator-Splitting Modified) algorithms through a systematic approach,
containing theoretical analysis, numerical simulations, and verification experiments. The research findings
reveal that the a-C algorithm effectively mitigates the impact of experimental errors. However, it is observed
that undershooting errors introduce energy-adding effects using the a-OSM algorithm. Those effects resist
suppression through algorithmic damping. The implementation of I-Modification shows to be an effective
strategy to correct the influence of experimental errors when dealing with the a-OSM algorithm.

Fu et al. (2018) investigates error propagation properties of integration algorithms for pseudo-dynamic tests.
The research develops a new algorithm by introducing two additional coefficients to the Chen-Ricles algorithm.
In addition, a parameter, i.e., degree of nonlinearity, is described to model stiffness evolution for nonlinear
structures.

Ozturk et al (2023) compares the a-OSM and Central Difference Method (CDM) using numerical analyses and
CDM for the experimental analyses to investigate the effects combined with various time step interval values.
This research studies the behaviour of a 1 DOF cantilever column system under the effect of a pulse load and
earthquake record. The experimental results show to be deteriorated at small time interval values.

2 Small-scale set-up

2.1 Small-scale set-up configuration

Figure 2 illustrates the small-scale set-up. An Arduino UNO (1) controls the entire system. It directs the linear
actuator (2) to extend, contract or stay stationary. The Actuonix L16-50-150-6-P linear actuator comes with a
built-in potentiometer which measures the actual position of the linear actuator. A HX711 load cell amplifier
(3), used to get measurable data out from a load cell, is connected to an EstarDyn load bar (4) with a capacity
up to 200 N in compression and 100 N in tension. This load bar is attached to a load bar support (9).

A L298N H-bridge (5), installed between the Arduino UNO and the linear actuator, reverses polarity if needed.
Regular polarity makes the linear actuator extend, reversed polarity causes contraction. An LCD (6) displays
displacement and force on-the-fly. A breadboard (7) connects the components through jumper wires. The
actuator end is supported by a 3D-printed specimen (8) where displacements will be applied upon. This
specimen represents a 1 degree of freedom (DOF) PS.
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Figure 2. Small-scale set-up.

2.2 Calibration of the small-scale set-up

The load cell consists out of four strain gauges hooked up in a Wheatstone bridge. The strain gauge resistance
is proportional to the applied load, which allows one to calculate the weight of objects.

Enhancing the load cell in a common scale set-up allows calibration, as illustrated by Figure 3. Five different
objects were weighted on a calibrated lab scale before determining the load cell’s gain factor A
m; —m
= 1 0 (2)
Myef
where m, is the tare value, m, is the measured value, and m, is the load value measured using the calibrated
laboratory scale.

load cell

Figure 3. Calibration scale using load cell.

2.3 Controlling the small-scale set-up

An Arduino UNO operates as the controller of the small-scale set-up. The algorithm resets the linear actuator
position, i.e., to the middle of the total stroke length, during the initialisation phase whereafter the position and
force output are set to zero.

While performing a test, the Arduino UNO directs the linear actuator to extend, contract or stay stationary,
based on the difference between the current position and the desired position. An internal potentiometer allows
the linear actuator to measure the current flowing through, which is translated by the controller algorithm to a
position by linear interpolation. Eq. (3) presents the calculation of the current actuator position x,cyator

Xactuator =

Eactuator . _ factuator (3)
1023V actuator 2
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where E,.ator 1S the measured voltage, and £,....t0r 1S the total stroke length of the linear actuator.

When defining the discrepancy Ax between the desired actuator position x. and the current actuator position
x,, three possible scenarios emerge: (i) Ax > x,,, resulting in actuator extension; (ii) Ax < —x,,, leading to
actuator contraction; or (jii) —x, < Ax < x,,, With x,,; denoting the allowed tolerance. An internal clock inside
the Arduino UNO executes the algorithm every 1 millisecond, and a upper limit has been set on the maximum
executions steps to prevent an infinite overshooting loop.

