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recreational trails during daytime than
at night.

e Red fox preferred areas with higher
recreational trail density.

ARTICLE INFO

Keywords:

Human-wildlife interactions
Recreation

Camera traps

Protected areas
Spatiotemporal patterns
Seasonality

Wild boar

Roe deer

Red fox

GRAPHICAL ABSTRACT

-
sl Hahde Hfde HEd

2 eo o ° °

™ oo o ° °

o © ) °

SUMMER AUTUMN WINTER

ABSTRACT

Protected areas face the challenge of balancing conservation goals with increasing recreational use, which can
strongly influence behavioural changes of wildlife and, consequently, affect ecosystem functioning. Under-
standing the impacts of various recreational activities on wildlife behaviour is essential for guiding targeted
management strategies and supporting sustainable conservation practices. In the 60 km?, highly visited Hoge
Kempen National Park (Belgium), we assessed habitat preferences and the seasonal impact of hiking, mountain
biking, and tarmac cycling trail densities on the land use of roe deer, wild boar, and red fox. From May 2018 until
May 2019, camera traps were used to monitor wildlife. Since individual animals could not be uniquely identified
and the detection is imperfect, we used N-mixture models to estimate spatial variation in their land use, given
their detection probability. We revealed species-specific seasonal differences in the impact of recreational trails
and habitats. From all recreational trail types, hiking had the most negative impact on land use of roe deer and
wild boar, while the impact of cycling and mountain biking trails was only negative in Spring. Furthermore,
hiking and cycling trails had a more negative impact on land use of roe deer during the day than at night. In
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contrast, red fox selected areas with high recreational trail density in multiple seasons. These findings underscore
the difference and seasonality in the impact of various recreation types on wildlife land use, highlighting the
need for recreation monitoring and adaptive management strategies to mitigate or leverage recreational pres-

sures on wildlife.

1. Introduction

The establishment of protected areas is a cornerstone of contempo-
rary conservation strategies, aimed at preserving biodiversity and nat-
ural resources (Graham et al., 2019; Haight and Hammill, 2020). This
approach is typically guided by a dual mandate: to safeguard ecosystems
and species from anthropogenic pressures while simultaneously
providing opportunities for public enjoyment and recreation (IUCN,
1994; Diaz et al., 2015; IPBES, 2019). Balancing these objectives ne-
cessitates careful management to ensure that recreational use does not
undermine conservation goals, thereby promoting both ecological
integrity and human well-being. Protected areas have become increas-
ingly popular for outdoor recreation worldwide. This trend helps people
reconnect with nature, which is especially important in our urbanised
society and significantly benefits mental well-being (Barragan-Jason
et al., 2022). Furthermore, nature tourism is a crucial economic factor
for local communities, making visitor attraction an essential objective
for protected areas alongside conservation efforts. However, despite its
growing popularity, challenges regarding the negative impacts of out-
door recreation on wildlife arise (Schulze et al., 2018). These challenges
are especially prominent in densely populated regions where a trade-off
between conservation and recreation often exists. Human activities not
only physically change landscapes through infrastructure development
but also affect ecological communities.

Protected areas and their dual mandates are becoming increasingly
important in our human-dominated world. While research on recreation
ecology has been slowly increasing, the body of literature on this subject
remains relatively small, with numerous knowledge gaps still to be
addressed (Larson et al., 2016). This is particularly true for smaller
protected areas located in densely populated regions with high recrea-
tional use. In these areas, it is crucial to recognize the impacts of non-
consumptive recreation on wildlife for effective ecosystem manage-
ment both within and beyond protected areas.

Non-consumptive recreation contributes to a “perceived risk of pre-
dation” among various wildlife species (Lasky and Bombaci, 2023). This
perceived risk of predation is widely recognized to influence wildlife
behaviour (Palmer et al., 2017; Prugh et al.,, 2019), resulting in a
“landscape of fear” where species modify their behaviour or avoid areas
with higher perceived risk. Within this framework, humans are often
considered apex predators, possibly inducing fear-driven behavioural
changes (Tolon et al., 2009; Ciuti et al., 2012). Wildlife responses to
human activity can be multifaceted, ranging from fine-scale behavioural
adaptations in more resilient species, such as changes in diel activities
(Gaynor et al., 2018; Nickel et al., 2020; Anderson et al., 2023; Fennell
et al., 2023; Burton et al., 2024; Procko et al., 2024), to avoidance of
optimal habitat resulting in suboptimal habitat use, in more sensitive
species (Heinemeyer et al., 2019; Procko et al., 2024). Moreover, rec-
reational activities can adversely affect reproductive success (Beale and
Monaghan, 2005; Baudains and Lloyd, 2007; Weterings et al., 2024),
potentially leading to population-level consequences. These varied re-
sponses highlight the complexity of wildlife interactions with human
activities, posing significant challenges for the management of protected
areas striving to develop sustainable recreation systems that satisfy
recreational demands while minimising ecological impacts (Miller et al.,
2022). While much of the literature emphasises the negative impacts of
recreation on wildlife and proposes protective conservation strategies
based on these findings, it is also important to consider the potential
positive role of recreational activities in managing invasive species or
those with invasive characteristics. The effects of recreation could

