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CANARD CYCLES OF NON-LINEARLY REGULARIZED PIECEWISE
SMOOTH VECTOR FIELDS

PETER DE MAESSCHALCK!, RENATO HUZAK! AND OTAVIO HENRIQUE PEREZ?!

ABSTRACT. The main purpose of this paper is to study limit cycles of non-linear regular-
izations of planar piecewise smooth systems. We deal with a slow-fast Hopf point after
non-linear regularization and blow-up. We give a simple criterion for the existence of limit
cycles of canard type bluefor a class of (non-linearly) regularized piecewise smooth sys-
tems, expressed in terms of zeros of the slow divergence integral. Using the criterion we
can construct a quadratic regularization of a piecewise linear center such that for any integer
k > 0 it has at least k + 1 limit cycles, for a suitably chosen monotonic transition function
pr : R — R. We prove a similar result for regularized codimension 1 invisible-invisible
fold-fold singularities of type I15. Canard cycles of dodging layer are also considered, and
we prove that there can be at most 2 limit cycles (born in a saddle-node bifurcation).

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In the framework of planar piecewise smooth vector fields (PSVF for short), the fold-fold
singularity is known for its rich and interesting bifurcation diagram. Such a singularity
can be classified into three cases: visible-visible (V'V'), visible-invisible (V' I) and invisible-
invisible (/7). Each case has subcases that must be considered depending on the sliding and
crossing regions of the switching locus . For additional information on the bifurcations
arising from this type of singularity, see Figure 5 in Section 2.1 and [24, Section 3.2].

It is known that a generic fold-fold singularity has codimension 1. See, for instance,
[16, Subsection 4.1.1]. In fact, in the case I/, one of the possible subcases is called non-
smooth focus or pseudo focus (which is denoted by I, in the above references), since in
a small neighborhood of this singularity the switching locus has only crossing points and
it presents a focus-like behavior. As discussed in [16, Sections 4 and 7], depending on the
coefficients of the Taylor series of the first return map, the 15 fold-fold singularity can have
codimension equal or greater than 1. In the codimension 1 case, there is one crossing limit
cycle bifurcating from it.

In papers [2, 23] the authors provided a systematic analysis of regularizations of PSVFs
having a (generic) fold-fold singularity positioned at the origin. Concerning the case I/,
the authors proved the existence of two limit cycles of the regularized system for a suitable
transition function ¢ and region of the parameter space (g, ), in which ¢ and p stand
for the singular perturbation and bifurcation parameters, respectively. It is important to
remark that the results obtained in [2, 23] concerned the Sotomayor—Teixeira regularization
[30] (ST-regularization for short). See also Section 2.

In [29] the authors studied conditions that a PSVF Z must satisfy so that its ST-
regularization is structurally stable. Concerning limit cycles, in [29, Proposition 13] the
authors proved that hyperbolic crossing limit cycles of Z persist after ST-regularization, for

2020 Mathematics Subject Classification. 34D15.
Key words and phrases. Geometric singular perturbation theory, Non-linear regularization, Piecewise
smooth vector fields, Slow divergence integral, Slow-fast Hopf point.

1



2

e > 0 sufficiently small. One of the limit cycles of the ST-regularized I, fold-fold obtained
in [2, 23] is related to the crossing one of Z. The second limit cycle is located inside the
regularization stripe and its existence depends on the transition function adopted.

Even though the ST-regularization is widely used in both applied and theoretical prob-
lems, it is quite natural to ask what happens to the number of limit cycles if one applies
other regularization processes. In this paper, our goal is to study planar PSVFs in the
presence of fold points and crossing regions via non-linear reqularizations [21, 25, 28]. See
Section 2.2 for a precise definition.

Non-linear regularizations are interesting from both a theoretical and an application point
of view. We refer to the book [21], where the author explores how to deal with non-linear
regularizations in applications. Moreover, the author addresses the problem of defining the
dynamics along the switching manifold. This problem is relevant because there are examples
in applied sciences such that the classical Filippov convention does not capture some features
of the model under consideration. However, when considering other regularization processes,
such features can be taken into account. This fact was also explored in [3], where the authors
analyzed a friction oscillator model subject to stiction. Instead of Filippov solutions, they
introduced the so-called stiction solutions, which more accurately reflect the underlying
physical behavior. For further discussions on the relation between singular perturbation
problems and the dynamics in the switching manifold, see [26]. From those references,
it is clear that non-linear regularizations can produce different phenomena which the ST-
regularization cannot (see also [27]).

In this paper, we address a question related to the Hilbert’s 16th problem: Is there an
upper bound on the number of limit cycles of a reqularized piecewise polynomial vector field?
Even though the regularized vector field is not polynomial, such question is still interesting
and non trivial as we shall discuss.

In [18], the authors considered a PSVF Z having a fold-fold VI3 and proved that, for
a given integer k£ > 0, there exists a monotonic transition function ¢y such that the ST-
regularization of Z has at least k + 1 hyperbolic limit cycles. It is important to note that
in this reference the PSVF Z is quadratic. Therefore, one could still ask for the maximum
number of limit cycles of regularized piecewise linear (PWL for short) systems. In the
present paper, we give an answer of this problem in the context of non-linear regularizations
of PWL vector fields. Therefore, this paper can also be seen as a continuation of [18].

In Theorem A, we prove that there exist a PWL vector field Z and a continuous com-
bination of degree 2 having the following property: for a given integer k > 0, there is a
monotonic transition function ¢y, such that the non-linear regularization of Z has at least
k + 1 hyperbolic limit cycles. See Section 2.3 for a precise statement and Section 5.4 for
the proof. Moreover, in Theorem A, the PWL vector field is a non-smooth center, that is,
in a neighborhood of the fold-fold singularity, the PWL vector field presents a center-like
behavior. One can see this result as a version of [5, Theorem A] for the non-linearly regu-
larized non-smooth center. More precisely, in [5, Theorem A], for a given positive integer
k, the authors explicitly built families of PSVFs with exactly k& hyperbolic crossing limit
cycles bifurcating from the non-smooth center.

On the other hand, in Theorem B we proved that using non-linear regularizations one
can obtain more limit cycles than those 2 obtained in [2, 23] with the ST-regularization of
a I, singularity of codimension 1. Indeed, there is a PWL vector field Z and a continuous
combination of degree 4 having the following property: for a given integer k£ > 0, there exists
a monotonic transition function ¢ such that the non-linear regularization of Z has at least
k + 1 hyperbolic limit cycles. We emphasize that in Theorem B the PWL vector field has



3

a II, singularity of codimension 1. See Section 2.3 for a precise statement and Section 5.5
for the proof. In contrast to the fold-fold singularity of the PWL vector field in Theorem A
(which has codimension k& > 1), the fold-fold of the PWL vector field considered in Theorem
B has codimension 1. This means that the number of limit cycles of non-linearly regularized
PWL vector fields is unbounded even for codimension 1 PWL vector fields.

[t is important to remark that this paper focuses on limit cycles of the (non-linearly) regu-
larized PSVF, which is a C*-smooth vector field (not polynomial). The limit cycles located
within the regularization stripe shrink onto the switching manifold as ¢ — 0. Nevertheless,
we show that the number of limit cycles in a non-linearly regularized PSVF is unbounded,
even when the underlying PSVF Z is piecewise linear. Taking into account that in [18] the
authors proved that the number of limit cycles of a ST-regularized quadratic PSVF Z is un-
bounded, it remains an open question whether the number of limit cycles in ST-regularized
PWL vector fields is bounded or not.

Concerning Theorems A and B below, the non-linearly regularized vector field with mono-
tonic transition functions presents a slow-fast Hopf point of the associated slow-fast system
(see Section 3.1).

Observe that in [27] the authors proved that, by dropping the monotonicity condition in
the ST-regularization, it is possible to generate a (planar) slow-fast jump point (often called
SF-generic fold). The same result can be proved for slow-fast Hopf points. In Section 3.1,
we prove that slow-fast Hopf points do not appear in ST-regularizations.

a
FIGURE 1. (a)(A) non-smooth center (case I can present a center-like behavior, see [5]).
(b) Dynamics on the blow-up cylinder using a non-linear regularization of the non-smooth
center. The curve of singularities Cy contains a normally attracting branch, a normally
repelling branch and a slow-fast Hopf point between them. It might produce two different
types of canard cycles (red and blue).

The presence of a slow-fast Hopf point (after non-linear regularization and blow-up) plays
an important role. The slow-fast Hopf point can generate limit cycles which may grow and
become Hausdorff close to canard cycles (see the red graphic in Figure 1(b)). As the size
of the canard cycle increases, one can expect limit cycles bifurcating from the blue canard
cycle in Figure 1(b). The goal of our paper is to study the number of limit cycles produced
by these two types of canard cycles.