2.4 Time integration

Typically, the PS is characterized by a limited number of DOFs, often fewer than five, making an accurate
characterization of the tangent stiffness challenging. In contrast, the NS is characterized by a larger number
of DOF, potentially up to 100, and allows for the evaluation of the Jacobian of the restoring force.
Consequently, when interface masses are partitioned properly, it becomes feasible to employ an explicit time
integration scheme for solving the PS response, while the NS response is solved through an implicit time
integration scheme. This partitioned approach stands in contrast to a monolithic time integration strategy which
does not allow to couple different time integration schemes. Gravouil and Combescure (2001) have introduced
a domain decomposition method to solve time-dependent nonlinear problems.

Partitioned time integration indicates a class of algorithms to couple multiple monolithic time integration
processes, e.g., based on the Newmark scheme. Analogous to the Newmark-Newton-Raphson algorithm,
additional kinematic constraints are enforced using Lagrange multipliers. The coupled equations of motion for
a general hybrid model, consisting out of one PS and one NS, can be expressed as:

{Mpilipu + Cpulyy +r°(ufl, ufy,) = BRf (tinn) + BU Ay (4)
MV, + Cyil;\ju + TN(u['\l+1'u;\‘+1) = B]NfN(tiH) + Bl Ay
T. T.
BY i, +BY 1, =0 ©)

where M is the mass matrix, it;,, the nodal acceleration vector, €, the damping matrix, i, the nodal velocity
vector, and u;,; the nodal displacement vector, r the restoring force vector, B, a Boolean matrix used to

collocate the externally applied loading f(t) to the set of loaded DOF, and B,, a Boolean matrix used for
collocating the Lagrange multiplier A.

For seismic loading conditions:

Bf =—Mp (6)

@) =1iig(t) (7)

where p is a Boolean vector, ii,(t) the ground motion acceleration time-history, and m denotes that the

equation is applicable to both PS and NS. The superscript P indicates the PS, while the superscript N indicates
the NS.

In principle, one could solve the Newton-Raphson scheme to simultaneously solve the system of equations in
Eq. (4) and (5) for a generic time step. However, for enhanced computational efficiency, a two-stage solution
strategy is adopted. Abbiati (2022) provides a detailed account of the integration scheme, implemented using
MATLAB or Python.

Furthermore, the I-modification technique illustrated by Nakashima and Kato (1988) is implemented to correct
restoring forces to mitigate experimental errors, as demonstrated in Eq. (8)

7, =T — K@, —ui,,) (8)

in which %}, is the exact numerical solution, #%{,; and #{_, experimental feedback values, and #{,; the
corrected restoring force vector.
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2.5 PC-connection

Newly developed MATLAB and Python classes have been introduced to create an object, including essential
properties to connect with the Arduino UNO, i.e., (i) port name, (ii) baud rate, (iii) serial port time-out, and (iv)
a handle to the serial port. Both classes contain functions to (i) create an object, (ii) create serial
communication, (iii) set the actuator position, (iv) get the object state and (v) delete the object.

A USB-B cable connects the Arduino UNO with a PC, allowing bidirectional communication between the
created object and the Arduino UNO. Noteworthy, the built-in serialport function orchestrates the MATLAB-
Arduino communication. However, it lacks the capability to wait for the Arduino to complete its execution. To
ensure the actuator has sufficient time to reach the desired displacement, a 5-second pause is integrated into
the MATLAB script.

Simultaneously, a Python class has been developed, containing the same essential properties and functions
of the MATLAB counterpart, facilitating interaction with an Arduino UNO. A significant distinction is in the
management of Python-Arduino communication, using the serial module. In contrast to the MATLAB approach,
the serial module offers functionality to wait for the Arduino to complete its execution.

PC serial Arduino executed every 1 ms
write read if command found
~ AN\ . AN
compute Ui, 777 €.9.: 77 set loop iterator j = 0
D1.12 >
* Xe = Ui =1
AX= X=Xy <177
i=i+1 ~Xiol Xiol
b > AX
* contract extend
compute U, actuator moving (|Ax| > X)) and j < jnax?
0o no o Yes
read e.qg.. write . + ~a =a
correct 73 < #D1.11#F5.48 [—€& write output Gz and 7y

Figure 4. Controlling algorithm and communication with PC.

