Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 1:1-1:70 Submitted Jan. 27, 2025
https://Imcs.episciences.org/ Published Jan. 01, 2026

ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR
ALGEBRA QUERIES THROUGH EXPRESSIBILITY

THOMAS MUNOZ ®®, CRISTIAN RIVEROS ©°, AND STIJN VANSUMMEREN © ¢

¢ UHasselt, Belgium
e-mail address: thomas.munozserrano@uhasselt.be, stijn.vansummeren@uhasselt.be

®PUC Chile, Chile
e-mail address: cristian.riveros@uc.cl

ABSTRACT. Due to the importance of linear algebra and matrix operations in data ana-
lytics, there is significant interest in using relational query optimization and processing
techniques for evaluating (sparse) linear algebra programs. In particular, in recent years
close connections have been established between linear algebra programs and relational
algebra that allow transferring optimization techniques of the latter to the former. In
this paper, we ask ourselves which linear algebra programs in MATLANG correspond to
the free-connex and g-hierarchical fragments of conjunctive first-order logic. Both frag-
ments have desirable query processing properties: free-connex conjunctive queries support
constant-delay enumeration after a linear-time preprocessing phase, and g-hierarchical con-
junctive queries further allow constant-time updates. By characterizing the corresponding
fragments of MATLANG, we hence identify the fragments of linear algebra programs that
one can evaluate with constant-delay enumeration after linear-time preprocessing and with
constant-time updates. To derive our results, we improve and generalize previous corre-
spondences between MATLANG and relational algebra evaluated over semiring-annotated
relations. In addition, we identify properties on semirings that allow to generalize the
complexity bounds for free-connex and g-hierarchical conjunctive queries from Boolean
annotations to general semirings.

1. INTRODUCTION

Linear algebra forms the backbone of modern data analytics, as most machine learning
algorithms are coded as sequences of matrix operations [ABCT16,ELB*17,ASS*T17, EBH* 17,
YHZ"17]. In practice, linear algebra programs operate over matrices with millions of entries.
Therefore, efficient evaluation of linear algebra programs is a relevant challenge for data
management systems which has attracted research attention with several proposals in the
area [HBY13,KVGT19, WHS*20,JLY +20, LGG"18].

To optimize and evaluate linear algebra programs, we must first agree on the language
in which such programs are expressed. There has been a renewed interest in recent years for
designing query languages for specifying linear algebra programs and for understanding their
expressive power [SEM 120, BHPS20, BGABW19, BGdB20, GMRV21]. One such proposal is
MATLANG [BGdBW19], a formal matrix query language that consists of only the basic linear
algebra operations and whose extensions (e.g., for-MATLANG) achieve the expressive power

Key words and phrases: Query evaluation, conjunctive queries, linear algebra, enumeration algorithms.

|E5| LOGICAL METHODS © T. Mufoz, C. Riveros, and S. Vansummeren
IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:1)2026 @ Creative Commons

1:2 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

of most linear algebra operations [GMRV21]. Although MATLANG is a theoretical query
language, it includes the core of any linear algebra program and, thus, the optimization and
efficient evaluation of MATLANG could have a crucial impact on today’s machine learning
systems.

In this work, we study the efficient evaluation of MATLANG programs over sparse
matrices whose entries are taken from a general semiring. We consider MATLANG evaluation
in both the static and dynamic setting. For static evaluation, we want to identify the
fragment that one can evaluate by preprocessing the input in linear time to build a data
structure for enumerating the output entries with constant-delay. For dynamic evaluation,
we assume that matrix entries are updated regularly and we want to maintain the output of
a MATLANG query without recomputing it. For this dynamic setting, we aim to identify
the MATLANG fragment that one can evaluate by taking linear time in the size of the
update to refresh the aforementioned data structure so that it supports constant-delay
enumeration of the modified output entries. These guarantees for both scenarios have
become the holy grail for algorithmic query processing since, arguably, it is the best that
one can achieve complexity-wise in terms of the input, the output, and the cost of an
update [BGS20,BDG07,Bral3,IUV17, KNOZ20,SSV18,KS13, DG07,DSS14].

To identify the MATLANG fragments with these guarantees, our approach is straightfor-
ward but effective. Instead of developing evaluation algorithms from scratch, we establish
a direct correspondence between linear algebra and relational algebra to take advantage
of the query evaluation results for conjunctive queries. Indeed, prior work has precisely
characterized which subfragments of conjunctive queries can be evaluated and updated
efficiently [BDGO07, BKS17,BGS20,IUV17|. Our main strategy, then, is to link these con-
junctive query fragments to corresponding linear algebra fragments. More specifically, our
contributions are as follows.

(1) We start by understanding the deep connection between positive first-order logic (FO™)
over binary relations and sum-MATLANG [GMRV21], an extension of MATLANG. We
formalize this connection by introducing schema encodings, which specify how rela-
tions simulate matrices and vice-versa, forcing a lossless relationship between both.
Using this machinery, we show that sum-MATLANG and positive first-order logic are
equally expressive over any relation, matrix, and matrix dimension (including non-
rectangular matrices). Moreover, we show that conjunctive queries (CQ) coincide with
sum-MATLANG without matrix addition, which we call conj-MATLANG. This result
forms the basis for linking both settings and translating the algorithmic results from
CQ to subfragments of conj-MATLANG.

(2) We propose free-connex MATLANG (fc-MATLANG) for static evaluation, which is a
natural MATLANG subfragment that we show to be equally expressive as free-connex
C@Q [BDGOT7], a subfragment of CQ that allows linear time preprocessing and constant-
delay enumeration. To obtain our expressiveness result, we show that free-connex CQs
over binary relations are equally expressive as the two-variable fragment of conjunctive
FO™, a logical characterization of this class that could be of independent interest.

(3) For the dynamic setting we introduce the language gh-MATLANG, a MATLANG fragment
that we show equally expressive to g-hierarchical CQ) [BKS17,IUV17], a fragment of CQ
that allows constant update time and constant-delay enumeration.

(4) Both free-connex and g-hierarchical CQ are known to characterize the class of CQs
that one can evaluate efficiently on Boolean databases. We are interested, however, in
evaluating MATLANG queries on matrices featuring entries in a general semiring. To

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:3

obtain the complexity bounds for fc-MATLANG and gh-MATLANG on general semirings,
therefore, we show that the upper and lower bounds for free-connex and g-hierarchical
CQs generalize from Boolean annotations to classes of semirings which includes most
semirings used in practice, like the reals. The tight expressiveness connections established
in this paper then prove that for such semirings fccMATLANG and gh-MATLANG can
be evaluated with the same guarantees as their CQ counterparts and that they are
optimal: one cannot evaluate any other conj-MATLANG query outside this fragment
under complexity-theoretic assumptions [BKS17].

This article is further organized as follows. Section 2 adresses all definitions. Section 3
describes how to go from a relational setting to a linear algebra setting and vice versa.
In Section 4 we show sum-MATLANG and positive first-order logic are equally expressive.
Section 5 defines free-connex CQs and characterizes binary free-connex CQs with the
conjunctive two variable fragment of positive first order logic. Afterwards, fc-MATLANG
is defined in Section 6. The definition of g-hierarchical CQs is located in Section 7 and in
that matter binary g-hierarchical CQs are shown to be equally expressive as hierarchical
queries of the conjunctive two variable fragment of positive first order logic. Subsequently
in Section 8, gh-MATLANG is defined. Later, Section 9 defines the enumeration problem
and states known upper and lower bounds on the Boolean semiring for free-connex CQs. In
Section 10 the upper and lower bounds are extended to general semirings for free-connex
CQs which use inequality atoms. Section 11 defines the dynamic enumeration problem
and known upper and lower bounds on the Boolean semiring for g-hierarchical CQs; and
illustrates how to extend these bounds to general semirings and for g-hierarchical CQs which
use inequality atoms. We end by presenting some conclusions and future work in Section 12.

1.1. New material. Our results have previously been published in the 27th International
Conference on Database Theory, ICDT 2024. This article is an extended and complete
version containing full proofs of all formal statements omitted in the conference version.
Moreover, several notions and proofs were revisited to improve the presentation and shorten
the article. Specifically, we introduce a prenex normal form for conj-MATLANG in Section 4,
which resulted in being especially useful for several proofs, in particular, for the proof that
sum-MATLANG and positive first-order logic are equally expressive. Furthermore, these
changes in the main proof required a new presentation of other results, like the lower bound
statements of fccMATLANG and gh-MATLANG in Section 10 and Section 11, respectively.

1.2. Related work. In addition to the work that has already been cited above, the following
work is relevant. Brijder et al. [BGdB20] have shown equivalence between MATLANG and
FO;, the 3-variable fragment of positive first order logic. By contrast, we show equivalence
between sum-MATLANG and FO™, and study the relationship between the free-connex and
g-hierarchical fragments of MATLANG and FO”, the conjunctive fragment of positive first
order logic.

Geerts et al. [GMRV21] previously established a correspondence between sum-MATLANG
and FOT. However, as we illustrate in Section 3.1 their correspondence is (1) restricted to
square matrices, (2) asymmetric between the two settings, and (3) encodes matrix instances
as databases of more than linear size, making it unsuitable to derive the complexity bounds.

Eldar et al. [ECK24] have recently also generalized complexity bounds for free-connex
CQs from Boolean annotations to general semirings. Nevertheless, this generalization is with

1:4 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

respect to direct access, not enumeration. In their work the focus is to compute aggregate
queries, which is achieved by providing direct access to the answers of a query even if the
annotated value (aggregation result) is zero. By contrast, in our setting, zero-annotated
values must not be reported during the enumeration of query answers. This distinction in
the treatment of zero leads to a substantial difference in the properties that a semiring must
have in order to generalize the existing complexity bounds.

There are deep connections known between the treewidth and the number of variables
of a conjunctive FOT formula (FO"). For example, Kolaitis and Vardi established the
equivalence of boolean queries in FO}, the k-variable fragment of FO”, and boolean queries
in FO” of treewidth less than k. Because they focus on boolean queries (i.e., without free
variables), this result does not imply our result that for binary queries free-connex FO”
equals FO%. Similarly, Geerts and Reutter [GR22] introduce a tensor logic TL over binary
relations and show that conjunctive expressions in this language that have treewidth k can
be expressed in TLy,1, the k-variable fragment of TL. While they do take free variables into
account, we show in Appendix E.1 that there are free-connex conjunctive queries with 2
free variables with treewidth 2 in their formalism—for which their result hence only implies
expressibility in FO%, not FO) as we show here.

Several proposals [HBY13, KVGT19, WHS*20, JLY 20, LGG*18] have been made re-
garding the efficient evaluation of linear algebra programs in the last few years. All these
works focused on query optimization without formal guarantees regarding the preprocessing,
updates, or enumeration in query evaluation. To the best of our knowledge, this is the first
work on finding subfragments of a linear algebra query language (i.e., MATLANG) with such
efficiency guarantees.

2. PRELIMINARIES

In this section we recall the main definitions of MATLANG, a query language on matrices,
and first order logic (FO), a query language on relations.

Semirings. We evaluate both languages over arbitrary commutative and non-trivial semir-
ings. A (commutative and non-trivial) semiring (K,®,®,0,1) is an algebraic structure
where K is a non-empty set, ® and ® are binary operations over K, and 0,1 € K with 0 # 1.
Furthermore, ® and ® are associative operations, 0 and 1 are the identities of @ and @,
respectively, @ and ©® are commutative operations, ® distributes over @, and 0 annihilates
K (ie. 00k=k®0=0). We use @, and (), to denote the @ and © operation over all
elements in L C K, respectively. Typical examples of semirings are the reals (R, +, x,0, 1),
the natural numbers (N, +, x,0, 1), and the boolean semiring B = ({t, £}, V, A, £, t).

Henceforth, when we say “semiring” we mean “commutative and non-trivial” semiring.
We fix such an arbitrary semiring K throughout the document. We denote by N+ the set
of non-zero natural numbers.

Matrices and size symbols. A K-matriz (or just matrix) of dimension m x n is am x n
matrix with elements in K as its entries. We write A;; to denote the (i,j)-entry of A.
Matrices of dimension m x 1 are column vectors and those of dimension 1 X n are row vectors.
We also refer to matrices of dimension 1 x 1 as scalars.

We assume a collection of size symbols denoted with greek letters a, 3,... and assume
that the natural number 1 is a valid size symbol. A type is a pair («, 3) of size symbols.
Intuitively, types represent sets of matrix dimensions. In particular, we obtain dimensions

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:5

from types by replacing size symbols by elements from N~ g, where the size symbol 1 is always
replaced by the natural number 1. So, (a,) with a # 1 # /3 represents the set of dimensions
{(m,n) | m,n € N5o}, while (o,) represents the dimensions {(m,m) | m € N5o} of square
matrices; (o, 1) represents the dimensions {(m,1) | m € N5g} of column vectors; and (1,1)
represents the dimension (1, 1) of scalars.

Schemas and instances. We assume a set M = {A,B,C,V,...} of matriz symbols,
disjoint with the size symbols and denoted by bold uppercase letters. Each matrix symbol
A has a fixed associated type. We write A: (a,) to denote that A has type (a, 3).

A matrix schema S is a finite set of matrix and size symbols. We require that the special
size symbol 1 is always in S, and that all size symbols occurring in the type of any matrix
symbol A € § are also in §. A matrix instance Z over a matrix schema S is a function
that maps each size symbol « in S to a non-zero natural number of € N+, and maps each
matrix symbol A: (a, 8) in S to a K-matrix AZ of dimension o x 3Z. We assume that for
the size symbol 1, we have 17 = 1, for every instance Z.

Sum-Matlang. Let S be a matrix schema. Before defining the syntax of sum-MATLANG,
we assume a set V = {u, v, w,x,...} of vector variables over S, which is disjoint with matrix
and size symbols in §. Each such variable v has a fixed associated type, which must be a
vector type (7, 1) for some size symbol v € S. We also write v: (v, 1) in that case.

The syntax of sum-MATLANG expressions [GMRV21] over § is defined by the grammar:

e == A €S (matrix symbol) | veV (vector variable)
| el (transpose) | e1-ex (matrix multiplication)
| e1+e (matrix addition) | e1 x ey (scalar multiplication)
| e1®ey (pointwise multiplication) | ¥v.e (sum-iteration).

In addition, we require that expressions e are well-typed, in the sense that their type type(e)
is correctly defined as follows:

type(A) = («a,) for a matrix symbol A: («,)

type(v) = (v,1) for vector variable v: (v, 1)

type(e’) = (B,a) if type(e) = (a,)
type(er - e2) = (a,7) if type(e1) = (o, B) and type(ez) = (5,7)
type(er +e2) = (a,B) if type(er) = type(ez) = (o,)
type(e; X ea) = (a,) if type(er) = (1, 1) and type(e2) = (o,)
type(e1 ®e2) = (o, B) if type(e1) = type(ez) = (o,)

type(Xv.e) = (a,) if e: (o, B) and type(v) = (v, 1).

In what follows, we always consider well-typed expressions and write e: (a, 3) to denote
that e is well typed, and its type is («, /).

For an expression e, we say that a vector variable v is bound if it is under a sum-iteration
v, and free otherwise. We say that an expression e is a sentence if e does not have free
vector variables. To evaluate expressions that are not sentences, we require the following
notion of a valuation. Fix a matrix instance Z over S. A wvector valuation over T is a function
v that maps each vector symbol v: (7,1) to a column vector of dimension v* x 1. Further,
if b is a vector of dimension v~ x 1, then let u[v := b] denote the extended vector valuation
over Z that coincides with u, except that v: (v, 1) is mapped to b.

1:6 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Let e: (a, B) be a sum-MATLANG expression over S. When one evaluates e over a matrix
instance Z and a matrix valuation p over Z, it produces a matrix [e](Z, 1) of dimension
ol x T such that each entry 4, j satisfies:

[A](Z, p)ij = AI-I]- for AeS
VI(Z, 1)ij = p(v)iy; forvey
(TN)5 = (DT)0
[e1 - e2)(Z,)i = Byler](Z, wix © le2l (T, 1)
[ex + e2](Z,)iy = [T, w)ij & [e2](Z, p)s
[er x e2(Z,)i = a © [e2](Z, p)i; with [e:](Z, p) = [a]
[e1 © e2](Z, p)ij = [ea](Z, w)ij © [e2](Z,)i
[Bv.e](Zw)iy = B[l nlv = b))
In the last line, it is assumed that v: (y,1), and b}, b3, ... b]! denote the n-dimensional
canonical vectors, namely, the vectors [10 ... 0|7, [01 ... 07, ..., [00 ... 1]7, respectively.

Note that if e is a sentence, then [e] is independent of the vector valuation p in the
sense that [e](Z, u) = [€](Z, p’) for all vector valuations p and /. We therefore sometimes
also simply write [e](Z) instead of [e](Z, 1) when e is a sentence.

Example 2.1. Let S = {A} where A: (a,«). Let Z be an instance over S such that
ail a2 a3

of =3 and AT = |aa1 az azs|.Let v eV wherev: (a, 1). The expression ¥v.A - v is
azy az2 as3

well-typed and

ain ai2 a3
[Ev.A-v](Z,0) = A-b3+A-b3+A bl = |ag | + |ax| + |as
asi as2 a3

Example 2.2. Let § and Z be as in Example 2.1. Let v € V where v: (v, 1). The expression
>v.A is well-typed and
[Ev.A|(Z,0) =A+---+A.
—_——

~Z times

Fragments of Sum-Matlang. We recall here two fragments of sum-MATLANG that will be
important for the paper. First, we define conj-MATLANG as the sum-MATLANG fragment
that includes all operations except matrix addition (+). Second, we define MATLANG that
is a fragment of sum-MATLANG. Specifically, define the syntax of MATLANG expressions
over S by the following grammar:
e == AcS|el |er-ea|erter|erxe|er®ey | 1% I¢

for every size symbol a € §. Here, 1¢ and I* denote the ones-vector and identity-matriz,
respectively, of type type(1%) = (a,1) and type(I®) = (a,). Their semantics can be
defined by using sum-MATLANG as:

[19)(Z, 1) =[Svv](T.), 1T, 1) =[Sy VI, p).
Note that the original MATLANG language as introduced in [BGABW19] included an
operator for vector diagonalization. This operator can be simulated using the I¢-operator,

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:7

and conversely I¢ can be simulated using vector diagonalization. Furthermore, we have
included the pointwise multiplication ® in MATLANG, also known as the Hadamard product.
This operation will be essential for our characterization results. In [BGdBW19, GMRV21],
the syntax of MATLANG was more generally parameterized by a family of n-ary functions
that could be pointwise applied. Similarly to [BGdB20, Geel9] we do not include such
functions here, but leave their detailed study to future work.

Sum-Matlang queries. A sum-MATLANG query Q over a matrix schema S is an expression
of the form H := e where e is a well-typed sum-MATLANG sentence, H is a “fresh” matrix
symbol that does not occur in S, and type(H) = type(e). When evaluated on a matrix
instance Z over schema S, Q returns a matrix instance £ over the extended schema S U{H}:
& coincides with Z for every matrix and size symbol in S and additionally maps HE = [e](Z, 0)
with () denoting the empty vector valuation. We denote the instance resulting from evaluating
Q by [Q](Z). If S is a matrix schema and Q a sum-MATLANG query over S then we use
S5(Q) to denote the extended schema S U{H}.

The former notion of query is extended to any fragment of sum-MATLANG in a natural
manner, e.g., a conj-MATLANG query is a sum-MATLANG query H := e where ¢ is a
well-typed conj-MATLANG expression.

K-relations. A K-relation over a domain of data values D is a function f: D% — K such
that f(d) # 0 for finitely many d € D®. Here, ‘a’ is the arity of R. Since we want to compare
relational queries with sum-MATLANG queries, we will restrict our attention in what follows
to K-relations where the domain I of data values is the set Nsg. In this context, we may
naturally view a K-matrix of dimensions n x m as a K-relation such that the entry (i, 7) of
the matrix is encoded by the K-value of the tuple (i, 7) in the relation (see also Section 3).

Vocabularies and databases. We assume an infinite set of relation symbols together
with an infinite and disjoint set of constant symbols. Every relation symbol R is associated
with a number, its arity, which we denote by ar(R) € N. A vocabulary o is a finite set of
relation and constant symbols. A database over o is a function db that maps every constant
symbol ¢ € o to a value ¢ in N5g; and every relation symbol R € ¢ to a K-relation R% of
arity ar(R).

Positive first order logic. As our relational query language, we will work with the positive
fragment of first order logic (FO™). In contrast to the standard setting in database theory,
where the only atomic formulas are relational atoms of the form R(T), we also allow the
ability to compare variables with constant symbols. To this end, the following definitions
are in order. We assume an infinite set of variables, which we usually denote by x,y, z. We
denote tuples of variables by Z, 7, and so on. A relational atom is an expression of the form
R(z1,...,x) with R a relation symbol of arity k. A comparison atom is of the form x < ¢
with x a variable and ¢ a constant symbol. An equality atom is of the form z = y with
x,y variables. A positive first order logic formula (FOT formula) over a vocabulary o is an
expression generated by the following grammar:

p = R@) |z<c|lz=y|Iyelerp|pVy
where R and c range over relations and constants in o, respectively. The notions of free

and bound variables are defined as usual in FO. We denote the set of free variables of ¢ by
free(y) and the multiset of atoms occurring in ¢ by at(p).

1:8 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

We evaluate formulas over K-relations as follows using the well-known semiring seman-
tics [GKTO7]. A wvaluation over a set of variables X is a function v: X — N5 that assigns
a value in N5 to each variable in X (recall that D = N5(). We denote by v: X that v is a
valuation on X and by v|y the restriction of v to X NY. As usual, valuations are extended
point-wise to tuples of variables, i.e., v(x1,...,7,) = (v(z1),...,v(z,)). Let ¢ be an FOT
formula over vocabulary o. When evaluated on a database db over vocabulary o, it defines
a mapping [[¢] 4 from valuations over free(p) to K inductively defined as:

TR@)|ab(v) = RP(v(T))

1 if p(z) <c®
< <
Iz < ela(®) 0 otherwise

1 ifv(z)=v(y)
Iz =ylaw) = 0 otherwise
Te1 Ap2llas(v) = [e1llan(V]freeor)) © T2llab(Vfree(on))
Te1Vallan(v) = Me1llan(V|freeor)) © 2]l ab(Vfree(on))
By-ellan(v) = DB free(o)s.topl e oy = 1P U b (10)-

The support of the mapping [[¢]la» is the set of valuations that it maps to a nonzero
annotation. As the reader may notice, it is possible that [[¢] 4 has infinite support. This
situation is remeniscent of classical FO (evaluated on the Boolean semiring) which may
also define infinite relations. To circumvent this problem, we restrict ourselves to safe
formulas [AHV95], which in classical FO ensures that output relations are finite. To define
safety, we first define the set rr(y) C free(¢) of range restricted variables of a formula:

rr(R(x1, ... xn)) ={x1,..., 25} rr(z < c¢) ={z} rr(z=y)=10
rr(p1 A pa) = rr(pr) Urr(pz) rr(pr Vpz) =rr(pr) Nrr(pe) rr(3y.p) = rr(e) \ {y}.

An FO™ formula ¢ is safe if it satisfies the following conditions:

(1) every occurrence of an equality atom z = y is a part of a subformula of ¢ of the form
Y A (x =y) or (x =y) Ay where at least one of {z,y} is in rr(y));
(2) 1V 9 is only used when ¢ and ¢, have the same set of free variables.

Proposition 2.3. Every safe FO™ formula has finite support.

The proof is remeniscent of that of classical FO; we therefore delegate it to Appendix A.
For the rest of this paper, we restrict to safe formulas. Hence when we say “formula” we
mean “safe formula”, and similarly for queries.

FO queries. An FO' query Q over vocabulary o is an expression of the form H(Z) + ¢
where ¢ is an FO™ formula over o, T = (21, ..., %)) is a sequence of (not necessarily distinct)
free variables of ¢, such that every free variable of ¢ occurs in T, and H is a “fresh” relation
symbol not in o with ar(H) = k. The formula ¢ is called the body of Q, and H(T) its head.

When evaluated over a database db over o, @ returns a database [Q] 4 over the extended
vocabulary o U{H }. This database [Q] 4 coincides with db for every relation and constant
symbol in o, and maps the relation symbol H to the K-relation of arity k£ defined as follows.
For a sequence of domain values d = (dy,...,dy), we write d |= T if, for all i # j with
x; = x; we also have d; = d;. Clearly, if d |= 7 then the mapping {z1 — d1,..., 25 > di} is

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:9

well-defined. Denote this mapping by Z — d in this case. Then

”@ﬂdb(f — 3) if d): x
0 otherwise

[Qlan(H) = d — {

In what follows, if @ is a query, then we will often use the notation Q(Z) to denote that the
sequence of the variables in the head of @ is Z. If @) is a query over o and H(Z) its head,
then we write o(Q) for the extended vocabulary o U{H }.

Formula and query equivalence. Two FO™ formulas ¢; and ¢9 are said to be equivalent,
denoted ¢1 = @2 if Jo1llay = [[p2]lap for every database. Note that because [[¢1]ap is
a set of mappings, all with domain free(yp;), and because the same holds for [[¢s ||, we
neccesarily have free(¢1) = free(yps) when @1 = @o. Similarly, two FO' queries Q1 and Qo
are equivalent, denoted Q1 = Q2 if [Q1] 4 = [Q2]a» for every database. This implies that
they have the same head but the variables occurring in the heads need not be the same.

Note that because we have fixed I arbitrarily, formula and query equivalence cannot
use the concrete interpretation of the operators in X operators, and must hence hold for
every choice of K.

Fragments of FO™. We denote by FO” the fragment of FO' formulas in which disjunction
is disallowed. A query Q = H(T) + ¢ is an FO" query if ¢ is in FO". If additionally ¢
is in prenex normal form, i.e., @ : H(Z) < Jy.a1 A --- A a,, where ay,...,a, are relational,
comparison, or equality atoms, then @ is a conjunctive query (CQ). Note that, while the
classes of conjunctive queries and FO" queries are equally expressive, for our purposes
conjunctive queries are hence formally a syntactic fragment of FO™ queries.

An FO™ formula is binary if every relational atom occurring in it has arity at most two
and it has at most two free variables. Similarly, an FO™ query is binary if every relational
atom occurring in it (body and head) has arity at most two. Because in sum-MATLANG
both the input and output are matrices, our correspondences between sum-MATLANG and
FO™ will focus on binary queries.

Discussion. We have added comparison atoms to FO' in order to establish its correspon-
dence with sum-MATLANG. To illustrate why we will need comparison atoms, consider the
sum-MATLANG expression I¢ of type (a,) that computes the identity matrix. This can
be expressed by means of the following CQ @ : I(z,x) < z < a. We hence use comparison
atoms to align the dimension of the matrices with the domain size of relations.

To make the correspondence hold, we note that in sum-MATLANG there is a special
size symbol, 1, which is always interpreted as the constant 1 € N. This size symbol is
used in particular to represent column and row vectors, which have type (a,1) and (1, «)
respectively. We endow CQs with the same property in the sense that we will assume in
what follows that 1 is a valid constant symbol and that 1% = 1 for every database db.

3. FROM MATRICES TO RELATIONS AND BACK

In this section, we lay the grounds to revisit and generalize the connection between
sum-MATLANG and FO'. Towards this goal, we introduce next all the formal machin-
ery necessary to provide translations between the two query languages that work for any
matrix schema, are symmetric, and ensure that matrices are encoded as databases of linear

1:10 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

size. These translations are specified in Section 4. We start by discussing why we need to
revisit this formal machinery to then continue presenting the formal details.

3.1. The need to revisit the characterization of Sum-Matlang. In [GMRV21], the
authors already propose a way of translating between sum-MATLANG and FOT. Next,
we summarize how the translations that we propose in this paper improve over those
of [GMRV21], justifying why we need to revisit this characterization.

In [GMRV21], the translation from sum-MATLANG to FO™ goes as follows. It is assumed
that on the FO™ side there is a unary relation R, for each size symbol o and that, in the
database db simulating the sum-MATLANG instance Z we have R%(i) = 1 for all 1 <i < o”.
Note that, consequently, the size of db is larger than that of Z: it take unit space to store
ot in T while it takes of space in db. Therefore, || db|| (the size of db) is certainly not
linear in the size of Z. Since we are interested in evaluating sum-MATLANG and MATLANG
expressions with linear time preprocessing by reducing to the relational case, this encoding
of matrix instances as databases is hence unsuitable. We resolve this in our work by adding
inequality atoms to FOT, and adopting a representation of matrix instances by databases
that is linear in size.

