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Abstract. Computerised lung auscultation has the potential to offer
automated respiratory disease follow-up in ambulatory settings. Lung
sound recordings are typically analysed using Sound Event Classifica-
tion (SEC) models. However, during inference, mismatches between the
training and deployment data distributions can lead to significant per-
formance degradation. Transfer Learning (TL) techniques offer a way to
mitigate this problem.

In this study, we evaluate SEC performance on two in-house lung sound
datasets using: (a) models trained on publicly available lung sound data,
and (b) those models enhanced with domain+task TL, domain TL and
semi-supervised domain+task TL methods. We conclude that, for our
setup, domain TL results in good classification performance when only
a domain shift is present. When a task shift exists between source and
target data, partially labelled target data is required to obtain good task
adaptation.

Keywords: Adventitious lung events - sound event classification - do-
main adaptation - transfer learning - DANN.

1 Introduction

In recent years, there has been a growing interest in detecting adventitious events
from lung sounds, e.g. crackles and wheezes [5, 7, 8]. Crackles are explosive sounds
and typically last between 5 and 15 ms. Wheezes are musical in nature with
frequencies in the range of 100 to 5000 Hz, with a typical duration of more than
100 ms [1, 11].

Lung sound datasets used for training Sound Event Classification (SEC)
models typically include recordings from multiple auscultation positions and
a variety of stethoscope devices. These datasets also feature recordings from
numerous participants, each with a unique physique that acts as an individual
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acoustic filter [1], introducing further variability in the captured signals. Two
well-known public datasets that will be used in this study are ICBHI [11] and
HFLungV1 [4].

However, publicly available training datasets are generally limited in size
and diversity, making it unlikely that they capture the full range of variability
encountered in real-world scenarios. As a result, there is a significant risk that
the domain (defined as the feature distribution of the data) of a target dataset
will differ, at least slightly, from that of the source domain training data. This
discrepancy is commonly referred to as domain shift.

To address such domain shifts between source and target datasets, Transfer
Learning (TL) techniques can be employed. In their foundational work, Pan et
al. [10] introduced two key concepts to distinguish TL strategies, i.e. domain and
task transfer learning. As defined above, a domain consists of a feature space
and a marginal probability distribution over that space, while a task comprises a
label space and a predictive function that maps input features to output labels.
Transfer learning may involve transferring knowledge across domains, tasks, or
both.

In this work, both the task (auscultation vs. autogenic drainage therapy,
and different pathologies) and the domain (different stethoscopes) may vary. We
follow the definitions in [10], referring to domain TL as the setting where labelled
source data and unlabelled target data are available, and domain+task TL as
the case where both source and target datasets are labelled. Semi-supervised
domain+task TL then refers to adding unsupervised learning to domain+task
TL, using both source data and (partially) labelled target data.

Domain TL techniques have shown promise in improving lung SEC under
domain shift. For instance, Kim et al. [8] proposed a stethoscope-guided super-
vised contrastive learning method. In this approach, each type of stethoscope is
treated as a separate domain, and contrastive learning is used to map similar
events to nearby regions in the latent space regardless of the recording device.
When evaluated on the ICBHI dataset, their method achieved a 2.16% improve-
ment in average recall, reaching 61.17% in total. Similarly, Hsu et al. [5] found
that models trained on lung sounds recorded from the chest performed poorly
when applied to tracheal recordings and vice versa. To address this, they applied
TL and mixed-set training. Both techniques improved performance, with mixed-
set training yielding the largest gains. In another study, Huang et al. [6] intro-
duced the Contrastive Embedding-Based Domain Adaptation Neural Network
(CEDANN) to distinguish between healthy children and those with pneumonia.
On unseen patients, CEDANN increased sensitivity from 54.74% to 64.17% and
specificity from 58.44% to 68.05%.

These studies demonstrate the potential of TL to improve lung sound classifi-
cation performance under domain and task shift. In this study, we compared the
use of domain—+task TL, domain TL, and a semi-supervised domain-+task TL al-
gorithm across two different public source datasets (ICBHI and HFLungV1) and
two in-house target datasets containing recordings from patients with Chronic
Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). Under the
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assumption of correctly labelled target samples, domain+task TL -which requires
annotation of the target data- can be viewed as an upper bound benchmark, and
semi-supervised domain-+task TL -which is less reliant on labelled target data-
is therefore more practical in real-world applications where labelling is costly or
infeasible.

