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Abstract—Self-supervised monocular depth estimation has
achieved notable success under daytime conditions. However, its
performance deteriorates markedly at night due to low visibility
and varying illumination, e.g., insufficient light causes textureless
areas, and moving objects bring blurry regions. To this end, we
propose a self-supervised framework named DASP that leverages
spatiotemporal priors for nighttime depth estimation. Specifically,
DASP consists of an adversarial branch for extracting spatiotem-
poral priors and a self-supervised branch for learning. In the
adversarial branch, we first design an adversarial network where
the discriminator is composed of four devised spatiotemporal
priors learning blocks (SPLB) to exploit the daytime priors. In
particular, the SPLB contains a spatial-based temporal learning
module (STLM) that uses orthogonal differencing to extract
motion-related variations along the time axis and an axial
spatial learning module (ASLM) that adopts local asymmetric
convolutions with global axial attention to capture the multiscale
structural information. By combining STLM and ASLM, our
model can acquire sufficient spatiotemporal features to restore
textureless areas and estimate the blurry regions caused by
dynamic objects. In the self-supervised branch, we propose a
3D consistency projection loss to bilaterally project the target
frame and source frame into a shared 3D space, and calculate
the 3D discrepancy between the two projected frames as a loss
to optimize the 3D structural consistency and daytime priors.
Extensive experiments on the Oxford RobotCar and nuScenes
datasets demonstrate that our approach achieves state-of-the-
art performance for nighttime depth estimation. Ablation studies
further validate the effectiveness of each component.

I. INTRODUCTION

MONOCULAR depth estimation aims to predict dense
depth maps from RGB images, which has been widely

deployed in various applications, such as 3D scene under-
standing [1], augmented reality [2], and autonomous driving
[3], etc. However, to predict accurate dense depth maps, a
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Fig. 1. The first row shows a set of consecutive image frames from the
RobotCar dataset. The next three rows show the depth maps predicted by
RNW [9], STEPS [10], and our method. The green boxes mark a tree, while
the red boxes indicate a moving vehicle. From the figures, we can observe that
our method effectively captures spatial structure and maintains consistency in
dynamic scenes.

large amount of high-quality paired images and depth maps
is required, which is tricky to collect from a real-world
environment. In this regard, self-supervised methods [4]–[6]
have drawn more attention since they do not require costly
ground-truth depth labels and estimate the depth through the
inference of geometric cues extracted from monocular videos.
Moreover, with the efforts of [7], [8], the performance of
self-supervised depth estimation is comparable to supervised
methods in multiple scenarios, e.g., KITTI, Cityscapes, etc.
Unfortunately, these studies mainly focus on daytime depth
estimation, with limited performance when facing challenging
nighttime scenes.

Low visibility and varying illuminations are the main chal-
lenges for nighttime depth estimation, which bring a series
of problems. For example, low visibility often results in
textureless regions that are difficult to recognize, leading to
depth missing. As shown in Fig. 1, the green box demonstrates
a dark region containing a tree that cannot be accurately
captured in the depth map. Although the study in [9] proposed
to leverage low-light image enhancement to restore details
in low-visibility areas, it still cannot generate accurate depth
maps for these areas. Varying illuminations usually happen
in the moving objects and streetlights, causing a large area
of blur. As shown in Fig. 1, the red box indicates motion
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blur caused by a moving vehicle, where the car windows
are inaccurately estimated. Although several studies [10], [11]
adopted masking mechanisms to bypass dynamic regions, their
methods often suffer from inconsistency and instability in
these areas. For example, in consecutive frames, the depth of
car windows is estimated in the previous frame, but it is lost
in the subsequent sequence.

To address these problems, we propose a self-supervised
framework named DASP that transfers the spatiotemporal
priors from daytime to nighttime for monocular depth esti-
mation. Specifically, the DASP contains an adversarial branch
and a self-supervised branch. In the adversarial branch, we
first develop an adversarial network where the discriminator
is composed of four spatiotemporal priors learning blocks
(SPLB). Particularly, the SPLB includes a spatial-based tempo-
ral learning module (STLM) to capture motion-related changes
along the time axis, and an axial spatial learning module
(ASLM) to extract spatial information along orthogonal axes.
The integration of STLM and ASLM provides sufficient
spatiotemporal features to restore the textureless and blurry
regions. In the self-supervised branch, we propose a 3D
consistency projection loss that projects the pixels from both
the target and source frames to the same 3D coordinate,
and computes the discrepancy between frames to enhance
spatial consistency and daytime priors. Extensive experiments
on the Oxford RobotCar and nuScenes datasets validate the
effectiveness and stability of our approach.