potentially be leveraged to help control invasive populations, thereby
supporting broader conservation goals. The impact of human recreation
on wildlife is highly species- and context-specific, varying across spatial
and temporal scales (Dertien et al., 2021; Suraci et al., 2021). Studies of
terrestrial recreation impacts often focus on hiking, while fewer studies
investigate the impacts of other popular recreational activities like
cycling and mountain biking (MTB) (Larson et al., 2016). Furthermore,
most studies only focus on large areas combined with short time frames
of several weeks or months without taking into account possible tem-
poral differences (i.e. seasons, holidays, week/weekend) in the impact of
recreation. Nevertheless, most wildlife species may exhibit different
responses to recreational activities over time (i.e. day vs. night, seasonal
changes), based on their ecology and the changing natural environment.
Most studies focus on the effects of recreation on wildlife in large pro-
tected areas, often overlooking the impacts in smaller protected areas
with fewer spatial refuges (Naidoo and Burton, 2020; Nickel et al., 2020;
Sytsma et al., 2022; Salvatori et al., 2023; Marion et al., 2024; Procko
et al., 2024). As urbanisation and population growth continue, these
smaller protected areas are becoming increasingly critical for conser-
vation (Volenec and Dobson, 2020). To manage protected areas more
effectively, we need to better understand the seasonal responses of
different wildlife species to a variety of non-consumptive recreational
activities (Dertien et al., 2021).

We investigate the seasonal impact of different recreational trail
types (hiking, cycling, and MTB) on the space use of wildlife, using a
camera trap network in the Hoge Kempen National Park (NPHK) in
Belgium. We hypothesise that recreation negatively affects the spatio-
temporal behaviour of roe deer and wild boar, resulting in reduced space
use or avoidance of areas with high trail densities compared to areas
with lower trail densities. We expect this spatial avoidance to be most
pronounced during the daytime when human activity peaks (Wevers
et al,, 2020) and also to vary seasonally based on the ecological
behaviour of each species (e.g. reproductive season), the varying natural
resources, and the seasonal variability in human activities. Because
hiking trails and hikers are most abundant in NPHK, and hikers tend to
move more slowly and often engage in conversation, which could have a
more disturbing impact on wildlife (Zeller et al., 2024), we hypothesise
that the avoidance of areas with high hiking trail density is greater
compared to areas with high MTB and cycling trail density. For red fox,
we hypothesise a preference for areas with high recreational trail den-
sity, as this species is often attracted to human presence and associated
infrastructure (Erb et al., 2012; Suraci et al., 2021). Additionally, we
expect the influence of recreational trails to vary seasonally, reflecting
both the ecological behaviour of red fox and seasonal fluctuations in
human activity. In this study, we distinguish between MTB and cycling
trails because they differ in their physical characteristics and usage
patterns; MTB trails in NPHK are nonlinear and naturalistic, while
cycling trails are often tarmacked and straight, potentially resulting in
differential impacts on wildlife.

2. Material and methods
2.1. Study area

The study area (longitudes: 5.552°W - 5.703°W; latitudes: 50.899°N
- 51.016°N) is situated in the core region of Hoge Kempen National Park
(NPHK), eastern Belgium (Fig. 1). It has a total surface area of ~60km2,
consisting of large areas of planted pine forests (41 % Pinus sylvestris and
Pinus nigra). These afforested regions are undergoing a systematic
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transition towards a more natural deciduous forest ecosystem, wherein
Quercus spp. and Betula spp. dominate (9 %). The park includes valuable
dry (Calluna sp.) and wet (Erica sp. and Myrica sp.) heathland (11 %),
along with shrub vegetation (7 %) predominantly dominated by Molinia
sp. NPHK has altitudes ranging from 50 to 100 m above sea level. The
study area has a cool, temperate, and moist climate, with a mean annual
temperature of 10.9 °C and 816.4 mm rainfall (Klimaatstatisticken van
de Belgische gemeenten Maasmechelen (nis 73107), n.d.).

The study area is embedded in a densely populated urban matrix,
with an average of 443 inhabitants per km? in the surrounding munic-
ipalities (Statbel, n.d.). Hence, the region is extensively utilised for
recreational purposes including walking, cycling, MTB, horse riding,
and hunting. The study area features an exceptionally dense network of
recreational trails, with approximately 100 km of advertised hiking
trails (1.657 km/kmz), 50 km of cycling paths (0.814 krn/krnz), and 60
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km of designated MTB routes (1.008 km/km?). The estimated annual
number of visitors within our study area exceeds 500,000 (Visitor
counters from NPHK (2018)). Furthermore, there are five official
entrance gates at the borders of the study area, providing visitors with
parking opportunities and direct access to these various recreational
trails. NPHK faces typical challenges, including increasing human rec-
reational pressures, limited data on human usage and wildlife behav-
iour, and a lack of comprehensive understanding of how these factors
influence management strategies. Additionally, the park is becoming
increasingly isolated from other prime wildlife habitats due to sur-
rounding road networks, fencing and urban expansion.