Theorem C in Section 5 is a crucial result for proving Theorems A and B. More precisely,
we give a simple criterion (expressed in terms of the slow divergence integral) for upper
bounds and the existence of limit cycles produced by the blue canard cycle in Figure 1(b).
Roughly speaking, if the slow divergence integral has a zero of multiplicity k, then the canard
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cycle can produce at most k£ + 1 limit cycles (see Theorem C(a)). Simple zeros of the slow
divergence integral correspond to hyperbolic limit cycles for unbroken breaking parameter
(see Theorem C(b)). An important feature of Theorem C(b) (which is also highlighted in
Remark 14) is the following. For a slow-fast Hopf point, if the slow divergence integral has
k simple zeros, then one has k + 1 hyperbolic limit cycles. In the literature [9], this extra
limit cycle is the largest; however, in our case, the extra limit cycle will be the smallest due
to the geometry of blue canard cycles in Figure 1(b).

Theorem C is stated and proven in a more general setting with two folds, not necessarily
of invisible type (see Section 3.3). Indeed, it concerns non-linear regularizations related to
the continuous combination given in Equation (8). Such continuous combination can also
produce fold-fold of types V'V, and VI, (following the terminology adopted in [24]). We
refer to Figure 10(a) in Section 5. A similar criterion has been proven for the red canard
cycle in smooth planar slow-fast systems (see e.g. [12]).

Finally, Theorem D in Section 6 deals with canard cycles in case of a dodging layer, given
in Figure 10(b). Such canard cycles can produce at most 2 limit cycles and a simple zero
of the slow divergence integral corresponds to a codimension 1 bifurcation of limit cycles
(saddle-node bifurcation). To the best of our knowledge, this is the first time that canard
cycles of dodging layer appears in regularized piecewise smooth vector field. In the smooth
setting, canard cycles with a dodging layer have been studied in [9, 31, 32].

We highlight that in previous papers the slow divergence integral was applied near fold-
fold singularities having sliding regions. To the best of our knowledge, this is the first time
that the slow divergence integral is applied near fold-fold singularities having only crossing
regions.

Since the notion of slow divergence integral plays a key role in this paper, we will first
explain it for planar smooth slow-fast systems [9, Chapter 5] and regularized planar piecewise
smooth systems with sliding [18, 19, 20]. In the planar slow-fast setting and canard theory,
the slow divergence integral was developed by De Maesschalck, Dumortier and Roussarie
(see [6, 9, 10, 13, 14] and references therein). Consider, for example, the following smooth
system with a slow-fast Hopf point at the origin (z,y) = (0, 0)

{iz—wy+€k%—y+ffwﬁ,

y =,

(1)

where € > 0 is the singular perturbation parameter kept small, o € R is close to 0 and f is a
smooth function. In this paper, by “smooth” we mean C*°-smooth. If e = 0 in (1), then we
deal with the fast subsystem (often called the fast dynamics). The fast subsystem has the
curve of singularities {z = 0} which is normally attracting when y > 0 (the nonzero eigen-
value is negative) and normally repelling when y < 0 (the nonzero eigenvalue is positive).
These two branches of the line of singularities are separated by a singularity of nilpotent
type at (0,0). The fast fibers are parabolas z = —%y2 + C and the line of singularities has
a (quadratic) contact with the fibers at the origin (sometimes we call the origin a contact
point). We refer to Figure 2.

An important observation is that, near normally hyperbolic points y # 0, there exist in-
variant manifolds of (1) asymptotic to the line { = 0} (they correspond to center manifolds
if one augments system (1) with ¢ = 0). Using standard asymptotic expansions in & (see
e.g. [9]) we obtain

ng(a—y+ﬁﬂw
y

+ 0(5)> .
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FIGURE 2. Phase portrait of system (1). The canard cycle ' is highlighted in blue.

If we now substitute this for = in the y-component of (1), divide out £ and let ¢ tend to
0, then we get the slow dynamics [9, Chapter 3]

a—y+yifly
y = y (),y%O,

in which the prime ’ denotes the derivative with respect to the slow time 7 = et, where ¢ is
the fast time in (1).

Notice that for &« = 0 the slow dynamics has a removable singularity in y = 0 and it is
regular there (y' = —1+yf(y)). It is also clear that the slow dynamics points (at least near
y = 0) from the normally attracting branch y > 0 to the normally repelling branch y < 0.
This produces so-called canard trajectories of (1) which follow the attracting branch, pass
through the contact point and then stay close to the repelling branch for some time.

We define now the notion of slow divergence integral [9, Chapter 5]. Suppose that the
slow dynamics has no singularities. The slow divergence integral computed along the slow
segment [—y,y] C {z = 0} for a = 0 is given by

Y —sds
](y):/y ——1+3f(3)’y>0'

This is an integral of the divergence of (1) for ¢ = 0 (which is equal to —y), with respect

to the slow time denoted by 7 (which is d7 = #yf(y)) It is well-known that zeros of

the function I provide candidates for limit cycles of (1), produced by canard cycles. More
precisely, for a fixed y > 0 and (¢, ) = (0,0), the canard cycle I, consists of the segment
[—y,y] and the fast orbit connecting (0, —y) and (0,y) (see Figure 2). When I has a zero
of multiplicity k > 1 at y = o, the canard cycle I'y, can generate at most k4 1 limit cycles
for (e, a) close to (0,0) (see [8]).

The notion of slow divergence integral in a regularized piecewise smooth VI3 model was
introduced in [18, 19]. Near the V I3 fold-fold singularity [18, 24], the Filippov sliding vector
field [15] points from the stable sliding region to the unstable sliding region with non-zero
speed (see Figure 3(a)).

Notice that the graphic T in Figure 3(a), consisting of an orbit located in the half-plane
x > 0 with invisible fold point and the portion of {z = 0} connecting the end points of
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FIGURE 3. (a) The VI3 fold-fold singularity (the folds have opposite visibility) where
{z = 0} is the switching line and the Filippov sliding vector field points from the stable

sliding region y > 0 to the unstable sliding region y < 0 with nonzero speed. T is called a
sliding cycle. (b) Dynamics of a regularized VI3 model on the blow-up cylinder. Cy and
C are curves of singular points.

that orbit, is similar to the canard cycle I'y in Figure 2 (the switching line with the Filippov
sliding vector field defined on it plays the role of the curve of singularities of (1) with the
associated slow dynamics). We call Ta sliding cycle.

Following [18, 19], we can connect ' with the notion of slow divergence integral using
a ST-regularization of the VI3 fold-fold singularity. The ST-regularized system becomes a
slow-fast system upon a suitable cylindrical blow-up of the switching line, and then we can
compute the slow divergence integral along the slow segment of the blown up sliding cycle
I' (see Figure 3(b)). The curve of singularities Cy of the slow-fast system defined on the
blow-up cylinder is normally hyperbolic away from the intersection with C and the flow of
the Filippov sliding vector field is the slow dynamics along C (regularly extended through
the intersection). In [18, Theorem 3.1], one can find a criterion for the existence of limit
cycles of the ST-regularized system produced by sliding cycles. The criterion is expressed in
terms of simple zeros of the slow divergence integral. For more details, we refer the reader
to [18, 19].

The main purpose of [20], which is a natural continuation of [18], was to introduce the
notion of slow divergence integral for the other fold-fold singularities of sliding type V'V,
VI, 11 (see [24] or [20, Figure 2.2]), one-sided tangency points with sliding, etc.

The papers [18, 19, 20] deal with fold-fold singularities of sliding type. In this paper, we
use the slow divergence integral to study limit cycles in regularized fold-fold singularities of
crossing type, and we focus our analysis in the I (which is a generic singularity, see [24])
and non-smooth center cases (which is non generic, see [5] and Figure 1(a)). We emphasize
that Theorem C can also be used to study the singularities V'V, and VI; (see [24]).

This paper is structured as follows. In Section 2 we present the main tools, such as
piecewise smooth vector fields, regularizations and we state Theorems A and B. Section 3
is devoted to defining assumptions of the model that will be studied throughout this paper.
We precisely define the types of limit periodic sets that we are interested in in Section 4.
Theorems A, B and C are proven in Section 5 and in Section 6 we prove Theorem D. In
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this paper, continuous combinations, transition functions, etc., are (C*°-)smooth. The main
reason is that we often refer to [9] where planar slow-fast systems have been studied in the
smooth setting.

2. PRELIMINARY DEFINITIONS AND RESULTS

Piecewise smooth vector fields are widely adopted to model phenomena of many branches
of applied sciences [1, 15]. A closed set with empty interior ¥ divides the phase space in
finitely many open sets, and on each open set is defined a smooth vector field. In this
paper we suppose that the straight line ¥ = {x = 0} divides the phase plane in two open
regions, and the smooth vector fields X and Y are defined in the regions {z > 0} and
{z < 0}, respectively. In what follows we precisely define this framework using non-linear
regularizations [25, 28].

2.1. Continuous combinations and piecewise smooth vector fields. A continuous
combination is a vector field depending on a parameter A written as

Z,u()\u X, y) = (21,,&()\7 z, y)? 2/2,#()‘7 x, y))7

with A € R, (z,y) € U C R2, U is an open set and u € R! denotes finitely many parameters
= (p1,...,m). Although we assume Z to be smooth with respect to (A, z,y, 1), we will
keep the terminology continuous for two reasons. Firstly, we want to be in accordance with
the terminology adopted in [25, 28]. Secondly, being continuous extends the notion of being
conver in a sense that we will soon elucidate.