In summary, our main contributions are as follows:
• We propose a self-supervised framework that exploits the

spatiotemporal representations from daytime priors for
guiding nighttime depth estimation.

• We devise a spatiotemporal priors learning block (SPLB)
which consists of two modules: Spatial-based Temporal
Learning Module (STLM) and Axial Spatial Learning
Module (ASLM). Through the integration of two mod-
ules, our model can obtain sufficient spatiotemporal fea-
tures to restore textureless and blurry regions.

• We design a 3D projection consistency loss which
strengthens the geometric consistency and daytime priors.

• Extensive experiments on the Oxford RobotCar and
nuScenes datasets demonstrate that our method achieves
state-of-the-art performance across multiple metrics.

II. RELATED WORK

A. Self-supervised Depth Learning from Videos

To alleviate the reliance on labeled data, Zhou et al. [4]
first proposed self-supervised monocular depth estimation by
jointly learning depth and pose. This method is designed
based on static scenes and cannot deal with dynamic scenes,
leading to multi-view ambiguity. To solve this problem, a
number of strategies have been proposed, such as optical
flow [5], instance segmentation [12], uncertainty map [13],
and stationary pixel mask [8] to recognize moving objects and
mask motion regions. Besides, authors in [14], [15] proposed
to model 3D object motion, and authors in [16], [17] present to
disentangle object motion to construct cost volumes, but these
object-level methods lack precise supervision and still remain

inherently ambiguous. Recently, Sun et al. [18] leveraged
pseudo-depth as depth priors to estimate depth maps and
achieved better performance, which verified the effectiveness
of geometry priors. Based on it, Mono et al. [19] introduced a
ground-contacting prior to handle ambiguous moving objects.
Although this approach achieves promising results in daytime
scenarios, its performance degrades significantly under night-
time conditions.

B. Nighttime Self-supervised Learning Methods

Considering daytime and nighttime environments have the
same structural information, Spencer et al. [20] proposed
to learn depth-invariant representations from daytime and
nighttime. However, their method performed worse in the low-
visibility and illumination variability environments. To address
these challenges, quite a few methods have been proposed,
which can be divided into two categories: domain adapta-
tion and self-distillation. In domain adaptation, Vankadari et
al. [21] and Liu et al. [22] extracted features from daytime and
nighttime domains separately, and applied domain adaptation
and separation to alleviate the negative effects of poor visibility
and uneven lighting. To fully utilize daytime visual cues,
Wang et al. [9] introduced a prior derived from daytime depth
distributions to enhance nighttime depth prediction. Zheng et
al. [10] adopted a different approach using image enhance-
ment to adjust exposure and reduce photometric inconsistency
between daytime and nighttime. However, their methods still
suffer from the smoothness of depth and texture recognition. In
this regard, Cong et al. [11] introduced a composite structure
regularization strategy that aligns feature and depth output
space to ensure multiscale consistency in structural and textu-
ral predictions. In self-distillation, Gasperini et al. [23] adopted
GAN to generate adverse samples from daytime images as
input, and devised a distillation loss to improve photometric
consistency under nighttime conditions. Based on it, Wang
et al. [24] proposed learnable visual prompts that capture
domain-specific knowledge to enhance cross-domain adapta-
tion. Although these methods utilize daytime data as spatial
priors to guide nighttime depth estimation, they overlook the
photometric consistency along the temporal dimension. In this
work, we pretrain a daytime depth model to produce depth
sequences as spatiotemporal priors and leverage adversarial
learning to enhance temporal and spatial consistency.

III. METHOD

A. Self-supervised Training

The task of self-supervised monocular depth estimation
is to reproject the pixel pt in target frame It from the
pixel ps in source frame Is through a depth network Φd

and a pose network Φp, where the depth network predicts
the correspondence depth map Dt = Φd(It) and the pose
network generates the relative pose Tt→s = Φp(It, Is). The
transformation between source pixel ps and target pixel pt can
be formulated as follows:

ps ∼ KTt→sDt(pt)K
−1pt (1)
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Fig. 2. Overview of our proposed framework. When given a nighttime sequence (Int , I
n
s ), we first use a PoseNet to predict relative pose Tt→s and an

encoder-decoder network to predict depth maps (Dn
t , D

n
s ) respectively, and then warp them to construct a geometric mapping for self-supervised learning.

