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LETTER TO THE EDITOR

Letter to the Editor: Critical analysis of “The use of canonical dose–response 
models for benchmark dose analysis of continuous toxicological data” by Slob 
et al. (2025)

Dear Editor,

We commend Critical Reviews in Toxicology for supporting 
open and critical discussions in the field of benchmark dose 
(BMD) modeling and the recent publication by Slob et al. 
(2025) contributes to this dialogue. After thorough examina
tion, we find that the article presents views and assumptions 
that are often insufficiently supported. It largely defends 
modeling approaches rooted in the early development of the 
BMD methodology, while overlooking well-known methodo
logical limitations that have been highlighted by later appli
cations. Moreover, it appears to dismiss important 
methodological developments that we consider essential for 
the appropriate and robust application of BMD modeling in 
regulatory toxicology, most importantly in relation to the 
Bayesian paradigm and model averaging. These latter two 
properties represent the state-of-the-science for BMD ana
lysis, which international bodies agreed upon following the 
update of Chapter 5 on dose–response assessment of WHO/ 
IPCS Environmental Health Criteria 240 (WHO 2020). The 
revised EFSA guidance on BMD (EFSA 2022) and the Bayesian 
EFSA app (https://r4eu.efsa.europa.eu/app/bmdbayesian) have 
been developed in alignment with these principles.

Below, we present a compilation of the issues we encoun
tered in Slob et al. (2025).

On the interpretation of model structure and 
parameters

Understanding of “canonical models”

The authors assert that dose–response models must be 
“canonical” with parameters having identical interpretations 
across model structures. This premise exhibits several critical 
shortcomings:

All models in the Bayesian EFSA app are formulated in 
terms of the three so-called natural parameters (median 
background response at dose 0, median “maximum” 
response at very high dose, potency defined by the BMD 
being the dose corresponding to a certain BMR) and two 
technical parameters: d and the variance parameter. The 
natural parameters are well defined and have a clear bio
logical interpretation for a particular endpoint. For monotonic 
dose–response curves, their values are unique but unknown 
and unrelated to any model for a specific dataset. The mod
els are used to estimate these natural parameters, and model 
averaging provides unique estimates accounting for sampling 
variation in the data and model uncertainty. The EFSA (2022) 

guidance mentions this but, in place of background 
response, “maximum” response at very high dose, and 
potency, formulates the models using parameters a, b, c, and 
d. The main reason for this choice was not to confuse the 
reader or the user but to improve the readability and com
parability of the extended family of models with the minimal 
family of models in the earlier 2017 guidance.

The fourth parameter d, however, is biologically related to 
steepness, but is not (mathematically) defined, and has no 
unique value or meaning across the different models. 
Different models with identical background, maximum and 
BMD and identical d parameter all have the same back
ground, maximum and BMD but clearly show different 
“steepness”, as illustrated in Figure 1. In other words, lacking 
a definition, d is not a biological but a model-specific param
eter. Each model has its own d parameter. Hence, given that 
there is no unique d value across models, determining the 
model-averaged estimate for d has no meaning.

The authors’ family of canonical models (exponential, Hill, 
inverse exponential, lognormal) was first included in the 
EFSA (2022) guidance as the “Family 1 of lognormal models”, 
based on the work of Aerts et al. (2020). The Bayesian EFSA 
app does include all “canonical” models mentioned in their 
paper, but EFSA applies an inclusive rather than exclusive 
principle by extending the family with other plausible candi
date models (other “canonical” models as well as others 
based on fewer prior assumptions). EFSA’s approach is expli
citly inclusive and data-driven: while including the canonical 
models of Slob et al. (2025), it acknowledges multiple valid 
mathematical representations of biological processes and 
emphasizes empirical validation. Furthermore, the Bayesian 
EFSA app allows the use of prior information at multiple lev
els, distributions, models, and parameters within each model 
and proposes the inclusion of sensitivity analyses to assess 
the robustness of results (e.g. by two optional default priors 
on the technical parameter d in the Bayesian EFSA app). The 
Bayesian EFSA app also allows the suite of candidate models 
to be restricted to any subfamily by using appropriate 
informative priors (at the level of the two distributions and at 
the level of the different median models, and at the level of 
the parameters). It is only required to motivate such restric
tion, as any informative prior requires justification.