2.2. Camera trapping network

A systematic random sampling design of 40 motion-sensing camera

STUDY AREA
CAMERA LOCATION
HIKING TRAIL
CYCLING TRAIL

MTB TRAIL

Fig. 1. Map of the study area in Hoge Kempen National Park (Belgium). Camera trap locations, officially designated hiking, cycling and mountain bike trails are
illustrated on the map. The inset map (lower left) shows the study area within Belgium.
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traps (CTs) (Reconyx HC600 Hyperfire) was applied in NPHK. We
divided the study area into 40 compartments of approximately 1,5 km?
and superimposed a grid of 300x300m on these compartments. Each
month, we randomly selected one grid cell within each of the 40 com-
partments and used their midpoints as the sampling location to set up a
single camera trap (Fig. B1). We deployed camera traps for three
consecutive weeks and relocated them in the fourth week. This rotation
scheme resulted in 12 deployments per year, with each 1.5 km?
compartment containing three randomly selected CT locations per sea-
son, corresponding to approximately 120 sampled locations per season.
The deployment duration was based on a pilot study in NPHK and
sampling design guidelines developed for occupancy models for general
species (MacKenzie and Royle, 2005; Shannon et al., 2014). In total,
after accounting for camera malfunction or stolen devices, 471 unique
sites were sampled with an average trapping effort of 29 days per site.
All CTs were mounted to the nearest tree ~50 cm above ground, facing
North. No bait was used to lure animals. Locations on trails or within
non-accessible industrial sites were excluded. Each camera trigger
initiated a series of ten successive photographs, with no interval be-
tween triggers. In addition, time-lapse pictures were taken every 12 h to
control for camera malfunction. Following Bollen et al. (2024), se-
quences of photographs (ten photos per trigger) were deemed inde-
pendent if they were separated by a minimum of 2 min (i.e. the default
‘time-to-independence’ for Agouti projects). Each independent sequence
was regarded as representing a distinct observation of roe deer, wild
boar or red fox and the raw counts were defined as the sum of unique
individuals within these sequences (Wevers et al., 2020; Bollen et al.,
2024). Annotation of photograph sequences was done using the Agouti
software platform (Casaer et al., 2019; Bubnicki et al., 2023). For this
paper, we focused on images obtained from May 2018 to May 2019. This
selection encompassed a total of 13,585 operational camera days.
Within these periods, we identified and documented observations of 12
wildlife species (excluding birds, domestic species and humans, Table
Al). Among these, roe deer (Capreolus capreolus), wild boar (Sus scrofa),
and red fox (Vulpes vulpes) provided sufficient data to model the seasonal
effect of covariates on space use. Moreover, we observed 5092 roe deer,
1189 wild boar and 921 red fox.

2.3. Recreational pressure and habitat metrics

To develop a metric for recreational pressure, we used trail density
from officially designated, marked trails as a proxy for various recrea-
tional activities, including hiking, cycling, and MTB. Using NPHK’s
official website data, we mapped all officially designated hiking trails,
MTB trails, and biking routes. More specifically, the density of each type
of recreational trail within each 300x300m grid cell was calculated by
summing the total length of trails in metres within the cell boundaries.
The distribution of trail length covariates within grid cells can be con-
sulted in Fig. B2. Trail length variables were standardised (i.e. z-trans-
formed) using the ‘scale’ function in R to ensure comparability across
covariates. These trails are actively promoted by NPHK management
and are well-known to visitors through multiple sources such as sign-
posts, the NPHK website, and popular sports applications like Komoot
and Fietsnet (Fietsnet, n.d.; Hoge Kempen National Park, n.d.; Komoot,
n.d.).

Moreover, we collected data from twelve strategically placed visitor
counters along the officially designated hiking trails, recording daily
visitor numbers throughout the study period, which were used to
calculate the seasonal average daily visitor counts to understand the
seasonal variation in hiker numbers (Fig. B3). This information provided
additional context for interpreting the seasonal impact of hiking trail
density on our results. Data on visitor numbers for cycling and MTB were
unavailable.

In addition to recreational trail data, we integrated habitat-related
landscape metrics using Belgium’s Corine Land Cover map (EEA,
2020). We determined the proportion of coniferous forest, deciduous
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forest, mixed forest, heathland, transitional woodland-shrub, wetland,
and urban areas for each grid cell. These habitat metrics allowed us to
control for landscape composition when assessing the impact of recre-
ational trails on wildlife behaviour, ensuring that our findings accounted
for both recreational and habitat-related factors. Habitat covariates,
calculated as proportions between 0 and 1, were standardised (i.e. z-
transformed) using the ‘scale’ function in R to ensure comparability
across covariates.

2.4. Spatial analysis

The collected CT data were analysed using binomial N-mixture
models via the R package unmarked (Fiske and Chandler, 2011) to assess
the relationship between habitat and human disturbance covariates, and
relative abundance of wild boar, roe deer and red fox. N-mixture models
are frequently used to study the abundance of animals in relation to
human disturbance and environmental covariates while accounting for
imperfect detection (Bubnicki et al., 2019; Chaudhuri et al., 2022; Bol-
len et al., 2024; Rozylowicz et al., 2024). While N-mixture models are
typically applied in large-scale designs with grid cells equal to or larger
than the animals’ home ranges, we used them in a small-scale design
with grid cells much smaller than the animals’ home ranges, necessi-
tating a relaxation of the assumption that sampling units remain closed
to changes in abundance during the survey period. We therefore inter-
preted estimated abundance as the predicted land-use intensity, while
detection probability was defined as the probability that an individual of
one of the studied species being present in a grid cell is detected
(MacKenzie and Nichols, 2004; Efford and Dawson, 2012).