While given a daytime sequence (Idt , I
d
s ), we adopt a pretrained and fixed model to extract depth priors (Dd

t , D
d
s ), and together with nighttime depth maps

to feed into a GAN-based discriminator with STLM and ASLM to extract spatiotemporal representation and distinguish day and night. Finally, the framework
is jointly optimized with self-supervised and adversarial loss.

where ∼ denotes the homogeneous equivalence and K repre-
sents the camera intrinsic matrix. Based on the transformation,
the target frame Ît can be recovered from Is by:

Ît = ⟨Is, ps⟩ (2)

where ⟨·⟩ denotes the differentiable bilinear sampling. Intu-
itively, to reduce the reprojection error, we first follow [25]
to introduce a photometric consistency loss that combines
a weighted SSIM and weighted ℓ1 error to calculate the
difference between It and Ît:

Lp = α · 1− SSIM(It, Ît)

2
+ (1− α) · ∥It − Ît∥1 (3)

where the weight α is set to 0.85. After that, we follow [26] to
apply a disparity smoothness loss to facilitate the smoothness
of generated depth and avoid depth ambiguity:

Lds = |∂xDt|e−|∂xIt| + |∂yDt|e−|∂yIt| (4)

Furthermore, we adopt the geometric consistency loss [27]
to penalize depth inconsistencies between adjacent frames:

Lgeom =
1

|V |
∑
p∈V

Ddiff(p) (5)

where V is the set of valid projections within image bound-
aries, and Ddiff measures per-pixel depth inconsistency be-
tween Dt and Ds. This yields a self-discovered mask:

Ms = 1−Ddiff (6)

where Ms ∈ [0, 1] highlights the view-consistent regions while
suppressing inconsistent parts.

Although previous works take pixel-wise error and smooth-
ness into consideration, they only focus on frame-level error,
i.e., they only compute the unidirectional reprojection from

Fig. 3. The computation of 3D projection consistency loss. According to
Eq. 1, we first reproject the target point pt in the target depth map Dt to
the source depth map Ds to obtain the interpolated point p̂s. And then two
pose networks are deployed to project the points into a shared 3D coordinate.
Finally, we calculate the Euclidean distance between two points as a 3D
projection consistency loss.

the target frame to the source frame without considering the
spatial diversity during reprojection, which makes the model
extremely unstable when dealing with occluded or blurred
areas. To this end, we design a 3D projection consistency loss
that projects the pixel from both the source and target frames
into the shared 3D space, and then computes the discrepancy
between the two projected pixels, thus optimizing the depth
network and pose network. Fig. 3 illustrates the projection
process, and the loss is formulated as follows:

Lproj =
∥∥Ds(p̂s)K

−1p̂s − Tt→sDt(pt)K
−1pt

∥∥
2

(7)

where Ds and Dt represent the depth map predicted by
depth network, p̂s is the reprojected pixel after differentiable
bilinear sampling.Through the 3D projection consistency loss,
the discrepancy between two projected points can be calculated
via depth, which is more direct and intuitive.
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Fig. 4. Overview of spatiotemporal priors learning block (SPLB). First of all, the input X is split into two parts, Xs and Xt, and then they are sent to
the Spatial-based temporal learning module (STLM) and the Axial spatial learning module (ASLM), respectively. The STLM captures temporal features via
orthogonal differencing of adjacent frames, while the ASLM uses asymmetric convolutions with global axial attention to extract spatial features. Finally, the
outputs of the two modules are fused to generate the final spatiotemporal representation Y .

Finally, the total self-supervised loss is a weighted combi-
nation of the aforementioned losses:

Lself = λ1Lp ⊗Ms + λ2Lds + λ3Lgeom + λ4Lproj (8)

where λ1, λ2, λ3 and λ4 are empirically set as 0.7, 0.1, 0.5,
and 0.5, respectively.

B. Adversarial Adaptation to Learn Spatiotemporal Priors

Considering that GANs have been proven to learn the
underlying patterns from data, we adopt a GAN-based net-
work to extract spatiotemporal features from daytime priors.
Specifically, for the generator, we use Monodepth2 [8] to
generate indistinguishable nighttime samples. Additionally,
we pretrain another Monodepth2 on daytime data to provide
daytime priors. For the discriminator, we stack four elaborated
Spatiotemporal Priors Learning Blocks (SPLB), each of which
consists of two branches, STLM and ASLM, to extract appro-
priate temporal and spatial depth representation patterns from
input X . Fig. 4 shows the overview of the SPLB.