3 Description of the case study

The experimental consists out of a numerical model with 4 DOFs coupled with a 1 DOF physical specimen.
Firstly, a comparative analysis is conducted between MATLAB and Python-based simulations incorporating I-
modification. Subsequently, a comparison is drawn between simulations without |-modification and those
integrating I-modification, focusing on the Python-based approach. Figure 6 provides a representation of the
case study, identifying the components, including the case study structure (CS), the lumped mass model (LM),
the PS, and the NS.

To enhance clarity, the Boolean matrices are explicitly mentioned below.
By=[1; By=[-1 0 0 0] 9)

The ground motion acceleration time-history employed as the basis for externally applied loading can be
expressed as:

ity(t) = 0.05g" sin(wt) - W, (10)

In this equation, g represents the gravitational acceleration, which is equal to 9.81 m/s?, w is the angular
frequency, t denotes the time, and W, represents an L-point symmetric Hann window (eq.(11)) applied over n
time steps. In this specific study, each simulation considers a time step of 0.02 s and a total time of 5 s.

W, =05 (1~ cos 211%) (11)
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Figure 5. Case study with 4 DOFs. (a) Case study structure, (b) lumped mass model, (c) the PS and (d) the
NS.

Based on the eigenfrequencies of the system, three different cases are considered, where w assumes the
following values: (i) 10 rad/s, (ii) the eigenfrequency corresponding to mode 1, and (iii) the eigenfrequency
corresponding to mode 2. In all three cases, both fully numerical and hybrid simulations are conducted. In a
fully numerical approach, all substructures are represented and modeled exclusively through numerical
simulations. Table 1 provides an overview of the simulations.

Table 1. Overview simulations.

Load case 1 Load case 2 Load case 3
MATLAB-script with I-modification M1 M2 M3
Python-script with I-modification P1 P2 P3
Python-script without I-modification PW1 PW2 PW3

Table 2 presents the load cases with the number of time steps N, the angular frequency w, the time step dt
end the total time of execution tmax. LC3 contains a higher angular frequency. Therefore, a reduced time step
is applied in order to obtain a stable integration scheme and accurate results.

Table 2. Load case properties.

N w (rad/s) At (s) tmax (S)
Load case 1 (LC1) 250 10.00 0.02 5.00
Load case 2 (LC2) 250 Wmode1 0.02 5.00
Load case 3 (LC3) 250 Dmode2 0.01 2.50

4 Results

Table 3 shows the eigenfrequencies of the system, which define the angular frequencies of interest for the
simulations: (i) case 1 with w = 10 rad/s, (ii) case 2 with w = 13.5 rad/s and (iii) case 3 with w = 38.75 rad/s.
This leads to the illustrated applied loadings in Figure 6.

Eq. (12) converts the angular frequency to the frequency f

f=5= (12)



WCEE2024 van Vugt et al.

Table 3. The eigenfrequencies of the system in radians per second.

Mode 1 Mode 2 Mode 3 Mode 4
w 13.45 38.73 59.34 72.79

f 2.14 6.16 9.44 11.58

Applying these properties to the loading procedure as described in Description of the case study, this results
in the loading patterns as shown in Figure 6.

ag(m/s?)
A
ffffff LC1 LC2 — LC3
0.5 A
0 L I"-.l\“\ ,,,,, T > l‘(S)
4.5 5
-0.5

Figure 6. Applied loadings.

Figure 7 presents the displacement results from fully numerical simulations conducted with both MATLAB and
Python. In the context of a fully numerical analysis, the restoring force of the PS is also computed numerically,
e.g., Fi.; = Ku;,,. The congruence of these displacements not only confirms the uniform and validated
implementation on both platforms but also serves as a foundation for validating the results of the hybrid
simulations. The accuracy of the numerical results, in comparison to the hybrid simulation results, are
dependent of the estimated stiffness which is used to compute the numerical restoring force.

However, Figure 8 reveals that MATLAB executions within a hybrid simulation context encounter significant
challenges, ultimately resulting in failure. This failure is attributed to serial overflows, leading to communication
errors, which subsequently result in inaccurate imposed displacements and irrelevant restoring forces.
Consequently, as the computed displacements keeps increasing, the displacements exceed the setup's
limitations, magnifying the issues.