We generated species detection histories by grouping the number of
observed individuals at daily intervals, utilising the camtrapR package
(Niedballa et al., 2016). Furthermore, we segregated observations into
day and night categories using sunset and sunrise times relative to the
centre of the study area through the R package overlap (Ridout and
Linkie, 2009), resulting in a 24-hour detection history and two separate
day and night detection histories. This approach aimed to explore
temporal disparities in the influence of recreational trail density and
habitat on land-use intensity of wildlife, given the diel activity patterns
of recreationists in NPHK (Wevers et al., 2020).

Before fitting N-mixture models, we screened all covariates for
collinearity using the Spearman’s rank correlation with a threshold of p
=10.7| (Dormann et al., 2013). An important aspect of fitting N-mixture
models is the choice of the parameter ‘K’. The parameter ‘K’ represents
the upper bound on the possible population size (abundance) at each
site. It is crucial to select an appropriate value for ‘K’ since it influences
the stability and accuracy of the parameter estimates produced by the
model. To determine a suitable value for ‘K’, we evaluated the stability
of parameter estimates across a range of ‘K’ values. Specifically, we fit a
series of null models (i.e. models without covariates) to the data, varying
‘K’ between 25, 50, 100, 200, and 500, ensuring that these values
encompassed the maximum number of observations per day in a grid cell
for a given wildlife species (Fiske and Chandler, 2011; Kéry, 2018). We
developed a set of 23 a priori abundance models containing a null model
and 22 multivariate models (Table A2). Using a two-step approach as
described by MacKenzie et al., 2017; we started by identifying the
optimal detection model. This detection model was then used to deter-
mine the best-fitting abundance model. After model fitting, model se-
lection was conducted using Akaike’s Information Criterion (AIC) to
assess the relative quality of the models (Akaike, 1974). Top-ranked
models with AAIC < 2 and greater weight than the null model were
deemed competitive. We evaluated the significance of covariate effects
of the top-performing model using 95 % confidence intervals (CIs) based
on the covariate estimates and standard errors from the model summary
(Supplementary Tables A6, A7, A8, A9, A10), considering intervals that
did not overlap zero as statistically significant.

Detection was modelled using three potential covariates: month of
the year, julian day of the year, and transformed julian day of the year
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(Table A3). These date-related variables in the detection model allowed
for correction of variation in detectability due to seasonal changes in
cover, temperature, foliage, and animal behaviour. To address the
circularity of time, Julian dates were sine- and cosine-transformed
(Richter et al., 2020). Land-use intensity was modelled using selected
candidate environmental covariates to account for factors such as cover,
food availability, seasonality, and human recreational disturbance. To
assess the impact of various recreational trail densities, we incorporated
covariates such as hiking trail length, MTB trail length, and cycling trail
length within a grid cell. As mentioned earlier, these trail lengths only
encompass officially designated trails promoted and visualized by the
National Park (Fig. 1). To ensure that the effects of recreation were not
over- or underestimated due to omission of key environmental factors,
we incorporated landscape covariates representing habitat composition,
including the proportions of coniferous forest, deciduous forest, mixed
forest, transitional woodland-shrub, heathland, wetland, and urban
areas. To evaluate potential seasonal variations in the effects of recre-
ational trails and habitat on wildlife land-use intensity, we included
interaction terms between recreational trail densities and seasons, as
well as habitat and season (spring, summer, autumn, winter, based on
the meteorological seasons in Western Europe) (Table A2).

To account for potential spatial autocorrelation, we incorporated
spatial random effects using the ubms package in R (Kellner et al., 2022).
We first evaluated models including a spatial random effect defined by
neighbouring cells at three scales (i.e. 300 m, 600 m, and 900 m), and
compared model performance based on differences in expected log
predictive density (elpd). The best-performing spatial scale was then
added as a random effect to the previously selected top N-mixture
model. We assessed whether this addition improved model fit by
comparing elpd differences between models with and without the
spatial random effect. The final model was then used to evaluate the
estimated effects of covariates on wildlife space use intensity.

3. Results

In the following analyses, we will use the terms “negative effect” and
“positive effect” to describe how various covariates influence the land-
use intensity of roe deer, wild boar and red fox in NPHK. A “negative
effect” refers to a situation where an increase in the covariate metric
results in a decrease in the intensity with which a wildlife species uses a
specific site or space, suggesting avoidance. Conversely, a “positive ef-
fect” indicates that an increase in the covariate metric leads to an in-
crease in the land-use intensity of the wildlife species, suggesting
preference. Statistical significance will be framed as explained in Section
2.4.