The following sections are organised as follows: Section 2 outlines the TL
methods that were used, as well as the evaluation metric chosen. Section 3 then
defines the experimental setup. Next, Section 4 describes the results obtained.
Section 5 discusses these results and aims to give explanations on these results.
Finally, Section 6 summarises all work into a conclusion.

2 Methodology

2.1 Transfer Learning

In this section three types of Transfer Learning (TL) are compared, i.e. do-
main+task TL, domain TL, and semi-supervised domain+task TL.

In domain-+task TL, the model is first trained on source data and then fine-
tuned on target data. This process allows the model to adapt to potential domain
shifts [10]. Moreover, the model can be specialised for a slightly modified task,
such as a redefined event class.

For the domain TL approach, the Domain Adversarial Neural Network (DANN)
framework proposed by Ganin et al. [3] was employed. In this setup, a domain
discriminator was added as a secondary output head to the feature extractor
network. Its objective is to identify the domain (here dataset) from which each
input sample originated. During backpropagation, the discriminator’s gradient
is negated before being combined with the classifier’s gradient, and the result
is backpropagated to the feature extractor. The gradient negation encourages
the feature extractor to learn domain-invariant representations, i.e. aligning the
source and target feature distributions. Similar to [12], we normalised the negated
gradient of the discriminator on the feature space, rescaled it with the norm of
the gradient of the classifier and multiplied it with a constant strictly greater
than 1. This result is backpropagated into the feature extractor, prioritising
domain-invariant features over good classification performance. The advantage
of this is that the hyperparameter A\ from the original DANN is eliminated. This
approach is summarised in Equation 1. As an unsupervised approach, DANN
does not require labelled data from the target data. However, DANN cannot
account for class redefinitions (task changes), as opposed to domain+task TL.

Fe =P(x)
(A QSC(]:e)
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where x the input sample, @, the feature extractor, ®. the classifier, ¢, the
domain discriminator, F. the feature extractor’s output (embedding), y. the
true event labels, . the classifier’s event predictions, y4 the true domains, . the
discriminator’s domain predictions, W, the weights of the feature extractor, and
L. and L, refer to the classifier loss and domain discriminator loss, respectively.

Semi-supervised domain+task TL combines elements of both the domain+task
TL and unsupervised DANN approaches. When both a domain shift and a task
shift are expected, unsupervised methods are insufficient. In such cases, a limited
amount of labelled target data is required to adapt the model to the modified
task. By combining the unsupervised DANN strategy with domain-+task TL,
the number of necessary labelled target samples could potentially be reduced.

Figure 1 summarises all TL methods considered.

2.2 Evaluation

Area Under the Receiver Operating Characteristic curve (AUROC) was chosen
as the evaluation metric. Preliminary studies showed that decision thresholds
vary between patients. Therefore, AUROC was chosen as the evaluation metric
since it assesses the classifier’s ranking performance and is not dependent on a
decision threshold.

TL Method Flowchart

From scratch on
source/target data

Domain | task TL from Initialise with trained from Fine-tune classifier using Fine-tune model using all
source to target data scratch on source data all labelled target data labelled target data

Semi-superv. domain-+target Initialise with domain TL, Fine-tune cla using
TL, x% of target data labelled remove domain discriminator X% labelled target data

Initialise with trained from Pre-train dom. discriminator using
scratch on source data source and unlabelled target data
Domain TL from

source to target data v

TIrain DANN using source and
unlabelled target data

Fig. 1. Flowcharts visualising the various TL setups tested.
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3 Experiments

3.1 Datasets

The ZOL in-house dataset was collected at Ziekenhuis Oost-Limburg (ZOL) hos-
pital using a Littmann 3200 stethoscope and contains 346 1-minute auscultation
recordings from 8 patients suffering from Chronic Obstructive Pulmonary Dis-
ease (COPD). It can be subdivided into two sets. The first set was composed by
a trained annotator and was later reviewed by a physician. These data contain 5
patients (300 recordings) and were split into 5 training and validation folds with
equal patient distributions across the folds. The second set was composed by
majority vote over three trained annotators and contains 3 patients (46 record-
ings). This second set served as our independent test set. Due to the patient
pathology only wheezing events are present.