1) Spatial-based temporal learning module (STLM). In
video sequences, temporal priors could directly guide spatial
structure. For example, in the dynamic scenes, previous frames
could provide more accurate spatial priors for the subsequent
frames. To exploit this spatiotemporal consistency, we devise
STLM, which decomposes the entire sequence along the time
axis and applies convolutional differences to capture motion-
related changes between consecutive frames.

Specifically, given a temporal input Xt ∈ RT×C
2 ×H×W , we

first compressed it by a factor of r in the channel dimension
and reshaped it into a temporal sequence along the horizontal
and vertical axes. Because the horizontal branch and vertical
branch adopt the same process, we take the horizontal axis as
an example here:

Xw
t ∈ RH× C

2r×W×T , Xw
t = {xw

1 , x
w
2 , . . . , x

w
T } (9)

where each xw
t ∈ RH× C

2r×W denotes the horizontal features
at time t. And then we deploy a convolution network with

zero-padding to compute directional differences along the time
dimension to obtain inter-frame motion features:

Fw
t = ζ3×3(x

w
t+1)− xw

t , t = 1, . . . , T − 1 (10)

where ζ denotes the convolutions, and the subscript indicates
the kernel sizes. After that, a three-branch structure with axis-
specific asymmetric convolution, axial attention, and a residual
connection is used to capture multiscale inter-frame variations:

Fw
local = σ(Up(ζ3×1(Down(Fw

t )))) (11)

Fw
multiscale = Fw

local ⊙ (Fw
t +MHAW (Fw

t )) (12)

where σ is the sigmoid function, Fw
local and MHAW denote

the local features and global attention [28] along the width
axes. To further refine the direction-aware temporal, we apply
an activated asymmetric convolution with a sigmoid function:

Fw
refine = σ(ζ1×3(F

w
multiscale)) (13)

Finally, we combine two refined axes features and the
original time input Xt to generate the final temporal features:

Ft = (Fw
refine + Fh

refine)⊙Xt (14)

where Fw
refine and Fh

refine represent the refined horizontal and
vertical features, respectively.

2) Axial spatial learning module (ASLM). Since the street
scene images are captured by the cameras and LiDARs on the
car, the view of street scenes extends vertically from near to
far, while the depth decreases horizontally from near to far.
Besides, street scenes often contain many structural objects,
such as streetlights, buildings, and cars, which generally follow
the distribution of vertical and horizontal axes. Based on
these observations, we proposed ASLM, which uses local
asymmetric convolutions with global axial attention to extract
multiscale structural depth representations and leverage them
to guide depth estimation at nighttime.

Specifically, given an input Xs ∈ RT×C
2 ×H×W , we apply

multi-head self-attention along the height and width axes to
extract global structural features:
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS, WHERE LOWER ERROR AND HIGHER ACCURACY INDICATE BETTER PERFORMANCE.

Methods Max Depth Error ↓ Accuracy ↑
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

RobotCar-Night
Monodepth2 [8] 40m 0.661 25.213 12.187 0.553 0.551 0.849 0.914

ADDS [22] 40m 0.233 2.344 6.859 0.270 0.631 0.908 0.962
md4all-DD [23] 40m 0.202 1.882 7.929 0.264 0.642 0.921 0.970
ACDepth [29] 40m 0.187 1.633 6.843 0.242 0.703 0.925 0.971

PromptMono [24] 40m 0.206 2.057 6.497 0.246 0.736 0.917 0.966
RNW [9] 40m 0.176 1.323 4.922 0.225 0.772 0.933 0.975

STEPS [10] 40m 0.154 1.108 4.682 0.213 0.803 0.937 0.974
SRNSD [11] 40m 0.136 0.799 4.257 0.194 0.836 0.951 0.983

Ours 40m 0.132 0.786 4.125 0.187 0.849 0.958 0.988
Monodepth2 [8] 60m 0.580 21.446 12.771 0.521 0.552 0.840 0.920

ADDS [22] 60m 0.231 2.674 8.800 0.286 0.620 0.892 0.956
md4all-DD [23] 60m 0.206 2.066 7.790 0.262 0.669 0.910 0.967
ACDepth [29] 60m 0.198 1.921 7.372 0.255 0.681 0.913 0.963