For roe deer, given its crepuscular lifestyle (Fig. B4), we were able to
fit a daytime and night-time model with a high number of observations
(2059 daytime, 3033 night-time). Unfortunately, due to the almost
complete nocturnal nature of wild boar and red fox in NPHK (Fig. B4),
we lacked sufficient daytime observations to effectively compare day-
time to night-time spatial behaviour for those species using our
modelling approach (Wild boar 153 daytime, 1036 night-time; Red fox
100 daytime, 821 night-time). Consequently, only 24-h models were
applied to wild boar and red fox.

3.1. Roe deer

3.1.1. 24-hour model

For roe deer (Capreolus capreolus), the “Month” detection model
outranked the others (Table A4). The resulting monthly variation in
detection probability is presented in Fig. B5. The top-ranked N-mixture
model was the “habitat7_recreation_season_int” model including the
following habitats: urban, coniferous forest, mixed forest, deciduous
forest, transitional woodland shrub, wetland and heathland. Moreover
the model included the following recreational covariates: hiking, MTB
and cycling trail density. For both habitat and recreation covariates, the
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top-performing model also incorporated an interaction term with the
seasons (i.e. spring, summer, autumn and winter) (Table A5). This
model was more parsimonious than all the other models (AAIC>2). To
account for spatial autocorrelation, a spatial random effect based on
neighbouring cells within a 900 m radius was included, as this scale
yielded the best model fit based on elpd comparisons.

Roe deer exhibited a significant reduction in land-use intensity with
increasing hiking trail density during summer, autumn and winter, with
the most pronounced negative effect observed in autumn (Fig. 2). In
spring, there was no significant effect of hiking trail density on land-use
intensity for roe deer.

Cycling trail density showed a significant negative effect on land-use
intensity of roe deer in spring. In all other seasons, there was no sig-
nificant impact. Mountain bike trail density did not significantly affect
land-use intensity for roe deer with exception for the spring months.
During those months there was a significant negative impact.

The impact of habitat on roe deer land-use intensity showed clear
seasonal variation (Fig. B6). Urban areas had a significant negative ef-
fect in autumn but a positive effect in winter. Coniferous forest was
associated with reduced land-use intensity in spring, yet showed a
positive effect in winter. Mixed forests had a negative effect in spring,
while deciduous forest was linked to increased land-use intensity only
during winter. Woodland-shrub areas negatively influenced space use in
both spring and autumn but had a positive effect in winter. Heathland
consistently showed a significant negative effect in spring and autumn.
No significant effects were observed for wetlands.

3.1.2. Daytime vs night-time model

When the same model was run for day and night time observations
separately, a shift in coefficients was observed, showing a notable dif-
ference in significant coefficient values between daytime and night time
(Fig. 3). In the daytime model, hiking trail density coefficients revealed
significant negative effects in summer, autumn, and winter, while there
was no significant effect in spring. The most pronounced negative effect
of hiking trail density was observed in autumn. Conversely, during night
time, the negative effect of hiking trail density was significant solely in
autumn, while in spring a positive effect was observed.

Examining the impact of cycling trail density, the daytime model
revealed significant negative effects on roe deer land-use intensity in
spring, and winter. No significant effect was observed in summer and
autumn. The night-time model, however, did not show significant effects
of cycling trail density in any season. For MTB trail density, the daytime
model indicated no significant effects on roe deer land-use in any season.
Contrastingly, in the night-time model, MTB trail density had significant
negative effects on land-use intensity in spring and summer, while no
effect was detected in autumn and winter.

Comparing daytime and night-time models (Fig. B7) revealed clear
differences in habitat effects on roe deer land-use intensity. Urban areas
had a negative effect in spring during the day and in autumn at night,
but a positive effect in winter at night. Coniferous and mixed forests
showed positive effects during the day in winter, but significant negative
effects at night in spring and autumn. Deciduous forest consistently had
a positive effect in winter across both models. Woodland-shrub areas
had a positive effect during the day in winter, but negative effects at
night in spring and autumn. Heathland had a negative effect in spring
during the day and in both spring and autumn at night. No significant
effects were found for wetlands.

3.2. Wild boar

3.2.1. 24-hour model

For wild boar (Sus scrofa), the “Month” detection model outranked
the other models (Table A4). The resulting monthly variation in detec-
tion probability is presented in Fig. B5. The top-ranked N-mixture model
was again the “habitat7 recreation_season_int” model. For both the
habitat and recreation covariates, the top-performing model included an
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Fig. 2. Seasonal effects of different types of recreation on land-use intensity of roe deer. Shown are N-mixture model coefficient estimates for the effects of hiking,
MTB and cycling trail densities based on 24-hour time intervals. Error bars are 95 % confidence intervals (CI). Black-colored estimates indicate statistical significance

at a 95 % CI, and light grey-colored estimates indicate no significance at a 95 %.

interaction term with the seasons (i.e. spring, summer, autumn and
winter) (Table A5). This model was more parsimonious than all the
other models (AAIC>2). To account for spatial autocorrelation, a spatial
random effect based on neighbouring cells within a 900 m radius was
included, as this scale yielded the best model fit based on elpd
comparisons.