The Compass in-house dataset was collected at the University Hospital Brus-
sels (UZ Brussel). It contains data from 5 patients with either COPD or Cystic
Fibrosis (CF) during autogenic drainage therapy. Trained annotators labelled
the audio for crackles, rales, crepitations, and wheezes. Crackles, rales and crepi-
tations were then grouped into one class “crackles” as these are discontinuous
adventitious sounds, and to be consistent with the event classes in the other
datasets. Leave-one-patient-out cross-validation was used to create 5 test folds.
The remaining 4 patients formed the training and validation sets. Data were
recorded using a ThinkLabs One stethoscope on the chest anterior auscultation
positions.

The ICBHI public dataset [11] was first presented at the International Confer-
ence on Biomedical Health Informatics (ICBHI) in 2017. In total, 920 recordings
(5.5 h) were recorded from 126 participants suffering from various respiratory
diseases and across various auscultation positions. Four unique stethoscopes were
used, each with their own sampling rate. We divided the official training set into
5 cross-validation folds by sampling the recordings in a stratified way such that
the distribution of patients across folds was equal. The official test set was not
used in this work.

The HFLungV1 public dataset [4] was collected by F. Hsu, S. Huang, C.
Huang et al. In total, 9,765 audio files were recorded, each with a duration of
15 s. Data were recorded with either a Littmann 3200 stethoscope or with a
Heroic Faith Type 1 device at various auscultation positions. Both devices have
a sampling rate of 4000 Hz.

If a lung sound dataset includes tracheal recordings, these data are excluded
due to their distinct channel characteristics, which differ significantly from those
of chest and back recordings [1,5]. Therefore, this study focusses exclusively on
lung sounds recorded over the chest and back.

3.2 Taplpcl ppgvaasisss the stethoscopes that occur in each of the datasets.

In a first step, all audio were resampled to 4000 Hz, since most adventitious
lung events have frequencies well below 2000 Hz [1]. As a second step, a twelfth-
order Butterworth high-pass filter with cut-off frequency equal to 60 Hz was used
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Table 1. Stethoscopes used in each dataset.

| Dataset, Stethoscope —|AKG C417L|/HF Type 1|Littmann 3200|Littmann C2SE|Meditron|ThinkLabs One
ICBHI 67% 1% 16% 16%
HFLungV1 58% 42%
Compass 100%
ZOL 100%

to limit the interference of heart beats. For each stethoscope and auscultation
position, time-domain audio amplitudes were rescaled such that the maximum
amplitude across recordings of the same stethoscope and auscultation position
is equal to 1. Third, 1 s audio chunks were converted to spectrograms using
Short-Time Fourier Transform (STFT) with 25 ms windows and 10 ms steps.
This resulted in 65 frequency bins. The Hann window function is applied. The
magnitude spectrogram was converted to log-power scale. When needed, zero
padding was applied at the end of the audio recording.

3.3 Model & Training

The Convolutional Neural Network (CNN) architecture from previous work [7]
was improved. The CNN consists of 4 convolutional blocks. Each of these blocks
performs a 2D convolution operation, followed by ELU activation [2]. Next, 2 x 2
max pooling is performed. The first two blocks have 5 x 5 convolutional kernels,
while the last two blocks have 3 x 3 kernels. The multi-label classifier contains
two hidden dense layers with ReLU activation. The first hidden dense layer has
128 neurons, and the second hidden dense layer has 32 neurons. Weight decay
was set to 0.01. The batch size was always equal to 256 samples. Dropout was
applied on all layers with a drop rate of 50%. Multi-label output was applied
for crackle and wheeze classification. Since all datasets suffer class imbalances, a
stratified batch sampler was always used that yields the same class distribution
inside each batch of data. The AdamW optimiser was used [9].