Define the smooth vector fields

Xu(x,y) = (XLu(xuy)?XQ“u(x?y)) = ZM(17$73/)>

Yor,y) = (Viulw,y),Youly) = Zu(-1zy).
A piecewise smooth vector field (PSVF for short) is defined as

Zu(w,y) = Z,(sen (F(a, ). 2.y).

in which ' : U C R*> — R is given by F(x,y) = x. It is straightforward to verify that
Zy(z,y) = X,(x,y) on {F(z,y) > 0} and Z,(z,y) = Y,(z,y) on {F(z,y) < 0}. One may
also denote 7, = (X,,,Y),) in order to stress the dependency of Z, on the smooth vector
fields X, and Y),. The set ¥ = {F(x,y) = 0} is called switching set or switching manifold.

Conversely, any given PSVF gives rise to many associated combinations. A well-known
example of continuous combination is

~ 14+ A 1—A
(2) Z‘u<)\,$,y> = TXll(x?y) + TYH(ZU,Z/),
which was called conver combination in [25, 28]. Replacing A\ by sgn (F(x, y)) in equation
(2), one obtains a PSVF as studied in [16]. In short, the idea of the definition of continuous
combination is to allow any curve to connect the points X, (p) and Y,(p), whereas in the
convex case a line segment connects such points. See Figure 4.

The Lie-derivative of F' with respect to the vector field X, is given by X, F' = (X, VF)
and X} F = (X, VX/"'F) for all integers 7 > 2. This allows us to define the following
regions in X:

(1) Sewing region: % = {(z,y) € ¥ ; X, FY,F >0},
(2) Sliding region: ¥° = {(z,y) € £ ; X, FY,F <0}.



FIGURE 4. Convex and continuous combinations of X,, and Y,.

Following Filippov’s convention [15], one can define a vector field in ¥* C ¥. The Filippov
sliding vector field associated to Z, is the vector field ZE : 2% — TXY given by

1
75z, y) = —<X Y,F —Y,X F)
H( y) YNF—XHF ne n=
A point py € X is called a tangency point it X,F(pg) = 0 or Y,F(py) = 0. A point
po € X is a fold point of X, if X,F(po) = 0 and X:F(po) # 0. If X?F(py) > 0, po is
a wvisible fold of X, and if X.F(po) < 0 we say that po is an invisible fold of X. Fold
points of Y, are defined in an analogous way, however py is visible if YiF (po) < 0 and
invisible if YlfF (po) > 0. If pg is a fold of both X, and Y,, simultaneously, then py is called
fold-fold singularity of Z,,. This singularity can be classified into three types: visible-visible,

visible-invisible and invisible-invisible. See Figure 5.
Y Y )

D

FIGURE 5. Fold-fold singularities. From the left to the right: visible-visible, visible-
invisible and invisible-invisible.

2.2. Regularizations of piecewise smooth vector fields. We say that ¢ : R =+ R is a
transition function if the following conditions are satisfied: (1) ¢ is smooth; (2) ¢(t) = —1
if t < —1 and ¢(¢t) = 1if t > 1. The transition function is monotonic if it satisfies (3)
O(t)>0if s e (—1,1).

Let Z, be a continuous combination associated with the PSVF Z,. If Z,, is not a convex
combination, we say that a ¢ non-linear regularization of Z, is the (e, u)-family of smooth
vector fields given by

~ ~ F(x,
(3) ZZ (v, y) = ZM(¢<¥>,x,y>, 0<ex 1.

If Zu is a convex combination, we say that Zf . 18 a p-linear reqularization of Z,. When
Zu is convex and ¢ is monotonic, (3) is the well-known Sotomayor—Teizeira regularization

[30]. We keep the superscript ¢ in the notation Z¢Z,, to emphasize the dependency of the reg-
ularization on the transition function. Indeed, different transition functions lead to different
dynamics of the regularized vector field (see [18, 26, 27]).
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In [25, Theorem 1] the authors proved the following result. Let ¢ and v be monotonic
and non-monotonic transition functions, respectively. If Zgu 1S a P-linear reqularization,

then there exists a unique non-linear reqularization qu such that Z;/’M = ng’u. However, in
general the converse is not true (see [27, Theorems B and C]).

From now on, we deal with non-linear regularizations in order to obtain richer phenomena,
namely slow-fast Hopf points (and generic turning points). Indeed, such singularities do not
appear in ST regularizations (see Section 3.1).

2.3. Statement of results. We are interested in limit cycles of non-linear regularizations
as in Figure 1. Such limit cycles can be “large” or “small”, as highlighted in blue or red in
Figure 1, respectively.

We emphasize that the PSVFE’s in Theorems A and B are piecewise linear. In addition,
in this paper we do not deal with crossing limit cycles, but we are interested in limit cycles
of the non-linearly regularized vector field (which is C'**°-smooth). If a limit cycle is located
inside the regularization stripe, it shrinks to the switching manifold as ¢ — 0.

In what follows, the degree of a continuous combination is the degree of 7, with respect
to the A\ variable. In Theorems A and B, the parameter y is one dimensional. Moreover, we
say that an invisible invisible fold-fold singularity is a codimension 1 non-smooth focus if the
first return map £ of Z, is given by £(y) = y + ay* + O(y?), with a # 0 (supposing without
loss of generality that the fold-fold is positioned in the origin). The invisible invisible fold-
fold singularity is a non-smooth center if the first return map £ of Z, is given by {(y) = v.
The definition of such singularities is also recalled in detail in section 4.

Theorem A. There exists a continuous combination Zu of degree 2 associated with a linear
PSVF Z,, having a non-smooth center such that the following is true: for any integer k > 0,
there exist a monotonic transition function ¢ and a continuous function uy : [0,ex] — R,
with €, > 0, such that the non-linear reqularization Zf”“ © has at least k+1 hyperbolic limit

e
cycles, for each ¢ € (0,¢eg].

The linear PSVF and continuous combination from Theorem A are given in (26) and (27),
respectively. We have a similar result for the singularity I75.

Theorem B. There exists a continuous combination Z# of degree at least 4 associated with
a linear PSVF Z,, having a codimension 1 non-smooth focus such that the following is true:
for any integer k > 0, there exist a monotonic transition function yp and a continuous
function py : [0,ex] — R, with e > 0, such that the non-linear reqularization Zz’;k(e) has at
least k + 1 hyperbolic limit cycles, for each e € (0,¢eg].

Concerning Theorems A and B, the following remarks should be made. Firstly, the k + 1
limit cycles from Theorem A are either produced by red canard cycles in Figure 1 (thus,
each of them shrinks to the switching manifold as € — 0) or by blue canard cycles in Figure
1. We refer to the proof of Theorem A in Section 5.4. Secondly, the k£ + 1 limit cycles from
Theorem B shrink to the switching manifold as ¢ — 0. For more details see the proof of
Theorem B given in Section 5.5.

Our strategy is to define a suitable non-linear regularization such that it presents a generic
Hopf turning point. Using tools from geometric singular perturbation theory, in Theorem
C in Section 5 we give a simple criterion for detecting such limit cycles, in terms of zeros
of the slow divergence integrals. Finally, in Sections 5.4 and 5.5 we show how to construct
zeros for the slow divergence integral.
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We point out that Theorem C (see also Figure 10(a)) is the main result of this paper
which works under very general conditions. It is more convenient to state it later, after
we introduce the notion of generic (Hopf) turning point, slow divergence integral, among
other tools. We also prove Theorem D in Section 6 for canard cycles of dodging type, see
Figure 10(b). Such canard cycles, in contrast to Theorem C, can produce at most 2 limit
cycles. Theorem D also contains a simple criterion in terms of the slow divergence integral
for existence of saddle node bifurcation of limit cycles.

3. NON-LINEAR REGULARIZATIONS WITH A GENERIC TURNING POINT

In this section, we define a continuous combination whose regularization has a generic
turning point positioned at the origin. Such singularity is the subject of subsection 3.1,
where we also justify our approach by non-linear regularizations.

3.1. Slow-fast Hopf points. We say that the 2-dimensional (smooth) slow-fast system

" (4= b

y = 59u<x7y75>7

has a slow-fast Hopf point positioned at the origin if, for a fixed parameter pu = po, it
satisfies [9, Definition 2.4]

f15(0,0,0) = ¢,,(0,0,0) = %(0,0,0) =0,
(5) azfuo

aguo afﬂo
o2 (07070> 7& 0, (%(Q&O)) (a_y(()?()ao)) <0.