Conversely, in [GMRV21], the translation from FOT to sum-MATLANG only works
when the input relations to the FO' query represent square matrices of type (,a), or
vectors with type (o, 1) or (1,q), for a fixed single size symbol « such that a% = n where
{dy,...,d,} is the active domain of db. This assumption implies that if one translates a
sum-MATLANG query into FO', optimizes the FO™ query, and then translates back, one
obtains a sum-MATLANG query whose input schema is different than that of the original
query. This phenomemon is illustrated by means of the scenario below. By contrast, we
establish a more general correspondence, parametrized by schema encodings, that preserves
the original input schema in such a round-trip translation.

Consider for example the schema S = {A} with A: (a,). Let the instance Z over S
be such that of =3, 7 = 2, and:

AT =

OO =
= o O

Let Q be a sum-MATLANG query over S to be evaluated on Z. In [GMRV21] the correspond-
ing relational schema is { A, R{, RQ’B} The instance db is such that A%(1,1) =1, A9%(3,2) = 1
and 0 for any other tuple. Also, (R$)%(i) = 1 for all i < o = 3 and (Rg)db(i) =1 for
all i < T = 2. Then, if we translate this relational setting back to a matrix schema and
instance, the result is &’ = {A, Ry, Ro} with A: (o, a),Rq: (a,1) and Ra: (o, 1). The
instance Z’ over S’ is such that o = 3 (because of the active domain), and:

U

1 0
AT = [0 0
0 1

o OO

Additionally, we have Q' over &’ and that can be evaluated on instance Z’. Note that
[Q]z = [Q]z does not hold in general, even for the expression A since AT # AT,

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:11

Given the previous discussion, in the following we determine precisely in what sense
relations can encode matrices, or matrices can represent relations, and how this correspon-
dence transfers to queries. Then, in Section 4 we show how to generalize the expressibility
results in [GMRV21] for any matrix sizes and every encoding between schemas.

3.2. How we relate objects. Let A be a matrix of dimension m x n. There exist multiple
natural ways to encode A as a relation, depending on the dimension m X n.

e We can always encode A, whatever the values of m and n (i.e., A could be a matrix, a
column or row vector, or a scalar), as the binary K-relation R such that (1) A;; = R(4,7)
for every i <m, j <nand (2) R(i,j) =0 if i > m or j > n.

e If A is a column vector (n = 1) then we can also encode it as the unary K-relation R
such that A;; = R(¢) for every i <m and R(i) = 0 if i > m.

e Similarly, if A is a row vector (m = 1) then we can encode it as the unary K-relation R
with A ; = R(j) for every j <n and R(i) = 0 if j > n.

o If A is a scalar (m =n = 1), we can encode it as a nullary K-relation R with A;; = R().

Note that if A is scalar then we could hence encode it by means of a binary relation, a unary

relation, or a nullary relation; and if it is a vector we can encode it by a binary or unary

relation. In what follows, we write A ~ R to denote that R encodes A following any of the
alternatives above.
Conversely, given a (nullary, unary, or binary) K-relation R we may interpret this as

a matrix of appropriate dimension. Specifically, we say that relation R is consistent with

dimension m x n if there exists a matrix A of dimension m x n such that A ~ R. This is

equivalent to requiring that relation is 0 on entries outside of m x n. Note that, given R

that is consistent with m X n there is exactly one matrix A: m X n such that A ~ R.

3.3. How we relate schemas. A matriz-to-relational schema encoding from a matrix
schema S to a relational vocabulary o is a function Rel: & — ¢ that maps every matrix
symbol A in S to a unary or binary relation symbol Rel(A) in o, and every size symbol «
in S to a constant symbol Rel(«) in 0. Here, Rel(A) can be unary only if A is of vector
type, and nullary only if A is of scalar type. Intuitively, Rel specifies which relation symbols
will be used to store the encodings of which matrix symbols. In addition, we require that
Rel(1) = 1 and that Rel is a bijection between S and o. This makes sure that we can always
invert Rel. In what follows, we will only specify that Relis a matrix-to-relational schema
encoding on S, leaving the vocabulary o unspecified. In that case, we write Rel(S) for the
relational vocabulary o.

Conversely, we define a relational-to-matrixz schema encoding from o into S as a function
Mat: 0 — S that maps every relation symbol R to a matrix symbol Mat(R) and every
constant symbol ¢ to a size symbol Mat(c). We require that all unary relations are mapped
to matrix symbols of vector type, either row or column, and that all nullary relations are
mapped to matrix symbols of scalar type. Furthermore, Mat must map 1 — 1 and be
bijective. Similarly, we denote by Mat(c) the matrix schema S mapped by Mat.

Note that the bijection assumption over Mat imposes some requirements over o to
encode it as matrices. For example, Mat requires the existence of at least one constant
symbol in o for encoding matrices dimensions, since every matrix symbol has at least one size
symbol in its type, and that size symbol is by definition in §. The bijection between constant
and size symbols is necessary in order to have lossless encoding between both settings.

1:12 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Given that Rel and Mat are bijections between S and o, their inverses Rel™' and
Mat™! are well defined. Furthermore, by definition we have that Rel ' and Mat™! are
relational-to-matrix and matrix-to-relational schema encodings, respectively.

3.4. How we relate instances. We start by specifying how to encode matrix instances as
database instances. Fix a matrix-to-relational schema encoding Rel between S and Rel(S).
Let 7 be a matrix instance over S and db a database over Rel(S). We say that db is a
relational encoding of T w.r.t. Rel, denoted by Z ~pe; db, if

o AT ~ Rel(A)% for every matrix symbol A in S, and
o Rel(a)? = o for every size symbol o in S.

Note that, given Z and Rel, the relational encoding db is uniquely defined. As such, we also
denote this database by Rel(Z).

We now focus on interpreting database instances as matrix instances, which is more
subtle. Fix a relational-to-matrix schema encoding Mat from o to Mat(c). We need to
first leverage the consistency requirement from relations to databases. Formally, we say
that a database db over o is consistent with Mat if for every relation symbol R in o, R%
is consistent with dimension c% x d% where Mat(R): (Mat(c), Mat(d)). In other words, a
consistent database specifies the value of each dimension, and the relations are themselves
consistent with them.

Let db be a database over o, consistent with Mat and let Z be a matrix instance of
Mat(o). We say that Z is a matriz encoding of db w.r.t. Mat, denoted db >~y Z, if

e Mat(R)* ~ R% for every relation symbol R € o; and
e ¢® = Mat(c)* for every constant symbol c € o.

Given Mat and a consistent database db, the matrix encoding Z is uniquely defined. As such,
we also denote this instance by Mat(db).

From the previous definitions, one notes an asymmetry between both directions. Al-
though an encoding always holds from matrices to relations, we require that the relations
are consistent with the sizes (i.e., constants) from relations to matrices. Nevertheless, this
asymmetry does not impose a problem when we want to go back and forth, as the next
result shows.

Proposition 3.1. Let Rel and Mat be matriz-to-relational and relational-to-matriz schema
encodings from S to o and from o to S, respectively, such that Mat = Rel™'. Then

e Rel"'(Rel(S)) = S and Mat™*(Mat(o)) = o;

e Rel(T) is consistent with Rel 1, for every instance T over S;
o Rel Y (Rel(T)) = I, for every instance T over S; and

o Mat~(Mat(db)) = db, for every db consistent with Mat.

The previous proposition is a direct consequence of the definitions; however, it shows that
the consistency requirement and schema encodings provide a lossless encoding between the
relational and matrix settings. This fact is crucial to formalize the expressiveness equivalence
between sum-MATLANG and FO™, and their subfragments in the following sections.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:13

4. SUM-MATLANG AND POSITIVE FO

The previous section has established the formal basis for comparing sum-MATLANG and
FO™. In this section, we give our first expressibility results, proving that sum-MATLANG and
FO™ are equally expressive in some precise sense. Furthermore, we show that its fragments
conj-MATLANG and binary conjunctive queries (CQs) are also equally expressive. These
results will be our starting point to find fragments of sum-MATLANG that captures fragments
of FO1 with good algorithmic properties, like free-connex and g-hierarchical CQs.

4.1. From Sum-Matlang to positive FO. We first aim to simulate every sum-MATLANG
query with an FOT query w.r.t. some matrix-to-relational schema encoding. In what
follows, fix a matrix schema S. Let Q be a sum-MATLANG query over S, and Rel be a
matrix-to-relational schema encoding on S(Q). We say that FO™ query Q simulates Q w.r.t.
Rel if Rel([Q](T)) = [Q] gey(z) for every matrix instance Z over S. Note that the definition
implies that the output matrix symbol of Q must be mapped to the output relation symbol
of Q) by Rel, since Rel is a bijection and the condition must hold for every matrix instance.
Indeed, it is equivalent to [Q](Z) = Rel *([Q] Rrei(7))> namely, that one can evaluate Q by
first evaluating [Q] Rreyz) and then mapping the results back.

Our main goal will be to prove that one can simulate every sum-MATLANG query in
the relational setting by some FOT query. For the sake of presentation, we will take a
detour by first showing that we can simulate every conj-MATLANG query by some CQ to
then leverage this result to sum-MATLANG and FO™. The first step towards the proof is to
note that conj-MATLANG expressions have a prenex normal form as follows. We say that a
conj-MATLANG expression e: (a, 3) is in prenex normal form if it has the form:

e = ¥XX,y,Vi,...,Vk. 8 X (x-yT)
such that x: (o, 1), y: (8,1), and s is an expression satisfying the following grammar:
s=vl-A-w|vl.-w|sxs

where A € S; v ranges over {x,y,Vvi,...,Vi}; and w ranges over {X,y,vy,...,Vi} and the
free vector variables of e.

Lemma 4.1. Every conj-MATLANG expression can be expressed in prenex normal form.

The proof of Lemma 4.1 is by direct induction on the expression syntax; the interested
reader may find it in Appendix B. In essence, the form structure is analogous to the classic
conjunctive query structure: the expression v - A - w mimics access to base relations using
variables v and w; the expression v - w mimics equality between v and w; and {v1,...,v;}
are the projected variables. Variables x and y encode the size of the output matrix.

By using the prenex normal form of conj-MATLANG, we can prove the simulation of
conj-MATLANG queries by CQs.

Proposition 4.2. For every conj-MATLANG query Q over S and every matriz-to-relational
schema encoding Rel on S(Q), there exists a CQ Q that simulates Q w.r.t. Rel.

Proof. Let Q = H := e be a conj-MATLANG query such that e: (a, 3). By definition of
queries, e is a sentence (it does not have free variables). Then by Lemma 4.1 we may
assume that e = ¥X,y,Vi,...,Vp. 81 X -+ X8, XX -y’ where s; :=v! - A-w |v! -w with
v,w € {X,y,V1,...,Vg}.

1:14 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Let z,y,v1,...,vx be FO variables. In what follows, the variables v, w € {x,y,v1,..., vt}
are selected respectively for v,w € {x,y,vy,...,vi}: x is used when x appears, y is used
when y appears, and so on. Additionally, let us denote Rel(A) simply by means of A (in
non-bold math font), for every matrix symbol A, and let us denote the constant symbol
Rel(a) simply by «, for every size symbol « (recall that Rel(1) = 1 by definition).

We now build a CQ @ that simulates Q w.r.t. Rel. For each 1 <i <mn:

o Ifs; == vl . A.w define:

— a; = A(v,w) if A is binary.

—a; =A(w)ANw < 1if Ais unary and A: (o, 1).

—a;:=v < 1A A(w) if A is unary and A: (1, «).

—a; =v<1Aw<1AA()if A is nullary.
o If s; == v - w with v: (7,1) and w: (v, 1) define:

—a; =v<~vyifv=w.

—ag, =v<yAw<yAv=wif v #w.
Finally, define ¢ = Jvy,...,vop.a1 A---ANa, Nz < a Ay < (. Note that this formula is
in prenex normal form. Then the CQ Q: H(z,y) < ¢ simulates Q if Rel(H) is binary
and H: («a,); the CQ Q: H(z) < Jy.p simulates Q if Rel(H) is unary and H: (o, 1);
the CQ @: H(y) + Jz.p simulates Q if Rel(H) is unary and H: (1,5); and the CQ
Q: H() «+ Jz,y.p simulates Q if Rel(H) is nullary.]

Finally, we can provide a formal proof for the simulation from sum-MATLANG to FO™.

Proposition 4.3. For every sum-MATLANG query Q over S and every matriz-to-relational
schema encoding Rel on S(Q), there exists an FO' query Q that simulates Q w.r.t. Rel.

Proof. Let Q = H := e be a sum-MATLANG query. By definition of query, e is a sentence with
type(e) = (o, B) for some «, . Note that every sum-MATLANG sentence can be expressed
as a sum of conj-MATLANG sentences. Indeed, (e; + 62)T = elT + eQT; e1 ® (e +e2) =
e1 ® ey +e1 ©es; (€1+€2)®63 = e1 ®e3 + ex © es; 61‘<62+63) = e1 €2+ e1-e3;
(e1 +e2)-e3 =e1-e3+e2-e3; and Xv. (e; + e3) = Xv.e; + Xv.ea. Therefore, we can assume
that e is of the form e; 4 - - - 4 ¢; such that each e; is a conj-MATLANG sentence in prenex
normal form.

By Proposition 4.2, for each i = 1,...,[there exists a CQ Q;: H(Z;) < 1; that simulates
the query H := e; w.r.t. Rel. Further, since e = e; + --- + ¢; is well-typed, then e;: (a,)
for every i. This implies that every formula ; has the same number of free variables and
we can assume that 7, = ... = #; = Z without loss of generality. Therefore, the FO™ query
Q: H(x) < Y1 V-V simulates Q where ¢1 V --- V9 is a safe formula.]

4.2. From positive FO to Sum-Matlang. We now aim to simulate every FO' query
with a sum-MATLANG query. Contrary to the previous direction, the expressiveness result
here is more subtle and requires more discussion and additional notions.

Fix a vocabulary o. Let Q be a FOT query over ¢ and let Mat be relational-to-matrix
schema encoding on o(Q). We say that a matrix query Q simulates Q w.r.t. Mat if
Mat([Q]ap) = [Q](Mat(db)) for every database db consistent with Mat. We note again that
this definition implies that the input vocabulary and output relation symbol of () coincides
with the input schema and output matrix symbol of Q, respectively. Further, it is equivalent

that [Q]a» = Mat~"([Q)(Mat(db))).

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:15

type(Mat(R)) = (o,) type(Mat(R)) = (o, 1) or (1,a)
Matt R(z1,22): {x1 — a,x0 — B} Matt R(z): {x — a}
type(Mat(R)) = (1,1) Matt@: 7
Matt R(): {} Matt x < c¢: {x — Mat(c)} Matt 3501 T|free(o)\z
Mat + Y1 Tl,Matl— Y21 T2 and T ~ T2 Mat + ©1: Tl,Maﬂ— Y2: T2 and T1 ~ T2
Matt 1 A wa: 71 UTy Matt 1V pa: 71 UTy

a a size symbol
Matkz=y: {z— o,y — a}

FIGURE 1. Well-typedness of FO' under relational-to-matrix mapping Mat.

Before stating how to connect FO' with sum-MATLANG, we need to overcome the
following problem: a FO™ query can use the same variable within different relational atoms,
which can be mapped to matrix symbols of different types. For an illustrative example of
this problem, consider the query

Q: H(z,y) < Jz.(R(x,y) A S(y, 2))

and a relational-to-matrix schema encoding such that Mat maps R and S to symbols of type
(ar, B), H to a symbol of type (3,), and ¢ and d to o and 3, respectively. For a consistent
database db w.r.t. Mat, we could have that R and S are consistent with ¢® x d%, but H is
not consistent with d% x d% if d% < ¢%. Moreover, Mat bounds variable y with different
sizes ¢® and d?. Tt is then problematic to simulate Q under Mat in sum-MATLANG because
sum-MATLANG expressions need to be well-typed.

Given the previous discussion, a well-typedness definition of a FO™ formula is necessary.
Let Mat be a relational-to-matrix schema encoding on o. Given a FO™ formula ¢ over o and
a function 7 from free(y) to size symbols in Mat(o), define the rule Mat - ¢: 7 inductively as
shown in Figure 1, where 71 ~ 7 if and only if 7 (x) = 1o (z) for every x € dom(11) Ndom(T2).
We say that ¢ over o is well-typed w.r.t. Mat if there exists such a function 7 such that
MatF @: 7. Note that if ¢ is well-typed, then there is a unique 7 such that Mat+ ¢: 7.

Now, let Q: H(Z) < ¢ be a binary FO' query over o and Mat be a matrix encoding
specification on o(Q). We say that Q is well-typed w.r.t. Mat if ¢ is well-typed w.r.t. Mat
and for 7 such that Matt ¢: 7, we have:
e if T = (x1,x2), then type(Mat(H)) = (1(x1),7(x2)); and
e if T = (), then type(Mat(H)) is either (7(x),1) or (1,7(x)).
We write Mat - @Q: 7 to indicate that @Q is well-typed w.r.t. Mat, and 7 is the unique
function testifying to well-typedness of FO™ formula of Q. We note that we can show that
the query obtained by Proposition 4.3 is always well-typed.

The next proposition connects well-typedness with consistency.

Proposition 4.4. For binary FO' query Q: H(T) < ¢ over a vocabulary o, if Matt Q: T

then for any db consistent with Mat we have:

db db

o [fT = (x1,x2) then [Q]ap(H) is consistent with dimension T(x1)® X T(x2)
o If T = (x) then [Q]as(H) is consistent with both dimension 7(z)% x 1 and 1 x 7(x)®.

Proof. We show a more detailed statement. Namely, that for any FO" formula ¢ with
Mat = ¢: 7, any database db consistent with Mat and any variable z € free(y) if v is a

1:16 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

valuation with v(z) > 7(2)% then [[¢||g5(v) = 0. The proposition follows from this more
general statement since @ is of the form H(T) < ¢ with T a tuple consisting of the free
variables of ¢ (possibly with repetition) and since type(Mat(H)) = 7(Z) as Q is well-typed
under Mat.

The proof of the more detailed statement is by induction on ¢. We illustrate the
reasoning when ¢ is an atom, or a disjunction. The other cases are similar.

If ¢ is a relational atom R(x1,x32), then by definition of the typing relation, we know
that (7(x1),7(22)) = (a, 8) where type(Mat(R)) = (o, 8). Hence, for valuation v with
v(x1) > 7(21)% or v(xg) > T(x2)% we have [[R(z1,22)] 4 (v) = 0 because R% is consistent
with dimensions a® x 8% = 7(z1)® x 7(x5)%. If ¢ is a comparison atom x < «, then
7(z) = a by definition of the typing relation. Hence, for valuation v with v(z) > 7(x)%® = %
we trivially obtain [z < «||4(v) = 0.

When ¢ is a disjunction ¢ V ¢, let a valuation v: free(p) such that v(z) > 7(z)%®
for some x € free(p). Because we consider only safe formulas, both ¢; and @9 have the
same set of free variables, which equals the free variables of ¢. Then, from = € free(y;) and
x € free(y2), and so by induction hypothesis both [[¢1||4(r) = 0 and [[e2] a(v) = 0 hold.
Hence [[¢]|a(v) = 0. []

Similar to the proof from sum-MATLANG to FO™, we first illustrate how to simulate
CQs with conj-MATLANG queries.

Proposition 4.5. For every binary CQ @ over a vocabulary o and every relational-to-
matriz schema encoding Mat on o(Q) such that Q is well typed w.r.t. Mat there exists a
conj-MATLANG query Q that simulates Q w.r.t. Mat.

Proof. Let Q: H(ZT) < Jvy,...,vk.p with free(p) = {z,y} and T C {x,y} be a CQ, i.e.,
@ =ai N\---Aa, where each a; is a relational, comparison, or equality atom using variables
from the set {x,y,v1,...,vx}. Assume Matt Q: 7.

For simplicity, let all input relations be binary (we will deal with the other cases later).
Let v,w € {x,y,Vv1,...,Vi} be vector variables of type (7(x),1), (7(y),1), (7(v1),1),...,
(7(vg), 1), respectively. In what follows, we choose v,w € {x,y,vi,..., vy} respectively
according to v,w € {x,y,v1,...,v;}. For each i =1,...,n define:

o s;=v!-A-wif a; is equal to A(v,w). Note that Mat(A): (7(v),7(w)), v: (7(v),1) and
w: (7(w),1).

e s, :=v!vifa;is equal to v < a. Note that v: (7(v),1).

e s, := vl'wif a; is equal to v = w. Note that v: (7(v),1) and w: (7(w), 1), with 7(v) = 7(w)
because @ is well-typed.

Finally, define

¢ c=3X,y,Vl,..., V. (S} X -+ X8y) X (x y)iftheheadOfQis H(z,y).
e e=3x,Vi,..., Vg (s1 X+ xs,) % (x-x7) if the head of Q is H(z,z).
e c=%X,Vy,...,VE. (81 X -+ Xsy) X x if the head of @ is H(z) and H: («, 1). Otherwise,

if H: (1,), define e = ¥x,vy,...,Vg. (81X -+ X 8,) x 7.

Then Q = H := e simulates @ w.r.t. Mat for any choice of T C {z,y}.
If some input is not binary, define:

e s, :=vl.A -wif a; = A(v) such that Mat(A): (

7(v),1) and v: (7(v), 1) for some w: (1,1).
o s, =wl.A- wif a; = A() such that Mat(A): (1,1

,1), for some w: (1,1).

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:17

Finally, if there is no v;: (1,1) in e above we add a dummy w: (1, 1) vector variable as
e=YX,Y,Vi,..., Vi, W. S| X --- X Sp X X-y_.]

We have now all the formal machinery to state how to simulate every binary FO™ query
over relations with a sum-MATLANG query over matrices.

Proposition 4.6. For every binary FOT query Q over a vocabulary o and every relational-
to-matriz schema encoding Mat on o(Q) such that @ is well typed w.r.t. Mat there exists a
sum-MATLANG query Q that simulates Q w.r.t. Mat.

Proof. First, note that every ¢ € FOT can be written in disjunctive normal form, i.e.,
=1 V-V where each ; is in prenex normal form and the big disjunction is safe.
On one hand, 3x.4p1 V o = Jz.apy V Jxahy and (1 V) A s = (1 Aha) V (Y1 Atbg). On
the other hand, if v = R(Z) |z < c| x =y | ¥1 Aa | Jz.9p then it can be written in
prenex normal form, because ¥; A Jx.1po = Jx.h1 A 12 since without loss of generality we
can assume that x does not appear in ;.

Now, let Q: H(T) < ¢ be a binary FO™ query such that ¢ is in disjunctive normal form,
ie., o =¢1 V- -V ;. By Proposition 4.5 there exist conj-MATLANG queries Q; = H :=¢;
that simulate the CQs Q: H(T) + ¢; w.r.t. Mat, respectively.

It is straightforward to see that Q = H := e; + - - - + ¢; simulates @) w.r.t. Mat. []

4.3. Equivalence between Sum-Matlang and positive FO. Taking into account the
correspondence between sum-MATLANG and FO™ established by Propositions 4.3 and 4.6,
in what follows we say that matrix query language £3; C sum-MATLANG and relational
language Lr C FO™ are equivalent or equally expressive if (1) for every matrix query Q € Ly
over a matrix schema S and every matrix-to-relational schema encoding Rel on S(Q) there
exists a query Q € Lg that simulates Q w.r.t. Rel and is well-typed w.r.t. Rel™!; and (2)
for every binary query @ € Lg over a vocabulary ¢ and every relational-to-matrix schema
encoding Mat such that @) is well-typed w.r.t. Mat there exists Q € L); that simulates @
w.r.t Mat.

From Propositions 4.3 and 4.6, and Propositions 4.2 and 4.5 one obtains the following
characterization of positive FO and CQs, respectively.

Corollary 4.7. (1) sum-MATLANG and binary FOT queries are equally expressive.
(2) conj-MATLANG and binary conjunctive queries are equally expressive.

While the result between conj-MATLANG and CQs is a consequence of the connec-
tion between sum-MATLANG and FO™, it provides the basis to explore the fragments of
conj-MATLANG that correspond to fragments of CQ, like free-connex or g-hierarchical CQ.
We determine these fragments in the next sections.

5. FREE-CONNEX CONJUNCTIVE QUERIES AND FOQ

We wish to understand the fragment of MATLANG that allows efficient enumeration-based
evaluation, i.e., enumerating the query result with constant delay after a preprocessing phase
that is linear in the input instance. Towards that goal, we will first specialize in this section
and the next the correspondence between conj-MATLANG and CQs given by Corollary 4.7
to free-connex CQs [BDGO07,Bral3]. Next, we recall the definition of free-connex CQs and
state the main result of this section.

1:18 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

5.1. Free-connex CQs. First, recall that a query @ is a CQ if it is in prenex normal form:
Q:H(Z)« Igar AN Nay, (*)

where a1, ..., a, are relational, comparison, or equality atoms. From now on, unless explicitly
stated otherwise, we will assume without loss of generality that a CQ does not have equality
atoms. Indeed, we can always remove equality atoms from CQ by taking the equivalence
classes formed by all equalities in the body and replacing each variable in the body and
head of the query with a representative from its class.

A CQ Q is acyclic (also sometimes referred to as a-acyclic [Fag83]) if it has a join
tree. A join tree for @ is an undirected tree T whose node-set is the set of all atoms (i.e.,
relational or comparison atoms) occurring in @, that satisfies the connectedness property.
This property requires that for every variable z occurring (free or bound) in @, all the nodes
containing x form a connected subtree of T. Note that we consider comparison atoms as
unary. Then, a CQ @ like (*) is free-connex if it is acyclic and the query @’ obtained by
adding the head atom H(Z) to the body of @ is also acyclic. The requirement that the
query @ obtained by adding the head atom H(Z) to the body of @ is also acyclic forbids
queries like H(x,y) < 3z.A(z,2) A B(z,y). Indeed: when we adjoin the head to the body
we get 32.A(z,2) A B(z,y) A H(z,y), which is cyclic. We will usually refer to free-connex
CQs simply as fc-CQs in what follows.

Free-connex CQs are a subset of acyclic CQs that allow efficient enumeration-based query
evaluation: in the Boolean semiring and under data complexity they allow to enumerate
the query result [Q]a(H) of free-connex CQ Q: H(Z) + ¢ with constant delay after a
preprocessing phase that is linear in db. In fact, under complexity-theoretic assumptions,
the class of CQs that admits constant delay enumeration after linear time preprocessing is
precisely the class of free-connex CQs [BDGO7].

In this section, we prove the following correspondence between fc-CQs and FO%, the
two-variable fragment of FO”. Formally, a formula ¢ in FO” is said to be in FO% if it does not
use equality and the set of all variables used in ¢ (free or bound) is of cardinality at most two.
So, Jy3z.A(x,y) AB(y, 2) is not in FO%, but the equivalent formula 3y. (A(z,y) A Jz.B(y, z))
is. An FO) query is a binary query whose body is an FO) formula. Recall that a query is
binary if every relational atom occurring in its body and head have arity at most two.

Theorem 5.1. Binary free-connex CQs and FOY queries are equally expressive.

We find this a remarkable characterization of the fc-CQs on binary relations that, to the
best of our knowledge, it is new. Moreover, we will use this result in Section 6 to identify
the fragment of MATLANG queries that expressively correspond to fc-CQs. Having that
fragment in hand, we later turn to its actual query evaluation on arbitrary (not necessarily
Boolean) semirings in Section 10.

The rest of this section is devoted to proving Theorem 5.1. We do so in three steps.
First, in Section 5.2 we define query plans, which allow to give an alternate but equivalent
definition of fc-CQs that we find more convenient to use. Then, in Sections 5.3 and 5.4 we
prove the two directions of Theorem 5.1.

5.2. Query plans. To simplify notation, in what follows we denote the set of all FO
variables that occur in an object X by var(X). In particular, if X is itself a set of variables,
then var(X) = X.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:19

(T1>N1) (T27N2>
a; {y} a; {y, w}
- >~ — >~
b {y, =} e R(z,y) b; {y, w} e;{w}
b AN e N |
cS(y,z) d;T(z,w) ¢; R(z,y) d;S(y,w,z) f;T(u,w)

FIGURE 2. Two query plans (77, N1) and (T3, N2) where the sets N7 and
Ny are indicated by the gray area.

