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LETTER TO THE EDITOR

‘ W) Check for updates

Letter to the Editor: Critical analysis of “The use of canonical dose-response
models for benchmark dose analysis of continuous toxicological data” by Slob

et al. (2025)

Dear Editor,

We commend Critical Reviews in Toxicology for supporting
open and critical discussions in the field of benchmark dose
(BMD) modeling and the recent publication by Slob et al.
(2025) contributes to this dialogue. After thorough examina-
tion, we find that the article presents views and assumptions
that are often insufficiently supported. It largely defends
modeling approaches rooted in the early development of the
BMD methodology, while overlooking well-known methodo-
logical limitations that have been highlighted by later appli-
cations. Moreover, it appears to dismiss important
methodological developments that we consider essential for
the appropriate and robust application of BMD modeling in
regulatory toxicology, most importantly in relation to the
Bayesian paradigm and model averaging. These latter two
properties represent the state-of-the-science for BMD ana-
lysis, which international bodies agreed upon following the
update of Chapter 5 on dose-response assessment of WHO/
IPCS Environmental Health Criteria 240 (WHO 2020). The
revised EFSA guidance on BMD (EFSA 2022) and the Bayesian
EFSA app (https://r4eu.efsa.europa.eu/app/bmdbayesian) have
been developed in alignment with these principles.

Below, we present a compilation of the issues we encoun-
tered in Slob et al. (2025).

On the interpretation of model structure and
parameters

Understanding of “canonical models”

The authors assert that dose-response models must be
“canonical” with parameters having identical interpretations
across model structures. This premise exhibits several critical
shortcomings:

All models in the Bayesian EFSA app are formulated in
terms of the three so-called natural parameters (median
background response at dose 0, median “maximum”
response at very high dose, potency defined by the BMD
being the dose corresponding to a certain BMR) and two
technical parameters: d and the variance parameter. The
natural parameters are well defined and have a clear bio-
logical interpretation for a particular endpoint. For monotonic
dose-response curves, their values are unique but unknown
and unrelated to any model for a specific dataset. The mod-
els are used to estimate these natural parameters, and model
averaging provides unique estimates accounting for sampling
variation in the data and model uncertainty. The EFSA (2022)

guidance mentions this but, in place of background
response, “maximum” response at very high dose, and
potency, formulates the models using parameters a, b, ¢, and
d. The main reason for this choice was not to confuse the
reader or the user but to improve the readability and com-
parability of the extended family of models with the minimal
family of models in the earlier 2017 guidance.

The fourth parameter d, however, is biologically related to
steepness, but is not (mathematically) defined, and has no
unique value or meaning across the different models.
Different models with identical background, maximum and
BMD and identical d parameter all have the same back-
ground, maximum and BMD but clearly show different
“steepness”, as illustrated in Figure 1. In other words, lacking
a definition, d is not a biological but a model-specific param-
eter. Each model has its own d parameter. Hence, given that
there is no unique d value across models, determining the
model-averaged estimate for d has no meaning.

The authors’ family of canonical models (exponential, Hill,
inverse exponential, lognormal) was first included in the
EFSA (2022) guidance as the “Family 1 of lognormal models”,
based on the work of Aerts et al. (2020). The Bayesian EFSA
app does include all “canonical” models mentioned in their
paper, but EFSA applies an inclusive rather than exclusive
principle by extending the family with other plausible candi-
date models (other “canonical” models as well as others
based on fewer prior assumptions). EFSA’s approach is expli-
citly inclusive and data-driven: while including the canonical
models of Slob et al. (2025), it acknowledges multiple valid
mathematical representations of biological processes and
emphasizes empirical validation. Furthermore, the Bayesian
EFSA app allows the use of prior information at multiple lev-
els, distributions, models, and parameters within each model
and proposes the inclusion of sensitivity analyses to assess
the robustness of results (e.g. by two optional default priors
on the technical parameter d in the Bayesian EFSA app). The
Bayesian EFSA app also allows the suite of candidate models
to be restricted to any subfamily by using appropriate
informative priors (at the level of the two distributions and at
the level of the different median models, and at the level of
the parameters). It is only required to motivate such restric-
tion, as any informative prior requires justification.