In Equation (4), the dot - denotes the derivative with respect to the fast time ¢. Following
[9, Section 6.1], a normal form for smooth equivalence for a slow-fast Hopf point is given by

T = y—a:2—|—at3h1(:v,€,u),
i = 2(aln) = v+ ha(w, e, ) + yhaz, .2, 1)),

(6)

where functions a, hy, ho, h3 are smooth and a(ug) = 0. It is straightforward to see that
system (6) satisfies conditions (5). The slow-fast Hopf point in (6) is called a generic turning
point if Va(ug) # 0, that is, the function g +— a(u) is a submersion at g = po. In this
case we can take o = a(u) as a new independent parameter. The parameter « is called a
breaking parameter and plays an important role when we want to create limit cycles of (6).
We refer to [9, Section 6.3] and later sections for more details. In particular, if hy = hg =0
in (6), one obtains a slow-fast classical Liénard equation as studied in [10, 13].

It is well-known that, when considering a regularized vector field as (3), after rescaling
of the form x = £z and multiplication by £ one obtains a slow-fast system of the form (4).
More specifically, given a PSVF Z, = (X,,Y,) and applying the previous transformation
and multiplication in a linear regularization, one obtains the system (dropping the tilde to
simplify the notation)

. X1 +Y X, =Y
Po= ) (),

! o= (B (B))

in which X = (X3, X5), Y = (Y1,Y5) are applied in (ez,y) (we briefly omitted the parameter
w for the sake of simplicity). With this configuration, in which the regularization is linear, the



11

dynamics on the half cylinder does not present slow-fast Hopf point, with ¢ being monotonic.
This follows directly from the x-component of (7). Indeed, suppose by contradiction that
system (7) has a slow-fast Hopf point at the origin. Then one would have

80/(0)(X1 o }/1)(07 O) =0, 90”<O)(X1 - le)«% 0) 7é 0.
Since ¢ is monotonic (hence, ¢'(0) > 0), this would imply (X; — Y7)(0,0) = 0 and (X; —
Y1)(0,0) # 0 simultaneously, which is a contradiction.

As we will see in next subsection, one can generate this kind of point with non-linear
regularizations (and monotonic transition functions).

3.2. Piecewise smooth model. Motivated by the model (6) given in Section 3.1, we
consider the continuous combination

=4 7 — W
(5) Zuu,x,y):{ Ziwy) =y =24 A0\ ),
ZQ’H()V:an) = o — )\+Bu(>\7x7y)

In Equation (8), we assume p = («, ) where the parameter « plays the role of a breaking
parameter kept near zero and i € R'™! denotes extra parameters. The functions A4, and
B, are given by

3
AuNz) = ) N A (N ),
’iEO
BM<)‘7 xz, y) = Z )\27JxJBj:M(>‘7 iL‘) + yBS,M()‘a xz, y)a
j=0
with A;, and B, , being smooth functions for ¢,7 = 0,...,3. The functions A, and B,
denote higher order terms on the variables A,z and y, and they can affect the dynamics of
the PSVF Z, near ¥ = {x = 0}. In this case, the PSVF is given by
Xu(z,y)=(y—1+A,(1,2), a—1+B,(1
9 Z — I 9 YA ) AN
(©) u(@y) { Y (2,y) = (3/_1+Au<_1ax>7 a+1+ B, (-

We define a non-linear regularization of 7, = (X,,,Y),) as

w0 Tt =2((0)w0) =15 2 0GRS )

where ¢ is a transition function (not necessarily monotonic). After rescaling z = = and
multiplication by e we get (we drop the tilde in order to simplify the notation)

g = ela—op()+ Bulp(z),e2,y)) .
In what follows, we will define some important assumptions for our proofs. We first state

them, and their role will be explained in the sections below.
Given a transition function ¢, define the functions

(12)  Fu(2) = ¢*(2) = App(p(@),0),  Gr(z) = Bog (¢(@),0, Fa(x)) — ¢().
For some 0 < M, My < 1, we require the following assumptions for all x € [—M;, M|
and g = pg = (0, 11p) being a parameter defined as in the beginning of Section 3.
(A0) The transition function satisfies ¢(0) = 0 and ¢'(0) > 0.
(A1) A, (£1,0) < 1.

(A2) The function F defined in (12) satisfies 20" ( ) 0, for all = € [—M;, M,).
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(A3) The function G defined in (12) satisfies I ) 0, for all z € [—M;, M,].

Assumption (AO) and the definition of A, and B,, imply that the slow-fast system (11)
has a generic turning point at the origin for u = py = (0, fip). Notice that using a rescaling
in (x,y,t) the system (11) can be brought, near the origin, into the normal form (6).

Assumptions (AO0), (A2), (A3) will be relevant in Section 3.5.1 when we define the
notion of slow divergence integral. We use (A1) in Section 3.3 when we study tangency
points.

3.3. Tangency points. Recall that the switching locus is the set ¥ = {x = 0}. We are

interested in tangency points of the PSVF Z, = (X,,,Y},) given by (9). Tangency points of

X, and Y, will be denoted by T’ lf( and Tlf , respectively. It will be clear for the reader that
the functions A, and B, in (9) determine the position and the (in)visibility of fold points,
respectively.

Since X, F' = X; ,, the vector field X, = (X; ,, X2,) is tangent to ¥ at points of the form
X = (0,y; ) with

(13) Y = 1= Au(1,0),
The second order Lie-derivative at T’ f is given by
X2F(TY) = Xo,(TY) = o — 1+ B,(1,0,47),

where we used X, ,(7,*) = 0 and (%XLH(J;, y) = 1 (see Equation (9)). This implies that T,
is either a fold point of X, or a singularity of X,.

Analogously, Y, =Y} , and tangency points of Y}, are of the form T}, = (0,y),), with
(14) yy, =1—A,(=1,0), YF(T))=a+1+B,(-1,0,y)),
therefore the point T 3/ is either a fold point of Y, or a singularity of Y),.

It can be easily seen that
5" = {y < min{y;, y, Y U{y > max{y;,y, 1} 2= {min{y,y, } <y <max{y; y, }},
where X% is the sewing region and X is the sliding region (see Section 2.1). Notice that
%% = ) when y =y .

The assumption (A1) implies that, for a fixed u = g = (0, fip), the numbers yffo and
y) defined in (13) and (14), respectively, are positive, therefore TX and T}, lie above the

generic turning point of (11). This assumption will be important when we define canard
cycles as in Figure 10.

3.4. Scaling the breaking parameter. Recall the continuous combination ZM and the
PSVF Z, = (X,,Y,) given by (8) and (9), respectively. We introduce the scaling

a = ea,
in which a ~ 0 is called a regular breaking parameter. For our purposes we consider a

non-linear regularization of Z, = (X,,Y),) as the family Zf,&,ﬁ given by

~ ~ x
(15) Zza,ﬁ(l‘ay) = Z(E&,ﬁ) (@(;)@;fy)

Remark 1. In this paper we focus on the regularization Z;‘ju defined as in Equation (10),
nevertheless, we work with Zfaﬁ with a being a regular breaking parameter in Equation

(15). The main reason why we work with Zfaﬁ instead of Zf’# is that we can then use
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results from [6, 12] (after the rescaling z = €27 and multiplication by £?). Due to this fact,
we adopt the notation (ea, i) instead of p.

3.5. Cylindrical blow-up. In order to study the dynamics of Zf,&,ﬁ near the switching
locus XX = {z = 0}, we perform a cylindrical blow-up of the form

O : M — R3
(Z,9,6,p) = (0*T,y,p8) = (z,y,¢);
with M being a manifold with corners (see [22] for details), (z,€) € S', y € R and &,p > 0.
This blow-up has a slightly different expression from the usual approach [4] (it is quasi-
homogeneous instead of homogeneous). The blown-up vector field is defined as the pullback
of 2% _+ O% multiplied by p*:

E,0, 14

= 0
¢ . 25 [ 7e
Za,ﬁ = p (I) (Z&&,ﬁ + 0&) .
In Sections 3.5.1-3.5.3, we study the dynamics of Z;f’ﬁ near the exceptional divisor C =

{®1(Z x {0})}, which is a half-cylinder (see Figure 6). This study is carried out using
directional charts.
€

EN

FIGURE 6. Blowing up the switching line X.