For domain TL and semi-supervised domain+task TL, a discriminator net-
work is necessary to classify the domain an input sample originates from. This
discriminator network consists of 2 hidden dense layers of 32 neurons each. Both
layers have ReLU activation. Finally, the output layer consists of 1 neuron with
sigmoid activation.

3.4 Transfer Learning

With domain-+task TL, the model was first pre-trained on publicly available
lung sound data. In this work, we opted for ICBHI and HFLungV1 lung sound
datasets as the source datasets. Next, the model was fine-tuned on our in-house
ZOL and COMPASS target datasets. During this fine-tuning, only the classifier
was trained during the first 50 epochs. Afterwards, the entire model was fine-
tuned for 200 epochs.

In our implementation of the unsupervised DANN network, the domain dis-
criminator consisted of two fully connected hidden layers, each with 32 neurons
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and ReLU activation. The output layer contained a single neuron with sigmoid ac-
tivation to perform binary domain classification (source vs. target). The training
process began by pre-training the discriminator for 50 epochs to reliably distin-
guish between source and target domains. Afterwards, the feature extractor was
updated jointly using both the classifier and negated discriminator gradients.
This setup will be referred to as “domain TL”.

We also tested a setup in which the best unsupervised DANN was further
trained using varying portions of labelled target data. Here, only the classifier
was trained; the weights of the feature extractor were kept constant. The domain
discriminator was removed. This setup will be referred to as “semi-supervised
domain+task TL with x% of target data labelled”.

4 Results

Table 2 shows the results for the ICBHI source data, and Table 3 gives the results
for the HFLungV1 source data.

4.1 Training from scratch

The upper block of Tables 2 and 3 gives the AUROCSs when training after random
weight initialisation (He uniform). For Compass data, it can be seen that models
trained from scratch using the target data performed best, but are inconsistent
(high standard deviation). Models trained on the public data (source) and eval-
uated on the in-house Compass (target) data performed worse, indicating that
a domain and/or task shift exists between these datasets.

For ZOL target data, training from scratch on ICBHI source data gives a
significant! improvement (p < 0.01) compared to training on the ZOL target
data. The differences in AUROC for wheezing between both source datasets and
the target dataset are smaller for the ZOL data than for Compass data. This
will be further detailed in the Discussion section.

4.2 Domain+task TL

The second block of Tables 2 and 3 shows the results of the domain+task TL
experiment. In this experiment, models were first pre-trained using public source
data and were then fine-tuned on the in-house target data. This domain+task
TL could be considered as an upper bound for what is possible through TL.

Compared to training from scratch on the Compass target data, there is no
improvement for crackles, and only a small improvement from 74.99 £ 9.57% to
75.74 £ 6.63% for wheezes (not significant) when fine-tuning from ICBHI data.
When first training on HFLungV1 source data and later fine-tuning on Com-
pass target data, no significant improvement occurs when compared to directly
training on Compass target data.

! Two-sided Wilcoxon signed-rank test
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Table 2. Area under the ROC curve (AUROC) for ICBHI source data and both in-
house target datasets. All results are mean + sample standard deviation across 15

runs.
ICBHI source data |Compass, Leave-One-Patient-Out|ZOL, Test Set
AUROC AUROC AUROC
TL Method
evho crackles (%) wheezes (%) wheezes (%)
_ Fromscratch on 69.60 + 12.99 74.99 + 9.57 82.20 + 1.33
in-house data (target)
From seratch on ICBHL | o5 g 4 766 4077 + 1153 84.08 + 1.78
public data (source)
Domain ttask TL from - cq 15 4 14 65 75.74 + 6.63 82.74 + 1.47
source to target
Semi-superv. domain+task
A2 £ 7. 74 + 4. .95 £ 1.72
TL, 75% of target data 67 e 3.1 59 83.95 7
Semi-superv. domain+task
66.71 £ 6.17 73.01 £+ 4.25 83.40 £ 1.56
TL, 50% of target data
Semi-superv. domain+task
b8 + 5.2 79 £ 5.2 .35 £+ 1.
TL, 25% of target data 65.58 £+ 5.27 70.79 £ 5.28 83.35 50
Domain TL from 49.88 + 6.02 46.91 + 9.53 83.75 + 2.15
source to target data

When comparing training from scratch on the ZOL target data and do-
main+task TL from HFLungV1, a significant improvement in wheezing AUROC
(p < 0.005) occurs. For ICBHI source data, no improvement can be seen.