Canonical properties and distribution assumptions

The models should predict positive values only: This property 
refers to the distributional component of the model, reflect
ing the variation of the response values at a given dose. The 
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authors state that this first property is self-evident. First, the 
models are not developed or used as predictive models, so 
there is no particular interest in predicting individual 
response values. Further, following the same rationale, this 
property should state that the models should only predict val
ues that can be observed in reality for the endpoint at hand. 
Such a property would exclude any general distribution, 
including the lognormal distribution, as any distribution on 
the full positive range has a positive probability of predicting 
impossible values. The property would require a truncated 
distribution, which is truncated at unknown values (endpoint 
dependent). So, for instance, one could truncate the lognor
mal distribution at the right and truncate the normal distri
bution on both sides and use those truncated distributions. 
However, this would unnecessarily complicate the model, as 
such truncation is endpoint-specific and would imply compu
tational costs.

In conclusion, one should consider plausible distributions 
for the within-dose-group variation, and the lognormal is a 
principal candidate. However, it is not certain that the log
normal is the best approximating distribution of the actual 
distribution, and model averaging has been developed to 
account for such uncertainty by including other plausible 
choices. EFSA has opted to include the normal and the log
normal distributions, representing the family of symmetric 
and right-skewed distributions. The Bayesian EFSA app first 
examines whether the probability of negative values is suffi
ciently low when applying the normal distribution. It does 
not determine whether the probability of unrealistically high 
values is sufficiently low for either the normal or lognormal. 
Again, EFSA prefers an inclusive approach, and the normal 
and lognormal distributions are computationally attractive.

An EFSA analysis of 3755 datasets from the National 
Toxicology Program (NTP) organ weight studies showed that 
22.6% of the datasets were rejecting the log-normality 
assumption (Shapiro–Wilk test at level 5%), while 27.5% did 
not conform to the normality assumption, with 17.2% reject
ing both distributions when tested using all responses from 
the different doses after subtracting the mean response for 
each dose and standardizing the residuals by the respective 
standard deviations. This empirical evidence directly 

contradicts the authors’ assertion that any other distribution 
should be excluded, as the percentage of rejection for the 
lognormal (22.6%) is much larger than the expected nom
inal 5%.

Claims that outcomes should not depend on the measurement 
unit: The authors discuss scale-invariance issues with the EFSA 
model family 2 in Section 8.2.2, with an illustration in Appendix 
3. We agree with that claim. In our view, there is no issue with 
the family 2 probit model as formulated in formula (10), as a 
change in unit is fully absorbed by the a parameter only. The 
authors mention that the Bayesian EFSA app results in similar 
BMD’s for differently scaled responses, and that they can only 
explain this by an internal normalization in the tool, and then 
mention that this dependency is hidden. And based on these 
speculations, it is concluded that family 2 is inappropriate. In the 
Bayesian EFSA app, no normalization is applied and therefore the 
claim that “by normalizing the response this dependency is just 
hidden” does not hold. All the models in the EFSA Bayesian app 
are scale-invariant, except for the two models of family 2 with 
the lognormal distribution. These models for the median 
response are of the structure exp(aF(c þ bxd)), with F the logistic 
or the normal cumulative distribution function. This absence of 
exact invariance was investigated earlier, and the findings led to 
the decision to keep the models included. Although not perfectly 
scale-invariant, it appeared that a scale modified model (multi
plied with a scale factor) can be mathematically approximated 
very well by another model of the same family and the approxi
mation did not affect the BMDL more than the MCMC variation 
as observed in any other model (including the lognormal family 
1 model, being the “canonical” models). Referring to table A2 of 
Slob et al. (2025), it is not clear to which BMR the corresponding 
BMD estimates are shown, neither on which scale. The BMD20 
row suggests a BMR ¼ 20%, but it is more likely 5%. The authors 
claim that the BMD estimates were obtained by PROAST 
(although that model is not included in the regular PROAST pack
age for continuous data). Table 1 shows the BMD estimates 
(point and lower limit) for a scale grid 0.001, 0.01, 0.1, 1, 10, 100, 
and 1000 for the probit model (member of family 2, with normal 
and lognormal distribution) and for the inverse exponential 
model (member of family 1, with normal and lognormal distribu
tion, with the lognormal choice corresponding to the so-called 
canonical model). The results were obtained with the R package 
BMABMDR, underlying the EFSA Bayesian BMD app. Five rows 
with scale ¼ 1 were included to show the MCMC variation. Such 
variation is also present for the other scale values. The BMDL 
results with PROAST will also depend on the bootstrap variation. 
Both EFSA apps (both accessible at: https://r4eu.efsa.europa.eu/), 
based on the R-packages PROAST and BMABMDR (using Bridge 
sampling and default priors), do not show such variation when 
repeating the same analysis on the same data, by fixing the so- 
called generation seed. This is done to guarantee exact reprodu
cibility. But in this exercise, it is of value to compare the variation 
between the estimates, not only for different scales but also for 
different runs with the same scale. Next to the results shown for 
the probit model (shown and discussed by Slob et al. (2025) in 
section 9.1 and Appendix 3), we also include the results of a 
“canonical model”, the IE4LN model, being the lognormal inverse 
exponential model. This allows us to compare results across 
canonical and non-canonical models (being probit models, with 