A query plan (QP for short) is a pair (7, N) with T' a generalized join tree and N a
sibling-closed connex subset of T'. A generalized join tree (GJT) is a node-labeled directed
tree T'= (V, E) such that

e T'is binary: every node has at most two children.

Every leaf is labeled by an atom (relational or inequality).

Every interior node n is labeled by a set of variables and has at least one child ¢ such that
var(n) C var(c). Such child ¢ is called the guard of n.

Connectedness property: for every variable x the sub-graph consisting of the nodes n
where x € var(n) is connected.

A connex subset of T is a set N C V that includes the root of T" such that the subgraph of
T induced by N is a tree. NN is sibling-closed if for every node n € N with a sibling m in
T, also m is in N. The frontier of a connex set IV is the subset F' C N consisting of those
nodes in N that are the leaves in the subtree of 7" induced by N.

Example 5.2. To illustrate, Figure 2 shows two query plans. There and in future illustrations
we use the convention that we depict a node with id n and label [as n;l. The elements of
the query plan’s connex set are indicated by the gray area. So, in 77, we have Ny = {a, b, e}
and in Ty we have Ny = {a,b,e, f}. Since all nodes in a connex set must be connected,
an unallowed choice of Nj for the tree 77 would be {a,c}. Furthermore, also {a, b} is not
allowed, since the set must be sibling-closed.

For ease of presentation, we abbreviate query plans of the form (7', {r}) simply by (7', 7)
when the connex set consists only of the single root node r. Furthermore, if T is a GJT and
n is a node of T, then we write T, for the subtree of T rooted at n.

Let (T, N) be a query plan and assume that {aq,...a, } is the multiset of atoms occurring
as labels in the leaves of T'. Then the formula associated to (T, N) is the conjunctive formula

e[T,N] := Jy1...Jyg.a1 A ... ANay

where var(T) \ var(N) = {y1,...,yr}. In particular, var(N) = free(p[T, N]). A query plan
(T, N) is a query plan for a CQ Q with body ¢ if ¢[T, N] = ¢.

Example 5.3. Referring to Figure 2, we have
o[T1, Ni] = 3w. S(y,z) NT(z,w) A R(x,y),
©[Ta, No| = 3x3z. R(x,y) A S(y,w, z) AT (u, w).

The following proposition is a particular case of the results shown in [ITUV17,TUV+20].

1:20 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Proposition 5.4. A CQ Q is free-connex if, and only if, it has a query plan.

5.3. From binary free-connex CQ to the two variable fragment of FO. We next
show that it is possible to translate every binary fc-CQ @ into an equivalent FOJ query.
Our construction is by induction on a suitable query plan for). To enable this induction,
we first observe the following properties of query plans.

Two query plans (T, N) and (7', N’) are said to be equivalent if (1) the multiset of
atoms at(T) appearing in T equals the multiset of atoms a#(T”) appearing in 7", and (2)
var(N) = var(N').} Clearly if two query plans are equivalent then their associated formulas
are also equivalent.

Lemma 5.5. For every QP there exists an equivalent QP such that for any node n with
two children c1, cq it holds that var(c1) C var(n) and var(cz) C var(n). In particular, either
var(c1) = var(n) or var(ce) = var(n) holds.

Proof. Let n be any node of T that has two children ¢; and ¢y. Let (T, N) be the original
query plan. We modify (7', N) into an equivalent plan (7", N’) that satisfies the lemma by
adding, for every node n with two children ¢; and co, two new intermediate nodes n; and
ngy as follows labeled with var(ni) = var(n) N var(c1) and var(nz) = var(n) N var(ca).

n >N
7N 7N
a C2 n 12
[[
C1 C2

We obtain the set N’ by adding also n; to N if ¢; € N, ¢ = 1,2. It is readily verified that
T is a GJT; N’ is a sibling-closed connex subset of T”; that T" and 7" have the same multiset
of atoms; and that var(N) = var(N'). Hence (T, N) = (T’, N'). Moreover, in T" every node
n with two children n; and ng is such that var(ny) C var(n) and var(ng) C var(n). Finally,
because T is a GJT, it is the case that either var(n) C var(c1) or var(n) C var(cz). As such,
either var(n) = var(ny) or var(n) = var(ng).]

Next, we show how the formulas and subformulas encoded by a query plan are related.

Lemma 5.6. Let (T, M) and (T, N) be two QPs over the same GJT such that N C M.
Then o[T, N| = 3z.¢[T, M| with Z = var(M) \ var(N).

Proof. Let {aq,...,a;} be the multiset of atoms in T. Let T be the set of all variables
occurring in ay, ..., a that are not mentioned in var(IN). Let 7 be the set of all variables
occurring in ay,. .., ay that are not mentioned in var(M). Because N C M also var(N) C
var(M) and hence T O 3. Moreover, T =7 UZ. Then, by definition,

elT,N| =3z.(a1 N+ Nag) =3Fz.Tg.(a1 A -+ Nag) = Fz.9[T, M]]

Lemma 5.7. Let (T, N) be a query plan and let F = {ry,...,r} be the frontier of N, i.e,
the bottom nodes of N. Then @[T, N| = @[T |, r1] A+ N@[T|r,, 1]

INote that in condition (1) we view at(T) and at(T") as multisets: so T and T' must have the same set of
atoms, and each atom must appear the same number of times in both.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:21

Proof. Let, for every frontier node r;, A; be the multiset of atoms appearing in T'|,,. Then,
by definition
eI, N =T N\ arn--n N a
a1€A; aj€A;
where % is the sequence of all variables in T" except the variables in N.

We can write u as union of [sets 7 U --- U 7; where v; consists of all variables in T;
except var(N). Because T is a GJT, it satisfies the connectedness property, and hence we
know that any variable that is shared by atoms in 7; and atoms in T}, for 1 <1 < j <1
must be in var(r;) N var(r;) C var(N). It follows that the sets 7; are disjoint: assume for
the purpose of obtaining a contradiction that variable x occur in both v; and v;. Then it
occurs in T; and Tj, and hence, by the running intersection property of 7" in var(r;) Nvar(r;).
Therefore, € var(N), which gives the desired contradiction. Then we can rewrite @[T, N|
as follows

a1 €A, aj€EA;
=333 N\ ann N\ a
a1 €A, aEA;
= | Jo1. /\ ar | Ao A | T /\al
a1€AL a €A

= @[Ty, r1] N ANo[Ty,).

Here, the last equivalence holds because 7; is exactly the set of variables in T; except var(r;).
This can be seen as follows. By definition, v; = var(T;)\ var(N). Because var(N) D var(r;), it
follows that v; C var(T;) \ var(r;). Now assume, for the purpose of obtaining a contradiction
that this inclusion is strict, i.e., that there is some x € var(T;) N var(N) that is not in
var(r;). Then, because it is in var(IN) there is some r; # r; with € var(r;). Because also
x € var(T;), it appears in an atom of T; and is shared with an atom of 7. Because T has
the running intersection property, we know that hence x € var(r;) N var(r;), which is the
desired contradiction since then z € var(r;).]

Corollary 5.8. Let (T,r) be a query plan where r has one child c. Then [T, r] = Jy5.0[T |, c|
with § = var(c) \ var(r).

Proof. Consider the set M = {r, ¢}, which is connex in T'. By Lemma 5.6 we have @[T, r]
37.¢[T, M]. Moreover, since the frontier of M is {c¢} we obtain by Lemma 5.7 that ¢[T, M| =
©[Tc, c]. Hence @[T, r] = Jy.¢[T|., c].

[]

Corollary 5.9. Let (T,r) be a query plan where r has two children r1,rs such that one of
the following holds:

e var(ry) = var(r) and var(rg) C var(r); or

e var(re) = var(r) and var(ry) C var(r).

Then @[T, r] = @[T |ry, 1] A @[T |ry, r2].

Proof. Let N = {r,ry,r2}. This set is a connex subset of T. Hence, (T, N) is also a query
plan. Observe that, because var(N) = var(r) by the assumptions on var(ry) and var(rs),
we have p[T,r] = @[T, N]. Further observe that the frontier of N is {r1,r2}. Then, by
Lemma 5.7 @[T, r] = ¢[T, N| = ¢[T1,71] A\ ¢[T2,72] as desired.]

1:22 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Finally, we note a property of query plans over binary relations.

Lemma 5.10. Let (T, N) be a query plan such that @[T, N| is binary then | var(N)| < 2
and any node of T' contains at most two variables.

Proof. By definition var(N) = free(p[T, N]), then necessarily | var(N)| < 2 because [T, N]
is binary. Now, suppose that there exists some node g of T that has more than two variables.
This implies that the child which is the guard of g also has more than two variables, and
so on. Thus there is an leaf atom that uses more than two variables, which is not possible
since [T, N] is binary.]

At this point we are ready to prove that we can translate any binary query plan of the
form (T,r) into an equivalent FO% formula.

Proposition 5.11. For every QP (T,r) such that o[T,7r] is binary, there exists an FO%
formula v equivalent to [T, r].

Proof. By Lemma 5.5 we may assume without loss of generality that for every node n in T’
with children cj, ¢y either var(c;) = var(n) and var(c2) C var(n); or var(ca) = var(n) and
var(cy) C var(n). Moreover, by Lemma 5.10 we know that all nodes n in T" have | var(n)| < 2.
We build the FO) formula 1) equivalent to [T, 7] by induction on the height of T'.

The base case is where the height of T is zero. Then T consists of just its root, r,
which must be labeled by atom a and [T, r] = a. Then it suffices to take ¢ := a. Clearly,
Y = [T, r] and, because a is of arity at most two by assumption, 1) € FO5.

Now, for the inductive step. Assume T has height k£ > 0. By inductive hypothesis we
have that the statement holds for height £ — 1. We distinguish the cases where r has only
one child or it has two children.

e First, if 7 has only one child ¢. By induction hypothesis there exists a formula 1. € FO%
such that . = ¢[T|.,c]. Note that this implies that free(y.) = free(¢[T|.,c]). Take
¥ == Fwar(c) \ var(r).y.. By Corollary 5.8 we have

¥ = Fwar(c) \ var(r).ab. = Jvar(c) \ var(r).o[T|c, c| = [T, 7].

Clearly, 1 € FOZ%, since it is a projection of 1. € FO%.

e Second, assume that r has two children, r; and 5. We may assume w.l.o.g. that
var(ry) = wvar(r) and var(ry) C wvar(r). By the inductive hypothesis there exist FO%
formulas ¢1 = ©[T|.,7m1] and o = @[T),,m2]. We next construct an FO) formula
equivalent to ¢ A 9. This suffices since by Corollary 5.9 @[T|,,, 1] A @[T|ry, 2] = @[T, 7]
and hence Y1 Ao = @[T, 7].

Note that free(11) = var(ry) = var(r) and free(y2) = var(re) C var(r). Moreover,
@[T, r] is binary. Thus, there exists a set of two variables, say {x,y}, such that var(r) C
{x,y}. Consequently, free(tp1) C {x,y}, free(y2) C {x,y}. Because 91, s € FO) we know
that when 91 (or 1) has exactly two free variables, x and y are the only variables used
in ¢ (resp. ¥2). When 11 (resp. 1)3) has fewer than two free variables it is possible that
also some other variable z € {z,y} occurs in 1. However, because ¢ € FO3 it is then
always possible to rename bound variables to use only x,y. The same holds for ¢s. We
conclude that there exist formulas ¢, 15 € FO} such that ¢y = ¢}, ¥y = ¥ and Y],)
only use the variables x and y. Thus @[T, 1] A @[T|r,, 2] = V] A bl € FOS. []

Finally, we are able to show that every formula encoded by a binary query plan has an
equivalent FO) formula.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:23

Proposition 5.12. For every QP (T, N) such that @[T, N| is binary, there exists an FO%
formula 1 equivalent to p[T, N].

Proof. By Lemma 5.5 we may assume w.l.o.g. that for every node n in T with two
children ¢; and ¢y we have var(c1) = var(n) and var(ce) C var(n); or var(cy) = var(n) and
var(c2) C var(n). Assume that the frontier of N is F' = {ry,...,r;}. By Proposition 5.11,
there are FO% formulas 1, ..., equivalent to @[T, 71],. .., @[T |, ri], respectively. By
Lemma 5.7 we have ¢[T, N] = @[T|,,,m1] A - ANp[T]y,, 7] =1 A--- ANy To prove the
proposition, it hence suffices to show that the conjunction ¥ A ... A1y is expressible in FO%.
For this we reason as follows.

By assumption [T, N] is binary, thus there exists a set of two variables, say {z,y}, such
that var(N) C {x,y}. Hence, var(r;) C var(N) C {z,y}. Then, because v; is equivalent to
©[T;, 7], also free(y;) = var(r;) C {z,y} for i = 1,...,1. Similar to our argumentation in
the proof of Proposition 5.11 we can then exploit the fact that every 1; € FO% to obtain
formulas ¢, ...,1] € FO} such that ¢ = ¢; and ¢| only uses the variables z and y, for
i=1,...,l. The formulas ¢ are obtained from ; by renaming bound variables, which is
only necessary if ¢; has fewer than two free variables but also mentions some bound variable
z ¢ {z,y}. Thus [T, N] = @[T|ry, 1] A A@[Tlr, 1] =91 A Aty € FOR 0

5.4. From the two variable fragment of FO to binary free-connex CQ. We end this
section by proving the other direction, namely, that every formula in FO% is equivalent to
some binary free-connex CQ. Similar to the previous subsection, we use binary query plans.

Proposition 5.13. For every FO} formula 1) there exists a binary QP (T, N) such that
[T, N] is equivalent to 1.

Proof. Fix two distinct variables x and y. Because FO} formulas use at most two variables,
we may assume without loss of generality that the only variables occurring in FO% formulas
are x and y. We obtain the proposition by proving a more detailed statement: for every
b € FOJ there exists a binary QP (T, N) such that @[T, N] = ¢ and either:

e N = {r} with r the root node r; or

e N counsists of three nodes, N = {r,c1,co} with r the root of T" and ¢y, ¢y its children,
which are labeled by var(r) = 0, var(c1) = {z}, and var(c2) = {y}, respectively. This case
only happens when 1 is a cross product @) = 11 A ¥s.

Note that in the second case it follows from Lemma 5.7 that ¢» = ¢ A e = [T, N] =
©[T ¢y, c1] A @[T|ey, c2] since the frontier of {r,c1, ca} is {c1,c2}.

We prove the stronger statement by induction on 1.
e When % is an atom then the result trivially follows by creating GJT T with a single node

r, labeled by the atom, and fixing N = {r}.

e When ¢ = 329’ with z € {z,y} we may assume w.l.o.g. that z € free(¢’): if not then

1) =" and the result follows directly from the induction hypothesis on 1)’. So, assume

z € free(y’). By induction hypothesis we have a binary QP (7", N') equivalent to 1)'. We

next consider two cases.

— N’ is a singleton, N’ = {r'} with ' the root of T". We create the claimed binary
QP (T, N) as follows: let T' be obtained by adjoining a new root r to T”; label r by
var(r’) \ {z}; and make 7’ the only child of r. Take N = {r}. Then (7, N) remains
binary. Equivalence of ¢[T, N| to 1 follows by induction hypothesis and Lemma 5.8.

1:24 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

— Otherwise N’ = {r’, ¢1, c2} with ¢1 and ¢ the children of v’ in T"; var(r’) = 0; var(cy) =
{z}; var(ea) = {y}; and ¥’ = @[T, c1] A @[T"|c,, c2]. Since z € {z,y} we have either
var(c1) = {z} or var(cz) = {z} (but not both). Assume w.l.o.g. that var(c;) = {z}; the
other case is similar. We create the claimed QP (7', N) as follows: let T" be obtained
by removing ' from 7’ and replacing it with a new root, r, which has children ¢; and
c2 and which is labeled by wvar(cz). Since var(ci) and var(cz) were disjoint, this new
tree satisfies the guardedness and connectedness properties, and remains binary. Take
N = {r}. Then

var(N) = var(cz) = var(N') \ var(c1) = free(v) \ {z} = free(x)),

as desired. To see why @[T, N] = ¢ first define M = {r, c1,c2}. By lemma 5.6 we obtain
that [T, N] = 3z.¢[T, M]. Furthermore, since the frontier of M is {c1,c2} we know
from Lemma 5.7 that o[T, M] = @[T ey, c1] A @[T ey, c2] = @[T |eys 1] A @[T ey, c2] = 9.
Hence [T, N|] = 3z.¢)' = 1.

e Otherwise v is a conjunction, ¥ = ¥ A ¥3. By induction hypothesis, we have binary
QPs (T1, N1) and (T3, N2) equivalent to 11 and w9, respectively. We may assume w.l.o.g.
that 77 and T have no nodes in common, as we can always rename nodes otherwise.
We may further assume w.l.o.g. that var(Th) N var(1y) C var(N1) N var(Na), i.e., that all
variables that are mentioned in both 77 and T3 are also in var(Ni) N var(Nz). Indeed,
for every variable z € (var(Th) N var(T2)) \ (var(N1) N var(N3)) we can simply rename
all occurrences of z in 77 to a new unique variable 2’ that does not occur anywhere
in Tp. Assume that we apply this reasoning to all such variables Z and let T} be the
result of applying this renaming on 7). Note that N; is still a connex subset of T7.
Moreover, ¢[T1, N1] = @[T}, N1]: essentially we have only renamed bound variables in the
formula ¢[T1, N1] to obtain ¢[T], N1] . So we can continue our reasoning with (77, Ny)
instead of (77, N1) and the former has no variables in common with T, except those in
var(N1) N var(Na).

By our inductive hypothesis, N; and Ns are either singletons, or contain exactly three
nodes. We consider three cases.

— Both N; and Nj are singletons, say N1 = {r1} and Na = {ro} with ry, s the roots of
T, T, respectively. In particular, because ¢[T;, N;| is equivalent to v; for i = 1,2 we
necessarily have var(r;) = free(1;). Construct the claimed binary QP (7, N') by taking
the (disjoint) union of T} and T, and adjoining a new root node r with children r1,ry
such that var(r) = var(ry) Nwvar(ry). Since the only variables shared between 77 and T5
are in var(N1) Nwar(N2) = var(r1) Nvar(ry) it follows that 7" satisfies the connectedness
property, and is hence a GJT. Moreover, let N = {r,r1,ry}. Clearly

var(N) = var(ry) U var(re) = free(i1) U free(va) = free(yp) C {x,y}.

Correctness follows by Lemma 5.7, since r1 and ro are the frontier nodes of N:

e[T, NI = @[T|ry, 1] AN @[T|ry,r2] = @[T1,m1] A @[To, 2] = th1 Ao
— Both N; and N; contain exactly three nodes, say Ny = {r1, ci,cl} and Ny = {rq,c?,c3}
with r; the root node of T; and c;'» the two children of r; in T;, for i,5 € {1,2}.
Furthermore, var(r') = 0; var(c}) = {z} and var(cy) = {y} for i = 1,2 and 7 and
19 must themselves be conjunctions, ¥ =] Al and 19 = ¥? A 2. By induction
hypothesis,

Ui = @[T Ni] = plTils 6] A olTil,g,) (5.1)

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:25

We construct the claimed QP (7', N) by taking T as follows, and N = {r,d;,d>}.

;0
dy; {x} do; {y}
/ \ / \
a ¢4 o g

Here 7, d; and ds are new nodes with var(r) = 0; var(dy) = {z}, and var(ds) = {y}, and
T; =T i for ¢ = 1,2. It is straightforward to verify that T satisfies the guardedness
and connectedness properties. It is hence a GJT. To see why @[T, N] = 9, first define
M = N U{ct,cd, 3, c3}. Note that var(M) = var(N). Hence, by Lemma 5.6, we
have [T, N] = @[T, M]. Then, because the frontier of M is {c},c},c?, c3} we have by
Lemma 5.7 that [T, M] = \; jcq1 9 go[T\C;-_,c}] = Nije1.2) @[Tilc;,c;] = 1)1 A)2, where
the last equivalence follows from (5.1).

— One of N7 and Ny has exactly three nodes; the other has one node. Assume w.lo.g.
that Ny = {r1} and Ny = {r2,c1,ca}. We then construct the claimed binary QP (7, N)
as follows. If var(r;) = {z,y} then we take T as follows, where r, " are new nodes with
var(r) = var(r') = var(r1) = {z,y} and N = {r}. Moreover, Tj2 =Tyl for j =1,2.

r
T~
C2
/N e
1 c1 SN
/ 2
/ \\ // \\ /,/,7—12,\\4
\ / 2\
,/Tl \ /’ Tl \\

When var(r1) # {z,y} then either var(r1) C var(c1) or var(r1) C var(cz) (or both). If
var(r1) C var(ci) then we take T' as above but set var(r) = 0; var(r') = var(c;) = {z};
and N = {r,r1,ca}. The case where var(r1) C var(c3) but var(ri) € var(cy) is similar.
In all cases, equivalence with v follows from the same reasoning used earlier. []

6. THE FREE-CONNEX FRAGMENT OF MATLANG QUERIES
Define fc-MATLANG to be the class of all MATLANG expressions generated by the grammar:
e == A | 1% | I* | el | e1xex | e1®@ex | e vy | v1-eg

where v and vy are fc-MATLANG expressions with type (a, 1) or (1,«). In other words,
matrix multiplication ej - eg is only allowed when at least one of e; or e has a row or column
vector type.

In this section, we prove the following correspondence.

Theorem 6.1. fc-MATLANG and FOS are equally expressive.
Combined with Theorem 5.1 we obtain the correspondence with binary free-connex CQ:
Corollary 6.2. fc-MATLANG and binary free-connex CQs are equally expressive.

We prove both directions of Theorem 6.1 separately.

1:26 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

6.1. From FO) to fc-MATLANG. We first simulate FO queries by means of fc-MATLANG
queries. In order to achieve this, free variables of formulas need to describe row and column
indexes of expressions. Moreover, it is crucial to know which free variable will correspond to
the row index and which free variable will correspond to the column index. For this reason
we assume the existence of an arbitary canonical order < over FO variables, where z < y
denotes that z strictly precedes y in this order.

Fix a vocabulary o. We first define the notion of when a sum-MATLANG expression
simulates a formula over o instead of a query. Let 1) € FO' over 0. Let Mat be a relational-
to-matrix schema encoding on ¢ such that MatF v : 7. We say that sum-MATLANG sentence
e simulates v w.r.t. Mat if the sum-MATLANG query Mat(ans) := e simulates the query
ans(T) < ¢ w.r.t. Mat, where

(1) 7 is a tuple containing exactly the free variables of ¢, without repetition and canonically
ordered: i.e., if T = (z1,z2) then x; < x9.
(2) ansis an arbitrary relation symbol, not occurring in ¢, of the same arity as free(¢) such

that type(Mat(ans)) = 7(T).

So, in the second bullet if ¢ has two free variables then type(Mat(ans)) = (7(x1), 7(x2));
if ¢ has one free variable then type(Mat(ans)) = (7(x),1); and if ¢ has zero free variables
then type(Mat(ans)) = (1,1). In particular, due to well-typedness, when ¢ has two free
variables Mat(ans) is consistent with dimensions 7(z1)® x 7(22)%; with 7(x)% x 1 when
© has one free variable; and with 1 x 1 when ¢ has no free variable, for every database db
consistent with Mat. Further, we note that, while relation symbol ans is fixed arbitrarily, it
is clear that if e simulates ¢ w.r.t. one particular choice of ans, then it simulates it w.r.t.
all valid choices.

It is important to stress that (1) in the query ans(Z) < ¢ no variable is ever repeated in
the head; and (2) if ¢ hence has a single free variable, and hence computes a unary relation,
then the simulating fc-MATLANG expression will always simulate it by means of a column
vector. We fix this merely to simplify the proof, and could also have fixed it to be a row
vector instead.

Proposition 6.3. Let ¢ € FO) over o. Let Mat be a relational-to-matriz schema encoding
on o such that Matt 1: 7. Then there exists an expression e € fc-MATLANG that simulates
Y w.r.t. Mat.

Proof. Fix two distinct variables x1 < 3. We may assume without loss of generality that

the only variables occurring in 1 are x1,x3. We prove the statement by induction on . For

every relation symbol R, we denote Mat(R) simply by R. In particular, ans = Mat(ans).
First, when ¢ = a and a is a relational atom we have multiple cases.

e Atom a is a binary atom, and its variables occur in canonical order, i.e. a = R(x1,x2).
Then take e := R.

e Atom a is a binary atom, but its variables occur in reverse canonical order, i.e., a =
R(z2,71). Then take e := RT.

e Atom a is a binary atom that mentions the same variable twice, a = R(y,y) for some
y € {z1,z2}. Note that ans = Mat(ans) will be of column vector type (7(y), 1) since
T = (y). Also note that, because of well-typedness, R must be of type (7(y),7(y)),
i.e., R is a square matrix. Then construct e as follows. First consider the expression
¢/ :=I"W © R. This selects from R all the entries on the diagonal, and sets to 0 all other
entries. Then take e := ¢’ - 17®) | which converts the diagonal entries into a column vector.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:27

e Atom a is a unary atom of the form a = R(y) with y € {z1,z2}. We distinguish two
subcases.
— R has column vector type. In that case, take e := R.
— R has row vector type. Because ans always has column vector type by definition, we
convert the input row vector into a column vector by taking e := R”.
e Atom a is a nullary atom, a = R(). Then R necessarily has type 1 x 1, as does ans. So,
it suffices to take e := R.

Second, when 1 is comparison of the form x < « then the simulating expression e is 1%.
This expression has type (7(x), 1), which conforms to the desired type of the definition since
T(z) = a.

Third, when ¢ = Jy.1); we may assume w.l.o.g. that y € free(11) since otherwise ¢ = 1;
and the result follows directly from the induction hypothesis. So, assume y € free(yn) C
{z1,x2}. There are two cases.

o If free(yn) = {x1,z2} then ey: (7(x1),7(x2)) simulates ¢1. If y = xo then we take
e =e1-17W to simulate ¢ w.r.t. Mat. If y = 2 then we take e = el 17®) to simulate v
w.r.t. Mat. Note that in both cases the simulating expression has type (7(x),1) with z
the unique variable in {x1,x2} \ {y}, as desired.

o If free(11) = {y}, then e;: (7(y),1) simulates 11 and thus el - 17®): (1,1) simulates v
w.r.t. Mat.

The fourth and final case is when ¥ = 1 A 2. By inductive hypothesis there ex-
ists fc-MATLANG expressions e, es that simulate v and o w.r.t. Mat, respectively. If
free(1) = free(1p2) then the simulating expression is simply e; ® eg. It will be of type
(1(z1), 7(22)), (7(21),1), (T(22),1) or (1,1) depending if the free variables are {x1,x2}, {x1},
{z2} or 0, respectively. When free(in) # free(1)s), we make the following case distinction.

(1) If free(yp1) = {x1,z2} then er: (7(x1), 7(x2)).
(a) If free(1py) = {1} then eg: (7(x1),1) and we take e := €1 ® (62 : (lT(IQ))T> .
(b) If free(y2) = {2} then es: (7(z2),1) and we take e :=e; © (17(331) cel).

(c) If free(p2) = () then ey: (1,1) and the simulating expression is ey X e7.
(2) If free(yp1) = {x1} then er: (7(z1),1).
(a) If free(ypa) = {x1,z2} then we reason analogous to case (1)(b).
(b) If free(vp2) = {2} then ea: (7(x2), 1) and define e := (el : (lT(IQ))T) @(17(“) ed).
(c) If free(p2) = () then e: (1,1) and the simulating expression is ez X ej.
(3) If free(yp1) = {x2} we reason analogous to case (2).
(4) If free(ip1) = 0 then free(i2) # 0 and we reason analogous to the cases above where

free(p2) = 0 but free(r1) # 0.]
Finally, we extend Proposition 6.3 from formulas to queries.

Corollary 6.4. Let Q be an FOL query over o and let Mat be a relational-to-matriz schema
encoding on o(Q) such that Mat = Q: 7. Then there exists fc-MATLANG query Q that
simulates QQ w.r.t. Mat.

Proof. Let Q: H + 1) be a FO% query over ¢ and let Mat be a relational-to-matrix schema
encoding on o(Q) such that MatF ¢: 7. By Proposition 6.3 there exists e € fc-MATLANG
that simulates ¢» w.r.t. Mat. Let Mat(H) = H. We derive a fc-MATLANG query Q: H:=¢€
that simulates @) as follows.