3.5.1. Dynamics in the chart € = 1. In this scaling chart we have x = ex, where (z,y) is
kept in a large compact set in R? and € > 0 is small. The vector field Z;’a’ﬁ + O% yields
(after multiplication by the positive factor £%) to

{ Ty = y— p*(x2) +  Agap (@(r2),€%22)

(16) y = 52<562—<,0(902) +  Beap) (¢(x2),52x2,y)>,

with € = 0 (e is the singular perturbation parameter). In equation (16), the dot - denotes
the derivative with respect to the fast time ¢. For ¢ = 0, equation (16) turns to

a7 {3 = y=d) + Aanlolen).0)

The curve of singularities of (17) is given by Cy = {y = Fﬁ(.ﬁlﬁg)}, where Fj; is defined
in (12). The curve Cy contains two horizontal portions {y = y()éﬁ),:cg > 1} and {y =

Yo T2 < —1}, where y 5 is defined in (13) and yy, 5 in (14). See Figure 7 and Remark
2

Recall that in the interval (—1,1) we adopt Assumption (A2). Assumption (A2) is true
locally near x5 = 0, due to Assumption (A0). The Assumption (A2) implies that for
each 11 ~ iy the curve Cy has a parabola-like shape inside the segment [—M;, Ms] with a
normally attracting branch (z5 € (0, Ms]) and a normally repelling branch (z, € [—Mj,0)).
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It is clear that the transition function ¢ has to be monotonic on [—M;, Ms] (not necessarily
monotonic outside this segment).
The slow dynamics [9, Chapter 3] along the segment [—M;, M) is given by

doy _ Gylas)
dr  Fj(zs)’

(18) Ty =

in which 7 = %t stands for the slow time. The Assumption (A3) defined in Section 3.2
assures that the slow dynamics (18) is regular for all 25 € [—M;, Ms] and points from the
attracting branch to the repelling branch. With this setting, the origin of (16) is a generic
Hopf turning point and the slow dynamics is regular in [—M;, Ms)].
The following slow divergence integrals [9, Chapter 5] (see also [10]) play an important
role in this paper:
(19)
I (25) = —/0 B 0 e 0], I = — [ T 00 0y e [a0)
ﬁ ? o T2 Gﬁ(s) ’ ? 7 = ﬁ ? o T2 Gﬁ(8> 7 ? b .
These are integrals of the divergence of the vector field (17), computed along Cy with
respect to the slow time 7. More precisely, the integral I;[ (z2) is computed along the at-
tracting segment [0, xo] C [0, Ms] and Iz (x2) along the repelling segment [x9,0] C [—My,0].
See also Sections 5 and 6.

&
«

-1 To = 1
FIGURE 7. Phase portrait of (17) (the family chart &€ = 1).

Remark 2. The existence of the degenerate (nonhyperbolic) horizontal lines in Figure 7
is due to the way that we defined the transition function ¢. Observe that ¢(t) = —1
when ¢t < —1 and ¢(¢t) = 1 when ¢ > 1 (see Section 2.2). Now, since ¢ = constant for
|zo| > 1, then the critical curve Cy is given by horizontal curves in the region |zo| > 1.
These horizontal lines will be visible in the phase directional charts £ = +1 studied below.

3.5.2. Dynamics in the chart T = 1. In this chart we have (z,¢) = (p3, pse3). The vector
field Zs&,ﬁ + 0% changes, after multiplication by p2, into

ps = psHan(ps,y,es3),
(20) i = (szs — 0(%) + Bl (#(2). 3.9 )
é?) - —53H&,ﬁ(93,%53>a
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in which ) ) )
Hz 7(ps, y,€3) = B (y — 0 () + Alpsesa <90(_2)=P§>>'
€3 €3
Observe that in (20) we can set 90(5%) =1 for 0 < e3 < 1. The line {p3 = £5 = 0} consists
3
of singularities of (20). The Jacobian matrix of (20) evaluated in (0,y,0) is given by

Y=Y
—2<°’ L0 0
Jy = 0 0 0 ,
0 0 e

which means that all the singularities are semi-hyperbolic, except for T()O(,ﬁ) = (O,y()éﬁ), 0)
where we deal with a degenerate singularity.

€3

P3

(0472)

FIGURE 8. Phase portrait of (20) (the chart Z = 1). On the invariant plane {p3 = 0}
one obtains a smooth curve of singularities given by {Hgz 5(0,y,e3) = 0}. Such curve is a
straight segment for 0 < e3 < 1 and it contains the point T()O( )

3.5.3. Dynamics in the chart & = —1. Using (z,e) = (—p?, p1£1) one obtains, after multi-
plication by p?, the system

p = —p1Ganlp,y, 1),
(21) y = p% (/0151& - @( - é) + B(pu—n&,ﬁ) <90< - %)7 _p%7y>>7

&1 = aGaulp,y,e1),
in which

1 ., 1 1,
Gap(p1,y.€1) = Q(y — (= =) + Aparan (w( - ), —p1)>.
€1 S

One can set gp( — E%) = —1 for 0 < &; < 1 and the phase-portrait of Equation (21) can
1

be sketched analogously as it was described in Subsection 3.5.2.

4. CANDIDATES FOR CANARD CYCLES

Recall that a@ = e, and we are considering the parameter p as p = (o, 1) = (e, j1). See
also the beginning of Subsection 3.4.

Consider the dynamics on the top of the half cylinder as described in Subsection 3.5.1.
Since the origin is a generic Hopf turning point, it is clear that one can expect creation of
limit cycles inside the region |za| < 1 (recall Figure 7). However, we also want to study
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“big” limit cycles in the sense that they are not strictly contained inside the regularization
stripe. In what follows, we precisely define the shape of the limit periodic sets (called canard
cycles), at level € = 0 and = fip, that we are interested in. Two cases will be considered:
terminal and dodging cases. This terminology is inspired by [9, Lemma 5.3].

Define the half return map of Xz (when it exists) as

Ex: S CE = {y<ypprCX
p=0.y) = &) =m(ox(tm).p)).

in which Sy is a bounded segment contained in {y > y()ém} for each g close to ig, my is
the projection in the second coordinate, ¢x is the flow of X(oz), and ¢(p) > 0 denotes the
smallest (and finite) time in which the flow by p intersects ¥. The half return map &x de-
fined as above is smooth. The half return map of Yo z) is denoted by &y and it is defined in
the same fashion, but we consider the flow of Y(oz) in backward time instead. See Figure 9.
The half return maps will depend on the parameter z. However, for the sake of simplicity,
we will denote them by £x v

(A4) Let 11 = pip and let [— My, Ms] be the segment fixed in (A2) and (A3).

(1) (Terminal case) We assume that {x(y) € (O,y()éﬁo)) (resp. &y (y) € (07y26,ﬁ0)))
for each y € Sy where £x(y) (resp. &y (y)) is the y-value of the first intersection
with the y-axis of the forward (resp. backward) flow of (0,y) following X g 7, (resp.
Y0,i))- Moreover, we assume that the unstable (resp. stable) manifold of the saddle
singularity (p3,,25) = (0, £x(4),0) (resp. (pry,e1) = (0,Ev(y),0)) of (20) (resp.
(21)) hits the attracting (resp. repelling) branch of the curve of singularities Cy of
(17) on the blow-up locus at a point p, € Cy (resp. p_ € Cp) with the x5 coordinate
contained in the interval (0, Ms] (resp. [—M,0)).

(2) (Dodging case) Let y), o\ < Yz, We assume that &y (y) € 0,y ) for each
y € Sp and the stable manifold of the saddle singularity (p1,y,£1) = (0,&y(y),0) of
(21) hits the repelling branch of Cjy on the blow-up locus at a point p_ € Cj with
the x9 coordinate contained in the [—A/;,0). Furthermore, we assume that for each
y € Sy the horizontal orbit of (17) through (0, y) hits the attracting branch of Cj at

a point py € Cy with the 25 coordinate contained in (0, Ms).

Y :

Sy oopx
(D 0,) 7
&@m @) /

FIGURE 9. Half-return maps £x and &y. Such maps are defined by considering the flow
of X0,z and Y(g ) in forward and backward time, respectively.

In the terminal case, we assume that both {x and &y are well defined on Sy. Using
the assumptions (A0-4) we can define a canard cycle as follows (see Figure 10(a)). Let
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y € Sg. The canard cycle at level 3 consists of a fast orbit ¥y = y located on the cylinder,
the orbit connecting the corner points of the cylinder (ps,y,e3) = (0,7,0) and (ps,y,e3) =
(0,¢x(y),0), the orbit connecting (ps,y,e3) = (0,£x(¥),0) and p,, the portion of the curve
of singularities Cy between p, and p_, the orbit connecting p_ and the corner point of
the cylinder (p1,y,¢1) = (0,&v(y),0) and the orbit connecting (p1,y,£1) = (0,&y(y),0) and
(p1,y,€1) = (0,7,0). We denote this canard cycle by Y. Notice that the slow dynamics
defined along the portion of Cy between p, and p_ points from the right to the left. Thus,
the canard cycle Y9 can produce limit cycles of szﬁ, for e > 0, a ~ 0 and g close to fig
(see Theorem C).

Now, we describe the dodging case (see Figure 10(b)). The canard cycle at level y €
So consists of a fast horizontal orbit of (17) through (0,y), the portion of the curve of
singularities Cy between p, and p_, the orbit connecting p_ and the corner point of the
cylinder (p1,y,€1) = (0,&v(¥),0) and the orbit connecting (p1,y,1) = (0,&y(y),0) and
(p1,y,€1) = (0,7,0). We denote this canard cycle by I'V and it can produce limit cycles of
Zﬁdﬁ (see Theorem D). Note that the half return map & has to be well defined on Sy (see
assumption (A4)).

It is clear that we can use a similar definition of I'V when y()é o) < Y

(07/70)
results can be proved (in assumption (A4), we use the half return map £y instead of &y ).