Canonical properties and distribution assumptions

The models should predict positive values only: This property
refers to the distributional component of the model, reflect-
ing the variation of the response values at a given dose. The
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Figure 1. Graphical representation of ALL models considering the same back-
ground (BKG), fold change (MAX), BMD and d values, presented using log(Dose)
scale.

authors state that this first property is self-evident. First, the
models are not developed or used as predictive models, so
there is no particular interest in predicting individual
response values. Further, following the same rationale, this
property should state that the models should only predict val-
ues that can be observed in reality for the endpoint at hand.
Such a property would exclude any general distribution,
including the lognormal distribution, as any distribution on
the full positive range has a positive probability of predicting
impossible values. The property would require a truncated
distribution, which is truncated at unknown values (endpoint
dependent). So, for instance, one could truncate the lognor-
mal distribution at the right and truncate the normal distri-
bution on both sides and use those truncated distributions.
However, this would unnecessarily complicate the model, as
such truncation is endpoint-specific and would imply compu-
tational costs.

In conclusion, one should consider plausible distributions
for the within-dose-group variation, and the lognormal is a
principal candidate. However, it is not certain that the log-
normal is the best approximating distribution of the actual
distribution, and model averaging has been developed to
account for such uncertainty by including other plausible
choices. EFSA has opted to include the normal and the log-
normal distributions, representing the family of symmetric
and right-skewed distributions. The Bayesian EFSA app first
examines whether the probability of negative values is suffi-
ciently low when applying the normal distribution. It does
not determine whether the probability of unrealistically high
values is sufficiently low for either the normal or lognormal.
Again, EFSA prefers an inclusive approach, and the normal
and lognormal distributions are computationally attractive.

An EFSA analysis of 3755 datasets from the National
Toxicology Program (NTP) organ weight studies showed that
22.6% of the datasets were rejecting the log-normality
assumption (Shapiro-Wilk test at level 5%), while 27.5% did
not conform to the normality assumption, with 17.2% reject-
ing both distributions when tested using all responses from
the different doses after subtracting the mean response for
each dose and standardizing the residuals by the respective
standard deviations. This empirical evidence directly

contradicts the authors’ assertion that any other distribution
should be excluded, as the percentage of rejection for the
lognormal (22.6%) is much larger than the expected nom-
inal 5%.

Claims that outcomes should not depend on the measurement
unit: The authors discuss scale-invariance issues with the EFSA
model family 2 in Section 8.2.2, with an illustration in Appendix
3. We agree with that claim. In our view, there is no issue with
the family 2 probit model as formulated in formula (10), as a
change in unit is fully absorbed by the a parameter only. The
authors mention that the Bayesian EFSA app results in similar
BMD's for differently scaled responses, and that they can only
explain this by an internal normalization in the tool, and then
mention that this dependency is hidden. And based on these
speculations, it is concluded that family 2 is inappropriate. In the
Bayesian EFSA app, no normalization is applied and therefore the
claim that “by normalizing the response this dependency is just
hidden” does not hold. All the models in the EFSA Bayesian app
are scale-invariant, except for the two models of family 2 with
the lognormal distribution. These models for the median
response are of the structure exp(af(c + bx%), with F the logistic
or the normal cumulative distribution function. This absence of
exact invariance was investigated earlier, and the findings led to
the decision to keep the models included. Although not perfectly
scale-invariant, it appeared that a scale modified model (multi-
plied with a scale factor) can be mathematically approximated
very well by another model of the same family and the approxi-
mation did not affect the BMDL more than the MCMC variation
as observed in any other model (including the lognormal family
1 model, being the “canonical” models). Referring to table A2 of
Slob et al. (2025), it is not clear to which BMR the corresponding
BMD estimates are shown, neither on which scale. The BMD20
row suggests a BMR = 20%, but it is more likely 5%. The authors
claim that the BMD estimates were obtained by PROAST
(although that model is not included in the regular PROAST pack-
age for continuous data). Table 1 shows the BMD estimates
(point and lower limit) for a scale grid 0.001, 0.01, 0.1, 1, 10, 100,
and 1000 for the probit model (member of family 2, with normal
and lognormal distribution) and for the inverse exponential
model (member of family 1, with normal and lognormal distribu-
tion, with the lognormal choice corresponding to the so-called
canonical model). The results were obtained with the R package
BMABMDR, underlying the EFSA Bayesian BMD app. Five rows
with scale = 1 were included to show the MCMC variation. Such
variation is also present for the other scale values. The BMDL
results with PROAST will also depend on the bootstrap variation.
Both EFSA apps (both accessible at: https://rdeu.efsa.europa.eu/),
based on the R-packages PROAST and BMABMDR (using Bridge
sampling and default priors), do not show such variation when
repeating the same analysis on the same data, by fixing the so-
called generation seed. This is done to guarantee exact reprodu-
cibility. But in this exercise, it is of value to compare the variation
between the estimates, not only for different scales but also for
different runs with the same scale. Next to the results shown for
the probit model (shown and discussed by Slob et al. (2025) in
section 9.1 and Appendix 3), we also include the results of a
“canonical model”, the IEALN model, being the lognormal inverse
exponential model. This allows us to compare results across
canonical and non-canonical models (being probit models, with
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Table 1. BMD and BMDL estimates after scale modifications for the probit model (P4) and the inverse exponential model (IE4), with normal distribution (N) and
lognormal distribution (LN) (in bold the BMDL estimates and in italic the BMD estimates analogues of the values in the last row of table A2 of Slob et al. 2025).