1:28 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

e When T = (z,v), if # < y then define € := e, otherwise define € := e’

e When T = (x,z) then @ outputs the encoding of a square matrix, where the value of
diagonal entry (z,x) is computed by v (x). To simulate this query, we observe that
e: (7(z),1) is a column vector that simulates ¢. We first compute the square matrix

of type (7(z),7(x)) with the vector e in all its columns as e - (lT(x))T. Then set all
non-diagonal entries of the former expression to zero, by taking € := I"(*) © (e . (17(‘”))T) .

e When T = (x) we have e: (7(z),1). If H: (o, 1) define € := e otherwise if H: (1, «) define
g:=el.

e When T = () we have e: (1,1). Then define € := e.]

6.2. From fc-MATLANG to FO}. To establish the converse direction of Theorem 6.1 we
first define when an FO™ formula simulates a sum-MATLANG sentence instead of a query.
Let e: (a, 5) be a sum-MATLANG sentence over S and let Rel be a matrix-to-relational
schema encoding on S. We say that FO™ formula ¢ simulates e w.r.t. Rel if ¢ has exactly
two free variables x < y and for every matrix instance Z and all 4, j we

[e](T)i; ifl<i<Z(e)1<j<I(B)

0 otherwise

[0]| geiry (x = i,y = j) = {

Let FOA’: denote the two-variable fragment of FO” where equality atoms are allowed
(subject to being safe), as long as only two variables are used in the entire formula. For
proving the direction from fc-MATLANG to FOZ, we first do the proof by using equality, and
later show how to remove it.

Proposition 6.5. Let e be a fc-MATLANG expression over S and let Rel be a matriz-to-
relational schema encoding on S. There exists . € FOQ: that simulates e w.r.t. Rel.

Proof. Let e € fc-MATLANG and fix two distinct variables x < y. We build the formula
Pe € FOQ,: that simulates e w.r.t. Rel by induction on e. In particular, we build . such
that free(ip.) = {x,y}. For a matrix symbol A, let us denote Rel(A) simply as A.

(1) If e = A then take:

e . := A(x,y) when type(A) = («, f); type(A) = (1,1); A is binary and type(A) =
(a, 1) or type(A) = (1, 8).

e Yo = A(x) Ny < 1if Ais unary and type(A) = (a, 1).
e . =x < 1A A(y) if A is unary and type(A) = (1, 3).

(2) If e=1: (,1) then take ¢ =2z < a Ay <1

(3) If e = I*: (e,) then take e =z < a Ay < a Az = y. This will be the only case
where we include an equality atom.

(4) If e = (¢")T: (B,) then take v, = b [z <+ y] where Y[z > y] denotes the formula
obtained from 1., by swapping x and y. (I.e., simultaneously replacing all occurrences
of x—free and bound—with y and all occurrences of y with x.)

(5) If e = e1 x eg with e;: (1,1) and e2: (o, 8) we reason as follows. First observe that
because 1), simulates e; and because e; always outputs scalar matrices, [, | Rel(T) (x —
i,y — j) = 0 whenever i # 1 or j # 1. We conclude that therefore, Jx, y.1b., will always
return Je1](Z)(1,1) when evaluated on Rel(Z). Hence, we take 1. = (I, y.10e,) N Ve, -

(6) If e = €1 ® eg then take 1 = e, A e,.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:29

(7) If e = €1 -vg with e1: (o, §) and with vy: (5, 1) evaluating to a column vector, we reason
as follows. First observe that because v, simulates vy and because vy always outputs
column vectors, [, || reiz) (T = i,y + j) = 0 whenever j # 1. Let p,, = by, [7 <> y] be
the FOQ: formula obtained from ,, by simultaneously replacing all occurrences (free
and bound) of x by y, and all occurrences of y by z. Then [y, || reyz) (Y = i, 2+ j) =0
whenever j # 1. We conclude that therefore

[v2](Z)in = 13200, || Reiz)(y =) for all Z and i. (6.1)

Next observe that e also always outputs a column vector, and that

[ed(@)ix = ex - v2)(T)in = P [eal D)k © [02](Z,)i
k

Take ¢/ = Jy. (Ye, (,y) A, (y)) where ¢, = F2.¢y,. Then ¢’ is in FOy _. Because
e, simulates e; and because of (6.1) it follows that [e](Z):1 = [[¢'] geyz) (2 = @) for all
Z and i. Hence, we take 1. := ¢’ Ay < 1 to simulate e.

(8) The case e = vy - ey is similar to the previous case.]

To establish our desired result at the level of queries we require the following two lemmas
that will help to remove the equalities from FOAF. The proofs can be found in Appendix C.

Lemma 6.6. Let ¢ be a FOY formula (hence, without equality) using only the distinct
variables x,y such that free(o) N{z,y} # 0. Let ¢ be the FOQ: formula Fx.(p Nz = y).
Note that free(v)) = {y}. There exists an FOY formula v’ equivalent to).

Lemma 6.7. For every FO/\; formula 1 there exists an equivalent FO/\F formula)" where
equality atoms only occur at the top level: for every subformula 3z.¢" of ¢’ it holds that
@' € FOY does not contain equality atoms.

Finally, we can prove the direction from fc-MATLANG to FO%.

Corollary 6.8. Let Q be an fc-MATLANG query over S and let Rel be a matriz-to-relational
schema encoding on S. There exists an FO) query Q that simulates Q w.r.t. Rel.

Proof. Let H = e be an fc-MATLANG query and let H = Rel(H). By Proposition 6.5
there exists 1 € FOQ: that simulates e w.r.t. Rel. By construction,) has two distinct free
variables. Assume that z,y are these two distinct variables, and z < y. There are three
cases to consider.

(1) H is a binary relation. By Lemma 6.7 there exists ¢’ € FOQ,: that is equivalent to 1)
and where equality atoms only occur at the top level. Because ¢ has {x,y} as free variables,
so does 1'. If no equality atom occurs in ¢’ then we take @ to be the query H(z,y) + 9.
If some equality atom does occur in v’ then we may observe w.l.o.g. that the equality is
x = y since the equalities x = x and y = y are trivial and can always be removed. As such,
Y =" Az =y with " € FO) and at least one of z,y appearing free in 1/”. Assume w.l.o.g.
that - occurs free in ¢)”. Then the query H(z,x) < Jy.¢’ simulates Q w.r.t. Rel. Although
this is formally a query in FOQ:7 we can we can next apply Lemma 6.6 to ¢” to obtain an
equivalent formula in FO% for the body 3y.¢)' = Jy.(v" A x = y), yielding the desired result.

(2) H is a unary relation. Assume that H is of column vector type («, 1); the reasoning
when H has row vector type is similar. Take ¢ = Jy.. Because v simulates e and because
e always outputs column vectors, [¢ || geyz)(z + 4,y + j) = 0 whenever j # 1, for every
T. We conclude that therefore [e](Z)(4,1) = [[Fy.¢]| gez)(z + 7) for all i and Z. As such,

1:30 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

the query Q': H(x) < ¢ simulates Q. While Q' is a query in FO)_, we can next apply
Lemma 6.7 to ¢ to obtain an equivalent formula ¢’ = ¢ in which equality only occurs at
the top level. Note that, since ¢ has only {x} as free variables, so does ¢'. Hence, any
equality that occurs at the top level in ¢’ must be of the form x = z, which is trivial and
can therefore be removed. After removing such trivial equalities, take Q: H(x) + ¢’ as the
simulating query.

(3) H is a nullary relation. The reason is entirely similar to the previous case.]

7. Q-HIERARCHICAL CONJUNCTIVE QUERIES

We next turn our attention to specializing the correspondence between conj-MATLANG and
CQs given by Corollary 4.7 to g-hierarchical CQs [BDGO07, Bral3]. Q-hierarchical CQs
are relevant since, over the Boolean semiring, they capture the free-connex CQs that, in
addition to supporting constant delay enumeration after linear time preprocessing, have
the property that every single-tuple update (insertion or deletion) to the input database
can be processed in constant time, after which the enumeration of the updated query result
can again proceed with constant delay [BKS17]. Formally, g-hierarchical CQs are defined
as follows. Let Q: H(Z) «+ Jy.a1 A ... A a, be a CQ. For every variable x, define at(z) to
be the set {a; | x € var(a;)} of relational atoms from the body of) that mention z. Note
that, contrary to acyclic queries, here we make the distinction between relational atoms and
inequalities. Then @ is g-hierarchical if for any two variables x,y the following hold:

(1) at(x) C at(y) or at(z) 2 at(y) or at(x) N at(y) = 0, and

(2) if x € T and at(z) C at(y) then y € T.

For example, H(x) < Jy.A(z,y) A U(z) is g-hierarchical. By contrast, the variant
H(z) « Jy.A(xz,y) AU(y) is not g-hierarchical, as it violates the second condition. Fur-
thermore, H(x,y) < A(z,y) AU(z) A V(y) violates the first condition, and is also not
g-hierarchical. Note that all these examples are free-connex. We refer to g-hierarchical CQs
simply as qh-CQs.

In this section, we first prove a correspondence between gh-CQs and a fragment of
FO%. Using this, we characterize the fragment of MATLANG that corresponds to qh-CQs
in Section 8. Concretely, we prove the following result in this section. We say that a FO%
formula ¢ is simple if every subformula of the form @1 A @2 in ¢ satisfies free(yp1) = free(p2).
We denote by simple-FO? the class of all simple FO% formulas. Let @1, ..., ¢ € simple-FO%
with & > 1 such that free(p;) C {z,y} for two distinct variables {x,y}. We say that
01 A ... Ak is a hierarchical conjunction if {{z,y},{z},{y}} Z {free(¢i) | 1 <i <n}. For
example, R(x,y) A S(y) AU() is a hierarchical conjunction, but R(z,y) A S(y) AT(x) is not.
We denote by h-FO% all hierarchical conjunctions of simple-FO% formulas. Observe that, by
definition, simple-FO% C h-FOZ%. As usual, an h-FO% query is a query with body 1 such that
¥ € h-FOZ.

Theorem 7.1. Q-hierarchical binary CQs and h-FOb queries are equally expressive.

To prove Theorem 7.1 we first define guarded query plans in Section 7.1. Similar to how
query plans allowed us to prove equivalence between fc-CQs and FOZ in Section 5, we use
guarded query plans to prove equivalence between qh-CQs and h-FO%. We show that h-FO%
is included in qh-CQs in Section 7.2, and the converse in Section 7.3.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:31

7.1. Guarded query plans. A generalized join tree (GJT) T (see Section 5.2) is guarded if
for every node n and every child ¢ of n it holds that var(n) C var(c), i.e., in a guarded GJT
every child is a guard of its parent. A query plan (QP) is guarded if its GJT is guarded.?
The following proposition is a particular case of the results shown in [TUV17,TUV*20].

Proposition 7.2. A CQ Q is g-hierarchical if and only if it has a guarded query plan.

For later use we observe the following property. Its proof is completely analogous to the
proof of Lemma 5.5.

Lemma 7.3. For every guarded QP there exists an equivalent guarded QP such that for
any node n with two children c1,ce it holds that var(n) = var(cy) = var(cs).

7.2. From g-hierarchical CQs to h-FO) queries.

Lemma 7.4. For every guarded QP (T,r) such that o[T,r] is binary, there exists a
simple-FO% formula ¢ equivalent to [T, r].

Proof. By Lemma 7.3 we may assume w.l.o.g. that T is such that for every node n with two
children ¢y, cg it holds var(cy) = var(n) and var(c2) = var(n). In the proof of Proposition 5.11
we showed by induction on 7' that we can construct an FO) formula ¢ equivalent to o[T,7].
It is readily verified that when T is guarded this construction yields a simple formula. []

Proposition 7.5. For every guarded QP (T, N) such that o|T, N| is binary, there ezists an
h-FO% formula v equivalent to [T, N].

Proof. By Lemma 7.3 we may assume w.l.o.g. that T is such that for every node n with

two children ¢y, ca we have var(c1) = var(c2) = var(n). Let F' = {r1,...,7} be the frontier
of N. Let T1,...,T; be the subtrees of T rooted at r1,...,r;, respectively. By Lemma 7.4,
there are simple-FO) formulas 1, ..., equivalent to @[T, 71],..., @[T}, 1], respectively.

By Lemma 5.7, [T, N| = ¢[T1, 1] A -+ A[T1,r] =1 A--- Ay Because [T, N] is binary,
there exists a set {z,y} of two distinct variables such that var(N) C {z,y}. It follows that
free(;) = var(r;) C var(N) C {z,y} for every i. It remains to show that ¢y A--- Ay is a
hierarchical conjunction. To that end, assume, for the purpose of obtaining a contradiction,
that {{z,y}, {z}, {y}} C {free(s);) | 1 <i < n}. Because free(1);) = var(r;) for every i there
must exist nodes ry 4, 7, and 7, in F' that are labeled by {z,y}, {«} and {y} respectively.
Now note that, because T is guarded and satisfies Lemma 7.3, all ancestors of 7, (resp. r)
can only contain z (resp. y) in their label, but not y (resp x). At the same time, because of
the connectedness property, there is an ancestor a of both r,, and 7, that must contain z,
implying that var(a) = {z}. Similarly, there is an ancestor b of both 7., and r, that must
contain y, implying that var(b) = {y}. Now note that a and b are both ancestors of r,,, so
either a is an ancestor of b, or the converse holds. Assume a is an ancestor of b. But then a
is also an ancestor of 7, and a has z in its label, which yields the desired contradiction. The
case where b is an ancestor of a is similar. []

2Guarded GJTs and QPs are called simple in [TUV120].

1:32 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

7.3. From h-FO) queries to g-hierarchical CQs.

Lemma 7.6. For every simple-FO% formula o there erists a guarded QP (T,r) such that
o[T, 7] is binary and equivalent to ¢.

Proof. The proof is analogous to the proof of Proposition 5.13. Fix two distinct variables z
and y and formula ¢ € simple-FO%. Because FO% formulas use at most two variables we may
assume w.l.o.g. that the only variables occurring in ¢ are x and y. We prove by induction
on ¢ that there exists a guarded query plan (7', 7) such that [T, r] = .

When ¢ is an atom (relational or inequality) then the result trivially follow by creating
a GJT T with single node r, labeled by the atom, and fixing N = {r}.

When ¢ = 3z.¢' with z € {x,y} we may assume w.l.o.g. that z € free(¢’): if not then
¢ = ¢’ and the result follows directly from the induction hypothesis on ¢’. So, assume
z € free(y). By induction hypothesis we have a guarded and binary QP (T”,r') equivalent
to ¢’ with ' the root of T'. Let T be obtained by adjoining a new root r to T”; label r by
var(r’) \ {z}; and make r’ the only child of r. Take N = {r}. Then (7, N) remains binary
and guarded. Equivalence of ¢[T, N]| to 1 follows by induction hypothesis and Lemma 5.8.

Otherwise ¢ is a conjunction, ¢ = ¢1 Aws. By induction hypothesis, we have binary and
guarded QPs (71,71) and (75, r2) equivalent to 1 and 1y, respectively with r; and 7o the
roots of T1,T». Using the same reasoning as in the proof of Proposition 5.13 we may assume
w.l.o.g. that 77 and T, have no nodes in common, and that moreover var(Th) N var(Ty) C
var(N1) N var(N3), i.e., that all variables that are mentioned in both T} and T» are also in
var(Ny) Nwvar(Ny). Because (T;,1;) is equivalent to p; we have var(r;) = free(y;), for i = 1, 2.
Then, because ¢ is simple, we necessarily have var(ry) = free(yp1) = free(ps) = var(rs). As
such, var(r1) = var(ry). We construct the claimed QP (7', r) by taking the disjoint union of T}
and T, and adjoining a new root r with children r1, 79 such that var(r) = var(ry) = var(rs).
It is readily verified that T satisfies the connectedness property and is hence a GJT. Moreover,
T is guarded. Correctness follows by Corollary 5.9. L]

Proposition 7.7. For every h-FOS formula v there exists a guarded QP (T, N) such that
[T, N] is binary and equivalent to 1.

Proof. Let x,y be distinct FO variables, let ¢ = o1 A--- Ay € h-FO) with ¢; € simple-FO%
and free(yp;) C {z,y} for i = 1,...,k. Consider the set F' = {free(¢;) | 1 <1i < k}. Note
that F' # () since it includes the root. Furthermore, because 1) is a hierarchical conjunction,
{{z,y},{z},{y}} € F. Since F # (), there are hence (‘11) + (3) + ((g) — 1) = 19 possibilities
for F'. We construct (7, N) by case analysis on F. We only illustrate one case; the other
cases are similar.

Assume F = {{z,y},{x},0}. Define, for each S € F the formula ¢g to be the
conjunction of all ¢; with free(yp;) = S. Then 9 = vy A pz A py. Observe that each pg is
simple. Hence by Proposition 7.6 there exist guarded query plans (T4, 72,y), (T, 72) and
(T, rp) equivalent to ¢y 4, Ya, @y, respectively. In particular, var(ryy) = {x,y}, var(ry) =
{z} and var(ry) = 0. We may assume w.l.o.g. that the GJTs T, ,, T, and Ty do not have
nodes in common. We construct the claimed guarded QP (7', N') by constructing 7" as follows
and setting N = {r,r’, 744, 72,79}.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:33

;0
/ T~
r'i{x} "0
7 \ /f\
XY Ty /T\\
// \\ //\\ f, ,@,\\
/ \ /N
o N T
rdgpy ===

Here, and ' are new nodes with var(r) = 0; var(r’) = {x}. It is readily verified that T is
guarded. Correctness follows from Lemma 5.7 since {rs ,, 75,79} is the frontier of N. [

8. THE Q-HIERARCHICAL FRAGMENT OF MATLANG QUERIES

We next define gh-MATLANG, a fragment of sum-MATLANG that we will show to be equally
expressive as h-FO% and qh-CQs. Like h-FOZ, gh-MATLANG is a two-layered language where
expressions in the top layer can only be built from the lower layer. This lower layer, called
simple-MATLANG, is a fragment of fc-MATLANG defined by

e == A | 1% | I¢ | el | e1xex | e1G@es | e-1%

Note in particular that while fc-MATLANG allows arbitrary matrix-vector multiplication,
this is restricted to multiplication with the ones vector in simple-MATLANG. Intuitively,
simple-MATLANG can already define g-hierarchical CQs like H(x) < Jy.A(z,y) AU(zx), but
it cannot define cross-products like H(z,y) < A(z) A B(y), which are also g-hierarchical.
For this reason, we enhance simple-MATLANG with the higher layer. Specifically, let us call
expressions of the form e - (1%)7 and 1% - e expansions of simple-MATLANG expression e.
Note that these are well-typed only if e has column resp. row vector type. These expressions
construct a matrix from a column (resp. row) vector by duplicating the column (resp. row)
a times. We then define gh-MATLANG to consist of all expressions g of the form

fuo= e le- (1M]1% ¢
gu= flfof

where e ranges over simple-MATLANG expressions, and f over simple-MATLANG expressions
and expansions thereof.
In this section we prove:

Theorem 8.1. gh-MATLANG queries and h-FOL queries are equally expressive.
Combined with Theorem 7.1 we hence obtain.
Corollary 8.2. gh-MATLANG and g-hierarchical binary CQs are equally expressive.

The rest of this section is devoted to proving Theorem 8.1. We show that qh-CQs are
at least as expressive as gh-MATLANG in Section 8.1 and the converse in Section 8.2.

1:34 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

8.1. From h-FO} formulas to gh-MATLANG expressions. We will first simulate h-FO%
formulas by means of a gh-MATLANG expression according to the definition in Section 6.1.

Proposition 8.3. Let ¢ € simple-FO% be a formula over o. Let Mat be a relational-to-
matrix schema encoding on o such that Matt ¢: 7. Then there exists a simple-MATLANG
expression e that simulates w.r.t. Mat.

Proof. We assume var(y) C {z,y} with x < y. The proof is analogous to the proof of
Proposition 6.3, with the difference that when ¢ = @1 A o the simulating expression is
always e; ® ez because free(yp;) = free(pz) since o € simple-FO%. This has the consequence
that the simulating expression is always a simple-MATLANG expression. []

Proposition 8.4. Let 1 € h-FO} be a formula over o. Let Mat be a relational-to-matriz
schema encoding on o such that Matt : 7. Then there exists a qgh-MATLANG expression
e that simulates ¢ w.r.t. Mat.

Proof. We assume var(y)) C {x,y} with z < y. By definition, ¥ = @1 A -+ A @ with
©; € simple-FOY for every i. Consider the set F' = {free(¢;) | 1 <i < k}. Note that F # 0.
Furthermore, because v is a hierarchical conjunction, {{z,y},{z},{y}} € F. Since F # 0,
there are hence (411) + (;L) + ((g) — 1) = 19 possibilities for F'. We construct e by case analysis
on F'. We only illustrate one case; the other cases are similar.

Assume F = {{z,y},{x},0}. Define, for each S € F the formula ¢g to be the
conjunction of all ¢; with free(yp;) = S. Then ¢ = vy A @z A py. Observe that each pg is
simple. Hence by Proposition 8.4 there exist simple-MATLANG expressions e, y, e, and e
that simulate ¢, 4, ¢., and @y, respectively. Then the gh-MATLANG expression simulating

p is
e = (e% X e@{m}) ® (e%%c} . <1T(y))T>)]

To also establish the correspondence at the level of queries we first observe the following
straightforward fact. For a sum-MATLANG expression e: (a,1) define diag(e) to return
a matrix of type (a,a) where the entries of e are stored in the diagonal and where all
non-diagonal entries are 0.

Lemma 8.5. gh-MATLANG is closed under transpose and diagonalisation: for any expression
g € gh-MATLANG also g7 is expressible in gh-MATLANG and, moreover, if g: (o, 1) has
column vector type, then diag(g) is expressible in gh-MATLANG.

Proof. Closure under transpose follows from the fact that simple-MATLANG is closed under
transpose by definition, and from the following equivalences:

(fl o f2)T _ flT o f2T (e . (1a)T)T —12..T (1a . e)T — 7. (1a>T

Closure under diagonalisation is straightforward. Assume that g: («, 1). Note that expansions
never have column vector type. As such, g is a simple-MATLANG expression, or a Hadamard
product of simple-MATLANG expressions. Note that in the latter case, this is itself also a
simple-MATLANG expression since simple-MATLANG is closed under Hadamard products.
Then diag(g) can be define in gh-MATLANG by first computing the column expansion of g
and subsequently setting all non-diagonal entries of this expansion to zero by taking

diag(g) = I'® & (g : (r(x))T) . O

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:35

Corollary 8.6. Let Q be an h-FO} query over o and let Mat be a relational-to-matriz
schema encoding on o(Q) such that Matt Q: 7. Then there exists gh-MATLANG query Q
that simulates Q@ w.r.t. Mat.

Proof. Assume Q : H(Z) < 1. By Proposition 8.4 there exists a gh-MATLANG expression
e that simulates ¢ w.r.t. Mat. Let Mat(H) = H. We build the gh-MATLANG query
Q := H = ¢ as follows, using Lemma 8.5:

e When T = (x,y), if # < y then define € := e, otherwise define € := e’

e When T = (x,x) we note that free(1)) = {z} and therefore e: (7(x), 1) outputs the encoding
of a square matrix, where the value of diagonal entry (z,x) is computed by ¢ (z). All
non-diagonal entries of this matrix are 0. Hence we take € := diag(e).

e When 7 = (x) we have e: (7(x),1). If H: (7(x), 1) define € := e otherwise if H: (1,7(z))
define e := e’

e When 7 = () we have e: (1,1) and define € :=e.]

8.2. From gh-MATLANG expressions to h-FO) formulas. To establish the converse
direction of Theorem 8.1 we first show that how to simulate gh-MATLANG expressions by
means of h-FO% formulas that may also use equality, according to the definition in Section 6.2.
Define h—FOé\yz to consist of all h-FO% formulas as well as all formulas of the form ¢ Az =y
or ¥ = y A with ¢ € h-FO} and free(p) N {x,y} # 0. Note that in the latter case we
assume that z,y are the only two distinct variables that can be used in ¢, so that the result
again uses only two variables.

Define the signature sig(y) of formula ¢ € h-FO5 _ to be the set {free(¢;) | 1 < i < n}
where @1, ..., ¢, are the non-equality conjuncts of p. For example, the signature of ¢ =
r<chy<drz=yis {{z},{y}}.

The following lemma shows that projections on h-FOQ: formula are expressible as h-FO2
formulas (hence, not using equality), provided that the original formulas signature is of a
certain shape.

Lemma 8.7. Let ¢ be a h-FOY _ formula such that sig(p) is a subset of either {0, {x},{y}}
or {0,{xz,y}}. There exists a h-FO, formula equivalent to 3x. (resp. Jy.) whose signature

is a subset of {0,{z},{y}}.

Proof. We first make the following claim: if 1) € simple-FO% and free(v)) N {z,y} # (), then
there exists a simple-FO} formula equivalent to 3z.(p A z = y) (resp. Jy.(¢ Az = y)). The
proof of this claim is identical to the proof of Lemma 6.6, observing that the construction
defined there, when applied to simple formulas, yields a simple formula. Because the resulting
formula has at most 1 free variable, its signature (viewed as a conjunction with only one
conjunct) is trivially a subset of {0, {z}, {y}}.

Next, assume that ¢ = @1 A -+ A @ A x = y where the ¢; are simple-FO) formulas.
(The reasoning when ¢ does not contain the equality atom z = y is similar.) We make a
case analysis on sig(y).

e sig(yp) is a subset of {0, {z}, {y}}. Since ¢ has at least one conjunct, sig(y) is non-empty.
Moreover, the case where sig(p) = {0} cannot occur, since otherwise ¢ would not be
safe. There are hence 23 — 2 = 6 possibilities to consider for the signature. We only
illustrate the reasoning when sig(¢) = {0, {z}, {y}}, the other cases are similar. Assume
that sig(¢) = {0, {z},{y}}. Foreach S € {0, {z}, {y}} let ¢ be the conjunction of all the

1:36 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

formulas ¢; with free(;p;) = S. Note that each 1)g is in simple-FOZ%, as it is a conjunction
of simple formulas with the same set of free variables, and that ¢ = ¥y A, Ay Az =y.
Then Jz.¢ = Yy AJz.(Y, Ax = y) Ay. By our earlier claim, Jz.(¢, Ax = y) is expressible
as a simple-FO) formula 1. Because 3z.(1), A z = y) has free variables {y}, so does
Yl Hence, 3z.¢ = ¢y A ¢}, A1y, where the right-hand side is a hierarchical conjunction
of simple-FO% formulas and is hence in h-FO%. Also, observe that the signature of the
right-hand side is a subset of {0, {y}}. This establishes the desired result.

e sig(yp) is a subset of {0, {z,y}}. The reasoning is entirely similar.]

First we show the reduction from simple-MATLANG expressions to h—FOé\’: formulas.
Here, the signature of the resulting formula is important to later remove the equalities.

Proposition 8.8. Let e be a simple-MATLANG ezpression over S and let Rel be a matriz-
to-relational schema encoding on S. Let x,y be two variables such that x <vy. There exists
@e € h-FOy _ simulating e such that sig(.) is a subset of either {0,{x},{y}} or {0,{z,y}}.

Proof. The proof is by induction and analogous to the proof of Proposition 6.5. We only

illustrate two interesting cases.

o If e =1%: (o,) then take . = x < aAy <aAz=y. Notethat z <aAy < aisa
hierarchical conjunction of simple FO% formulas. Therefore, 1), € h-FOQ:7 as desired.

o If e=e; x ey with eg: (1,1) and e2: (o, B) we reason as follows. Let 1., and 1., be the
h-FO/\; formulas simulating e; and ey obtained by induction.

First observe that because 1, simulates e; and because e; always outputs scalar
matrices, [[te, || peyz)(z + 4,y = j) = 0 whenever i # 1 or j # 1. We conclude that
therefore, 3z, y.1b, will always return [e;](Z)(1,1) when evaluated on Rel(Z). Hence, we
take e == (3x,9.1e;) A Ye,. Note that (Jz,y.1be,) is expressible in h-FO% by applying
Lemma 8.7 twice, i.e., it is expressible as a hierarchical conjunction of simple FO%
formulas. Each of these formulas must have the empty set of free variables. Therefore,
their conjunction with e, is also a hierarchical conjunction, and hence in h—FO/\;. The
signature of the resulting conjunction is the union of {#} with the signature of 1).,, and
therefore also a subset of either {0, {z},{y}} or {0,{z,y}}.]