There are some degenerate canard cycles in the singular limit ¢ = 0 that can also produce
limit cycles for ¢ > 0, but they are beyond the scope of this paper. They are degenerate
in the sense that they require further blow-up analysis in order to define transition maps.

Such degenerate cases are characterized by having fast orbit segments in the level y = y()g o)

and the same

ory = yggﬁo) on the top of the cylinder. See Figure 11.

Remark 3. When the PSVF Z, has a non-smooth center or focus (see Theorems A and B),
the half return maps {xy are well defined. The continuous combination (8) is more general
than it appears and it is possible that {x or {y (or both £xy) are not well defined even
when assumptions (A0-3) are satisfied. Indeed, it is not difficult to find suitable functions
A,(A\,z) and B,(A, z,y) such that the associated PSVF Z, has a fold-fold of types V'V
or VI, (following the terminology adopted in [24]) where the half return maps are not
necessarily well defined. We therefore assume that (A4) is also satisfied such that canard
cycles in terminal or dodging case exist.

The first return map of Z ) is given by § = &' o &x (when it is well defined). When
T()(i B = T&iﬁ) are both invisible fold points and £(y) = y + ay® + O(y3) with a # 0 (after
a translation of T (ﬁ’% to the origin), then the invisible-invisible fold-fold has codimension
1, and it was denoted by I, in [24] (see also [16]). Such singularity present a focus-like
behavior. Moreover, if a < 0 then the singularity is an attracting non-smooth focus and it is
a repelling one otherwise. If £(y) = Id, then the invisble-invisible fold-fold is a non-smooth
center [5].

5. ANALYSIS OF THE TERMINAL CASE

In this section, we prove that the slow divergence integral can indeed be used to detect
limit cycles of the regularized vector field Zf,a,ﬁ (asin (15)), for € small and positive. Firstly,
we consider the terminal case defined in Section 4 and assume that assumptions (A0-4) are
satisfied. We fix the closed interval Sy from (A4).

The transversal sections will be denoted by O’ii for + = 0,...,5, and we simply denote

0 = 09 and 0 = 05. The transition maps will be denoted by II¥ : ¢, — oF for
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T — -1 To — 1
()O(N )
% 7
(a) Lo 7 ’
Ty = -1 Ty = 1
X
0,7
(b)
Y
(Ovﬁo)

FIGURE 10. Canard cycles Y¥ and I'V (highlighted in blue) that can produce limit cycles
of Zf,&,ﬂ' Figures (a) and (b) (on the top and on the bottom, respectively) show the terminal
and dodging cases, respectively.

1 =1,...,5. We will compute the transversal sections and transition maps in the right-
hand side of Figure 12(a). The study of the left hand side is completely analogous.

5.1. Sections and transitions on the family chart £ = 1. In this family chart, we
define the sections (as sketched in Figure 12(a))

gy = {3:2:07 0§5<€07 yeSO}a
of = {m=2, 0<e<e, yeSi},

of = {z2=72, 0<e<ey y€SI},
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1‘2:—1 1'2:1

X
T0.70)
Y
T(OJ
To — — 1
Y X
(0,120) T(O,ﬁo)

Z\

FIGURE 11. Degenerate canard cycles (highlighted in blue) that can produce limit cycles
of Z#_

g,0,"

in which Zo > 1 is large and fixed and e is small. Moreover, S; and S, are appropriate
open intervals such that Sy C S; and the horizontal orbit of (17) through (xs,y) = (Z2,¥),
y € Sy, hits the attracting branch of the curve of singularities Cyy at a point with the zo-
value contained in the interval (0, Ms]. The sections og, o) and o are parametrized by the
variable y. Following [6], the section o5 is defined near the generic turning point (xs,y) =
(0,0), but in a new phase space (&,4) after applying the rescaling (z2,y) = (€%, 7) to
(16) and dividing the new system by ¢ > 0. Then we take 05 = {Z2 =0, 0 < e < gy, § € R}.
We have the following Lemma.

Lemma 4. The transition map 11} : 09 — o, (y,€) — (7 (y,&,Q, 1), €), is well defined
and is C*.
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(b)

FIGURE 12. Transversal sections highlighted in red. Figures (a) and (b) represent termi-
nal and dodging cases, respectively. We sketched o5 as a small segment in order to simplify
it to the reader.

Proof. The transition map II] is defined by following trajectories of the slow-fast system
(16) between oy and o7 . Since (16) is regular in this region, the statement is true. O

Since the origin of (16) is a generic Hopf turning point and the slow dynamics is regular
in [—M;, M|, then we are in the framework of [6]. Therefore, by [6, Theorem 4] one obtains
the transition map I : of — o5 and its properties. This transition map is defined by
following the orbits of (16) between sections o} and o5. See Lemma 5 below.

In what follows, we define

(22) Iy, i) = I3 (3 (y)),

where I;[ (resp. I7) is the slow divergence integral (19) and x5 (y) > 0 (resp. x5 (y) < 0) is
the x9-coordinate of the w-limit point (resp. a-limit point) of the fast orbit of (17) through
y € of (resp. y € o). Clearly, we have Fy(z3 (y)) = y with Fy; defined in (12).
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Lemma 5. The §j-component of the transition map 113 : of — 05, (y,¢) — (73 (y,¢,a, 1), €),
15 given by

a, . 1L [Jr y’ﬁ +\D+ y7€7a7/j +\II+ 8,6{1,/],/821ng
W;<y’€’a’“):f;(E,OK,,u)—eXp(5( ) 1( 82) 2( ) ’

in which I3 (y, 1) < 0 is the slow divergence integral (22). The functions \I/if2 and f5 are
smooth, and ¥ is O(e).

Remark 6. The minus sign in the front of the exponential in Lemma 5 is due to the chosen
orientation of parametrization of os.

To study the transitions IT; 5 ; we will work on chart = 1.

5.2. Sections and transitions on the family chart © = 1. Firstly, we rewrite the
transversal sections crf’ 4 in this system of coordinates (recall the directional charts described
in subsection 3.4):

of = {0< p3 <eo/Ta, 532\/%7 y € St}
of = {0<p;<enV/T2, &=, YESi

in which 25 > 1. We further define the following transversal sections, with p3 being a small
and positive constant:

o3 = {PSZés, 0= e <o, y € Sa},
U;_ = {pSZPS> 0§E3<€0, yES;g},

where &) = ;—2 and Sy and S5 are appropriate open intervals containing y and x (), respec-
tively. The following Lemmas state properties of the transition maps HI 34- The smoothness
of the flow of Z7 5 assures Lemma 7.

Lemma 7. The transition map 113 : 0f — of, (y,e3) — (75 (y, €3, Q, 1), €3), is well defined
and s C'°.

Proof. The transition map II3 is defined by following trajectories of (20) between the sec-
tions o and of. Since we assumed that this passage is regular, Lemma 7 follows di-
rectly. 0

The transition maps II3, were studied in [11] (see also [17, Subsection 4.2] and [18,
Appendix B]). We state the properties that we need in the next Lemma.

Lemma 8. Consider the transition maps 113 : of — o5, (y, p3) — (75 (y, ps3, @, 1), 2=),
and 11} : o — of, (y,e3) — (7 (y,€3,Q, 1), p3\/T2e3). Then given r > 0, there exist
C"-functions g5 and g; such that

17&/7121//)7

7a7/“7)

W;(%Psaa»ﬁ) = ﬂ-; <y7€ j?a&/a /j) = g;(y757€1n€_
T (y, 3,0, 1) = ) (y, =, ﬁ) = g/ (y,e,elne!

where 0 < € < gg, with g9 > 0 small enough.

Proof. Notice that HI 4, are related to the passage near the line p3 = €3 = 0 (away from
the tangency point) of saddle singularities with positive and negative eigenvalues of equal
magnitude (see (20) and Subsection 3.5.2). This type of passage has been studied in [11]. O
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Remark 9. In Lemma 8, we used the change of coordinates p3 = /73 on o and g3 =
% on o;. This can be checked using the expressions of the transversal sections. We
point out that 5 (y,0, &, 1) = g5 (v, 0,0, a, 1) is the y-component of the intersection of the
unstable manifold of the saddle singularity (ps,y,e3) = (0,y,0), y € Sy, with the section
oy . Similarly, the w-limit point of the orbit of (20) through (ps,y,e3) = (p3,y,0) € o7 is

given by (p37 Y, 83) = (07 WZ(@% 07 527 /7)7 O)

With completely analogous constructions, one can define the transversal sections o, ,
i = 1,...,4 on the left-hand side of the Figure 12(a). One also can state completely
analogous statements for the transition maps II; : 0,_; — o, as those given by the previous
Lemmas (in backward time).

5.3. Right and left-hand transition maps and difference map. Now, we are able to
define the right and left-hand transition maps II* : 6y — o5 by

% (y,€) =TT o Iy o Iy o Iy o Ty, €),

whose properties are given in the next proposition.
In what follows, we define the integrals

(23) Ji (W) =I5 (Ex (), i) <0, and  Jy(y) =I5 (& (y), i) <O,
where £x and &y are the half return maps defined in Section 4 and I3 are defined in (22).