RNW [9] 60m 0.185 1.894 7.319 0.246 0.735 0.910 0.965
STEPS [10] 60m 0.170 1.686 6.797 0.234 0.758 0.923 0.968

PromptMono [24] 60m 0.172 1.540 6.567 0.233 0.763 0.924 0.972
SRNSD [11] 60m 0.169 1.450 6.439 0.226 0.768 0.926 0.975

Ours 60m 0.164 1.442 6.315 0.218 0.777 0.930 0.981
NuScense-Night

Monodepth2 [8] 60m 1.185 42.306 21.613 1.567 0.184 0.360 0.504
RNW [9] 60m 0.326 3.999 9.932 0.417 0.492 0.765 0.870

Light-Dark [30] 60m 0.340 4.838 10.136 0.414 0.526 0.772 0.889
STEPS [10] 60m 0.292 3.363 9.120 0.390 0.572 0.805 0.908

Ours 60m 0.276 3.072 8.819 0.367 0.584 0.809 0.916

Fglobal = MHAW (MHAH(Xs)) (15)

where MHAH denotes attention along the height axes. Ad-
ditionally, to preserve original spatial information, a residual
connection is adopted. Considering attention mechanism pays
more attention to the global contextual features, we apply two
asymmetric convolutions in input Xs to obtain local features
and multiply them with the attention features to obtain the
integrated features Finte:

Flocal = σ(Up(ζ3×1(ζ1×3(Down(Xs))))) (16)

Finte = Flocal ⊙ (Fglobal +Xs) (17)

To further refine direction-aware features, we apply global
max pooling on Finte and deploy two asymmetric convolutions
to compute horizontal and vertical attention maps and add
them together:

Fdire = σ(ζ3×1(GMP (Finte))) + σ(ζ1×3(GMP (Finte)))
(18)

where Fdire is direction-aware features. Finally, we use a 3×3
convolution to extract refined features, and multiply with the
Fdire to obtain the final spatial features Fs:

Fs = ζ3×3(Finte)⊙ Fdire (19)

3) Integration of spatiotemporal features. To integrate
temporal and spatial features, we adopt a 3×3 convolution to
fuse the Ft and Fs:

Yinte = ζ3×3(Ft + Fs) (20)

where Yinte is the integrated features. We add it to two
branches, and then concatenate them along the channel di-
mension. The final output Y is formed by concatenating the
features and the original input X via a residual connection:

Y = Concat(Ft + Yinte, Fs + Yinte) +X (21)

C. Final loss
In order to optimize the depth maps Dn generated by the

nighttime generator ΦN
d , we introduce a pretrained daytime

model ΦD
d to generate accurate depth maps Dd as priors

to confuse the discriminator ΦA and force the nighttime
generator to mimic. The loss function is as follows:

LD =
1

2Nd

∑
Dd

(ΦA(D
d)− 1)2 +

1

2Nn

∑
Dn

(ΦA(D
n))2

(22)

LG =
1

2Nn

∑
Dn

(ΦA(D
n)− 1)2 (23)

where Nd and Nn are the number of daytime and nighttime
training images. Note that the depth maps here are not fixed
to two frames, but refer to a sequence of depth maps.

In summary, the final loss is composed of Self-supervised
loss, generator loss, and discriminator loss:

Ltotal = Lself + LG + LD (24)

IV. EXPERIMENT
A. Dataset

RobotCar. Oxford RobotCar [31] is a large-scale urban
driving dataset under diverse conditions. We build RobotCar-
Night using left images from the front stereo camera in
sequence 2014-12-16-18-44-24, cropped to 1152 × 672. The
training set has 19k frames from the first five splits (excluding
stationary frames), and the test set has 411 frames from the
fifth and sixth splits. Depth GT for testing is generated using
the official toolbox with front LMS LiDAR and INS data.

nuScenes. nuScenes [3] contains 1000 driving scenes in
Boston and Singapore. We select 60 nighttime scenes, crop
images to 1536 × 768, and use over 10k frames for training
and 500 for testing. Test depth GT is obtained from top LiDAR
via the official toolbox.
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Fig. 5. Qualitative comparison of state-of-the-art methods on the RobotCar dataset, where the key differences are highlighted with red boxes.