4.3 Domain TL

The lowest block of Tables 2 and 3 shows the results of the domain TL ex-
periment. For domain TL from ICBHI to Compass, the AUROC for crackles
decreases significantly (p < 0.05) from 53.59 + 7.66% to 49.88 + 6.02%. The
AUROC for wheezes significantly improves (p < 0.025) from 40.77 + 11.53% to
46.91 £ 9.53%. For HFLungV1 to Compass, both classes improve (not significant
for crackles, p < 0.05 for wheezes).

For ZOL data, there is no improvement in wheezing AUROC for both source
datasets.

4.4 Semi-supervised domain+task TL with subset of labelled target
data

The third block of Tables 2 and 3 gives the results when the unsupervised DANN
is used as an initialisation and the classifier is fine-tuned using a subset of labelled
target data.

For ICBHI source data, both crackle and wheeze AUROCs improve signifi-
cantly (p < 0.005) when adding 25% of labelled Compass data. When adding an
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Table 3. Area under the ROC curve (AUROC) for HFLungV1 source data and both
in-house target datasets. All results are mean + sample standard deviation across 15
runs.

HFLungV1 source data [Compass, Leave-One-Patient-Out|ZOL, Test Set
AUROC AUROC AUROC
TL Method
erho crackles (%) wheezes (%) wheezes (%)
_ From scratch on 69.60 & 12.99 74.99 + 9.57 82.20 + 1.33
in-house data (target)
From scratch on HELungVll g o 4 6 59 38.74 + 8.54 65.45 + 1.95
public data (source)
D i k TL f
omain-ftas T 68.25 + 7.84 74.03 + 6.64 83.72 + 1.06
source to target
Semi-superv. domain+task
89 £ 7. .69 £+ 9.2 83 + 2.
TL, 75% of target data 63.89 + 7.80 67.69 + 9.29 80.83 55
Semi-superv. domain task| o) o), g o) 67.01 + 10.03 80.66 + 2.78
TL, 50% of target data ' ' ' ' ' '
Semi-supery. domain ftask| o) o 4 7 49 62.27 £ 10.11 TTAT £ 2.92
TL, 25% of target data ’ ' ' ' ' '
Domain TL from 52.07 + 6.20 45.80 + 7.14 66.37 + 5.53
source to target data

additional 25% of labelled Compass data, there is again a significant (p < 0.025)
improvement in wheezing AUROC. When using HFLungV1 as the source data,
the same findings hold.

For ZOL target data, there is no improvement in adding a portion of labelled
target data when building further from ICBHI source data. When starting from
the unlabelled DA on HFLungV1 source data, a significant improvement (p <
0.005) can be seen in wheezing AUROC. When adding an additional 25% of
labelled ZOL data, again a significant improvement (p < 0.005) of 3.19% occurs.

5 Discussion

5.1 Training from scratch

The first block in Tables 2 and 3 shows the model performance when training
from scratch starting from either source or target data. When training from
scratch on Compass target data, it can be seen that the standard deviations are
large, indicating that the models perform inconsistently. One possible explana-
tion for this is the limited number of patients in this dataset, i.e. the training and
validation sets always contained data of 4 patients, and the test set always had
one unseen patient (leave-one-patient-out test set). This inconsistency indicates
the need for more training data, which leads to TL.

When training from scratch on source data and evaluating on Compass target
data, the classification performance is bad. A possible explanation is that the
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ThinkLabs One stethoscope used to record the Compass data is not present in
any of the other datasets, as indicated in Table 1. This could then be solved
by adapting to the new domain. A second possible explanation could be the
difference in the definition of the “crackle” class, i.e. Compass data also included
rales and crepitations while the other data only included crackles. This requires
adapting the model to cope with the new task, which can only be achieved by
(semi-supervised) domain-+task TL.