Wild boar exhibited a significant reduction in land-use intensity with
increasing hiking trail density during summer and winter (Fig. 4). In
spring and autumn, there was no significant effect of hiking trail density
on land-use intensity for wild boar. The impact of cycling trail density on
wild boar land-use intensity varied by season. In spring, cycling trail
density had a significant negative effect, while in autumn there was a
positive effect. There were no significant effects of cycling trail density
in summer or winter. MTB trail density had a strong significant negative
impact on land-use intensity for wild boar in spring. No significant ef-
fects of MTB trail density were observed in summer, autumn or winter.
Wild boar land-use intensity showed a significant positive relationship
with coniferous, mixed, and deciduous forests, transitional woodland-
shrub, and wetlands across seasons (Fig. B8). In contrast, heathland
had a strong negative effect in spring.

3.3. Red fox

3.3.1. 24-hour model

For red fox (Vulpes vulpes), the “Month” detection model outranked
the other models (Table A4) and again the “habita-
t7_recreation_season_int” model was the top-ranked N-mixture model.
The resulting monthly variation in detection probability is presented in
Fig. B5. For both the habitat and recreation covariates, the top-ranked
model included an interaction term with the seasons (Table A5). This
model was not more parsimonious than the “habitat7_ season” model
(AAIC<?2), where no recreation variables were included. Nevertheless,
we will use the top-ranked model “habitat7_recreation_season_int” to
explain relationships between land-use intensity and recreational
covariates. To account for spatial autocorrelation, a spatial random ef-
fect based on neighbouring cells within a 600 m radius was included, as
this scale yielded the best model fit based on elpd comparisons.

Red fox exhibited a significant increase in land-use intensity in
response to recreational trail density, but only three specific combina-
tions showed a significant positive effect (Fig. 5). Hiking trail density
had a significant positive effect in summer, cycling trail density had no
significant effects in any season, and MTB trail density had a significant
positive effect in autumn and winter. In all other cases, no significant
effects on red fox land-use intensity were observed. Regarding habitat
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Fig. 3. Seasonal effects of different types of recreation on diel (left) or nocturnal (right) land-use intensity of roe deer. Shown are N-mixture model coefficient
estimates for the effects of hiking, MTB and cycling trail densities based on diel and nocturnal time intervals. Error bars are 95 % confidence intervals (CI). Black-
colored estimates indicate statistical significance at a 95 % CI, and light grey-colored estimates indicate no significance at a 95 %.

variables (Fig. B9), red fox land-use intensity exhibited a significant
positive effect from the proportions of urban area in summer. Area
mixed forest, transitional woodland-shrub, and heathland showed a
negative effect in winter. Conversely, for the summer and spring, area
wetland showed significant positive effects.

4. Discussion

Using an intensive year-long camera trap study and the application
of N-mixture models, we assessed the seasonal impact of recreational
trail densities (hiking, cycling and MTB) and the influence of habitat on
space use of roe deer, wild boar, and red fox. While most studies pri-
marily focus on large, sparsely populated regions with relatively low
trail densities (Naidoo and Burton, 2020; Nickel et al., 2020; Sytsma
et al., 2022; Salvatori et al., 2023; Marion et al., 2024; Procko et al.,
2024) and/or short observation periods (typically spanning only a few
months), we provide a year-round perspective in a small, highly visited
national park embedded in a densely populated urban matrix, a scenario
increasingly common in the western world. By considering seasonality
and different trail types, including hardened, tarmac cycling trails, we
contribute to a broader understanding of how diverse recreational trails
may influence wildlife in such landscapes. This study for the first time
investigated the impact of tarmac cycling trails, including a comparison
between different types of recreational trails, as these features are
particularly relevant to the region’s landscape and to regions experi-
encing growing recreational pressure and evolving trail infrastructure.
Incorporating habitat covariates allowed us to better isolate the effects
of recreation and improve model performance. While habitat variables
showed clear seasonal effects on wildlife space use, we do not further
elaborate on these patterns here, as they fall outside the main scope of
this study.

We revealed species-specific spatiotemporal responses, or lack

thereof, to recreational trail density, with variations depending on the
type of recreational trail and the season. For roe deer specifically, re-
sponses also varied with the time of day. For wild boar and red fox, this
could not be investigated due to low numbers of observations during the
day. It is important to note that these lower observation numbers during
daylight hours may already reflect a temporal avoidance of human ac-
tivity rather than an absence of a spatiotemporal response (Podgorski
et al., 2013; Diaz-Ruiz et al., 2016). Our results suggest that both the
season and the type of recreational trail or activity are critical factors in
determining the effects of recreation on wildlife. Due to the setup of this
research, we were however not able to differentiate between the impact
of the physical presence of a trail and the recreational activity itself.
Overall, hiking trail density had the most constant negative impact on
space use of ungulates throughout all seasons, meaning ungulates tend
to avoid zones with higher densities of hiking trails more than other
recreational trails. Red fox showed a tendency to prefer areas with dense
recreational trail networks (Fig. 5).