Remark 10. Note that the derivative of JﬁjE with respect to the variable y is positive due
to the chosen parametrization of og.

Proposition 11. The §j-components of the right- and left-hand transition maps IIF : o —
os, (y,€) — (Wg(y,e,&),e), are given by

21 (1.2, = f(e.3) — exp (‘]ﬁ s (”>,

in which fﬁt are smooth functions satisfying (fﬁr — fﬁ_)(O, 0) =0 and

Ui IE)(0,0) £0. In

addition, JﬁjE are given by Equation (23). Finally, o*(1) tends to zero uniformly as ¢ — 0.

Proof. Using Lemmas 4-8 and similar results in backward time, we see that the ¢ component
of the transition maps IT* can be written as (24). The properties of f;” — f; follow from
[6, Theorem 4] (« is a regular breaking parameter and oy is parameterized by the rescaled
variable ). The second component of IT* is clearly ¢. 0

Remark 12. In fact, the smooth function f; in Equation (24) is the smooth function f;"
given in Lemma 5. From now on, for the sake of simplicity, we work with the notation f; )
The same remark on the notation of fﬁ_ and f; holds.

Remark 13. Note that for ¢ = 0 the y-component of the composition 113 o IT5 o T3 o IT5
in forward (resp. backward) time can be naturally identified with the half return map &x

(resp. &y ).
Define the difference map m; as m; = Wli[ —m . It follows from the construction that zeros of

the difference map for € > 0 correspond to periodic orbits of Zfa 7 In what follows, we prove
that zeros of m; are related to zeros of the slow divergence integral J;(y) = (J/i[ = J2)(Y).
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In summary, we prove that the slow divergence integral can indeed be applied in order to
detect limit cycles of Zgja,ﬁ'

In what follows, we say that a periodic orbit Tgfﬁ is Hausdorff close to the limit periodic
set T¥ if TV — Y% as e — 0 and g — fip according to Hausdorff distance (see also [9,
Section 4]).

Theorem C. (Terminal case) Denote J;(y) = (J/;r —J7) ().

(a) Suppose that y € Sy is a zero of multiplicity k of Jy,(y). Then Zfdﬁ has at most
k+1 limit cycles for € > 0 sufficiently small, a close to 0 and p kept near py, which
are Hausdorff close to YV.

(b) Assume that Jy,(y) has exactly k simple zeros y; < --- < yj in Sy. Let yo € Sp
satisfying yo < y1. Then there is a smooth function a = a(e, 1) satisfying a(0, ) = 0
such that Zf,a(e,ﬁ),ﬁ has k + 1 periodic orbits Y[, with i = 0,...,k, for each e >0
sufficiently small and p close to jig. In addition, for i =0,... k, the periodic orbit
T‘gfﬁ 15 1solated, hyperbolic and Hausdorff close to the canard cycle TYi.

Proof. Ttem (a). By Rolle’s Theorem, if 75(y, €, a) has k zeros counting multiplicity, then

mu(y, €, &) has at most k + 1 zeros. In other words, if Wfﬂ(y, e,a) has k zeros, then Zf&ﬁ has
at most k& + 1 limit cycles. The prime ' denotes the derivative with respect to y.
We write 75(y) = 7(y, €, &). Using Proposition 11, one has that

mily) = exp (J’{ o 0(1)) S (o) e (‘]5 i Om)) S (T4 ).

g2 g2 g2y

Now, using Remark 10, we can rewrite

2In(L 3 (J5 + o* 0
l£<J§E+Oi(1)> = exp (8 In(z 8y(J“ il (1)))) :exp< i(1)>,

g2 dy g2 g2

and therefore

J=(y) + o—(1)> - (Jg(y) + 0+(1))

ﬂ-}t(y) = exp ( . 22 2

where o(1)* tend to zero as ¢ tends to zero, uniformly in y, & and a.
It follows that, for € > 0, ﬂ;j(y) = 0 if, and only if,

(25) J3(y) — J5 (y) +o(1) =0,

in which o(1) = 0"(1) — 0~ (1). Since we assume that § is a zero of multiplicity k of J;,,
then Equation (25) has at most k zeros (counting multiplicity) near y = g, for each (e, a, )
kept near (0,0, fip). This implies that 77(y) has at most k zeros (counting multiplicity) near
= g, for each (g, &, 1) kept near (0,0, 119) and € > 0. This completes the proof of Item (a).
Item (b). From Proposition 11 and the Implicit Function Theorem, it follows that there
is a smooth function a(e, ) such that a(0,z) = 0 and (fg — fﬁ_)(e, ale, 1)) =0 for e >0
sufficiently small. One can rewrite the difference map 7y as

iy, . @(e, i) = exp (Ji(y) +0(1)> - (Jg(y) +o+(1)>’

g2 g2



24

and 0*(1) — 0 as ¢ — 0, uniformly in y and fi. Therefore, zeros of 7 (y, e, d(e, ft)) with
respect to the y variable are given by

J7 (y) = T (y) +o(1) =0,

with o(1) = 07 (1) — 0" (1) and obviously o(1) — 0 as € — 0, uniformly in y and z. Suppose
that y1,...,yr € Sp are simple zeros of J;,(y), and write y; < --- < y. For e > 0 sufficiently
small, those simple zeros persist, and therefore we have k& simple zeros of the difference map
o (y, g, ale, ﬁ)) Finally, we conclude that Z’ 7¢ (e )7 has k hyperbolic limit cycles Tyﬂ each
one Hausdorff close to the canard cycle T¥i, for 1=1,...,k.

Fix yp € Sy such that yy < y;. Using sultable functlons fjE (see [10, 12] for more details),
it is possible to construct one extra hyperbolic limit cycle Ty~, and it will be the smallest
limit cycle among Tyf fori=0,... k. U

Remark 14. In [10, 12], a result similar to Theorem C(b) has been proven for red canard
cycles in Figure 1(b). More precisely, in our model (15) such canard cycles can be parame-
terized by y € (0, y*) where we suppose that the slow dynamics (18) along the portion of the
critical curve Cyy below the line y = y* is regular (that is, negative). We define the following

slow divergence integrals: Tg(y) < 0 (resp. I;(y) < 0), equal to the integral I} (x2) (resp.

I7 (2)) defined in (19), where x5 is the zp-coordinate of the w-limit point (resp. a-limit

point) of the fast orbit of (17) through (x9,y) = (0,y). Now, if 7;0 (y) — I, (y) has exactly
k simple zeros in the open interval (0,y*), we can produce k + 1 limit cycles like in our
Theorem C(b). An important difference lies in the fact that the extra limit cycle found in
[10, 12] is the biggest, that is, the extra limit cycle surrounds the k limit cycles obtained
from the simple zeros. On the other hand, in our Theorem C(b), the extra limit cycle is the

smallest one.

5.4. Proof of Theorem A. We consider a PSVF presenting a non-smooth center at (0,1) €
Y. given by

- L i e

Let Z, be a continuous combination of (26) given by

" e = 50 20N

Observe that the continuous combination (27) is a special case of (8) with p = a (we
do not need the additional parameter i) and A, = B, = 0. The associated functions F
and G (defined in (12)) are given by F(x) = ¢*(z) and G(z) = —¢(z). The critical curve
Cy is equal to {y = F(x2)} (see Section 3.5.1). We assume that ¢(0) = 0 and ¢'(0) > 0
(see the assumption (A0)). Moreover, in this section we assume that transition functions
are monotonic. Then the assumptions (A2) and (A3) are satisfied on the interval (—1,1).
Since A, = 0, then assumption (A1) is satisfied.

We focus on limit cycles of the following non-linear regularization (see (15)):

Zeaton) = Za(o(5) ) = { § 2 19 B

2

8

In addition, the half return maps of Zj in (26) are given by {xy(y) =2—y and {(y) = v,
see assumption (A4) in the terminal case (recall that & is considered in backward time,
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see also Figure 9). Note that the canard cycle TY (see Figure 10(a)) is well-defined for each

€ (1,2). We therefore restrict the half return maps to the interval (1, 2).

Our goal is to show that for any integer k£ > 0 there exists a monotonic function ¢; such
that the slow divergence integral J from Theorem C(b) has k simple zeros 1 < y; < --- <
Y < 2.

Let us first find the expression for J. From (22) and (23) it follows that

J(y) =1"(z3(2—y)) — I (23 (2 —y)),
where I* are defined in (19) (recall that we do not have parameter f). If we use the change
of variable x = x (2 — y) and write J(y) as I(z), then we have

L(z) 9
(28) I(z) = I*(2) — I (L(x)) = 4 / o(5)((5))ds,

where z € (0,1) and L(x) < 0 satisfies p?(x) = ¢*(L(z)), due to £(y) = y. Now, it suffices
to prove that for any integer k > 0 there is a monotonic function ¢, such that I has k
(positive) simple zeros.