Next, we show how to translate any qgh-MATLANG expression to a h—FOAF formula.

Proposition 8.9. Let g be a gh-MATLANG expression over S and let Rel be a matrixz-to-
relational schema encoding on S. There exists ¢ € h—FOé\F that stmulates e w.r.t. Rel.

Proof. Let x,y be two variables such that z < y. We may assume w.l.o.g. that the formulas
¢ returned by Proposition 8.8 have free(p) = {x,y}. We reason by case analysis. Let eq, e2
range over simple-MATLANG expressions.

(1) g € simple-MATLANG. Then the claim follows from Proposition 8.8.

(2) g=e1® (62 : (15)T> with e1: (o, §) and ea: (o, 1). By Proposition 8.8, there exists ¢
and 9 simulating e; and ez, respectively. Observe that for all matrix instances Z and
all valid indices 4, j we have [¢](Z);; = [e1](Z)i; © [e2](Z)i,1. Because o simulates ey
and because ez always outputs a column vector, [[p2]| geyz)(z + i,y = j) = 0 whenever
j # 1, for all Z. We conclude that therefore [e2](Z)i1 = [Fy.p2| reyz)(z +— i). Hence
it suffices take ¥ = p1(z,y) A Fy.p2(x,y). By Lemma 8.7 Jy.p2(x,y) is expressible in
h-FOZ, i.e., it is expressible as a hiearchical conjunction of simple FO% formulas, which
necessarily all have free variables that are a subset of {x}. Extending this conjunction

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:37

with ¢, whose signature is a subset of {0, {z},{y}} or {0, {z,y}} by Proposition 8.8,
remains hierarchical. We conclude that v is expressible in h—FOQ’:.

(3) e = e1 © (1% -e2) with e1: (o, 8) and ez: (1,3). The reasoning is similar as in the
previous case, but taking ¢ = ¢1(x,y) A Jr.p2(z,y).

(4) e= <61 . (IB)T) © (1% - ey) with eg: (e, 1) and ey: (1, 3). The reasoning is again similar,

taking ¢ = (Jy.p1(z,y)) A (Fz.02(2, y)).
(5) The only other possibilities are commutative variants of cases already considered. []

The next lemmas will aid to remove the equalities of FO/\?: formulas in the final result.
The reader can find their proofs in Appendix D.

Lemma 8.10. Let ¢ be a h-FO} formula (hence, without equality) using only the distinct
variables x,y such that free(p) = {x,y}. Let ¢ be the FOy _ formula 3z.(¢ Az = y). Note
that free(y) = {y}. There exists an h-FOL formula ' equivalent to).

Lemma 8.11. If ¢ € h-FO has free(p) = {z,y} and z € {x,y} then there exists ¢’ € h-FO
with free(yp’) = {z} such that for all v: {z} and all db,

Te'llan(v) = o A = yllas(z = v(2),y = v(2)).
We are ready to show how to translate any gh-MATLANG query to a h-FO% query.

Corollary 8.12. Let Q be an gh-MATLANG query over S and let Rel be a matriz-to-
relational schema encoding on S. There exist h-FOY query Q that simulates Q w.r.t. Mat.

Proof. Let H := e be a gh-MATLANG query and let H = Rel(H). We consider three cases.

(1) H is a binary relation. By Proposition 8.9 there exists ¢ € h-FOy _ that simulates e w.r.t.
Rel. By construction, 1 has two distinct free variables. Assume that x,y are these two
distinct variables, and x < y. If ¢ € h-FO% then we take @ to be the query H(z,y) +).
Otherwise, ¥ = ¢/ Az = y with ' € h-FO) and at least one of x,y appearing free in
' I free(v’) = {x} then we take H(x,z) + ¢’ as simulating query. If free(¢') = {y}
then we take H(y,y) < ¢ as simulating query. Otherwise free(¢)’) = {x,y}, and we
take H(x,z) < 9" as simulating query, where 1" is the result of applying Lemma 8.11
to ¢’ and z = x.

(2) H is a unary relation. Assume that H is of column vector type («, 1); the reasoning
when H has row vector type is similar. Because of well-typedness, also e: (a,1). Now
observe that expansions return matrices that are not column vectors (or, if they do,
the result can be written without using an expansion). As such, e € simple-MATLANG.
By Proposition 8.8 there exists ¢ € h—FOQ: that simulates e w.r.t. Rel such that
sig(1)) is a subset of either {0, {z},{y}} or of {0, {z,y}}. By construction, 1) has two
distinct free variables. Assume that z,y are these two distinct variables, and = < y.
Take ¢ = Jy.¢0. Because ¢ simulates e and because e always outputs column vectors,
M1 reiz) (x = i,y > j) = 0 whenever j # 1, for every Z. We conclude that therefore
[el(Z)(i,1) = [[By-¥] geyz)(x + i) for all i and Z. As such, the query Q": H(z) < ¢
simulates Q. While @' is a query in h—FOQ:, we can next apply Lemma 8.7 to ¢ to
obtain an equivalent formula ¢’ = ¢ in h-FO%.

(3) H is a nullary relation. The reason is entirely similar to the previous case. []

1:38 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

9. PRELIMINARIES FOR ENUMERATION ALGORITHMS AND QUERY EVALUATION

In the previous sections we have presented a precise connection between fragments of FO™
and fragments of sum-MATLANG. In the sequel, we move to translate the algorithmic
properties of the free-connex and g-hierarchical conjunctive fragments of FO to properties
for the corresponding fragments of sum-MATLANG. Towards this goal, this section introduces
all the extra background and definitions regarding enumeration algorithms. The properties
themselves are obtained in Sections 10 and 11.

Enumeration problems. An enumeration problem P is a collection of pairs (I,0) where
I is an input and O is a finite set of answers for I. There is a functional dependency from I
to O: whenever (I,0) and (I',0’) are in P and I = I’ then also O = O’. For this reason,
we also denote O simply by P(I). An enumeration algorithm for an enumeration problem
P is an algorithm A that works in two phases: an enumeration phase and a preprocessing
phase. During preprocessing, A is given input I and may compute certain data structures,
but does not produce any output. During the enumeration phase, A may use the data
structures constructed during preprocessing to print the elements of P(I) one by one, without
repetitions. The preprocessing time is the running time of the preprocessing phase. The
delay is an upper bound on the time between printing any two answers in the enumeration
phase; the time from the beginning of the enumeration phase until printing the first answer;
and the time after printing the last answer and the time the algorithm terminates.

Query evaluation by enumeration. In our setting, we consider query evaluation as an
enumeration problem. Specifically, define the answer of a query @ on database db to be the
set of all tuples outputed by @ on db, together with their (non-zero) annotation,

Answer(Q, db) = {(d,[Qla(H)(d)) | [Qas(H)(d) # 0}.

Here, H denotes the relation symbol in the head of Q.
We then associate to each FO™ query @ over vocabulary ¢ and semiring K the following
enumeration problem Eval(Q, o, K):

Problem: Eval(Q,o,K)
Input: A K-database db over o
Output: Enumerate Answer(Q, db).

Formally this is the collection of all pairs (I,0), where I = db with db a K-database
over o; and O = Answer((Q, db). Hence, Eval(Q,o,K) is the evaluation problem of @ on
KC-databases.

Similarly, we associate to each sum-MATLANG query Q = H := e over schema S and
semiring IC the enumeration problem Eval(Q,S, K):

Problem: Eval(Q,S,K)
Input: A K-instance Z over S
Output: Enumerate Answer(Q,Z).

This is, the collection of all pairs (I, O) where

o [=7 with 7 a K-matrix instance over S, sparsely represented by listing for each matrix
symbol A: («, 3) the set of entries {(i,7,k) | i <Z(«a),j < I(ﬂ),AZ-IJ =k # 0}; and
e O = Answer(Q,Z) where, assuming H: («, 3),

hnswer(Q, Z) = {(i, 1, [QIZ)(H).;) | [QI(T)(H):, #0.i < I(a),j < Z(A)}.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:39

Hence, Eval(Q, o, K) is the sparse evaluation problem of Q on matrix instances over S,
where only the non-zero output entries must be computed.

Complexity classes. For two functions f and g from the natural numbers to the positive
reals we define Enum(f, g) to be the class of enumeration problems for which there exists
an enumeration algorithm A such that for every input [it holds that the preprocessing
time is O (f(]|I]|)) and the delay is O (g(||I]|)), where || I || denotes the size of I. For
example, Enum(|| db||, 1) hence refers to the class of query evaluation enumeration problems
that have linear time preprocessing and constant delay (in data complexity). Note that,
since the inputs in an evaluation problem Eval(Q,o,K) consists only of the database and
not the query, we hence measure complexity in data complexity as is standard in the
literature [BDG07,IUV 20, BGS20, BKS17].

Throughout, || db|| denotes the size of the input K-database db, measured as the length
of a reasonable encoding of db, i.e., || db|:= > pc, | R® || +3 .51 where | R ||:=
(ar(R) + 1) - |[R®| with |R%| the number of tuples d with R%(d) # Ox. Intuitively, we
represent each tuple as well as its K-value and assume that encoding a domain value or
K-value takes unit space. In addition, each constant symbol is assigned a domain value,
which also takes unit space per constant symbol.

Similarly, if Z is a matrix instance over matrix schema S then || Z|| denotes the size of a
reasonable sparse encoding of I, i.e., |Z|:= Y ocs || AT] + > ,c, 1 where || AT || denotes
the number of entries (i, j) with (AZ);; #0, for A: (a,8) and 1 <i<af and 1 < j < L.

Model of computation. As has become standard in the literature [BDG07,IUV*20,BGS20,
BKS17], we consider algorithms on Random Access Machines (RAM) with uniform cost
measure [AHUT74]. Whenever we work with K-databases for an arbitrary semiring K, we
assume that each semiring operation can be executed in constant time.

Complexity Hypotheses. We will use the following algorithmic problems and associated
complexity hypotheses for obtaining conditional lower bounds.

(1) The Sparse Boolean Matrixz Multiplication problem: given A and B as a list of nonzero
entries, compute the nonzero entries of the matrix product AB. The Sparse Boolean
Matriz Multiplication conjecture states that this problem cannot be solved in time O(M),
where M is the size (number of non-zero entries) of the input plus output.

(2) The Triangle Detection problem: given a graph represented using adjacency lists, decide
whether it contains a triangle. The Triangle Detection conjecture states that this problem
cannot be solved in time O(M), where M is the size of the input plus output.

(3) (k,k + 1)-Hyperclique: Given a hypergraph where every hyperedge consists of exactly
k > 3 vertices, decide if it contains a hyperclique of size k + 1. A hyperclique is a set
of vertices such that each pair of vertices in the set is contained in a hyperedge. The
(k, k+1)-Hyperclique conjecture states that this problem cannot be solved in time O(M),
where M is the size of the input plus output.

Note that the three hypotheses are standard in computer science and have been used to
prove conditional lower bounds for the enumeration of CQs. See [BGS20] for a discussion.

1:40 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Known bounds for free-connex CQs. In what follows, let CQZ denote the class of CQs
where no inequality atoms occur in the body. The body hence mentions only relational
atoms. Also, let B = ({t,f},V, A, £,t) be the boolean semiring.

Bagan, Durand and Grandjean [BDGO07] (see also [BGS20]) proved that, under certain
complexity-theoretic assumptions, the class of free-connex conjunctive queries characterizes
the class of conjunctive queries that, in data complexity, can be enumerated with linear time
preprocessing O(|| db||) and with constant delay on boolean input databases. We next recall
their results.

Theorem 9.1 [BDGO7]. Let Q be a CQ* over vocabulary o.

e If Q is free-connex then Eval(Q,o,B) € Enum(|| db||,1).

e If Q is a query without self joins and Eval(Q,o,B) € Enum(|| db||, 1), then Q is free-connex
unless either the Sparse Boolean Matriz Multiplication, the Triangle Detection, or the
(k, k + 1)-Hyperclique conjecture is false.

10. EFFICIENT EVALUATION OF FREE-CONNEX QUERIES

In this section, we focus on the evaluation problem for fc-MATLANG, namely, the free-
connex queries in sum-MATLANG. Our aim is to transfer the known algorithmic properties
of evaluating free-connex CQs to properties of evaluating fc-MATLANG.

To apply the known algorithm for fc-CQs to fc-MATLANG, we must first solve two
problems: (1) the efficient evaluation algorithm for fc-CQs is only established for evaluation
over Boolean semiring, not arbitrary semirings K, and (2) the algorithm is for CQ without
inequalities (comparison atoms). We will therefore generalize the known evaluation algo-
rithms to other semirings (e.g., R), and to queries that have also inequalities (Section 10.1).
Similarly, we do the same for the lower bounds known for fc-CQs (Section 10.2).

10.1. Upper bounds for free-connex queries. A semiring (K, ®,®,0, 1) is zero-divisor
free if, for all a,b € K, a ©b = 0 implies a = 0 or b = 0. A zero-divisor free semiring is
called a semi-integral domain [Goll3]. Note that semirings used in practice, like B, N, and R,
are semi-integral domains. We will establish:

Theorem 10.1. Let K be a semi-integral domain. For every free-connex query Q over o,
Eval(Q,0,K) can be evaluated with linear-time preprocessing and constant-delay. In partic-
ular, Eval(Q,S,K) can also be evaluated with linear-time preprocessing and constant-delay
for every fc-MATLANG Q over S.

The semi-integral condition is necessary to ensure that zero outputs can only be produced
by some zero input entries. For instance, consider a semiring (K, @, ®,0, 1) such that there
exist a,b € K where a # 0, b # 0 and a ® b = 0. Consider Q : H(z,y) < R(z) A S(y)
and a database db over the previous semiring such that R(1) = a; R(2) = a;S(1) = b and
S(2) = b. Then, the output of Eval(Q, o, K) with input db is empty, although the body can
be instantiated in four different ways, all of them producing 0 values.

The upper bounds for the similar yet different setting presented in [ECK24| are with
respect to direct-access. In this context, Theorem 10.1 straightforwardly yields linear time
preprocessing and linear time direct-access, in contrast to the loglinear time preprocessing
and logarithmic time direct-access achieved in [ECK24]. However, in this work, tuples with
zero-annotated values will not be part of the query result.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:41

To illustrate the utility of Theorem 10.1, consider the fc-MATLANG query A ® (U -V7)
where U, V are column vectors. When this query is evaluated in a bottom-up fashion, the
subexpression (U - V1) will generate partial results of size | U |||| V||, causing the entire
evaluation to be of complexity Q(||A| + |U ||| V||). By contrast, Theorem 10.1 tells us
that we may evaluate the query in time O(||A || + |U|| + |V]]).

We derive the enumeration algorithm for Eval(Q@,o,) by extending the algorithm
of [BDGO7] to any semi-integral domain K and taking care of the inequalities in). Then,
we derive the enumeration algorithm for Eval(Q,S,) by reducing to Eval(Q,o,K), us-
ing Corollary 6.2.

We now prove Theorem 10.1 in two steps. We first transfer the upper bound of CQs#
over B-databases to CQs® over K-databases. We then generalize the latter to CQs over
K-databases.

Remark. In what follows, we will describe enumeration algorithms for Eval(@, o, K). For-
mally, given an input database db, these algorithms hence have to enumerate the set
Answer(Q), db) of output tuples with their non-zero semiring annotation. In the proofs how-
ever, we will often find it convenient to instead enumerate the set Vals(Q, db) of valuations,

Vals(Q, db) = {1 [[Ql () | v: Z,[Qllas(v) # 0}.

Note that an algorithm that enumerates Vals(Q, db) can also be used to enumerate
Answer(Q, db) by turning each valuation into an output tuple, and vice versa an algorithm
that enumerates Answer(Q), db) can also be used to enumerate Vals(Q, db): by definition
every output tuple d = 7 such that [Q]4(H)(d) # 0 induces a valuation v: T such that
Q] ap(v) # 0. Note in particular that if either one of them can be enumerated with constant
delay, then so can the other. We use this insight repeatedly in the proofs.

From B-databases to K-databases over a semi-integral domain. We start our proof
of Theorem 10.1 by extending the algorithmic results of free connex C(Q from the boolean
semiring to any semi-integral domain.

Proposition 10.2. If Q is a free-connex CQF over o and K a semi-integral domain then
Eval(Q,o0,K) € Enum(|| db]|,1).

Proof. Because @ is free-connex, it has a query plan (7', N) by Proposition 5.4. We describe
different evaluation algorithms depending on the shape of @ and (T, N). Let db be a
K-database over o and assume the semi-integral domain K = (K, ®,®,0,1).

(1) When @ is full, i.e, no variable is quantified, we reduce to the Boolean case as follows.
Assume that Q@ = H(Z) <~ R1(Z1) A+ A Rn(Zp). In O(]| db]|) time construct Bool(db),
the B-database obtained from db defined as:

RBool(db) cd tif Rdb(a) 7é 0
f otherwise,

for every R € o. Furthermore, preprocess db by creating lookup tables such that for
every relation R and tuple @ of the correct arity we can retrieve the annotation R% (@)
in time O(|a]) time. Note that since o is fixed, |a| is constant. This retrieval is hence
O(1) in data complexity. It is well-known that such lookup tables can be created in
O(]| db]|) time in the RAM model.

Finally, invoke the algorithm for Eval(Q,o,B) on Bool(db). By Theorem 9.1, this
algorithm has O(|| Bool(db) ||) = O(|| db||) preprocessing time, after which we may

1:42 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

enumerate Answer((),Bool(db)) with O(1) delay. We use the latter to enumerate
Answer(Q, db) with O(1) delay: whenever an element (@, t) of Answer((),Bool(db)) is
enumerated retrieve ki := Ri(alz,),...,kn := Rp(alz,) by means of the previously
constructed lookup tables. Here, @lz, denotes the projection of @ according to the
variables in Z;. Then output (a,k1 ® ... ® ky). Because the query is fixed, so is the
number of lookups we need to do, and this hence takes O(1) additional delay in data
complexity. In summary the delay between printing one output and the next is hence
O(1) while the total processing time—comprising the construction of Bool(db), the
lookup tables and the preprocessing phase of Eval(Q, o,Bool)— is O(]| db]|).
We claim that the set of pairs (@, k1 ®...® k) hence printed is exactly Answer(Q, db):
e If we print (a,k; ©...®k,) then (@, t) was in Answer(Q),Bool(db)), which can only
happen if R?ou(db) (alz,) = t for every 1 < i < n. By definition of Bool(db) this
means that k; = R¥®(a@lz,) # 0. Hence, [Q]a(H)(@) = k1 © ... ® ky, since Q is
full. Because K is a semi-integral domain, the latter product is non-zero and hence
(@ k1 ©...®ky) € Answer(Q, db).
e If (a, k) € Answer(Q, db) then by definition k # 0 and, because @ is full, k = k1 ©

... @k, where k; = R%(@|3,). Assuch k; # 0 for 1 <i < n. Hence, Rfooudb) (@z,) =1t
for every i and thus, (@,t) € Answer((Q),Bool(db)). Therefore, (a,k1 ©...® k) will
be enumerated by our algorithm above.

(2) When the query plan (7', N) is such that N consists of a single node N = {r} we next
show that may compute the entire result of @ in O(]| db||) time. This implies that
Eval(Q,0,K) € Enum(|| db||,1): compute Answer((), db) and use this data structure
(e.g., represented as a linked list) to enumerate its elements, which trivially supports
constant delay. Essentially, the argument that we use here is the same as the standard
argument in the theory of acyclic conjunctive queries that Boolean acyclic queries on
Boolean databases can be evaluated in linear time by a series of projection operations
and semijoin operations [Yan81, AHV95]. We repeat the argument in the K-setting here
for completeness only. For notational convenience, if 7 is an FO” formula then we denote
by Answer(v, db) the set Answer(Py, db) where Py : H(Z) < v with T a repetition-free
list of the free variables of ¥. The algorithm exploits the fact that, since (T, N) is a
query plan for Q we have the body of @ is equivalent to @[T, N| = ¢[T,r]. Hence, it
suffices to show that Answer ([T, 7], db) may be computed in linear time.3

We argue inductively on the height of T' that Answer(p[T', N], db) may be computed
in linear time. By Lemma 5.5, we may assume without loss of generality that for
every node n with children ¢1,co in T either var(c;) = var(n) and var(cz) C var(n); or
var(cz) = var(n) and var(ci) C var(n).

(a) When T has height 1 then the root r is a leaf and hence an atom, say R(Z). As such,

Answer ([T, r], db) can trivially be computed in O(|| db||) time by scanning R%.

(b) When T has height greater than 1 we identify two cases.

e Root r has one child ¢. By Lemma 5.8 we have ¢[T,r] = Jy.¢[T, ¢] with § =
var(c) \ var(r). Here, @[T, c| equals @[T, c] with T, the subtree of T' rooted
at c. As such, we may compute Answer(p[T,r], db) by first computing A :=
Answer(p[T;, c|, db) and then projecting on the variables in var(r). This is in

3The only difference between @ and @[T, r] is that @ may repeat some variables in the head; the result of
Q@ can hence be obtained by computing ¢[T, r] and repeating values in each result tuple as desired.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:43

linear time by induction hypothesis and the fact that projections on K-relations
can be done in linear time in the RAM model, even on general K-databases.?

e Root r has two children ¢; and cp. We may assume w.l.o.g. that var(r) = var(cy)
and var(cz) C var(r) = var(c1). By Lemma 5.9 we have @[T, 7] = ¢[T, c1]Ap[T, ca].
Note that because var(c;) C wvar(cy) and free(p[T, ¢;]) = var(c;), the formula
@[T, r] is hence expressing a semijoin between [T, c¢1] and [T, c3]. Hence, we
may compute Answer ([T, r],) by first computing A; := Answer(p[T1, ¢1], db) and
Ay := Answer(p[Th, co], db) (where T and Tb are the subtrees of T rooted at c¢q,
resp. cz) and then computing the semijoin between A; and As. This is in linear
time by induction hypothesis and the fact that semijoins on K-relations can be
done in linear time in the RAM model, even on general K-databases.?

(3) When @ is not full and N has more than one node we reduce to the previous two
cases as follows. By Lemma 5.7 we have that [T, N] = o[T1,n1] A --- A @[T}, 1]
where F' = {ny,...,n;} is the frontier of N, i.e, the nodes without children in N, and
T1,...,T; are the subtrees of T" rooted at n, ..., n; respectively. Hence, we may compute
Answer(p[T, N], db) by computing A; := Answer(p[T;, n;], db) for 1 < i < n and then
taking the join of the resulting K-relations. By item (2) above, each Answer(¢[T;,n;], db)
can be computed in linear time, and is hence of linear size. The preprocessing and
enumeration of the final join can be done as in item (1) above, since this is a full join. []

From CQZ to CQ. An inequality atom z < ¢ is covered in a CQ Q if there is a relational
atom in @ that mentions x; it is non-covered otherwise. So, in the query H(y,z) <«
R(z,y) Ny < ¢ A z < d the inequality y < ¢ is covered but z < d is not. For a CQ @ define
the split of @) to be the pair split(Q) = (Qrel, Qineq) Where:

Qa@) 3. N\ RE) Qineq (W) < J0. A w < ¢

R(Z)€at(p) w<c€Eat(p),non-covered

with T and 7 the set of all free resp. bound variables in @) that occur in a relational atom
in @, and @ and U the set of free resp. bound variables in @) that occur in a non-covered
inequality in Q. In what follows, we call Q¢ the relational part of Q.

We note that if () does not have any non-covered inequality then Qineq is in principle
the empty query. For convenience, we then set it equal to Qineq() < Jz.2 < 1 in that case,
which is equivalent to t.

The next proposition relates free-connexness of a CQ with inequalities to the free-
connexness of its relational part.

Proposition 10.3. Let Q be a CQ and assume split(Q) = (Qrel, Qineg)- @ is free-connex
if, and only if, Qe is free-conner.

4Create an empty lookup table. Iterate over the tuples (a, k) of A. For every such tuple (@, k), look up
@ yar(ry in the lookup table. If this is present with K-value I, then set [:= | ® k; otherwise add (@yar(ry, k) to
the table. After the iteration on A, enumerate the entries (b, k) in the lookup table and add each entry to
the output when k # 0. This is exactly the projected result.

SCreate a lookup table on As, allowing to retrieve the K-annotation given a var(cz)-tuple. Then iterate
over the entries (@, k) of A;. For every such tuple (@, k), look up @|,ar(c,) in the lookup table. If this is
present with K-value [, then output (@, k ®) provided k ® 1 # 0.

c2

1:44 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Proof. This is essentially because unary atoms (like inequality atoms) can never affect the
(a)cyclicity of a CQ: if a CQ is acyclic it remains so if we add or remove unary atoms from
its body. []

The following property relates the evaluation of a CQ (with inequalities) to the evaluation
of its relational part. Let @ be a CQ over vocabulary o. To each relational atom o = R(T)
we associate the query
Qlo] : HZ) «~ R(T) ANty N AN
where 11, ...,1p are all inequality atoms in @) covered by «. We say that a database db
is atomically consistent w.r.t @ if for every relation symbol R € o of arity n, every atom
a = R(T) in @ over relation symbol R, and every n-tuple @ we have

if R®@) #0anda =7 then [Qla]]av(H) (@) # 0.

Intuitively, if db is atomically consistent, then every tuple in a relation R that satisfies
the atom a = R(T)® also satisfies all inequalities covered by . Note that we may always
make a given db atomically consistent with @ in O(]| db||) time: simply scan each relation R
of db and for each tuple @ loop over the R-atoms o = R(Z) in Q. If @ = 7 then check that
the constraints imposed by Q[a] are satisfied. Since Q[o] is a full query, this can be done
in constant time per tuple in data complexity. We call this process atomically reducing db,
that is, of making db atomically-consistent with @ .

The following claims are straighforward to verify.

Claim 10.4. Let Q be a CQ over vocabulary o, let db be a database and let db be its
atomic reduction. Then Answer(Q, db) = Answer(Q, db').

Claim 10.5. Let Q(Z) be a CQ with split(Q) = (Qrel(Z1), Qineq(T2)). If db is atomically
consistent with @ then Q|4 (v) = [[Qrelllas(V|7,) © [[Qineqllap(V|z,) for every valuation v: Z.

Lemma 10.6. Let Q be a CQ over vocabulary o with split(Q) = (Qrel, Qineq) and let K be a
semiring (not necessarily a semi-integral domain). Then Eval(Qineq, 0, K) € Enum(|| db||,1).

Proof. Let z1,...,x, be the free variables of Qineq and y1, ...,y its quantified variables.
Let #z denote the number of inequalities mentioning variable z (free or quantified). Assume
w.l.o.g. that Qineq is of the form

H(zq,...,2n) < Y1, Ym- /\ /\ (s < i) A /\ /\ (yp < db).
1<i<n j<#wz; 1<p<m q<#y;
Let db be a K-database over o. It is straightforward to verify that ((a1,...,an),k) €
Answer(Qineq, db) if, and only if,
e For every 1 <1 < n we have that a; < ¢; where ¢; 1= min; <<y, db(cﬁ-);
e k#0; and
e k=10..00)0..001060...00)=10...01T
N———

#y1 times #Ym times m times
In particular, the annotation k is the same for each output tuple. Because m depends only
on the query, we may compute k in constant time. Furthermore, we may compute the
numbers ¢; € N in O(]| db||) time. Computing ¢; and k constitutes the preprocessing step
of our enumeration algorithm. Having these numbers computed, it is then straightforward

6Note that = may repeat variables, so an atom like S(z,y, z) requires the first and third components of @
to be equal.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:45

to enumerate the tuples: indicate end of enumeration immediately if & = 0; otherwise
enumerate all tuples ((a1,...,a,), k) € Answer(Qineq, db) with constant delay by means of a
nested loop. []

Proposition 10.7. Let Q be a CQ over o with split(Q) = (Qrets Qineq)- If it holds that
Eval(Qyer, 0,K) € Enum(|| db||,1) and K is a semi-integral domain then Eval(Q,o,K) €
Enum(|| db]|,1).

Proof. Let db be the input database. First make db atomically consistent with), which
takes time O(|| db||). Let db' be the resulting database. Note that, by Claim 10.4, we have
Vals(Q, db) = Vals(Q, db'). Because || db' ||= O(]| db]|) it hence suffices to show that we may
enumerate Vals(Q, db') with constant delay after linear time preprocessing.