Figure 1. Graphical representation of ALL models considering the same back
ground (BKG), fold change (MAX), BMD and d values, presented using log(Dose) 
scale.
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normal and lognormal distribution, and inverse exponential 
model, with the normal distribution). The italic figures are the 
analogues of the BMDs in the last row of table A2 of Slob et al. 
(2025). But the results for the BMDLs (in bold) are more relevant. 
This simulation experiment is, of course, limited in many ways, 
and results should not be overinterpreted, but it does give some 
rough insights into the effect of changes in the scale of the end
point for this dataset. The BMD estimates are somewhat lower 
for the probit than for the inverse exponential model, and some
what higher for the normal distribution. The variation across 
scales is comparable to the variation within scale ¼ 1, especially 
for the BMDL. The variation in the BMDL estimates for the non- 
canonical models is of the same magnitude as that of the canon
ical model. In conclusion, this exercise does not show convincing 
evidence that the non-canonical models suffer severely from vary
ing scales, as alleged by Slob et al. (2025).

Claims about BMD requirements

Independence from background response: The authors claim BMDs 
should not depend on the background response. But for none of 
EFSA’s models, the BMDs do explicitly depend on the back
ground. The BMDs only depend on the foldchange (ratio of 
median response at very high dose and the median response in 
the control group) for models in family 1. For two models (log
normal family 2), this is the ratio of the log median response at 
very high dose and the log median at zero dose. Dependency of 
the BMD on such a ratio is evident in our view. Even if the BMD 
is functionally independent from the background for each model 
in the mathematical sense, the estimates of all parameters, 
including the background and the BMD, are statistically corre
lated, and in nonlinear models in general, that correlation can 
depend on the true values of all parameters (Seber and Wild 
1989).

Moreover, this requirement is not achievable in a model 
averaging estimation framework. Indeed, the final BMD esti
mates are the result of averaging across all models.

1. In the frequentist paradigm of PROAST, the BMD esti
mate is derived from applying the BMD definition with 
the particular BMR to the averaged model (a weighted 
mean of all models). This averaged model will inevitably 
depend on all estimated backgrounds from all constitu
ent models, as the estimates for the background vary 

across models, to varying degrees, depending on the 
data at hand. So, the BMD derived from such an aver
aged model will also depend on all estimates of the 
background. The lower limit BMDL is obtained from 
bootstrap simulation. The bootstrap is actually an asymp
totic method, implying it might have rather poor per
formance for small sample sizes (not infrequently 
occurring in practice).

2. In the Bayesian paradigm, even when restricting to the 
canonical models, the posterior of the BMD for a particu
lar model is based on the joint Bayesian estimation of all 
parameters of that model. The final BMD point estimate 
and credible interval are derived from the weighted mix
ture of all model-specific BMD posteriors, and therefore, 
they may depend on the Bayesian estimates of all 
parameters of all models. Finally, the priors for all param
eters also have an important impact on the model- 
specific BMD posteriors and the final model-averaged 
BMD posterior.

Methodological considerations and empirical 
evidence

While the authors state that there is “ample empirical 
evidence” supporting their assumptions of parallel dose– 
response on log-scale (at the end of section 2) and claim 
that dose–response relationships should be multiplicative 
rather than additive, the authors advocate for visual 
inspection of parallelism rather than statistical tests. They 
state statistical tests are “not reliable as [they assume] 
random scatter”. Yet the same assumption of random 
scatter is implicitly accepted when they fit models and 
calculate BMD confidence intervals – which, in our view, 
undermines the coherence of the methodological 
framework.