B. Implementation Details

The daytime depth estimation network is pretrained based
on Monodepth2 [8] to generate spatiotemporal priors, and the
nighttime network is optimized by self-supervised training and
adversarial learning. The network was trained for 50 epochs on
an RTX 3090 GPU using the Adam optimizer with a batch size
of 8. We set the initial learning rate as 3e−5, linearly warmed
up to 1 × 10−4 after 500 iterations, and halved at the 15th
epoch. To verify the efficiency of our method, we also perform
the experiments on an embedded platform NVIDIA Jetson
AGX Orin. In terms of model evaluation, we choose seven
standard metrics, including: Abs Rel, Sq Rel, RMSE, RMSE
log, and accuracy with the thresholds δ of 1.25, 1.252, and
1.253. Notably, although multi-frame information is utilized
during training, only a single frame is required at inference
time. For comparison, we compare our method with state-
of-the-art monocular nighttime depth estimation approaches,
including ADDS [22], RNW [9], STEPS [10], md4all-DD
[23], Light-Dark [30], SRNSD [11], PromptMono [24], and
ACDepth [29]. All the results are reported under the depth
ranges of 40m and 60m, and all comparison approaches are
trained and tested on the same dataset.

C. Compare with State-of-the-art Methods

Table I summarizes a quantitative comparison of the state-
of-the-art approaches on the Oxford RobotCar dataset [31] and
the nuScenes dataset [3]. From the table, we can observe that
daytime-oriented methods such as Monodepth2 [8], which is
retrained on nighttime data, perform poorly at night. While
recent domain adaptation-based methods and self-distillation
approaches achieve notable performance improvements. Com-
pared with state-of-the-art methods, our method outperforms
other methods on all metrics in the range of 40m and 60m,
demonstrating its effectiveness and robustness. In particular,

on the RobotCar dataset, our network achieves 2.94% and
2.96% improvements in Abs Rel over the SRNSD in the range
of 40m and 60m; while on the nuScenes dataset, our method
achieves a 5.48% improvement in Abs Rel compared with
STEPS in the range of 60m. We believe it is beneficial to
the proposed SPLB that captures the spatiotemporal priors to
guide depth estimation and the 3D projection consistency loss
to maintain consistency in 3D space. In terms of efficiency,
the inference times based on RTX 3090 and NVIDIA Jetson
AGX Orin are 163.9 fps and 36.6 fps, respectively.

Intuitively, we visualize several depth estimation exam-
ples from RobotCar and nuScenes datasets, where the key
differences are highlighted with red boxes. Fig. 5 reveals
the examples from RobotCar, from which we can observe
that all the methods can well estimate the road surface,
but when handling the moving objects and photometrically
inconsistent areas, other methods estimate the wrong depth
maps or produce inconsistent depth values. In contrast, our
proposed method is able to generate clear and smooth depth
maps thanks to the SPLB that extracts the spatial features
of structural objects (such as guideposts, tree trunks, etc.)
and temporal priors of the moving objects (such as cars,
pedestrians, etc.). Fig. 6 demonstrates the examples from the
more challenging nuScenes dataset, from which we can notice
that under low illuminated and noise-corrupted environments,
our model is still able to produce accurate depth maps with
clear contours and well-preserved structures, e.g., the clear
moving car and the distinct guidepost. We believe it is because
the 3D projection consistency loss bridges the objects from the
target and source frames in a shared 3D space, facilitating the
estimation of the objects.

D. Ablation Study
Importance of the 3D Projection Consistency Loss. By

comparing #1 and #2 in Table II, we can find that the 3D
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Fig. 6. Qualitative comparison of state-of-the-art methods on the nuScenes dataset, where the key differences are highlighted with red boxes.

TABLE II
QUANTITATIVE RESULTS ON ROBOTCAR DATASET. THE DEPTH RANGE IS SET TO 60M, AND THE BEST RESULTS ARE MARKED IN BOLD.