Thereto, we reason as follows. Because Eval(Qyel, 0,) € Enum(]| db ||,1) we may
compute a data structure in O(|| db||) time that allows us to enumerate Vals(Qye, db’') with
constant delay. Furthermore, by Lemma 10.6 we may compute in O(]| db'||) time another
data structure that allows us to enumerate Vals(Qineq, db') with constant delay. Computing
both data structures constitutes our preprocessing step. By Claim 10.5 we can then use
both data structures to enumerate Vals(Q, db’) with constant delay as follows:

e For cach (v, k1) € Vals(Qya, db%))

rel

— For each (12, k2) € Vals(Qineq, db), output (v1 U, ki © k).
Note that k1 ® ko # 0 as required since k1 # 0, ko # 0 and K is a semi-integral domain. []

We can finally prove Theorem 10.1.

Proof of Theorem 10.1. If Q = (Qrel, Qineq) is free-connex then by Proposition 10.3 we have
that Qe is free-connex. By Proposition 10.2 and because K is a semi-integral domain,
Eval(Qyel, 0,) € Enum(|| db||,1). And finally due to Proposition 10.7, the latter implies
Eval(Q,o,K) € Enum(|| db||,1).

Now we prove the second part of the result, i.e., achieve the same processing complexity
for the matrix evaluation problem Eval(Q, S, K). Fix a matrix-to-relational schema encoding
Rel on §(Q) such that the head atom of @ is binary. The former requirement arises purely
due to Answer(Q,Z) being defined as {(7, 7, [Q](Z)(H); ;) | [QI(Z)(H);; # 0,i < Z(a),j <
Z(5)} where Q =H := e and H: (o, §).

By Corollary 6.2 there exists a free-connex CQ @ over vocabulary o(Q) = Rel(S(Q))
that simulates Q under Rel. As such, we may reduce Eval(Q,S,K) to Eval(Q,o,K):
given a matrix instance Z over S, compute Rel(Z) and call the enumeration algorithm for
Eval(Q,o,K). By definition of simulation, the set Answer(Q, Rel(Z)) is exactly the same as
Answer(Q,Z). Hence, because Eval(Q, o,) € Enum(|| db||, 1) and because || Rel(Z) ||= O(||
Z||) it follows that Eval(Q,S,K) € Enum(||Z]|,1).]

10.2. Lower bounds for free-connex queries. Next, we show how to extend the lower
bounds of [BDGO07] and [BGS20] to our setting. As in those works, our lower bounds are
for CQ without self-joins. Further, we need some additional restrictions for inequalities.
Recall that an inequality = < ¢ in Q) is covered, if there exists a relational atom in () that
mentions z. We say that Q is constant-disjoint if (i) for all covered inequalities z < ¢
we have ¢ # 1, and (ii) for all pairs (x < ¢,y < d) in Q of covered inequality = < ¢ and
non-covered inequality y < d if ¢ = d then y & free(Q). In other words, if a constant symbol

1:46 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

other than 1 occurs in both a covered and non-covered inequality in @, then it occurs with
a bound variable in the non-covered inequality.

A semiring K = (K, ®,®,0,1) is zero-sum free [HW96, HW98] if for all a,b € K it holds
that a® b = 0 implies a = b = 0. The subsemiring of K generated by 0 and 1 is the semiring
K'=(K',®,®,0,1) where K’ is the smallest set closed that (i) contains 0 and 1 and (ii) is
closed under @ and ©.

We will extend the lower bound from [BDG07, BGS20] as follows.

Theorem 10.8. Let Q be a CQ over o without self-joins and constant-disjoint. Let K be a
semiring such that the subsemiring generated by Ok and Tx is zero-sum free. If Eval(Q, o, K)
can be evaluated with linear-time preprocessing and constant-delay, then Q is free-connex,
unless either the Sparse Boolean Matrix Multiplication, the Triangle Detection, or the
(k, k + 1)-Hyperclique conjecture is false.

It is important to note that most semirings used in practice, like B, N, and R, are such
that the subsemiring generated by Ox and Ti is zero-sum free. In contrast, lower bounds
in [ECK24] require the semiring to be idempotent, meaning that a ® a = a for all a € K.

To see why the constant-disjointness condition is necessary, consider the CQ:

Q:H(x,z) <+ Jy.R(z,y) NS(y,z) Ny < 1.

This query violates condition (i) of constant-disjointness, and is not free-connex. Nevertheless,
its evaluation is in Enum(|| db||,1): because y can take only a single value, we can evaluate Q)
by doing preprocessing and enumeration for Q": H(x,y, z) < R(z,y)AS(y,2) Ay < 1 instead,
which is free-connex, hence in Enum(|| db ||, 1). Whenever a tuple (z,y,2) is enumerated
for Q' we yield the tuple (z,2) for the enumeration of @. This is also constant-delay and
without duplicates due to the inequality y < 1.

A similar argument holds for condition (ii) of constant-disjointness. Consider

P: H(z,z,u) < Jy.R(x,y) NS(y,z) Ny <cAhu<cg,

which violates condition (ii) of constant-disjointess. Again, this query is not free-connex
but its evaluation is in Enum(|| db||,1). To see why, consider the query P’: H(x,y,z) +
R(z,y) N S(y,z) ANy < ¢, which is free-connex and therefore in Enum(|| db||,1). To evaluate
P we simply do all the (linear-time) preprocessing for P’ and use P’ enumeration procedure
to enumerate P with constant delay. This works as follows. During the enumeration of P
maintain a lookup table L mapping (z, z) tuples to the smallest natural number u such that
all tuples (z, z,u) that have already been output for P satisfy u < L(x,z). If L(z,2z) =0
then no entry occurs in the lookup table. To enumerate P we invoke P’ enumeration
procedure. When a tuple (z,y, z) is enumerated by P’, we output (z, z, L(x, z) + 1) for the
enumeration of P. Additionally, we update L(x,z) := L(x,2) + 1. Once P”’s enumeration
is exhausted, we iterate over the entries of the lookup table, and for each such entry (z, 2)
output all remaining tuples (z, z,u) with L(z, z) < «’ < ¢. This last step is not necessarily
constant-delay (there may be an unbounded number of entries with L(zx, z) = ¢, yielding
no output), but this can be fixed by removing (z, z) from L during the enumeration of P’
whenever L(z,z) is updated to become ¢. The constraint that y < ¢ A u < ¢ ensures that
the enumeration is still correct.

Theorem 10.8 allows to also derive lower bounds for conj-MATLANG. Unfortunately,
given the asymmetry between the relational and matrix settings, the lower bounds do not
immediately transfer from the relational to the matrix setting. Specifically, we need a
syntactical restriction for conj-MATLANG that implies the constant-disjointedness restriction

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:47

in the translation of Theorem 5.1. In order to achieve this, the prenex normal form of
conj-MATLANG expressions (defined in Section 4) proves useful. Let e = ¥v. 81 x --- X
s, X X-y! be a conj-MATLANG sentence in prenex normal form. A vector variable v € ¥ is
covered in e if (i) there exists a scalar subexpression s; of the form vl A -uorul-A.v;
or (ii) if there exists scalar subexpression s; doing a vector multiplication v’ u or u”'v with
u covered in e. (Note that the latter notion is recursive.) The sentence e is constant-disjoint
if for every pair v,w € ¥V of quantified vector variables of the same type, v: (7,1) and
w: (7,1), if v is covered and w is not then w ¢ {x,y}. A conj-MATLANG sentence e: (a, 3)
is constant-disjoint if its conversion into prenex normal form is constant-disjoint.

The former is straightforwardly extended to a conj-MATLANG query Q. The following
lower bound is now attainable.

Corollary 10.9. Let Q be a conj-MATLANG query over S such that Q does not repeat
matrixz symbols and Q is constant-disjoint. Let IC be a semiring such that the subsemiring
generated by O and Tx is zero-sum free. If Eval(Q,S,K) can be evaluated with linear-time
preprocessing and constant-delay, then Q is equivalent to a fc-MATLANG query, unless either
the Sparse Boolean Matrixz Multiplication, the Triangle Detection, or the (k, k+1)-Hyperclique
conjecture is false.

The remainder of this section is devoted to proving Theorem 10.8 and Corollary 10.9.

Lower bound for free-connex CQs. We begin by proving Theorem 10.8, which is done in
two steps. First we show that constant-disjointness is a sufficient condition for us to be able
to reduce the evaluation problem of CQs% over B-databases to the evaluation problem of CQs
over B-databases. Second, we show that the evaluation problem of CQs over B-databases
can be reduced to the evaluation problem of CQs over K-databases, assuming that the
subsemiring generated by Ox and Ty is zero-sum free.

Proposition 10.10. Let Q be a constant-disjoint CQ over o with split(Q) = (Qrel, Qineq)-
If Q is constant-disjoint and Eval(Q,o,B) € Enum(||db||,1) then Eval(Qpe, o, B) € Enum(]|
|} 1).

Proof. We reduce Eval(Qyel, 0rel, B) to Eval(Q,o,B). Denote the free variables of @, Qe
and Qineq by T, T1 and Ta, respectively. Note that Z; and Zy are disjoint and var(T) =
var(T1) U var(Tz). Consider an arbitrary database db.) over o, input to Eval(Qye, o, B).
Construct the database db, input to Eval(Q@,o,B) as follows.

Recall that all data values occurring in tuples in db,e are non-zero natural numbers.
Scan db.. and compute the largest natural number M occurring in db..;. Then construct
the database db by setting

e R%® = Rl for each relation symbol R € o;

e db(c) := M for all constant symbols ¢ € o that occur in a covered inequality in (). Note
that ¢ # 1 because @ is constant-disjoint, and hence we are allowed to map ¢ +— M;

e db(c) :=1 for all other constant symbols ¢ € o.

The computation of db is clearly in O(|| dbye||) and || db||=|| dbel |-

Note that, because Q¢ consists of relational atoms only, its evaluation is hence indepen-
dent of the values assigned to the constant symbols by db,e]. Therefore, Answer(Qyel, dbel) =
Answer(Qye, db). To obtain the proposition, it hence suffices to show that Answer(Qyel, db)
may be enumerated with constant delay after further linear time preprocessing. We do
so by showing that Vals(Qie, db,) may be enumerated with constant delay after linear

1:48 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

time preprocessing as follows. Observe that db is atomically consistent with). This is by
construction since for every covered inequality z < ¢ we have db(c) equal to M, with M
larger than any value in db. Hence, by Claim 10.5 we have

Vals(Q, db) = {(r1 Uwa,t) | (v1,t) € Vals(Qrel, db), (12, t) € Vals(Qineq, db) }.

As such, Vals(Qyel, db) = {(v|z,,t) | (v,t) € Vals(Q, db)} and we may hence enumerate
Vals(Qrel, db) by enumerating the elements of Vals(Q, db) and for each such element output
(v|z,,t). Note that the resulting enumeration is necessarily duplicate-free as required: by
definition of db the set Vals(Qineq, db) consists of a single element: the pair (Z2 — 1,t). To
see why this is neccesarily the case observe that, by definition, all free variables y € Ty of
Qineq must occur in an non-covered inequality y < c. Because (@) is constant-disjoint this
constant c¢ is such that there is no covered inequality z < d in @ with ¢ = d. (If there were, y
would be non-free.) This means that we have set ¢ = 1. Therefore, for every free variable
y of Qineq, We neccesarily have that v(y) = 1 in a resulting valuation. As such, all valuations
in Vals(@, db) are constant on the variables in To and duplicates can hence not occur when
projecting on T1. The proposition then follows because we may enumerate Vals(Q, db) with
O(1) delay after linear time preprocessing by assumption.]

Proposition 10.11. Let Q be a CQ over o and K a semiring such that the subsemiring
generated by Ok and i is non-trivial and zero-sum free. If Eval(Q,o,K) € Enum(|| db|[,1)
then Eval(Q,o,B) € Enum(|| db||,1).

Proof. Let K = (K, ®,®,0x, 1) be a a semiring such that the subsemiring generated by
Ok and Tk is non-trivial and zero-sum free. We reduce Eval(Q,o,B) to Eval(Q,o,K) as
follows. Let dbg be a B-database over o, input to Eval(Q,o,B). Construct the K-database
dbi, input to Eval(Q,o,K) by setting

e for every relation symbol R € ¢

TR gy = d— {“K if R (d) =t
.

Ok otherwise.

e dbi(c) := dbp(c) for every constant symbol c.

Note that this takes time O(|| dbg]|)-

By assumption, Eval(Q,o,K) € Enum(|| db ||,1) thus the set Vals(Q, dbx) can be
enumerated with constant delay after a linear time preprocessing. Now, it suffices to do the
following: for every outputed tuple (v, [Q |4, (v)) we output (v, t). This forms a constant
delay enumeration for the set Vals(Q, dbg), since we claim that for every valuation v we
have (v,t) € Vals(Q, dbg) if and only if (v, k) € Vals(Q, dbx) for some Ox # k € K. We
next argue why this claim holds.

Let ¢ = Fg.R1(Z1) N ARy(Zm) ANwi < e A+ - AWy, < ¢, be the body of Q(T) and
assume v: T.

First, if (v, [Qllap (v)) € Vals(Q, dbx) then in particular [Q |4, (v) # Ox. Because

[Qab (v) = &P Tollavee (1)
pe var(p) s.t.plz=v

= P RPWE) OO RPN u,)E
w: var(p) s.t.plz=v
Twi < 1 llabe (wy) @ - © Twm < cmlldbe (1l)

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:49

we know in particular that there exists some g such that

R (ulz) @ © RO<(ulz,) @ Twi < exllape (thwy) © -+ © wm < el b () # Ok

This is because in any semiring, a sum of terms can be non-0 only if one term is non-

0. Moreover, a product is non-0 only if all of its factors are non-0. By construction,

Ridb’c(ubz.) #0foralli=1,...,n and Jw; < ¢jllap(1t|w) # Ok for all j =1,...,m only if

R;jbm(ubi) =t and [Jwj < ¢;] b (1t|w) = t for all ¢ and j. Thus (v, t) € Vals(Q, dbg).
Second, if (v, t) € Vals(Q, dbg) then in particular [[Q] g, (v) = t. Because

1Q avs (v) = V Ry (ulz,) A - AR (ulz,)

w: var(p) s.t.ulz=v
Awr < et apg (lwy) A= A Twm < em]l dbs (tlw,,)

this implies there is some valuation g such that

Ry (ulz) A= AR (ulz,) A Twr < eallaog (ho) A+ A Twin < emllaos () = t.
In particular, R?bm(,ubi) =t foralli = 1,...,n and [w; < ¢;llaps (pw,;) = t for j =
1,...,m. Then, by construction of dbx we have be’c(mgi) =1l foralli=1,...,n and
Tw; < ¢jllape (pw;) = Tk for j =1,...,m. Hence,

R{™ (ulz) © - @ Ry (ulz,) © Twr < e1llane (hn) © -+ © wm < llavie (1l) = -

Thus, since the subsemiring generated by Ox and Tx is non-trivial and zero-sum free,

[Ql by (v) = &P Teollabe (1) # Ok O]

w: var(p) s.t.plz=v

Recall that by convention we only consider commutative and non-trivial semirings
throughout the paper. As such when we consider an arbitrary semiring X, then we assume
that this semiring is commutative and non-trivial. For such semirings, it is straightforward
to check that the sub-semiring generated by 0 and 1 is also commutative and non-trivial.
(We note that we have only explicitly add the “non-trivial” requirement in the previous
proposition because the proof uses this property.) Given this discussion, we can now prove
Theorem 10.8.

Proof of Theorem 10.8. Let split(Q) = (Qrel, Qineq) and assume Eval(Q,o,K) € Enun(||
dbl,1). Because the subsemiring of K generated by Ox and 1 is non-trivial and zero-sum free,
Eval(Q,o,B) € Enum(|| db||, 1) holds by Proposition 10.11. This implies Eval(Qyel, 0, B) €
Enum(|| db ||,1), due to Proposition 10.10. Theorem 9.1 yields that Qe is free-connex,
unless either the Sparse Boolean Matrix Multiplication, the Triangle Detection, or the
(k, k 4+ 1)-Hyperclique conjecture is false. Finally, since Q. is free-connex if and only if @ is
free-connex (Proposition 10.3), this immediately implies that @ is free-connex, unless one of
these hypothesis is false. []

1:50 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Lower bound for fc-MATLANG queries. We now proceed to prove Corollary 10.9. A
necessary ingredient to prove the lower bound is to have enumeration-suited matrix-to-
relational encodings. Let Q := H = e be a conj-MATLANG query. A matrix-to-relational
encoding Rel is enumeration-suited for Q if

e Rel(A) is a nullary relation if A is of scalar type and a unary relation if A is of vector
type (but not scalar), for every A € S(Q) \ H.
e Rel(H) is a binary relation.

One can easily see that for every Q there exists some matrix-to-relational encoding Rel
that is enumeration-suited for Q (i.e., choose the natural encoding that maps scalars to
nullary relations, vectors to unary relations, and matrices to binary relations). Therefore, to
prove Corollary 10.9 we may always choose a Rel that is enumeration-suited, and apply the
following proposition to move from the matrix setting to the relational setting.

Proposition 10.12. Let Q = H = e be a conj]-MATLANG query and let Rel be an
enumeration-suited matriz-to-relational encoding for Q. If Q is constant-disjoint then
there exists a constant-disjoint CQ that simulates Q w.r.t. Rel.

Proof. Assume that e, when converted into prenex normal form, is of the form e =
YX, ¥, Vi,..., V. 8] X=X 8, XX-y! and that this prenex normal form is constant-disjoint.
Let v=x,y,v1,...,Vg.

The proof proceeds in two steps. (i) We first show that because Relis enumeration-suited,
the CQ Q with equality atoms simulating Q that is obtained through the translation given in
the proof Proposition 4.2, is constant-disjoint. (ii) Then we show that eliminating equality
atoms from Q yields a CQ @’ that is still constant disjoint.

Formally for point (i) to make sense, we say that a CQ with equality atoms is constant-
disjoint if satisfies the same conditions as for normal CQs, but with the modification that
now an inequality atom z < c¢ is covered if variable z is covered: it appears in a relational
atom or it appears in an equality atom z = w and w is covered. Note that this definition is
recursive. For example, in the formula Ju, v, w.A(z,u) Au = v A v =w we have that u, v, w
are covered.

We first prove (i). The @ CQ simulating Q obtained by Proposition 4.2 is of the form
Q: H(z,y) < Jv1,...,vp.a1 N\ Nap Ax < aAy < [where each a; is determined as follows,
for 1 <4 < n. Let non-bold symbol A denote Rel(A), and let non-bold w be the FO variable
selected respectively for w € {x,y,vi,...,vi}.

o Ifs;=vl.A.w then:

— a; = A(v,w) if A is binary. Note that since Rel is enumeration suited, this case can
only happen if A: (a,) with a # 1 and § # 1. Due to well-typedness, v: («, 1) and
w: (8,1).

—a; = A(v) Aw < 1if Ais unary and A: (a,1). Note that since Rel is enumeration
suited, necessarily « # 1. For later use we remark that since s; is well-typed, v: (a, 1)
and w: (1,1) in this case.

—a; = v < 1A A(w) if A is unary and A: (1,a). Since Rel is enumeration-suited,
necessarily @ # 1. For later use we remark that since s; is well-typed, v: (1,1) and
w: (o, 1).

—a; =v<1Aw<1AA() if Aisnullary and A: (1,1). Note that necessarily v: (1,1)
and w: (1,1) in this case.

o Ifs; = vl - w with v: (y,1) and w: (v, 1) then:

—a; =v<~vyifv=w.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:51

—ag,=v<yAw<yAv=wif v #w.

Recall that a CQ @ is constant-disjoint if (1) for all covered inequalities z < ¢ we have
¢ # 1, and (2) for all pairs (v < ¢,y < d) in @ of covered inequality w < ¢ and non-covered
inequality w < d if ¢ = d then w ¢ free(Q).

We start by showing that in @ condition (1) always holds. Consider an inequality
z1 < 1 in . This necessarily appears in some subformula a;, with s;; = VZ A - wy,
and z; € {v;,,w;, }. By inspection of the construction above we observe that necessarily
z1: (1,1). We further observe that z; does not appear in a relational atom in the subformula
a;,. Hence, if 2 is covered in @), it must be because there are other subformulas a;,, ..., a;,
that contain equality atoms z; 1 = z; for 2 < j </, as well as a subformula a;,,, where z;
occurs in a relational atom. The corresponding subexpressions s;;, of e with 1 < j < £ are
i
VZT_H -B-wyyq with z;, € {v;,, w;,}. Because each si; is well-typed and all v;,, w;, are vector
variables, it follows that each z;, has type (1,1) for 1 < j < ¢. This yields a contradiction:
it is readily verified that when the construction generates a relational atom containing a
variable z;, that variable cannot have type (1,1).

We prove that if Q is constant-disjoint, then property (2) holds in Q). We also do this
by contradiction. Suppose it does not hold, i.e., suppose there is a pair (v < c,w < ¢)
in @ of covered inequality v < ¢ and non-covered inequality w < ¢ and assume that w is
free in). Then w € {z,y} and since v < ¢ is covered it is the case that there is some
a; € {A(v,2),A(z,v),Alv) Nz <1,z < 1A A(v)}. Because Rel is enumeration-suited, we
have that s; € {v7 - A-u,u” - A-v} with v: (,1) with 7 # 1. Hence we have a pair (v, w)
where v: (7,1) is covered, w: (y,1) is not covered and w € {x,y}, which means that Q is
not constant-disjoint, a contradiction.

For step (ii), let ' be the equivalent CQ after unification and removal of equality atoms
on Q. First note that since Q is well-typed w.r.t. Rel ! also Q' is well-typed w.r.t Rel '
since we only unify variables, and since all unified variables must have had the same type
in @ by definition of the FO' type system. Further observe that because our definition
of constant-disjointness in @ takes equality into account, and because Q' is obtained by
unifying variables that must be equal, also ' must necessarily be constant-disjoint. L]

necessarily of the form v; - w;, with z;, € {v; j,wij} . Moreover, sy must be of the form

We are ready to prove Corollary 10.9.

Proof of Corollary 10.9. Let Rel be a matrix-to-relational encoding scheme over S that is
enumeration-suited for Q. Let Mat = Rel~! be its inverse relational-to-matrix encoding.

We apply Proposition 10.12 on Q to obtain binary CQ @ over o = Rel(S) that simulates
Q w.r.t. Rel. We know that () is binary, self-join free and constant-disjoint. We next modify
Q into a query @’ over o such that the following properties hold:

(P1) @’ continues to simulate Q w.r.t. Rel;
(P2) @' continues to be constant-disjoint;
(P3) Eval(Q’,0,K) € Enum(]| db||, 1).

This suffices to prove the proposition. Indeed, by Theorem 10.8 @)’ is necessarily free-connex
unless unless either the Sparse Boolean Matrix Multiplication, the Triangle Detection, or
the (k,k + 1)-Hyperclique conjecture is false. If @)’ is free-connex, then by Corollary 6.2
there exists a fc-MATLANG query Q’ that simulates Q' w.r.t Mat = Rel"'. Consequently,
Q and Q' are then equivalent.

1:52 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

Intuitively, the modification of @ into @’ is necessary to obtain property (P3): the fact
that Eval(Q,S,K) € Enum(||Z ||, 1) only implies that we may evaluate ¢ with linear time
preprocessing and constant delay on databases that encode some matrix instance. To apply
Theorem 10.8, by contrast we need to show that we can evaluate () on arbitrary databases.
The crux will be that we obtain @’ by adding extra inequalities to), such that evaluating
@' on an arbitrary database yields the same result as evaluating it (and @, Q) on some
matrix instance.

The definition of @' is as follows. Assume @ is of the form Q : H(y) < 3z.¢) with ¢
quantifier free. For every relational atom o = R(T) of ¢ we define a formula ¢, as follows.
This formula is a conjunction of inequalities:

o If @ = R(z1,22) with R binary and Mat(R): (3,7) then o := 21 < Rel(5) A z2 < Rel(7).
Note that, by definition of Rel, Rel(«) # 1 # Rel(3).

o If & = R(x1) with R unary then by definition of Rel either Mat(R): (5,1) or Mat(R): (1,0)
for some size symbol 5 # 1. Then take ¢, := 1 < Rel(). Note that by definition of
matrix-to-relational encoding schemes, Rel(3) # 1 since 8 # 1.

e If & = R() with R nullary then by definition of Rel we have Mat(R): (1,1) and we take
¢ the empty formula (which is equivalent to true).

Then we define Q' to be the CQ
Q:H®@) + Jz(vn N\ ¢a)

a rel. atom in

Note that @' continues to simulate Q over Rel (property P1). Indeed, for any matrix
instance Z over S we know that Answer(Q,Z) = Answer(Q, Rel(Z)). By definition, Rel(Z) is
consistent with Rel™! = Mat, and therefore the tuples in Rel(Z) vacuously satisfy all the
extra inequalities that we have added to @ to obtain @Q'. As such, Answer(Q, Rel(Z)) =
Answer(Q’, Rel(Z)). Thus, Q' continues to simulate Q.

Also note that @' is constant-disjoint (property P2). Indeed:

e We have only added covered inequalities to) to obtain @Q’. Any such covered inequality
that we have added was of the form x < ¢ with ¢ # 1. Therefore, since) does not have
covered inequalities of the form x < 1, neither does @Q’.

e We did not add any non-covered inequalities to @ to obtain Q’. Moreover,)’ has the
same free variables as Q. Therefore, all non-covered inequalities y < ¢ in @’ continue to
be such that y is not free in @', unless ¢ = 1. Hence for all pairs (z < ¢,y < d) of covered
inequality z < ¢ and non-covered inequality y < d with d # 1 in Q" we have that y is not
free in @’ as required for constant-disjointness.

Finally, we show that Eval(Q’,o,K) € Enum(|| db||,1) (property P3), as claimed. We do
this by reducing Eval(Q’, o, K) to Eval(Q, S, K) as follows. Let db be a K-database over o,
input to Eval(Q’,o,K). First, create the database db’ that is equal to db except that for
every relation symbol R € ¢ that is not mentioned in @) we set R to empty. This can
clearly be done in linear time. Note that, if R is not mentioned in @, then the answer of Q
on db is independent of the contents of R%. Therefore, Answer(Q’, db) = Answer(Q’, db).
Subsequently, compute db’, the atomic reduction of db’ w.r.t. Q. Computing db” can be done
in time O(|| dt'||) = O(|| db||). By Claim 10.4 we have Answer(Q’, db) = Answer(Q’, dV') =
Answer(Q’, db"). Now verify the following claim: db” is consistent w.r.t. Mat = Rel™!.
This is because we have added, for each matrix symbol A with Rel(A) occurring in @,
the inequalities that are required by consistency as atomic inequalities to @’. (The matrix

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:53

symbols A with Rel(A) not occurring in @ are empty in db’ and hence vacuously consistent
w.r.t. Mat.) Since db” is consistent with Mat we have that Mat(db") is a matrix instance over
S and hence a valid input to Q. Then, because @' simulates Q, we have Answer(Q’, db) =
Answer(Q', db") = Answer(Q, Mat(db")). The last equality holds because the head of Q' is
a binary relation since Rel is enumeration-suited for Q.

Because Eval(Q, S, K) is in Enum(|| Z||, 1) it hence follows that with additional preprocess-
ing of time O(|| Mat(db")||) = O(|| db||) we may enumerate Answer(Q', db”) = Answer(Q’, db)
with constant delay, as desired. L]

11. EFFICIENT EVALUATION OF Q-HIERARHICAL QUERIES

This last section derives our algorithmic results for ¢h-CQ and gh-MATLANG. gh-CQ is the
subclass of CQ that allows efficient evaluation in a dynamic setting, where insertion and
deletion of tuples are admitted. Then, similar to the previous section, we aim to lift these
algorithmic results to gh-MATLANG.

We start by introducing the dynamic setting for query evaluation, and then study the
upper and lower bounds.

11.1. The dynamic evaluation setting. We move now to the dynamic query evaluation
both in the relational and matrix scenarios. Specifically, we consider the following set of
updates. Recall that K = (K,®,®,0,1) is a semiring and o a vocabulary.

e A single-tuple insertion (over K and o) is an operation u = insert(R,d, k) with R € o, d
a tuple of arity ar(R), and k € K. When applied to a database db it induces the database
db + u that is identical to db, but R¥%*+%(d) = R¥(d) ® k.

e A single-tuple deletion (over K and o) is an expression u = delete(R,d) with R € o and
d a tuple of arity ar(R). When applied to a database db it induces the database db+ u
that is identical to db, but R%*+*(d) = 0.