For ZOL target data, the wheezing AUROC increases when training on
ICBHI source data. One possible explanation is that the increased amount of
training data helps, and that the presence of multiple stethoscopes in ICBHI data
acts as an augmentation which helps create robustness. For HFLungV1 source
data, the wheezing AUROC (65.45 + 1.95%) is lower for the ZOL target data
compared to training on ICBHI source data (84.08 + 1.78%). Unfortunately,
it is hard to find possible causes for this, as the majority of HFLungV1 data
(261 of 279 patients) lack details about the patient population. For instance,
HFLungV1 does contain data of mechanically ventilated patients, which is not
present in any of the other datasets [4]. Another possible explanation could be
that the learnt features differ much from the features learnt on ICBHI data.

5.2 Domain-+task TL

The second block in Tables 2 and 3 gives the AUROCs when first training the
model on source data, and then fine-tuning the model on target data. This
approach can be interpreted as an upper bound in model performance (best
case).

When first training on ICBHI source data and then fine-tuning on Compass
target data, the classification performance increases. This could indicate that the
model adapts to the new task (different pathologies and redefinition of crackle
class). When comparing the results of domain+task TL against training from
scratch on target data, the standard deviations decrease. This indicates that
the models are more consistent after domain+task TL and could confirm that
training from scratch on Compass data is difficult due to the limited number of
patients. The same story holds when first training with HFLungV1 source data.

When starting from HFLungV1 and fine-tuning on ZOL target data, an im-
provement in wheezing AUROC occurs. Therefore, it is possible that a domain
shift exists between HFLungV1 and ZOL datasets. The wheezing AUROC does
not improve after domain-+task TL from ICBHI to ZOL. A possible explanation
is that the model overfits on the ZOL training data, due to the small dataset
size.

5.3 Domain TL
The bottom block in Tables 2 and 3 shows the model performance when first

training the model on source data, and then applying unsupervised DANN using
both source and target data for the domain discriminator. By using DANN; the
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feature distributions of source and target data should align better. When com-
pared to training from scratch on source data, domain TL often helps increase
model performance. However, for Compass target data performance on crackle
classification decreases from 53.59 + 7.66% to 49.88 + 6.02%. One possible expla-
nation for this decrease is that Compass data also contains other discontinuous
adventitious sounds (rales and crepitations), which were grouped together with
crackles. Since these do not occur in ICBHI, the feature extractor should be
learnt using labelled target data to include these (task adaptation).

For ZOL target data, wheezing AUROC decreases from 84.08 + 1.78% to
83.75 £+ 2.15% (ICBHI) and from 65.45 + 1.95% to 66.37 + 5.53% (HFLungV1),
indicating that the model “unlearns” features that were learnt from the source
data.

5.4 Semi-supervised domain-+task TL with subset of labelled target
data

The third block in Tables 2 and 3 gives the model’s classification performance
when fine-tuning the classifier after domain TL. The feature extractor’s weights
were kept constant. For both source datasets, it can be seen that using 25% of
labelled target data already results in an improved classification performance.
The benefit of using labelled target data, is that the model can also adapt to a
new task, whereas only applying domain TL can only adapt to new domains.

When doing semi-supervised domain-+task TL from ICBHI to ZOL data, no
improvement can be seen. This shows that there is only a domain shift when
moving from ICBHI to ZOL data. This domain shift can be tackled by the
domain TL.

6 Conclusion

This work evaluated domain+task TL, domain TL and semi-supervised do-
main-+task TL in the context of lung sound event classification. First, CNN
models were trained from scratch using either source or target data. Second,
domain+task TL was applied by pre-training the CNN models on public lung
sound data and fine-tuning on our in-house data. This resulted in an upper
bound for classification performance, but requires the entire target dataset to be
labelled. Third, domain TL was performed using unsupervised Domain Adver-
sarial Neural Network (DANN). Since domain TL cannot adapt to the new task,
the resulting models were not suitable for deployment. Fourth, semi-supervised
domain+task TL was tested by fine-tuning the classifier using a portion of la-
belled target data. Adding 25% of labelled target data already increased the
classification performance.

Future work could investigate whether incorporating additional context, e.g.
the type of stethoscope or the auscultation position, into the model input can
enhance performance without necessitating changes to the model parameters.
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