Therefore, the interruption of the hybrid simulation using MATLAB before its completion is necessary. In
contrast, Python simulations consistently shows stable execution, as illustrated in Figure 9 for P1 and P2,
where the hybrid simulation results closely match the numerical results. However, P3 exhibits a higher degree
of variability in its results and does not closely align with the oscillations observed in the numerical results.

Figure 10 provides insights into the impact of employing I-modification versus its absence. Notably, for small
displacements, some noise is observed in the restoring force measurements, as represented in Figure 12,
where simulations P1-PW1 and P2-PW2 are comparable in their outcomes. In contrast, P3-PW3 displays a
greater degree of variability in its results.

Figure 11 illustrates the presence of experimental errors. These errors are primarily attributed to the lack of a
velocity-controlled actuator and the imposition of a maximum number of allowed loops to achieve the desired
displacement. Consequently, intermittent measurement of relatively substantial errors occurs. Nevertheless,
the incorporation of I-modification proves to be an effective remedy for addressing these errors. Notably, for
smaller displacements, the setup contends with noise that has a pronounced impact on the execution,
particularly in the case of LC3. This effect is most conspicuous when dealing with maximum displacements
limited to the problematic range of -2.0 mm to 2.0 mm, where the noise exerts the greatest influence.
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Figure 7. Displacements of PS applying fully numerical simulations using MATLAB and Python.
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Figure 8. Displacements of PS applying hybrid simulation using MATLAB and Python with I-modification.
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Figure 9. Displacements of PS applying hybrid simulation vs. numerical simulation using Python with I-
modification.

Figure 10. Displacements of PS applying hybrid simulation with and without I-modification using Python.
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Figure 11. Experimental error.
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Figure 12. Hysteresis.

5 Conclusions

The linear actuator requires a non-negligible amount of time to attain the imposed displacement due to several
contributing factors. Firstly, the communication protocol uses the serial monitor to send the desired
displacement. Secondly, the Arduino UNO issues the directive for the linear actuator to move towards the
imposed displacement. Finally, the linear actuator moves towards the desired displacement target.

The presence of a single-gear linear actuator introduces a tendency to overshoot, an issue that can be
mitigated by expanding the allowed displacement tolerance. However, this remedy carries the potential to
compromise measurement accuracy, underscoring the necessity to strike a delicate balance between stability
and precision.

Furthermore, the establishment of a stable setup is compulsory to accurately achieve the desired displacement
and obtain precise restoring forces. An unstable setup is vulnerable to inducing infinite loops in the actuator's
operation, consequently prolonging the execution time of tests. To overcome infinite loops, an upper limit has
been imposed on the number of loops the setup may execute to achieve the desired displacement.
Nevertheless, exceeding the maximum loop count could potentially result in a displacement error beyond the
acceptable tolerance. The implementation of I-modification techniques on measured restoring forces proves
instrumental in enhancing outcomes and achieving algorithmic stability, contingent upon the accurate
estimation of the initial stiffness.

To enhance the small-scale set-up's performance, the integration of a velocity-controlled linear actuator holds
the promise of establishing a control system capable of achieving more precise displacements. Additionally, a
velocity-controlled linear actuator contributes to the refinement of the control algorithm. Augmenting the small-
scale setup not only augments accuracy but also accommodates the testing of systems with elevated
complexity, including the transition from 1 DOF to 2 DOFs. This adaptation allows for the calibration and fine-
tuning of the hybrid testing procedure before its application in more resource-intensive full-scale, large-scale,
or real-world scenarios.

10
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Furthermore, an interesting approach of exploration is the introduction of specimens operating within the
nonlinear range, as the current setup has primarily focused on linear-range specimens.

In conclusion, the small-scale experimental set-up serves as a valuable instrument for conducting simulations
within the constraints of limited applied forces and allowed displacements. The achieved displacement and
force measurements offer a degree of precision sufficient for the evaluation of adjusted or newly developed
algorithms, enabling the testing of diverse scenarios and the refinement of testing procedures. This, in turn,
enhances the efficacy of full-scale testing while concurrently decreasing associated costs.
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