Scale BMDL.P4N BMD.P4N BMDL.P4ALN BMD.P4LN BMDL.IE4N BMD.IE4N BMDL.IEALN BMD.IE4LN
0.001 0.021 0.240 0.018 0.158 0.048 0.298 0.040 0.182
0.01 0.021 0.235 0.018 0.156 0.043 0.268 0.037 0.188
0.1 0.024 0.258 0.017 0.166 0.044 0.260 0.040 0.190
1 0.025 0.244 0.020 0.175 0.044 0.259 0.036 0.191
1 0.022 0.244 0.017 0.179 0.040 0.254 0.041 0.190
1 0.023 0.243 0.018 0.167 0.041 0.261 0.038 0.195
1 0.020 0.226 0.017 0.175 0.041 0.280 0.039 0.187
1 0.024 0.251 0.019 0.180 0.043 0.275 0.036 0.191
10 0.025 0.257 0.017 0.159 0.043 0.267 0.040 0.194
100 0.021 0.254 0.017 0.165 0.043 0.259 0.039 0.197
1000 0.026 0.255 0.019 0.177 0.048 0.295 0.036 0.186

normal and lognormal distribution, and inverse exponential
model, with the normal distribution). The italic figures are the
analogues of the BMDs in the last row of table A2 of Slob et al.
(2025). But the results for the BMDLs (in bold) are more relevant.
This simulation experiment is, of course, limited in many ways,
and results should not be overinterpreted, but it does give some
rough insights into the effect of changes in the scale of the end-
point for this dataset. The BMD estimates are somewhat lower
for the probit than for the inverse exponential model, and some-
what higher for the normal distribution. The variation across
scales is comparable to the variation within scale = 1, especially
for the BMDL. The variation in the BMDL estimates for the non-
canonical models is of the same magnitude as that of the canon-
ical model. In conclusion, this exercise does not show convincing
evidence that the non-canonical models suffer severely from vary-
ing scales, as alleged by Slob et al. (2025).

Claims about BMD requirements

Independence from background response: The authors claim BMDs
should not depend on the background response. But for none of
EFSA’s models, the BMDs do explicitly depend on the back-
ground. The BMDs only depend on the foldchange (ratio of
median response at very high dose and the median response in
the control group) for models in family 1. For two models (log-
normal family 2), this is the ratio of the log median response at
very high dose and the log median at zero dose. Dependency of
the BMD on such a ratio is evident in our view. Even if the BMD
is functionally independent from the background for each model
in the mathematical sense, the estimates of all parameters,
including the background and the BMD, are statistically corre-
lated, and in nonlinear models in general, that correlation can
depend on the true values of all parameters (Seber and Wild
1989).

Moreover, this requirement is not achievable in a model
averaging estimation framework. Indeed, the final BMD esti-
mates are the result of averaging across all models.

1. In the frequentist paradigm of PROAST, the BMD esti-
mate is derived from applying the BMD definition with
the particular BMR to the averaged model (a weighted
mean of all models). This averaged model will inevitably
depend on all estimated backgrounds from all constitu-
ent models, as the estimates for the background vary

across models, to varying degrees, depending on the
data at hand. So, the BMD derived from such an aver-
aged model will also depend on all estimates of the
background. The lower limit BMDL is obtained from
bootstrap simulation. The bootstrap is actually an asymp-
totic method, implying it might have rather poor per-
formance for small sample sizes (not infrequently
occurring in practice).