Notice that if every element in K has an additive inverse (i.e., K is a ring), one can simulate
a deletion with an insertion. However, if this is not the case (e.g., B or N), then a single-tuple
deletion is a necessary operation.

As the reader may have noticed, updates allow to modify the contents of relations, but
not of constant symbols. This is because an update to a constant translates as an update to
the dimension value of a matrix within the equivalent linear algebra setting. And updates
in the linear algebra setting affect only entry values, not dimensions. An interesting line of
future work is to consider dimension updates.

Dynamic enumeration problems. A dynamic enumeration problem is an enumeration
problem P together with a set U of updates on P’s inputs: a set of operations such that
applying an update u € U to an input I of P yields a new input to P, denoted I + u. An
algorithm A solves a dynamic enumeration problem D = (P,U) if it solves the enumeration
problem P (computing, for each input I a data structure in a preprocessing phase from
which P(I) may be enumerated) and, moreover, it is possible, for every input I and update
u to update the data structure that A computed on I during the update phase to a data
structure for I +u. By definition, the latter updated data structure hence allows to enumerate
P(I + u). The preprocessing time and enumeration delay of A are defined as for normal

1:54 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

(static) enumeration problems. The update time of A is an upper bound on the time needed
to update the data structure for I into one for I + u.

In this document, we will consider two versions of the dynamic query evaluation problem
for conjunctive query @) over ¢ under semiring K:

e The unbounded version, DynEval(Q,o,K) which is the dynamic enumeration problem
(Eval(Q,o,K),U) with U the set of all single-tuple insertions and deletions over K and o.

e The bounded version, denoted DynEval(Q, o, K, M), where M € N> is a constant positive
natural number, and which is defined as follows.

Define Eval(Q,o, K, M) to be the bounded version of the static query evaluation
problem: this is the collection of all pairs (I,0) with I = db with db a K-database
over o such that any data value d occurring in db is at most M, i.e., d < M', and
O = Answer(Q, db). Hence, Eval(Q,o,K, M) is the evaluation problem of @ on K-
databases whose values in the active domain are bounded by M.

Then the bounded dynamic evaluation problem DynEval(Q, o, K, M) is the dynamic
enumeration problem (Eval(Q,o,/C, M),U) with U the set of all single-tuple updates
insert(R,d, k) or delete(R,d) where every value d € d satisfies d < M.

Clearly, one can check that DynEval(Q,o,K) = (J3;_; DynEval(Q,o, K, M).

In an analogous manner, in the matrix setting for a query Q over § we define the dynamic
query evaluation problem DynEval(Q, S, K) and DynEval(Q,S, K, M) of Eval(Q, S, K) and
Eval(Q,S, K, M), respectively. The allowed updates in these problems are of the form
insert(A,i,j, k), which sets A; j := A; ; ® k, and delete(A,1,j) which sets A; ; :=0.

Dynamic complexity classes. For functions f,g, and A from the natural numbers
to the positive reals we define DynEnum(f, g,h) to be the class of dynamic enumeration
problems (P,U) for which there exists an enumeration algorithm A such that for ev-
ery input [it holds that the preprocessing time is O (f(||I]|)), the delay is O (g(||I]])),
where || I || denotes the size of I. Moreover, processing update u on current input I
takes time O((h(||I]|,]|u]])). Note that, since the inputs in a dynamic evaluation prob-
lem DynEval(Q®,o,K) or DynEval(Q,o, K, M) consists only of the database and not the
query, we hence measure complexity in data complexity as is standard in the litera-
ture [BDG07,IUV 120, BGS20, BKS17]. In what follows we set the size ||u|| of a single-tuple
update u to 1: each update is of constant size, given the fixed vocabulary o.

Note that, since DynEval(Q,o,K) = (J3;_; DynEval(Q, o, K, M) if DynEval(Q,0,K) €
DynEnum(|| db ||,1,1) then also DynEval(Q,o,/C, M) € DynEnum(|| db ||,1,1), for every
M. Conversely, if DynEval(Q,o,/XC, M) ¢ DynEnum(|| db ||,1,1) for some M, then also
DynEval(Q,o,K) & DynEnum(|| db||,1,1). Specifically, we will use the bounded evaluation
problem DynEval(Q, o, C, M) to obtain our lower bounds in the relational setting. Anal-
ogously, we focus on the bounded evaluation problem DynEval(Q,S, K, M) to obtain our
lower bounds in the matrix setting.

Complexity hypothesis and known results. Like the authors of [HKNS15, BKS17]| we
use the following hypothesis concerning the hardness of dynamic problems as hypothesis for
obtaining conditional lower bounds:

e The Online Boolean Matriz-Vector Multiplication (OMuv) problem: given an n x n boolean
matrix A, compute A -wvq,..., A v, sequentally for n x 1 vectors vy, ...,v,. It is required

"Recall that the set of data values that may appear in database tuples equals N>g.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:55

that the result of A - v;_1 must already be computed in order to access v;. The OMv
conjecture states that this problem cannot be solved in time O(n3~¢) for any € > 0.

Theorem 11.1 [BKS17]. Let Q be a CQ% over o.

o If Q is g-hierarchical, then DynEval(Q,o,B) € DynEnum(|| db||,1,1).

e If Q is a query without self joins and DynEval(Q, o, B, M) € DynEnum(|| db||,1,1) for every
M € Ny, then Q is g-hierarchical unless the OMuv conjecture is false.

11.2. Upper bounds for g-hierarchical queries. Similar as for free-connex queries, we
can provide dynamic evaluation algorithms for gh-CQ and qh-MATLANG queries. However,
for this dynamic setting, we require some additional algorithmic assumptions over the
semiring. Let K = (K, ®,®,0,1) be a semiring and M be the set of all multisets of K. For
any k € K and m € M, define ins(k,m) and del(k,m) to be the multisets resulting from
inserting or deleting k from m, respectively. Then we say that K is sum-maintainable if
there exists a data structure D to represent multisets of K such that the empty set () can be
built in constant time, and if D represents m € M then: (1) the value @,,, k can always
be computed from D in constant time; (2) a data structure that represents ins(k, m) can be
obtained from D in constant time; and (3) a data structure that represents del(k, m) can
be obtained from D in constant time. One can easily notice that if each element of K has
an additive inverse (i.e., KC is a ring), then K is sum-maintainable, like R. Other examples of
sum-maintainable semirings (without additive inverses) are B and N.
The main result of this subsection is the following.

Theorem 11.2. Let K be a sum-maintainable semi-integral domain. For every q-hierarchical
CQ Q, DynEval(Q,o,K) can be evaluated dynamically with constant-time update and
constant-delay. In particular, DynEval(Q,S,K) can also be evaluated dynamically with
constant-time update and constant-delay for every gh-MATLANG Q over S.

We now prove Theorem 11.2 in two steps. We first transfer the upper bound of CQ#
queries over B-databases to CQZ queries over KC-databases. We then generalize the latter to
CQ queries over K-databases.

Proposition 11.3. Let Q be a g-hierarchical CQ% over o and K a sum-maintainable
semi-integral domain. Then DynEval(Q,o,K) € DynEnum(|| db|,1,1).

Proof. Note that since @ is g-hierarchical it has a guarded query plan (7, N) by Propo-
sition 7.2. This implies in particular that Q) is also free-connex. By Proposition 10.2 we
hence know that Eval(Q,o,K) € Enum(|| db||,1). As such, there is an algorithm A that,
given db builds a data structure in linear time from which Answer(Q), db) can be enumerated
with constant delay. We will show that for any update u to db this data structure can also
be updated in O(1) into a data structure for Answer(Q), db + u). Because, in the proof of
Proposition 10.2 the algorithm (and data structure) depends on the shape of @ and (7, N)
we make a corresponding case analysis here.

(1) If @ is a full-join, i.e., no variable is quantified, we reduce to the Boolean case as follows.
Assume that Q@ = H(Z) «+ R1(Z1) A+ A Ry (Zn). In O(|| db||) time construct Bool(db),
the B-database obtained from db defined as:

RBool(db) cd e tif Rdb(a) 7& 0
f otherwise,

1:56

T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

for every R € 0. Furthermore, preprocess db by creating lookup tables such that for

every relation R and tuple @ of the correct arity we can retrieve the annotation R% (@)

in time O(|a]) time. Note that since o is fixed, |a| is constant. This retrieval is hence

O(1) in data complexity. It is well-known that such lookup tables can be created in

O(|l db||) time in the RAM model.

Finally, invoke the algorithm for DynEval(Q@,o,B) on Bool(db). By Theorem 11.1,
this algorithm has O(]| Bool(db) ||) = O(|| db||) preprocessing time, after which we
may enumerate Answer((),Bool(db)) with O(1) delay and maintain this property under
updates to Bool(db) in O(1) time. We have shown in Proposition 10.2 that using the
enumeration procedure for Answer((Q),Bool(db)) and the lookup tables, we may also
enumerate Answer((Q, db) with constant delay. We do not repeat this argument here.

Given a single-tuple update u we update the lookup tables and the data structure
maintained by DynEval(Q, o, B) as follows.

o If u = insert(R,d, k) then lookup d in the lookup table for R and retrieve its old
annotation ¢ (if the lookup table does not contain ¢, set £ = 0). There are two cases
to consider:

— If k4 ¢ = 0 then the tuple d is now deleted from R%*** and we similarly remove
it from Bool(db + u) by issuing the update v’ = delete(R,d) to Bool(db) (and
DynEval(Q,o,B)).

— If k4 ¢ # 0 then the tuple is certainly present in R%*t* inserted and similarly
make sure it is in Bool(db+ u) by issuing ' = insert(R,d,t) to Bool(db) (and
DynEval(@,o,B)). Note that if the tuple was already in Bool(db) then u' has
no-effect since we are working in the boolean semiring there.

o If u = delete(R,d) then delete d from the lookup table and issue the update u’ =
delete(R,d) to Bool(db) and DynEval(Q,o,B).

Note that in all cases, after issuing «’ we obtain Bool(db+u) as desired, so that after this

update using the enumeration procedure for Answer(Q,Bool(db+ u)) and the lookup

tables, we will enumerate Answer(Q, db+ u) with constant delay.

If the guarded query plan (7', N) is such that N consists of a single node N = {r}, then

by Lemma 7.3 we may assume without loss of generality that for every node n with two

children ¢1,co in T we have var(n) = var(c1) = var(c). Intuitively, the algorithm will
work as follows. We show that for any database db we may compute Answer(Q, db) in

O(]| db||) time. Because we can simply store this result, we may certainly enumerate

it with constant delay. Then, by also storing the subresults computed during the

computation of Answer(Q, db) we show that we can also maintain Answer(Q, db) and all
subresults in O(1) time under updates.

Formally the data structure used by DynEval(Q, o, K) will be the query result itself,
plus some extra lookup tables. In particular, given input database db we:

e compute, for every node n € T the Answer(p[T, n], db). We have shown in Proposi-
tion 10.2 that we may compute Answer(p[T,n], db) in linear time, for every node n.
We do not repeat the argument here. Since @) (and hence T') is fixed there are a
constant number of nodes in T'. So this step takes linear time overall.

e convene that we store Answer(p[T, nl, db) for every node n by creating a lookup table
such that for any tuple (@, k) € Answer(p[T, n], db) we can retrieve k in O(1) time given
a. It is well-known that the lookup tables can be made such that may we enumerate
the entries (@, k) of this lookup table with constant delay. It is well-known that such

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:57

lookup tables can be created in time linear in || Answer (@[T, n], db)||= O(|| db]|). So

also this step takes linear time.

Note that by definition Q = @[T, r|; therefore the root represents Answer(Q, db) as
desired, and can be used to enumerate the result with constant delay.

It remains to show that given an update u to db we can update Answer(p[T, n|db,)
into Answer(o[T,n|db+ u,) in O(1) time, for every node n. In order to be able to show
this, we store one auxiliary lookup table L,, for all nodes n that have a single child c.
This auxiliary table is defined as follows. By Lemma 5.8 if n has a single child ¢ then
o[T,n) = 3y.¢[T,] with § = var(c) \ var(n). The lookup table L,, stores, for each (d, k)
in Answer(p[T, n], db) a pointer to a data structure D5 that represents the multiset

{{k | (67 k) € Answer(@[ch C]> db)>a|var(7‘) = a}}

Because K is sum-maintainable, and because Answer(p[T;, c|, db) is linear in db, this

extra lookup table can be computed in linear time.®

We now verify that for every single-tuple update u to db and every node n we can

update Answer(p[T,n]db,) into Answer(p[T,n]db+ u,) in O(1) time. The proof is by

induction on the height of n in 7. (L.e., the length of longest path from n to a leaf.)

e When n is a leaf, it is an atom, say R(Z). Upon update u, if u is of the form
insert(R,a, k) or delete(R,a) then we update the lookup table that represents
Answer(p[T, n]db,) in the obvious way. Such updates take O(1) in the RAM model.
If u pertains to a relation other then R, we simply ignore it.

e When n is an interior node with a single child ¢ then by Lemma 5.8 we have
o[T,n] = Jg.¢[T,c] with ¥ = var(c) \ var(r). When we receive update u to db,
by inductive hypothesis this yields a bounded number of single-tuple updates u. to
A = Answer(p[T, c], db) which we may compute in O(1) time. We translate these
updates u. into updates u’ to apply to Answer(p[T,n], db):

— If u. = insert(a, k). Then apply u. to A and update the auxiliary lookup table L,,
by applying ins(k, D;) with d = @l,4(;). Furthermore, update Answer ([T, n], db)
by applying v’ = insert(d, k) to the lookup table representing it.

— If u. = delete(a). Before applying u. to A = Answer ([T,], db), look up the old
annotation k of @ in A. Then apply u. to A and update L, by applying del(k, D)
with d = @|yar(ry- If query(Dy) = 0, then u effectively causes d to be removed from
Answer(p|[T, n|, db). Hence, the update v’ to apply to (the lookup table representing)
Answer ([T, n], db) is u' = delete(d). Otherwise, query(D5) # 0 and the update
u' to apply is v’ = insert(d, k).

e Node n has two children ¢; and ¢2. By Lemma 5.9 we have @[T, n] = @[T, c1] A [T, ca).
Note that this denotes an intersection since var(n) = var(ci) = var(cz). When we
receive update u to db, by inductive hypothesis this yields a bounded number of
single-tuple updates to Ay = Answer(¢|[T, c1], db) and Ay = Answer(¢[T, ¢1], db) which
we may compute in O(1) time. We translate these updates to A; and As into updates
to Answer(p[T, n]db,) as follows. We only show the reasoning for updates to A;. The

SInitially, the lookup table is empty. Loop over the entries (@, k) of Answer ([T, c|, db) one by one. For
each such tuple, compute d = @ yar(r) and lookup din L. If it is present with data structure D then apply
ins(k, D), hence updating Dy. If it is not present, initialize Dy to empty; add k to it, and insert (d, D3) to
the lookup table.

1:58 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

reasoning for updates to As is similar. Let u; be update to A;. We translate this into

update v’ to apply to Answer(p[T, n], db) as follows:

—ifup = insert(ﬁ, k1) then use the lookup table on Ay to find the annotation ¢
of d in As. (If d does not appear in Ay then take £ = 0). If k; ® £ # 0 then
apply ' = insert(d, k1 ®) to Answer(p[T, n], db); otherwise there is no update v’
to apply.

— if u; = delete(d) then apply v/ = delete(d) to Answer(o[T,n], db).

(3) When @ is not full and N has more than one node we reduce to the previous two cases
because @[T, N] = [T1,n1] A -+ A p[T},] where F' = {nq,...,n;} is the frontier of
N, i.e, the nodes without children in N, and 17, ...,7; are the subtrees of T" rooted at
ni,...,n; respectively. Hence, we may enumerate Answer(p[T, N|, db) with constant
delay by first fully computing the full join ¢[T7,n1] A -+ A @[T}, n;] on these subresults.
By item (2) above, each A; := Answer(p[T}, n;], db) can be computed in linear time from
db. Furthermore, each Answer(¢|[T;,n;], db) can be maintained under updates in O(1)
time by item (2) above. By item (1) the result of the final full join can be enumerated
with constant delay after linear time processing on A;. In addition, we can maintain
this property under updates in O(1) time by item (1) above, since this is a full join
and @[T, N] is g-hierarchical. Therefore, the entire result Answer ([T, N], db) can be
enumerated with constant delay after linear time processing, and be maintained under
updates in O(1) time. []

Next, we show how to extend Proposition 11.3 when queries have inequalities. Towards
this goal, note that the conditions for a CQ to be g-hierarchical are imposed over relational
atoms. Hence, the following result is straightforward (recall the definition of split(Q)) given
in Section 10).

Corollary 11.4. Let Q be a CQ and split(Q) = (Qret; Qineg). Then Q is g-hierarchical if
and only if Qe is q-hierarchical.

Then, we can exploit the split of @ between Qe and Qineq to evaluate efficiently any
g-hierarchical query @ as follows.

Proposition 11.5. Let Q be a CQ over o and split(Q) = (Qret; Qineg) and K a semi-
integral domain. If DynEval(Qye,0,K) € DynEnum(|| db||,1,1) then DynEval(Q,o,K) €
DynEnum(|| db||,1,1).

Proof. Let o be the vocabulary of Q and db be an arbitrary K-database over o. Since
DynEval(Qyel, 0, K) € DynEnum(|| db||,1,1) we have Eval(Qye,0,K) € Enum(|| db]|,1) and
consequently Eval(@, o, K) € Enum(||db||,1), by Proposition 10.7.

Note that Proposition 10.7 shows that Eval(Q, o, K) € Enum(|| db||,1) by first making
input database db atomically consistent with @ and then invoking Eval(Qye, o,) on the
atomically reduced database db’. It is then possible to enumerate Vals(Q, db') = Vals(Q, db)
with constant delay, by enumerating Vals(Q,el, db') = Vals(Qel, db) with constant delay. In
other words, the data structure of Eval(Q, o, K) is simply that of Eval(Qye, 0, K).

Hence, to obtain the proposition, it suffices to translate a given update u to db into
an update u’ to db such that db + u’ is the atomic reduction of db -+ w. This allows us to
update the data structure Eval(Q,e, 0, K) in O(1) time by assumption, and still be able to
enumerate Vals(Qyel, db' + u') = Vals(Qyel, db + u). We translate the update as follows

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:59

e If u = insert(R,d, k) then for each atom R(Z) in Q with d |= Z check that the inequality
constraints imposed by Q[R(Z)] are satisfied. If this is the case, apply v’ = u to db'.
Otherwise, no update needs to be done to db'.

o If u = delete(R,d) then apply v/ = u to db'.]

We finally have all the machinery to prove Theorem 11.2.

Proof of Theorem 11.2. Let split(Q) = (Qrel, Qineq) Since @ is g-hierarchical, we have that
Qre is g-hierarchical by Corollary 11.4. Then, by Proposition 11.3, DynEval(Qy, 0,K) €
DynEnum(|| db||,1,1) since K is a sum-maintainable semi-integral domain. Hence we get that
DynEval(Q, o,) € DynEnumn(|| db||, 1, 1) because of Proposition 11.5.

We proceed to prove the second part of the result, i.e., achieve the same processing
complexity for the matrix evaluation problem DynEval(Q, S, K). Let Q be a gh-MATLANG
query over S and Z and instance over §. Fix a matrix-to-relational schema encoding Rel over
S such that the head atom of () is binary. Since in particular Q is also a fc-MATLANG query,
by Theorem 10.1 [Q](Z) can be enumerated with constant delay after a preprocessing that
runs in time O(||Z||). Now, use Theorem 8.2 to compute the g-hierarchical relational query
Q@ over o that is equivalent to Q under Rel. This is in constant time in data complexity.
Next, let u be a update u to Z. We define a series of single tuple updates u1, ..., u, to Rel(Z)
such that Rel(Z) +uy + ...+ uy, = Rel(Z) + u = Rel(Z,). This can be done in O(||u||) time.
Because @ is g-hierarchical, DynEval(Q, o, K) can be evaluated dynamically with constant-
time update and constant-delay, and hence we can enumerate each Answer(Q, Rel(Z)),
Answer(Q, Rel(T) + uy) up to Answer(Q, Rel(Z) + ui + ... + uy) with constant delay. This
holds because processing each update u; one at a time takes time O(1). After O(||u||) time,
the former yields constant delay enumeration for Answer(Q,Z,).]

11.3. Lower bounds for g-hierarchical queries. Similar as for free-connex CQ, we
can extend the lower bound in [BKS17] when the subsemiring generated by Ox and Ty is
zero-sum free, by assuming the Online Boolean Matrix-Vector Multiplication (OMv) conjec-
ture [HKNS15]. For this, recall the definition of constant-disjoint introduced in Section 10.

Theorem 11.6. Let Q be a CQ over o without self-joins and constant-disjoint. Let
IC be a semiring such that the subsemiring generated by Ox and T is zero-sum free. If
DynEval(Q,o,K) can be evaluated dynamically with constant-time update and constant-delay,
then @ is q-hierarchical, unless the OMuv conjecture is false.

To prove Theorem 11.6 it suffices to show that the statement holds in the bounded
problem DynEval(Q,o,B, M), for every M € Nyy. Towards that goal, we first reduce the
DynEval(Q,o,B, M) problem into the DynEval(Q,el, 0, B, M) problem assuming that @ is
constant-disjoint. Subsequently, we reduce DynEval(Q, o, X, M) to DynEval(Q,o,B, M).

Proposition 11.7. Let M € Nxg and let Q be a CQ over o with split(Q) = (Qrel, Qineq)- If
Q is constant-disjoint and DynEval(Q,o,B, M) € DynEnum(|| db||,1,1) then DynEval(Q e, o,
B, M) € DynEnum(|| db||,1,1).

Proof. The proof uses the same ideas as the proof of Proposition 10.10, but specialized to
the dynamic setting, and utilizing that M is a bound on the active domain of the databases
that we will evaluate Qe on.

Specifically, we reduce DynEval(Qyel, 0rel, B, M) to DynEval(Q,o,B, M). Denote the
free variables of @, Qrel and Qineq by T, 1 and T2, respectively. Note that Z; and 7> are

1:60 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

disjoint and var(T) = var(T1) U var(T2). Consider an arbitrary database dby over o, input
to DynEval(Qyel, 0, B, M). In particular, all values in the active domain of db are bounded
by M. Construct the database db, input to DynEval(Q,o,B, M) as follows.

e R%® = R for each relation symbol R € o;

e db(c) := M for all constant symbols ¢ € o that occur in a covered inequality in (). Note
that ¢ # 1 because @ is constant-disjoint;

e db(c) := 1 for all other constant symbols ¢ € o.

This is well-defined because @ is constant-disjoint. The computation of db is clearly in
O(|| dbyer ||) and || db||=|| dbre1 ||. We call db the extension of dbye.

Because M is an upper bound on the domain values occurring in db,, we have shown in
Proposition 10.10 that Answer(Qyel, dbye)) = Answer(Qyel, db) and, that moreover, we may
enumerate Answer(Qyel, db) with constant delay using the constant-delay enumeration for
Answer(Q), db), which exists because DynEval(Q, o, B, M) € DynEnum(|| db||,1,1).

Hence, to obtain the proposition, it suffices to show that we can translate any given
update u to db,e into an update u’ to db such that db+u’ is the extension of db.e +u. Because
DynEval(Q,o,B, M) € DynEnum(|| db||,1,1) this allows us to update the data structure of
Eval(Qyel, 0,B, M) in O(1), and still be able to enumerate Answer(Q, db+ v’), which yields
the enumeration of Answer(Q, db, + u) with constant delay. We reason as follows. Let u
be a single-tuple update to db. such that all data values occurring in v are bounded by M.
Then simply apply u to db. Clearly, db+ u is the extension of db. + u. []

Proposition 11.8. Let Q be a CQ over o and K a semiring such that the subsemiring gener-
ated by Ok and 1 is non-trivial and zero-sum free. Let M € Nsq. If DynEval(Q,o,K, M) €
DynEnum(|| db||,1,1) then DynEval(Q,o,B, M) € DynEnum(|| db|[,1,1).

Proof. Let K = (K, ®,®,0x, 1) be a a semiring such that the subsemiring generated by

Ox and Tx is non-trivial and zero-sum free. The proof uses the same ideas as the proof

Proposition 10.11, but specialized to the dynamic setting, with bounded evaluation.
Specifically, we reduce DynEval(Q,o,B, M) to DynEval(Q, o, K, M) as follows. Let dbp

be a B-database over o, input to DynEval(Q,o,B, M). Construct the K-database dbx, input

to DynEval(Q, o, K, M) by setting

e for every relation symbol R € ¢

TR by = d— {“’C if R7(d) =t
"

Ok otherwise.

e dbi(c) := dbg(c) for every constant symbol c.

We call dbc the K version of dbp Note that this takes time O(|| dbg ||). Then run
DynEval(Q,o,/KC, M) on dbg, which takes linear time. We have shown in the proof of
Proposition 10.11 that we may then enumerate Answer(Q, dbg) with constant delay using the
constant-delay enumeration procedure for Answer(Q), dbx) provided by DynEval(Q, o, K, M).
By assumption, Eval(Q, o, K) € Enum(|| db||,1) thus the set Vals(Q, dbx) can be enumerated
with constant delay after a linear time preprocessing.

Hence, to obtain the proposition, it suffices to show that we can translate any given
update u to dbg into an update u’ to dbx such that dbx + u’ yields the KC-version of dbg + u.
Because DynEval(Q,o,/C, M) € DynEnum(|| db ||,1,1) this allows us to update the data
structure of DynEval(Q, o, B, M) in O(1), and still be able to enumerate Answer(Q, dbx +u'),
which yields the enumeration of Answer(Q, db,e) + u) with constant delay.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:61

We reason as follows. Let u be a single-tuple update to dbg such that all data values
occurring in u are bounded by M.

o If u = insert(R,d,t) and d does not occur in R%x (meaning that d did not occur in dbg
before), then set v’ = insert(R, d, I¢).

e If u = insert(R,d,f) then db+ u is the same as db, and we hence issue no update v’ to
dbyc.

o If u = delete(R,d) then the update u' = delete(R,d). []

As argued, the next theorem clearly implies Theorem 11.6.

Theorem 11.9. Let Q) be a CQ over o without self-joins and constant-disjoint and K a
semiring such that the subsemiring generated by Ox and lx is non-trivial and zero-sum free.
DynEval(Q,o,K, M) € DynEnum(|| db||,1,1) for every M € Nsg, then Q is g-hierarchical,
unless the OMwv conjecture is false.

Proof. Let split(Q) = (Qrel; Qineq)- Since DynEval(Q, o, K, M) € DynEnum(|| db||,1,1) for
every M, by Proposition 11.8 we have that DynEval(Q, o, B, M) € DynEnum(|| db||,1,1) for
every M, because the subsemiring generated by Ox and Tx is non-trivial zero-sum free.
Proposition 11.7 states then that DynEval(Qye1, o, B, M) € DynEnum(|| db||, 1, 1) for every M,
since (@ is constant disjoint. Because Q¢ € CQZ, by Theorem 11.1, (y¢ is g-hierarchical
unless the OMwv conjecture is false. Given that Q. is g-hierarchical if and only if @ is

g-hierarchical, the former directly implies that) is g-hierarchical unless the OMv conjecture
is false. []

11.4. Lower bounds for gh-MATLANG queries. Similarly to the lower bound in the
free-connex case, we show that Theorem 11.9 transfers to conj-MATLANG.

Corollary 11.10. Let Q be a conj-MATLANG query over S such that Q does not repeat
matriz symbols and Q is constant-disjoint. Let IC be a semiring such that the subsemiring
generated by O and 1xc is zero-sum free. If DynEval(Q,S,K) can be evaluated dynamically
with constant-time update and constant-delay, then Q is equivalent to a gh-MATLANG query,
unless the OMuv conjecture is false.

Similarly as in the relational case, we rely on the fact that the following theorem
clearly implies Corollary 11.10: indeed, if DynEval(Q,S,K) € Enun(||Z||,1) then trivially
DynEval(Q,S, K, M) € Enun(||Z||,1) for every M, in which case the following proposition
yields the claim of Corollary 11.10.