4.1. Species-specific seasonal responses to recreational trails

4.1.1. Ungulates: roe deer and wild boar

Overall, roe deer and wild boar exhibited avoidance of areas with
higher hiking trail densities more than areas with high cycling or MTB
trails, indicating the potentially more disturbing impact of hiking on
space use of ungulates compared to cycling and MTB. This pattern aligns
with our hypothesis, as hiking trails in NPHK are most common and
meander through multiple key habitats. In contrast, cycling and MTB
trails are less common and more linear (Fig. 1), reducing overall density
and potentially keeping recreational disturbance lower. Furthermore,
hikers generally move more slowly than cyclists or MTB, and when
combined with noise from communication, this could create a more
unpredictable and disruptive effect on wildlife (Zeller et al., 2024).
Other studies have also documented adverse effects of hiking activities
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Fig. 4. Seasonal effects of different types of recreation on land-use intensity of wild boar. Shown are N-mixture model coefficient estimates for the effects of hiking,
MTB and cycling trail densities based on 24-hour time intervals. Error bars are 95 % confidence intervals (CI). Black-colored estimates indicate statistical significance

at a 95 % CI, and light grey-colored estimates indicate no significance at a 95 %.

and trails on space use of various wildlife species (Larson et al., 2016;
Coppes et al., 2017; Lewis et al., 2021; Sytsma et al., 2022; Fennell et al.,
2023; Marion et al., 2024). However, these studies never compared
between different recreation types. Nevertheless, in spring, wild boar
seemed to avoid MTB and cycling trail-rich areas more than hiking trail-
rich areas.

Contrastingly, areas with a higher cycling trail density showed an
intensified space use of wild boar in autumn. This could be explained by
seasonal changes in food availability in some cycling or MTB trail-rich
zones, making them more attractive to wild boar in autumn when
food availability is at its peak. Although we used habitat percentages
based on the Corine land cover to capture the variability for food
availability and cover year-round, these habitat metrics are rather
general and do not specify detailed seasonal differences in food avail-
ability. Hence, we suggest the incorporation of seasonal fine-scale
landscape and food availability measurements to help better under-
stand seasonal preferences for certain areas. Alternatively, interspecific
competition for resources may force wild boar to visit locations with
higher cycling trail densities in specific seasons (Ballari and Barrios-
Garcia, 2014; Borkowski et al., 2021). Moreover, we emphasize that the
spatiotemporal variability in trail use intensity likely plays a key role in
shaping seasonal wildlife responses, as the impact of trails is not solely
determined by their density but also by how, when, and by whom they

are used. Nevertheless, the observed space use patterns could also be
influenced by an unobserved spatial driver that co-varies with trail
densities (e.g. traffic roads or food availability).

4.1.2. Red fox

Interestingly, model selection for red fox identified a top model that
included recreational trail densities (Table A5). However, based on AIC
criteria, this model was not substantially more parsimonious (AAIC =
1.84) than a model containing the same habitat variables but without
recreational trail densities. This suggests that incorporating recreational
trail densities did not notably improve the explanatory power of the
model for red fox space use. Nevertheless, we selected the top model
including recreational variables to explore potential associations be-
tween recreation and red fox space use. Red fox exhibited seasonally
dependent positive associations with recreational trail densities. In
summer, red fox showed a preference for hiking trail rich areas. During
autumn and winter, red fox showed a clear preference for areas with
high MTB trail densities, whereas in spring, no preference or avoidance
was observed. This pattern may be linked to reproductive behaviour, as
during the denning season, red foxes balance the need to protect their
offspring with accessing nearby resources, resulting in neither a strong
preference nor avoidance during the denning season (Storm et al.,
1976). Red fox’s preference for urban areas in summer aligns with its
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Fig. 5. Seasonal effects of different types of recreation on land-use intensity of red fox. Shown are N-mixture model coefficient estimates for the effects of hiking,
MTB and cycling trail densities based on 24-hour time intervals. Error bars are 95 % confidence intervals (CI). Black-colored estimates indicate statistical significance

at a 95 % CI, and light grey-colored estimates indicate no significance at a 95 %.

characterization as an urban adapter, a species that readily exploits
human-altered environments due to their adaptability in diet and den-
ning sites (DeCandia et al., 2019; Gil-Fernandez et al., 2020; Handler
et al., 2020). This adaptability enables them to coexist in close proximity
to human populations, further supporting their tendency to prefer areas
with human-made features (Erb et al., 2012; Suraci et al., 2021). How-
ever, it is difficult to compare our seasonal results to other studies also
showing the attraction of red fox towards human-made features and use
of trails to navigate (Naidoo and Burton, 2020; Lewis et al., 2021;
Anderson et al., 2023), as they lack to include the seasonal impact of a
variety of recreational activities or trails.