Consider a function p(z) = x + dp.(z), in which ¢, is an even polynomial satisfying
©(0) = 0. We fix a compact interval [—2v, 2] C (=1, 1), with a small v > 0. The function
¢ is monotonic in [—2v, 2v] for any 0 > 0 sufficiently small. Using the definition of @ and
@*(x) = @*(L(x)), one can also write L(x) = —x + Li(2)d + O(6?), where Li(x) = —2p.().

Therefore, for z € (0,v] and § > 0 sufficiently small, we have

L(x) L(x)
i[(a:) = / B(s)(F'(5)) "ds = / (5 + () (1 + 0l (s)) ds

L(x) L(x)
= / sds + 5/ (25,(s) + @e(s))ds + O(6?)
= —dzLi(z)+§ B (25@2(5) + goe(s))ds + 0(8?).

Observe that 2s¢.(s) + ¢¢(s) is an even polynomial. Thus

T

/ 7 (280(5) + pu(s))ds = —2 / (250(5) + puls)) ds,

because we are integrating in a symmetric interval. We also remark that

/ sl (s)ds = 2 () — / " 0u(s)ds,

and then we finally have

1

(29) ZI(ZL‘) = —20 /Ox sl (s)ds + O(8?).

We conclude that simple zeros of the integral in the right hand side of (29) will persist as
simple zeros of I(z), for each small but positive d.
Given any positive integer k, take a; < -+ < a in the open interval (0,). Define the

odd polynomial P(z) = z*(z* — af)... (2% — a}). The even polynomial ¢.(z) = [ @ds
satisfies [ s¢l(s)ds = P(x) and therefore the integral in the right hand side of (29) has
k simple zeros a; < --- < a in (0,v). They persist as simple zeros of I(x) in (0,v), for
positive but small §.

The next step is to smoothly extend ¢(z) to a monotonic transition function ¢y in the

interval [—1,1]. Define a bump function 5 : R — R with support supp(f) = (—2,2) and
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satisfying S(x) = 1 in the compact interval [—1,1]. Now, define §,(z) = 8 (%). With this
construction, we have supp(f,) = (—2r,2v) and B, = 1 in the compact interval [—v,v].
Finally, using the monotonic transition function

() = { tanh (;£5) if |z <1,

1—22
sgn x if |z| > 1,
we define pi(z) = B()B,(x) + ¥(x) (1 — Bu(x)).

We claim that ¢ is a monotonic transition function. Indeed, observe that v, 5, and
consequently ¢y are C*°-smooth functions. Furthermore, ¢ = ¢ and ¢, = 9 in [—v, v] and
(—o00, —2v] U [2v, 00), respectively. Therefore, it remains to check that ¢y is monotonic in
(—2v,—v) U (v,2v). In order to do this, we can proceed as in the proof of [18, Theorem 4.3]
because ©(0) = 1(0) =0 and &'(0) =¢’'(0) = 1.

Now Theorem A follows directly from Theorem C(b). The k+ 1 limit cycles are produced
by the canard cycles TY (see Figure 10(a)). Bearing in mind Remark 14, these k + 1 limit
cycles can also be produced by red canard cycles in Figure 1(b). Indeed, we have the same
integral I(x) as above and we can construct k simple zeros using the same steps (see also
Section 5.5). The k + 1 red limit cycles (as in Figure 1(b)) occur for a new control curve
a=ale). O

5.5. Proof of Theorem B. Consider the linear PSVF (for o ~ 0)

Xolz,y)=(y—1—-0a, a—1-—1x),
(30) Za(x,y)Z{ya(g;,yy)): ((;/_1—35, a—i—l—:z:;.

Let us describe the phase portrait of Z,. The points P, = (—1+a,1+a) and Q, = (1 +
a, 2+a) are (virtual) linear center and attracting focus of X, and Y, respectively. It can also
be checked that both T = (0, 1+a) and T = (0, 1) are invisible fold points. Geometrically,
it is easy to see that, for a = 0, the fold-fold singularity behaves like a non-smooth attracting
focus, because Y, has a smooth attracting focus. The segment limited by these fold points
is the sliding region ¥°, and the sewing region is given by X% = X\ (ZS UTXu TO};)

In order to verify that the invisible-invisible fold-fold (0,1) € ¥ has codimension 1, we
must compute {xy. One can explicitly solve the system of ODEs associated to X, and
obtain {x(y) = 2 — y. Using Taylor series of order 2 of the solutions of Yj, we obtain

3 2
_ -y’ +4y* -8y +6
&y =
Y() (y—2)2

Therefore

Ey) = &'obx(y)=—5+, +y—2
= 1+(y-1)—-20—-1°+4y -1 -6(y—D*+0((y—1)°).

The coefficient of (y — 1)? is nonzero, therefore this singularity has codimension 1. More-
over, such coefficient is negative, therefore this Il has an attracting focus-like behavior.
A continuous combinations of (30) is given by
(a—2)A\™ 1 (a+z)\™

(31) Zahayy) = (y— N = T2 5— - 22 a—A—av),

with m > 4 and n > 2 being even integers. The continuous combination (31) is a special case
of (8) with u = a, Ay(\,x) = —(afx)z’\MA — (a+§))\m and B,(\,z,y) = —xA". Using (12),
one obtains F'(z) = ¢*(z) and G(x) = —¢(z). The critical curve Cj is given by {y = F(z)}.
Assuming that ¢ is monotonic and ¢(0) = 0, then the assumptions (A0)-(A3) are satisfied.
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In what follows, we focus on red canard cycles in Figure 1(b) of the regularization (15).
We believe that the same result is true for big limit cycles (see Figure 10(a)). This case is
more technical and it is a topic of further study.

Using Remark 14 and parameterizing the slow divergence integrals by = € (0, 1) instead
of y € (0,1) (we use the change of variable y = F'(x)), it suffices to study simple zeros of

L(z)
I(z) =4 / o(s) (/(5)) ds,

where z € (0,1), L(x) < 0 and F(z) = F(L(x)). This slow divergence integral has the same
form as (28) in the non-smooth center case. Using the same reasoning as in Section 5.4 we
can show that for any integer k£ > 0 there is a monotonic function ¢, such that I has k
(positive) simple zeros. Finally, Remark 14 implies that k& + 1 hyperbolic limit cycles can
be produced inside the regularization stripe. [

6. ANALYSIS OF THE DODGING CASE

In this section we consider the dodging case defined in Section 4 (we suppose that the
assumptions (A0-4) are satisfied). In this case, the slow divergence integral can also be
used in order to study limit cycles of the regularized vector field defined in (15), produced
by canard cycles I'V in Figure 10(b).

Of course, one must define transversal sections and transition maps for this case. We
will not go into details since the construction, lemmas and propositions can be done in an
analogous way as it was done in Section 5. We refer to Figure 12(b) for the transversal
sections o; for i =0,...,5. We use the same parameterization of oy 5 as in Section 5.1.

The g-components of the transition maps IIT : 0y — 05 are given by

T (y) + ot (1
R (.ed) = fH(ed) +exp M)
J= () + o<1>)

e2

(32)

T (y,e,a) = fi(e,@) —exp

in which the smooth functions f;[ and o* (1) satisfy analogous properties to Proposition 11,

J5 (y) is defined in (23) and Yg(y) in Remark 14. The expression for 7 follows from (24),
while the expression for W/if , together with the properties of fg — f; stated in Proposition 11,

follows from [6, Theorem 4]. Observe that we have a plus sign in front of the exponential in

the expression of 7. The difference map is then given by 7; = 7 — 7 and the derivative

of Tg(y) with respect to y is negative, due to the chosen parameterization of oy. See also
Remark 10.
We have the following result.

Theorem D. (Dodging case) Denote I;;(y) = (7; — J7)(y), and let y € So. Then Zf,a,ﬁ
has at most 2 limit cycles produced by the canard cycle I'Y, for e > 0 sufficiently small, o
close to zero and j1 close to pig. Moreover, if y = y is a simple root of Iy, (y), then, for
each € > 0 sufficiently small and p close to pg, the a-family Zza,ﬁ undergoes a saddle-node
bifurcation of limit cycles, which are Hausdorff close to T'Y.

Proof. Firstly, we prove the existence of at most two limit cycles. With reasoning and
notation similar to those in the proof of Theorem C(a), one can show that, for each small
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e >0, m;(y) = 0 is equivalent to

(33) T (y) — J5 (y) +o(1) =0,

where o(1) — 0 as ¢ — 0. Notice that the derivative of the left hand side of (33) with
respect to y is negative for each € > 0 small enough (we use Remark 10 and the fact that
the derivative of T; is negative). Rolle’s Theorem implies that (33) has at most 1 solution
(counting multiplicity) near y = y. Thus, 7;(y) has at most 1 zero near y = y. Applying
Rolle’s Theorem once more, we conclude that I'V can produce at most 2 limit cycles. This
completes the proof of the first part of Theorem D. The second part of Theorem D can be

proved in the same fashion as Theorem 4.3(3) in [12].
U
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