Moreover, the authors argue for exclusive use of lognor
mal distributions without adequate justification. Above (end 
of section “Canonical properties and distribution assumptions 
– The models should predict positive values only”) we pro
vided quantitative empirical evidence that directly contradicts 
the authors’ assertion that normal distributions should be 
excluded, as the percentage of rejection for the lognormal 
(22.6%) is much larger than the nominal 5% expected. This 

Table 1. BMD and BMDL estimates after scale modifications for the probit model (P4) and the inverse exponential model (IE4), with normal distribution (N) and 
lognormal distribution (LN) (in bold the BMDL estimates and in italic the BMD estimates analogues of the values in the last row of table A2 of Slob et al. 2025).

Scale BMDL.P4N BMD.P4N BMDL.P4LN BMD.P4LN BMDL.IE4N BMD.IE4N BMDL.IE4LN BMD.IE4LN

0.001 0.021 0.240 0.018 0.158 0.048 0.298 0.040 0.182
0.01 0.021 0.235 0.018 0.156 0.043 0.268 0.037 0.188
0.1 0.024 0.258 0.017 0.166 0.044 0.260 0.040 0.190
1 0.025 0.244 0.020 0.175 0.044 0.259 0.036 0.191
1 0.022 0.244 0.017 0.179 0.040 0.254 0.041 0.190
1 0.023 0.243 0.018 0.167 0.041 0.261 0.038 0.195
1 0.020 0.226 0.017 0.175 0.041 0.280 0.039 0.187
1 0.024 0.251 0.019 0.180 0.043 0.275 0.036 0.191
10 0.025 0.257 0.017 0.159 0.043 0.267 0.040 0.194
100 0.021 0.254 0.017 0.165 0.043 0.259 0.039 0.197
1000 0.026 0.255 0.019 0.177 0.048 0.295 0.036 0.186
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raises questions about the selectivity of the empirical basis 
used to support their argument.

In addition, the manuscript does not include an evaluation 
of the robustness of the proposed modeling framework. 
Despite suggesting that a more restricted model set offers 
advantages, no comparative analysis is presented to demon
strate improved performance relative to broader, more inclu
sive model sets.

Regarding the discussion on model averaging, the recom
mendation to limit the model set appears to overlook widely 
accepted statistical principles. The strength of model averag
ing lies in its ability to incorporate a range of models that 
may reflect different aspects of the underlying process. By 
doing so, it helps mitigate the effects of model misspecifica
tion. The benefits of this ensemble approach – particularly its 
capacity to balance varying model strengths and weaknesses 
– do not seem to be fully acknowledged in the manuscript.

Implementation and transparency

We are also concerned about the endorsement of the 
PROAST tool in the reviewed paper. While PROAST has 
played a key role in BMD development over the years, per
formance issues with the tool have been observed in specific 
scenarios and communicated to the authors of the paper in 
writing as well as in several meetings. In particular, EFSA has 
observed situations where PROAST underperforms and intro
duces results that are difficult to interpret due to limited 
transparency, including: the use of bootstrap procedures 
whose limitations are not clearly stated, hard-coded con
straints within the software that are not visible or accessible 
to users; the lack of sufficient documentation and openness 
regarding these limitations. More details are available upon 
request.

EFSA’s Bayesian BMD app, is open-source, fully transparent 
with documentation (Hasselt University 2022), and publicly 
available for scrutiny and validation. It uses Bayesian model 
averaging to account for model uncertainty and incorporates 
sensitivity analyses to provide a nuanced view of data and 
assumptions. This transparency is a strength – it invites 
improvement and fosters confidence.

Constructive alternative approach

We stress that inclusive modeling frameworks do not simply 
accept models uncritically but allow divergent perspectives 
and assumptions to coexist and be empirically tested. They 
offer opportunities to diagnose when assumptions fail, when 
data are insufficient, or when biological systems defy a-priori 
categorization. We advocate for a more comprehensive/inclu
sive approach that:

1. Incorporates a diverse set of models reflecting different 
possible dose–response relationships.

2. Uses model averaging techniques to account for model 
uncertainty.

3. Employs appropriate prior distributions based on bio
logical knowledge and empirical evidence.

4. Conducts thorough sensitivity analyses to evaluate 
robustness.

5. Considers both normal and lognormal distributions 
driven by data characteristics.

This approach provides a more reliable process to esti
mate the relevant BMD while acknowledging inherent uncer
tainty in dose–response modeling. To these continuous 
developments, it also follows our commitment for the con
tinuous improvements of our guidance and tool to support 
the users navigating the BMD framework with evolving scien
tific knowledge.
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