4.1.3. Visitor data

The 24-hour responses of roe deer and red fox to hiking trail density
throughout the seasons exhibit a pattern that parallels the seasonal
average daily visitor counts on hiking trails. The visitor data indicate an
increase in average daily visitor numbers from spring to summer, fol-
lowed by a decline in winter (Fig. B3). Similarly, roe deer show a more
negative response to hiking trail density from spring to summer, with
this effect diminishing in winter, while red foxes exhibit increased effect
sizes of hiking trail density from spring to summer, which then decrease
during winter. Although our analyses did not directly incorporate visitor
numbers, the observed similarity in trends suggests a potential

relationship between hiking trail visitation and wildlife responses
(Procko et al., 2024). We assumed that the officially marked and pro-
moted trails serve as a proxy for the bulk of the recreational activity they
are intended for, though it is important to keep in mind that specific
trails may be used by multiple types of recreationists, which could in-
fluence these patterns. Therefore, future research should consider
including visitor counts for specific types of recreation on a gradient of
trails to better understand the effects of varying recreational pressures
across different seasons and distinguish the effect of recreational in-
tensity from seasonal species-specific habitat use. We used trail densities
in each grid cell as proxies for recreational pressure. These densities are
constant, while in fact, recreational pressure throughout a national park
is often highly dynamic. Although we analysed seasonal impacts of
recreational trail densities, the lack of spatiotemporal data on human
presence creates uncertainty in the interpretation of results about sea-
sonal impacts of static proxies for recreation. As such, it would be
beneficial for nature management and conservation to investigate more
specific spatiotemporal data on human presence/abundance and activ-
ity, including differentiation between recreational activities (i.e. hiking,
cycling, MTB) to better understand the spatiotemporal dynamic in-
teractions taking place between human activities and wildlife. This
would allow us to eventually design useful thresholds at which certain
species show behavioural adaptations towards recreational pressures.



W. Kuypers et al.

Therefore, we propose the incorporation of social media and mobile
phone data combined with camera traps to estimate visitor pressure on
trails over large areas (Dertien et al., 2021; Procko et al., 2024).

Given that some wildlife species exhibit flexibility in their activity
patterns and can seek temporal refuge from human disturbance at night,
like wild boar, it might be assumed that wildlife and humans can coexist
in recreational areas through temporal avoidance (Gaynor et al., 2018;
Nickel et al., 2020; Lewis et al., 2021; Anderson et al., 2023; Fennell
et al., 2023; Burton et al., 2024; Procko et al., 2024). However, despite
their nocturnal behaviour, wild boar consistently avoided areas with
high recreational trail densities across multiple seasons, particularly
those with hiking trails. This suggests that human disturbance can
significantly displace nocturnal species from areas with high levels of
recreational activity. While temporal refuge from human recreation can
be effective for some species, providing spatial refuge is equally crucial
for wildlife survival (Larson et al., 2019; Lewis et al., 2021). This is
especially important for species with diurnal or crepuscular activity
patterns. For instance, in multiple seasons roe deer demonstrated spatial
avoidance of hiking and cycling trail-dense areas during the day, while
their response at night was less pronounced or even neutral. This in-
dicates a potential spatiotemporal adaptation to recreational pressure,
where wildlife may use spatial refuges during the day and access areas
associated with recreational trails at night.

4.2. Considerations for management

To effectively mitigate the negative impacts of recreational activities
on wildlife, management strategies often focus on creating spatial and
temporal refuges (Lewis et al., 2021). Spatial refuges, such as restricted
zones, and temporal refuges, like time-based access restrictions, provide
wildlife with undisturbed areas for essential behaviours. In NPHK, three
protected zones and night-time access restrictions already serve as such
refuges. However, monitoring visitor behaviour is essential to ensure
these areas or time zones remain undisturbed. Comprehensive moni-
toring of both visitor and wildlife behaviour would enhance future
research on recreation-wildlife interactions, facilitating more effective
management strategies.

Nevertheless, while much of the literature focuses on the negative
effects of recreation, it is also important to consider its potential to
manage overabundant species, such as roe deer, wild boar, and red fox,
which can disrupt ecosystems from a top-down perspective and create
human-wildlife conflicts (Moll et al., 2020; Castaneda et al., 2022;
Afonso et al., 2024). For example, high roe deer populations hinder
forest regeneration, but higher trail density in specific zones may reduce
browsing pressure on young deciduous trees, aiding forest diversity
(Stokely et al., 2020). Conversely, undisturbed zones could lead to
overbrowsing and hinder natural regeneration (Mols et al., 2022).

Managing the spatiotemporal use of wildlife by designing recrea-
tional zones around protected areas can also concentrate ungulate
populations, providing hunters with more focused areas for population
control. Finally, species-specific thresholds for recreational activities
and trail densities could help manage recreational pressure and achieve
conservation goals (Dertien et al., 2021). However, it is crucial to
consider the potential negative impacts on endangered species and
critical habitats when implementing such management practices (Larson
et al., 2016).

5. Conclusion

This year-long camera trap study, using N-mixture models, revealed
clear species-specific and seasonal variation in how recreational trail
density influences wildlife space use in the highly visited Hoge Kempen
National Park (Belgium). Hiking trails had the most consistent negative
impact on roe deer and wild boar, while cycling and MTB trails only
showed negative effects in spring. For roe deer specifically, the influence
of recreational trails differed notably between daytime and night-time.
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In contrast, red fox appeared to prefer areas with higher trail den-
sities. These findings highlight the importance of considering both sea-
sonality and the type of recreational activity or trail when designing
conservation strategies and managing recreational access to support
coexistence between wildlife and recreation.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2025.180091.
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