# Proj SPLB Error ↓ Accuracy ↑
STLM ASLM Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

1 × × × 0.178 1.758 7.251 0.244 0.742 0.917 0.970
2 ✓ × × 0.176 1.721 7.147 0.239 0.747 0.920 0.971
3 × ✓ × 0.172 1.646 7.083 0.235 0.758 0.922 0.974
4 × × ✓ 0.173 1.653 7.009 0.234 0.757 0.921 0.974
5 × ✓ ✓ 0.168 1.499 6.830 0.228 0.767 0.924 0.977
6 ✓ ✓ × 0.167 1.486 6.722 0.225 0.769 0.926 0.977
7 ✓ × ✓ 0.168 1.493 6.859 0.226 0.767 0.924 0.976
8 ✓ ✓ ✓ 0.164 1.442 6.315 0.218 0.777 0.930 0.981

Fig. 7. Visualization of the ablation study.

projection consistency loss can improve certain performance,
indicating its effectiveness in enhancing geometric consistency
through the alignment of depth predictions in a shared 3D
space and optimizing the daytime prior.

Effectiveness of Spatiotemporal Priors Learning Block
(SPLB). The SPLB consists of two submodules, the spatial-
based temporal learning module (STLM) and the axial spatial
learning module (ASLM), so we conduct three ablation studies
to verify the effectiveness of these submodules. Specifically,
by comparing #2 and #6, as well as #2 and #7 in Table II,

we find that both STLM and ASLM have a critical impact on
the nighttime depth estimation since STLM captures motion-
related variations along the time axis and ASLM extracts the
spatial patterns along the orthogonal axis. When combining
STLM and ASLM (as shown in #5), our model achieves the
best results, effectively demonstrating the advantage of the
dual-branch design and the complementary effect of temporal
and spatial features in depth estimation.

Effectiveness of the combination of 3D Projection Con-
sistency Loss and Spatiotemporal Priors Learning Block
(SPLB). By comparing #2, #3, #4, #5, and #8, we can
notice that the improvements are limited when only deploying
3D Projection Consistency Loss or SPLB. However, by com-
bining 3D Projection Consistency Loss and SPLB, the results
are significantly improved. We believe this is because the 3D
Projection Consistency Loss, as a self-supervised loss, requires
sufficient spatial-temporal features and structural information
for self-learning, and STLM and ASLM precisely provide the
spatial-temporal priors to the 3D Projection Consistency Loss,
thereby strengthening the performance of the network.

Visualization and Analysis. To further investigate the
effectiveness of each proposed component, we utilize Grad-
CAM to visualize the attention maps for each component,
including the 3D Projection Consistency Loss (#2), STLM
(#3), ASLM (#4), and all components (#8) with three
consecutive frames. As shown in Fig. 7, #2 can maintain
attention across frames, but lacks structural information. #3
captures the motion-related changes and maintains consistency
along the time axis. #4 provides clear spatial information,
but cannot maintain temporal consistency. While #8 can
produce more stable and concentrated attention along axes and
maintain consistent attention on 3D structure over time. These
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TABLE III
COMPARISON OF THE NUMBER OF SPATIOTEMPORAL PRIOR FRAMES.

Number of Error ↓ Accuracy ↑
Frames Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Frame(1) 0.179 1.742 7.123 0.744 0.918 0.969
Frame(2) 0.170 1.534 6.681 0.770 0.925 0.975
Frame(3) 0.164 1.442 6.315 0.777 0.930 0.981
Frame(5) 0.168 1.561 6.631 0.769 0.926 0.973

indicate that the 3D projection consistency loss can maintain
prior consistency, and the STLM and ASLM can effectively
capture accurate spatiotemporal representation.

Impact of the Number of Spatiotemporal Priors Frames.
As shown in Table III, we can find that using one or two frames
leads to poor performance since too less frames could not
provide sufficient temporal features. While using more frames
will also lead to a performance drop, since the accumulated
inter-frame errors will increase the day-night differences. Us-
ing three frames can provide a coherent temporal structure that
balances semantic context and temporal consistency, achieving
the best performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present DASP, a self-supervised framework
that exploits spatiotemporal priors for nighttime monocular
depth estimation. Specifically, we first develop an adversarial
network where the discriminator consists of four spatiotem-
poral priors learning blocks (SPLB). Particularly, the SPLB
includes a spatial-based temporal learning module (STLM)
to capture the motion-related variations along the time axis,
and an axial spatial learning module (ASLM) to extract the
spatial depth representation. The combination of STLM and
ASLM provides sufficient spatiotemporal features for depth
estimation. And then we devise a 3D projection consistency
loss to strengthen geometric consistency and daytime priors.
Extensive experiments conducted on two mainstream datasets
demonstrate the effectiveness and stability of our method for
nighttime depth estimation. In the future, we will further
investigate the robustness of our model, especially in intense
lighting environments and heavily blurred scenes.
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