2. In the Bayesian paradigm, even when restricting to the
canonical models, the posterior of the BMD for a particu-
lar model is based on the joint Bayesian estimation of all
parameters of that model. The final BMD point estimate
and credible interval are derived from the weighted mix-
ture of all model-specific BMD posteriors, and therefore,
they may depend on the Bayesian estimates of all
parameters of all models. Finally, the priors for all param-
eters also have an important impact on the model-
specific BMD posteriors and the final model-averaged
BMD posterior.

Methodological considerations and empirical
evidence

While the authors state that there is “ample empirical
evidence” supporting their assumptions of parallel dose-
response on log-scale (at the end of section 2) and claim
that dose-response relationships should be multiplicative
rather than additive, the authors advocate for Vvisual
inspection of parallelism rather than statistical tests. They
state statistical tests are “not reliable as [they assume]
random scatter”. Yet the same assumption of random
scatter is implicitly accepted when they fit models and
calculate BMD confidence intervals - which, in our view,
undermines the coherence of the methodological
framework.

Moreover, the authors argue for exclusive use of lognor-
mal distributions without adequate justification. Above (end
of section “Canonical properties and distribution assumptions
— The models should predict positive values only”) we pro-
vided quantitative empirical evidence that directly contradicts
the authors’ assertion that normal distributions should be
excluded, as the percentage of rejection for the lognormal
(22.6%) is much larger than the nominal 5% expected. This
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raises questions about the selectivity of the empirical basis
used to support their argument.

In addition, the manuscript does not include an evaluation
of the robustness of the proposed modeling framework.
Despite suggesting that a more restricted model set offers
advantages, no comparative analysis is presented to demon-
strate improved performance relative to broader, more inclu-
sive model sets.

Regarding the discussion on model averaging, the recom-
mendation to limit the model set appears to overlook widely
accepted statistical principles. The strength of model averag-
ing lies in its ability to incorporate a range of models that
may reflect different aspects of the underlying process. By
doing so, it helps mitigate the effects of model misspecifica-
tion. The benefits of this ensemble approach - particularly its
capacity to balance varying model strengths and weaknesses
- do not seem to be fully acknowledged in the manuscript.

Implementation and transparency

We are also concerned about the endorsement of the
PROAST tool in the reviewed paper. While PROAST has
played a key role in BMD development over the years, per-
formance issues with the tool have been observed in specific
scenarios and communicated to the authors of the paper in
writing as well as in several meetings. In particular, EFSA has
observed situations where PROAST underperforms and intro-
duces results that are difficult to interpret due to limited
transparency, including: the use of bootstrap procedures
whose limitations are not clearly stated, hard-coded con-
straints within the software that are not visible or accessible
to users; the lack of sufficient documentation and openness
regarding these limitations. More details are available upon
request.

EFSA’s Bayesian BMD app, is open-source, fully transparent
with documentation (Hasselt University 2022), and publicly
available for scrutiny and validation. It uses Bayesian model
averaging to account for model uncertainty and incorporates
sensitivity analyses to provide a nuanced view of data and
assumptions. This transparency is a strength - it invites
improvement and fosters confidence.

Constructive alternative approach

We stress that inclusive modeling frameworks do not simply
accept models uncritically but allow divergent perspectives
and assumptions to coexist and be empirically tested. They
offer opportunities to diagnose when assumptions fail, when
data are insufficient, or when biological systems defy a-priori
categorization. We advocate for a more comprehensive/inclu-
sive approach that:

1. Incorporates a diverse set of models reflecting different
possible dose-response relationships.

2. Uses model averaging techniques to account for model
uncertainty.

3. Employs appropriate prior distributions based on bio-
logical knowledge and empirical evidence.

4. Conducts thorough sensitivity analyses
robustness.

5. Considers both normal and
driven by data characteristics.

to evaluate

lognormal distributions

This approach provides a more reliable process to esti-
mate the relevant BMD while acknowledging inherent uncer-
tainty in dose-response modeling. To these continuous
developments, it also follows our commitment for the con-
tinuous improvements of our guidance and tool to support
the users navigating the BMD framework with evolving scien-
tific knowledge.
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