Theorem 11.11. Let Q be a conj-MATLANG query over S such that Q does not repeat matriz
symbols and Q is constant-disjoint. Let IC be a semiring such that the subsemiring generated
by Ok and Tx is non-trivial and zero-sum free. If DynEval(Q,S,KC, M) € Enum(||Z||,1) for
every M € Nsg, then Q is equivalent to a qgh-MATLANG query, unless the OMuv conjecture
is false.

Proof. Let Rel be a matrix-to-relational encoding scheme over S such that it is enumeration-
suited for Q (see Section 10.2). Let Mat = Rel™! be its inverse relational-to-matrix encoding.

We apply Proposition 10.12 on Q to obtain binary CQ @ over o = Rel(S) that simulates
Q w.r.t. Rel. We know that () is binary, self-join free and constant-disjoint. We next modify
Q into a query @’ over o such that the following properties hold:

(P1) @' continues to simulate Q w.r.t. Rel;

1:62 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

(P2) @' continues to be constant-disjoint;

(P3) DynEval(Q',o,/K, M) € DynEnunm(|| db||, 1, 1), for every M € Ns.

This suffices to prove the proposition. Indeed, by Theorem 11.9 Q' is necessarily q-hierarchical
unless the OMv conjecture fails. If @’ is g-hierarhical, then by Corollary 6.2 there exists a
fc-MATLANG query Q' that simulates Q' w.r.t Mat = Rel”*. Consequently, Q and Q' are
then equivalent.

Intuitively, the modification of @ into @’ is necessary to obtain property (P3): the
fact that DynEval(Q,S,K, M) € Enum(]| Z ||,1) only implies that we may dynamically
evaluate @ in DynEnum(|| db||,1,1) on databases that encode some matriz instance. To apply
Theorem 11.9, by contrast we need to show that we can dynamically evaluate @) on arbitrary
databases. The crux will be that we obtain @’ by adding extra inequalities to @), such that
evaluating Q' on an arbitrary database yields the same result as evaluating it (and Q, Q)
on some matrix instance.

The definition of @' is as follows. Assume @ is of the form Q : H(y) < 3z.¢) with ¢
quantifier free. For every relational atom o = R(T) of ¢ we define a formula ¢, as follows.
This formula is a conjunction of inequalities:

o If @ = R(z1,22) with R binary and Mat(R): (3,7) then ¢, 1= x1 < Rel(8) A z2 < Rel(7).
Note that, by definition of Rel, Rel(a) # 1 # Rel(3).

o If & = R(x1) with R unary then by definition of Rel either Mat(R): (5,1) or Mat(R): (1,0)
for some size symbol 5 # 1. Then take ¢, := x; < Rel(). Note that by definition of
matrix-to-relational encoding schemes, Rel(3) # 1 since 8 # 1.

o If @ = R() with R nullary then by definition of Rel we have Mat(R): (1,1) and we take
o the empty formula (which is equivalent to t).

Then we define Q' to be the CQ
Q' H() « Jz.(v A A ©a).

« rel. atom in

Note that " continues to simulate Q over Rel (property P1). Indeed, for any matrix
instance Z over S we know that Answer(Q,Z) = Answer((), Rel(Z)). By definition, Rel(Z)
is consistent with Rel”' = Mat, and therefore the tuples in Rel(T) vacuously satisfy all
the extra inequalities that we have dded to @ to obtain Q’. As such, Answer(Q, Rel(Z)) =
Answer(Q)’, Rel(Z)). Thus, Q' continues to simulate Q.

Also note that @’ is constant-disjoint (property P2). Indeed:

e We have only added covered inequalities to () to obtain . Any such covered inequality
that we have added was of the form x < ¢ with ¢ # 1. Therefore, since) does not have
covered inequalities of the form x < 1, neither does @Q’.

e We did not add any uncovered inequalities to @ to obtain Q. Moreover, Q" has the
same free variables as (). Therefore, all uncovered inequalities y < ¢ in @’ continue to be
such that y is not free in @', unless ¢ = 1. Hence for all pairs (z < ¢,y < d) of covered
inequality z < ¢ and non-covered inequality y < d with d # 1 in Q" we have that y is not
free in Q' as required for constant-disjointness.

Finally, we show that DynEval(Q’,o,K, M) € DynEnum(|| db||,1,1) for every M € N+
(property P3), as claimed. Fix M € Ny arbitrarily. We reduce DynEval(Q’,o,K, M) to
DynEval(Q,S,K) (which is an unbounded evaluation problem) as follows. Let db be a
K-database over o, input to DynEval(Q’,o, K, M). First, create the database db’ that is
equal to db except that for every relation symbol R € ¢ that is not mentioned in Q) we set

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:63

R to empty. This can clearly be done in linear time. Note that, if R is not mentioned in @,
then it is also not mentioned in @', and hence of @’ on db is independent of the contents of
R%®. Therefore, Answer(Q’, db) = Answer(Q’, db'). Subsequently, compute db”, the atomic
reduction of db’ w.r.t. Q. Computing db” can be done in time O(|| d¥' ||) = O(|| db||). By
Claim 10.4 we have Answer(Q’, db) = Answer(Q', dV') = Answer(Q', db”). Now verify the
following claim: db” is consistent w.r.t. Mat = Rel™'. This is because we have added, for each
matrix symbol A with Rel(A) occurring in), the inequalities that are required by consistency
as atomic inequalities to @’. (The matrix symbols A with Rel(A) not occurring in @ are
empty in db’ and hence vacuously consistent w.r.t. Mat.) Since db” is consistent with Mat we
have that Mat(db") is a matrix instance over S and hence a valid input to Q. Then, because
Q' simulates Q, we have Answer(Q’, db) = Answer(Q’, db") = Answer(Q, Mat(db")). Because
DynEval(Q, S, K) is in Enum(||Z||,1) it hence follows that with additional preprocessing of
time O(|| Mat(db")||) = O(]| db||) we may enumerate Answer(Q’, db”) = Answer(Q)’, db) with
constant delay, as desired.

In essence, therefore, the data structure needed to enumerate Answer(Q’, db) with
constant delay is the data structure computed by DynEval(Q, S, K) when run on Mat(db").
We next show how to maintain this data structure under updates u to db.

Specifically, we next show how we may translate in O(1) time an update u to db into
an update u” to db” and an update up; to Mat(db") so that (1) db” + «” yields the same
database as when we would do the above procedure starting from db + w instead of db:
(db+u)" = db’ 4+ u” and (2) applying up to Mat(db”) yields Mat(db” +). Therefore,
applying uys to DynEval(Q, S, K) will give us the same data structure as when it was run on
Mat(db” +u'). From this we can again enumerate Answer(Q’, db” +u") = Answer(Q’, db+u)
with constant delay. This is because the output relation is binary since Rel is enumeration-
suited for Q. We reason as follows.

o If u = insert(R, d, k) with R not occurring in @’ then we ignore u, there are no updates
u” and uys to be done.

o If u = insert(R,d, k) with R occurring in Q' then we check whether d is atomically
consistent with Q'[R(Z)] for every atom R(T) in @'. This can be done in constant time,
because @' (and hence the number of inequalities to check) is fixed. If it is atomically
consistent then v/ = u and u); inserts k in Mat(R) at the coordinates specified by d.

o If u = delete(R,d, k) with R not occurring in @’ then we ignore u, there are no updates
u” and ujys to be done.

o If u = delete(R,d, k) with R occurring in Q' then we check whether d is atomically
consistent with Q'[R(Z)] for every atom R(Z) in @'. This can be done in constant time,
because Q' is fixed. If it is atomically consistent then v’ = u and wu,; sets the entry in
Mat(R) at the coordinates specified by d to 0. []

12. CONCLUSIONS AND FUTURE WORK

In this work, we isolated the subfragments of conj-MATLANG that admit efficient evaluation in
both static and dynamic scenarios. We found these algorithms by making the correspondence
between CQ and MATLANG, extending the evaluation algorithms for free-connex and g-
hierarchical CQ, and then translating these algorithms to the corresponding subfragments,
namely, fcMATLANG and gh-MATLANG. To the best of our knowledge, this is the first

1:64 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

work that characterizes subfragments of linear algebra query languages that admit efficient
evaluation. Moreover, this correspondence improves our understanding of its expressibility.

Regarding future work, a relevant direction is to extend fc-MATLANG and gh-MATLANG
with disjunction, namely, matrix summation. This direction is still an open problem even
for CQ with union [CK21]. Another natural extension is to add point-wise functions and
understand how they affect expressibility and efficient evaluation. Finally, improving the
lower bounds to queries without self-join would be interesting, which is also an open problem

for CQ [BGS20,CS23].

REFERENCES

[ABC*16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A
system for large-scale machine learning. In Kimberly Keeton and Timothy Roscoe, editors,
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 265-283. USENIX Association, 2016. URL:
https://www.usenix.org/conference/osdil6/technical-sessions/presentation/abadi.

[AHUT74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. URL: http://webdam.inria.fr/Alice/.

[ASST17] Michael J. Anderson, Shaden Smith, Narayanan Sundaram, Mihai Capota, Zheguang Zhao,
Subramanya Dulloor, Nadathur Satish, and Theodore L. Willke. Bridging the gap between
HPC and big data frameworks. Proc. VLDB Endow., 10(8):901-912, 2017. URL: http://www.
v1ldb.org/pvldb/vol10/p901-anderson.pdf, doi:10.14778/3090163.3090168.

[BDGOT7] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries and
constant delay enumeration. In Jacques Duparc and Thomas A. Henzinger, editors, Computer
Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in
Computer Science, pages 208—222. Springer, 2007. doi:10.1007/978-3-540-74915-8_18.

[BGdB20] Robert Brijder, Marc Gyssens, and Jan Van den Bussche. On matrices and k-relations. In
Andreas Herzig and Juha Kontinen, editors, Foundations of Information and Knowledge Systems
- 11th International Symposium, FolIKS 2020, Dortmund, Germany, February 17-21, 2020,
Proceedings, volume 12012 of Lecture Notes in Computer Science, pages 42-57. Springer, 2020.
doi:10.1007/978-3-030-39951-1_3.

[BGdBW19] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On the expressive
power of query languages for matrices. ACM Trans. Database Syst., 44(4):15:1-15:31, 2019.
doi:10.1145/3331445.

[BGS20] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay enumeration for
conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4-33, 2020. doi:10.1145/3385634.
3385636.

[BHPS20] Pablo Barceld, Nelson Higuera, Jorge Pérez, and Bernardo Subercaseaux. On the expressive-
ness of LARA: A unified language for linear and relational algebra. In Carsten Lutz and
Jean Christoph Jung, editors, 23rd International Conference on Database Theory, ICDT 2020,
March 30-April 2, 2020, Copenhagen, Denmark, volume 155 of LIPIcs, pages 6:1-6:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.
ICDT.2020.6, doi:10.4230/LIPICS.ICDT.2020.6.

[BKS17] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries under
updates. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceedings
of the 86th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 303—-318. ACM, 2017. doi:10.1145/
3034786.3034789.

Vol. 22:1

[Bral3|

[CK21]

[CS23]

[DGOT]

[DSS14]

[EBH"17]

[ECK24]

[ELB*17]

[Fag83]

[Geel9]

[GKTO7]

[GMRV21]

[Gol13]
[GR22]

[HBY13]

ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:65

Johann Brault-Baron. De la pertinence de ’énumération : complexité en logiques propositionnelle
et du premier ordre. (The relevance of the list: propositional logic and complexity of the
first order). PhD thesis, University of Caen Normandy, France, 2013. URL: https://tel.
archives-ouvertes.fr/tel-01081392.

Nofar Carmeli and Markus Kroll. On the enumeration complexity of unions of conjunctive
queries. ACM Trans. Database Syst., 46(2):5:1-5:41, 2021. doi:10.1145/3450263.

Nofar Carmeli and Luc Segoufin. Conjunctive queries with self-joins, towards a fine-grained
enumeration complexity analysis. In Floris Geerts, Hung Q. Ngo, and Stavros Sintos, editors,
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 277-289. ACM, 2023.
doi:10.1145/3584372.3588667.

Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4):21, 2007. doi:10.1145/
1276920.1276923.

Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Richard Hull and Martin Grohe, editors, Proceedings
of the 83rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2014, Snowbird, UT, USA, June 22-27, 2014, pages 121-131. ACM, 2014. doi:10.1145/
2594538.2594539.

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold Reinwald.
Scaling machine learning via compressed linear algebra. SIGMOD Rec., 46(1):42-49, 2017.
doi:10.1145/3093754.3093765.

Idan Eldar, Nofar Carmeli, and Benny Kimelfeld. Direct access for answers to conjunctive queries
with aggregation. In Graham Cormode and Michael Shekelyan, editors, 27th International
Conference on Database Theory, ICDT 2024, March 25-28, 2024, Paestum, Italy, volume 290
of LIPIcs, pages 4:1-4:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024. URL:
https://doi.org/10.4230/LIPIcs.ICDT.2024.4, doi:10.4230/LIPICS.ICDT.2024.4.

Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski, Shirish Tatikonda,
Berthold Reinwald, and Prithviraj Sen. SPOOF: sum-product optimization and operator
fusion for large-scale machine learning. In 8th Biennial Conference on Innovative Data Sys-
tems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
www.cidrdb.org, 2017. URL: http://cidrdb.org/cidr2017/papers/p3-elgamal-cidri7.pdf.
Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM,
30(3):514-550, 1983. doi:10.1145/2402.322390.

Floris Geerts. On the expressive power of linear algebra on graphs. In Pablo Barcel6 and
Marco Calautti, editors, 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 7:1-7:19. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICDT.2019.7,
doi:10.4230/LIPICS.ICDT.2019.7.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Leonid Libkin,
editor, Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS 2007, Beijing, China, June 11-13, 2007, pages 31-40. ACM, 2007.
doi:10.1145/1265530.1265535.

Floris Geerts, Thomas Munoz, Cristian Riveros, and Domagoj Vrgoc. Expressive power of linear
algebra query languages. In Leonid Libkin, Reinhard Pichler, and Paolo Guagliardo, editors,
Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2021, Virtual Event, China, June 20-25, 2021, pages 342-354. ACM, 2021.
doi:10.1145/3452021.3458314.

Jonathan S Golan. Semirings and their Applications. Springer Science & Business Media, 2013.
Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph
neural networks. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL: https://openreview.
net/forum?id=wIzUeM3TAU.

Botong Huang, Shivnath Babu, and Jun Yang. Cumulon: optimizing statistical data analysis in
the cloud. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings

1:66

[HKNS15]

[HW96]
[HWO8]

[IUV17]

[TUV+20]

[JLY*20]

[KNOZ20]

[KS13]

[KVGT19]

[LGGT18]

[SEM™*20]

[SSV18]

[WHS™20]

T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, pages 1-12. ACM, 2013. doi:10.1145/2463676.2465273.
Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector multi-
plication conjecture. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 21-30. ACM, 2015. doi:10.1145/2746539.2746609.

Udo Hebisch and Hans Joachim Weinert. Semirings and semifields. Handbook of Algebra,
1:425-462, 1996.

Udo Hebisch and Hanns Joachim Weinert. Semirings: algebraic theory and applications in
computer science, volume 5. World Scientific, 1998.

Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. The dynamic yannakakis algorithm:
Compact and efficient query processing under updates. In Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pages 1259-1274. ACM, 2017. doi:10.1145/3035918.3064027.

Muhammad Idris, Martin Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner.
General dynamic yannakakis: conjunctive queries with theta joins under updates. VLDB J.,
29(2-3):619-653, 2020. URL: https://doi.org/10.1007/s00778-019-00590-9, doi:10.1007/
S00778-019-00590-9.

Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jermaine, and
Zekai J. Gao. Declarative recursive computation on an RDBMS: or, why you should use a
database for distributed machine learning. SIGMOD Rec., 49(1):43-50, 2020. doi:10.1145/
3422648 .3422659.

Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic
evaluation of hierarchical queries. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 375-392. ACM, 2020. doi:10.1145/
3375395.3387646.

Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013,
New York, NY, USA, June 22 - 27, 2013, pages 297-308. ACM, 2013. doi:10.1145/2463664.
2463667.

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi,
Skanda Koppula, Nika Mansouri-Ghiasi, Taha Shahroodi, Juan Gémez-Luna, and Onur Mutlu.
SMASH: co-designing software compression and hardware-accelerated indexing for efficient sparse
matrix operations. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019, pages 600-614.
ACM, 2019. doi:10.1145/3352460.3358286.

Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and Christopher M.
Jermaine. Scalable linear algebra on a relational database system. SIGMOD Rec., 47(1):24-31,
2018. doi:10.1145/3277006.3277013.

Amir Shaikhha, Mohammed Elseidy, Stephan Mihaila, Daniel Espino, and Christoph Koch.
Synthesis of incremental linear algebra programs. ACM Trans. Database Syst., 45(3):12:1-12:44,
2020. doi:10.1145/3385398.

Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over
nowhere dense graphs. In Jan Van den Bussche and Marcelo Arenas, editors, Proceedings of the
87th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2018, Houston, TX, USA, June 10-15, 2018, pages 151-163. ACM, 2018. doi:10.1145/3196959.
3196971.

Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang. SPORES: sum-
product optimization via relational equality saturation for large scale linear algebra. Proc. VLDB
Endow., 13(11):1919-1932, 2020. URL: http://www.v1ldb.org/pvldb/vol13/p1919-wang.pdf.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:67

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82—94.
IEEE Computer Society, 1981.

[YHZ'17] Fan Yang, Yuzhen Huang, Yunjian Zhao, Jinfeng Li, Guanxian Jiang, and James Cheng. The
best of both worlds: Big data programming with both productivity and performance. In Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of
the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 1619-1622. ACM, 2017. doi:10.1145/3035918.
3058735.

APPENDIX A. OMITTED PROOFS FROM SECTION 2

Proof of Proposition 2.3.

Proof. Let ¢ be a safe FO™ formula. First observe the following: every subformula 9 of ¢
that is itself not an equality atom, is also safe. This is because safety is defined “universally”
on . Fix a database db. We prove that [[¢]|4 has finite support by induction on .

e Both R(Z) and x < ¢ have finite support by definition.

e © = y by itself is not safe; this case hence cannot occur.

e If ¢ = 1 A o, we discern the following cases.

— Neither 1 nor g9 are an equality atom x = y. Then both ¢ and @9 are safe, and the
result follows by induction hypothesis because an annotation computed by ¢ can only
be non-zero if is obtained by multiplying non-zero annotations originating from ¢; and
2, which both have finite support.

— One of ¢ or g9 is of the form x = y. Assume for the sake of presentation that
w2 = (xz = y). Then, by definition of safety, at least one of x,y is in rr(¢1). In particular,
from the definition of rr(-) it follows that ¢y itself cannot be an equality atom. Therefore,
1 is safe and the induction hypothesis applies to it. We discern two further cases.

*x Both x,y € rr(¢1). Since rr(p1) C free(p1), it follows that free(pr) = free(p). The
result follows directly from the induction hypothesis, since it follows that the support
of [[¢]l4p is a subset of the support of 1] 4, which is finite by induction hypothesis.

* Only one of z,y € rr(¢1). Assume w.lo.g. that x € rr(¢1) but y & rr(¢1). By
induction hypothesis, [[¢1] 4 has finite support. Now consider a valuation v: free(y)
such that [[¢]l45(v) # 0 and define v1 = V|fee(p,)- By definition of the semantics
of A we have also [[¢1]]ap(v1) # 0. Now note that v; completely specifies v: the
only variable that is potentially in the domain of v but not in the domain of v is
y, but ¢ requires x = y. So, knowing v(x), which is given by v;(x), we also know
v(y). We conclude that if there were an infinite number of distinct v: free(yp) such
that [[¢]la(v) # 0 then there are also an infinite number of vy : free(y1) such that
Tellas(v) # 0, which cannot happen by induction hypothesis.

o If o = 1 V o9, then neither ¢ nor ¢y can themselves be equality atoms. (If they were it
would violate condition (1) of safety.). The result then straightforwardly follows from the
fact that free(p1) = free(p2) = free(yp) and from the induction hypothesis.

o If p = Jy.¢' then ¢ itself cannot be an equality atom: if it were it would violate condition
(1) of safety. The result then straightforwardly follows from the induction hypothesis. []

1:68 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

APPENDIX B. OMITTED PROOFS FROM SECTION 4

Proof of Lemma 4.1.

Proof. We prove the lemma by induction on e.

o Ife=A: (a,p) then fix x: (a,1) and y: (8,1). Clearly, e = ¥x,y. (XT A y) xx-yT.

o If e = w: (a,1) with w a vector variable, then fix x: (a,1) and y: (1,1). Clearly,
e=XYx,y. (XT-W) xx-yr.

o If e = (e1)T: (B,a) with e1: (o,). By inductive hypothesis we can assume that e; =
T

YX,Y,V1,..., V.8 X X-y!. Hence, e = 3y, X, Vi,...,Vp. 8 Xy - XL.
o If e =e1 ®ey with e1: (o, 8) and es: (a, 8), then:
e1 ®ey = ¥X,y. ((XT-61 -y) X (xT-e2-y)) X (x-yT)
with x: (o,1) and y: (8, 1), and we can reduce e; ® ez to the other cases.
e If e =1 X e3: (o,). By inductive hypothesis we have

€1 = 2XX1,Y1,Vl,---, Vi. S X X1 -y{
eo = 2X9,y2,Wi,...,Wi. t ><x2-y2T.
Note that x1: (1,1) and y;: (1,1). Therefore,
e =YX, Y2, Vi, ..., Vi, Wi,...,W,X],y1. (SXt) XX -y2.
e If e =¢;-e3: (o, B). By inductive hypothesis we have
€1 = 2X1,Y1,V1,---, VE. S X X1 -le
e = XX9,y2,W1,...,W;. t X Xg -yQT.
Note that in this case, x1: (o, 1), y1: (7,1), x2: (7,1) and y2: (5,1). Therefore,
e =3X1,y2, Vi, Vi, Wi,..., W, ¥1,X2. (8 Xt X y,{‘XQ) X X1 -y5.
e If e =Yv.e;: (a,3). By inductive hypothesis we have
€1 =3X,y,Vi,...,Vi. SXX-yL.

Therefore, e = £X,y,V1,..., Vi, V. S X X-yL. []

APPENDIX C. OMITTED PROOFS FROM SECTION 6

Proof of Lemma 6.6.

Proof. We first observe:

(1) If free(p) = {x} then essentially 1) expresses a renaming of variable = into variable vy,
in the sense that for all db and all v: {y} we have [[¢]a(v) = [[¢llap(z — v(y)). In
such a case, it hence suffices to take 1’ := @[z ¢ y|, the FO} formula obtained from
¢ by simultaneously replacing all occurrences (free and bound) of = in ¢ by y, and all
occurrences of y in ¢ by x.

(2) If free(p) = {y} then observe that 1) = ¢. In this case it hence suffices to take ¢’ := .

It hence remains to show the result when free(¢) = {x,y}. The proof for this case is by
well-founded induction on the length of FO} formulas.

Vol. 22:1 ENUMERATION AND UPDATES FOR CONJUNCTIVE LINEAR ALGEBRA QUERIES 1:69

e When ¢ is an atom, it must be an atom of the form A(Z) since free(y) = {z,y}. Then ¢
expresses that x and y must be bound to the same values in A, and x dropped from the
resulting valuation. It hence suffices to take ¢’ := p[z — y|, which is the atom obtained
from A(Z) where all occurrences of x are replaced by y.

e The case where ¢ = Jz.¢' cannot happen, as this necessarily has only one free variable.

e When ¢ = ¢1 A 2 we make a further case analysis.

— If free(p1) = {x} and free(p2) = {y} then ¥ = Fz.(p1[z < Y] A @2) = 1]z < y] A o
where @1 [z <> y] is the formula obtained by simultaneously replacing all occurrences (free
and bound) of = by y and all occurrences of y by x. Hence we take ¢ := o[z <> y] A pa.

— If free(1) = {z,y} and free(ps) = {x,y} then » = (Fz.p1 Az =y) A Br.p2 Az =y).
The formula 1)’ is then obtained by applying the induction hypothesis on ¢ and o,
and taking the conjunction of the resulting formulas.

— If free(o1) = {x,y} and free(ys) = {y} then ¢ = (Fz.9o1 Az = y) A p2. The formula v’
is obtained by applying the induction hypothesis on 1 and taking the conjunction of
the result with s.

— If free(p1) = {z,y} and free(p2) = {z} then we observe that

Y=z (Fypr ANz =y)ANpa Az =1y).

The latter formula first selects from ¢; all valuations where x = y, projects the result
on z and then multiplies this result with (2. By induction hypothesis there exists
Y| € FOS equivalent to Jy.(o1 Az =y). Let ¥ :=] A . Then ¢ = 3. (Y] Az = y).
Note that ¢| has only one free variable, z, and hence we can apply the reasoning of (1)
above to obtain our desired formula .

— If free(o1) = {x,y} and free(ps) = 0 then ¢ = (Fz.p1 Az = y) A 2. The formula ¢’ is
obtained by applying the induction hypothesis on ¢ and taking the conjunction of the
result with o.

— All other cases are symmetrical variants of those already seen. Note that the cases
where free(y1) U free(ps) # {z,y} cannot occur. []

Proof of Lemma 6.7.

Proof. The proof is by induction on ¥. We assume w.l.o.g. that the only variables that
occur in ¢ are {z,y}. The case where 1 is an atom is immediate, and the case where v is a
conjunction follows immediately from the induction hypothesis. Hence, assume 1 is of the
form ¢ = Jz.4p1. (The case Jy.¢); is analogous.) By induction hypothesis, there exists ¢}
equivalent to v in which equality atoms only occur at the top level. If no equality atom
occurs in 9] then it clearly suffices to take ¢' = Jz.1¢)]. Hence, assume that some equality
atom occurs in ¢]. We may assume w.l.o.g. that only the atom x = y occurs; atoms of the
form x = x or y = y are always valid and hence can be easily be removed. Also, because x
and y are the only variables ever used, there are no other possibilities. Then, v] is of the
form ¢ Az = y with ¢ an FO) formula. The result then follows by Lemma 6.6. L]

1:70 T. MuNoz, C. RIVEROS, AND S. VANSUMMEREN Vol. 22:1

APPENDIX D. OMITTED PROOFS FROM SECTION 8

Proof of Lemma 8.10.

Proof. The case when ¢ € simple-FO2 is entirely analogous to the proof of Lemma 6.6 with
fewer cases involved in the conjunction, since only conjunction between formulas with the
same free variables is allowed.

Hence we focus when ¢ = 1 A -+ A ¢, with ¢; € simple-FO% for every i. Consider the
set F' = {free(p;) | 1 <i < k}. Note that F' # (). Furthermore, because ¢ is a hierarchical
conjunction, {{z,y}, {z},{y}} € F. There are hence 22°-3 = 13 possibilities for F. We
construct e by case analysis on F. We only illustrate three important cases; the other cases
can be easily derived from the ones presented next. We adopt the following notation: for
each S € F' the formula ¢g denotes the conjunction of all ¢; with free(p;) = S.

e Assume F' = {{z},{y},0}. Then ¢ = @, A ¢y A py. To express Iz.p Az =y it suffices to
take ¢ == @z <> Y] Apy Ay, where p, [z <> y] is the formula obtained by simultaneously
replacing all occurrences (free and bound) of x by y and all occurrences of y by .

o Assume F' = {{z,y},{y},0}. Then ¢ = .y Ay Apy. To express Iz.o Az =y it suffices
to take ¢ = (3z.pzy AT = y) A py A pg, where Jx.¢, , Az = y can be expressed in h-FO%
since ¢, € simple-FO%.

o Assume F' = {{z,y},{z},0}. Then ¢ = ¢z A @z Apy. To express Jz.o Az =y it suffices
to take ¢ := 3x. (3y.zy AT =y) A vz A pp), where the latter formula first selects from
¢y all valuations where x = y, projects the result on x and then multiplies this result
with ¢, (and ¢p). Note that here we also rely on the fact that 3y.p, 4 Az =y can be
expressed in h-FO% since ¢, ,, € simple-FO?.]

Proof of Lemma 8.11.

Proof. For the proof, assume w.l.o.g. that z = y. Let ¢ = Jz.po Az = y. Then for all v: {z}
and db we have [[¢]|gp(v) = [Ax = yllap(z — v(z),y — v(z)). It hence suffices to show
that we can express 1(z) in h-FO2. The result is then implied by Lemma 8.10.]

APPENDIX E. RELATED WORK IN DETAIL

E.1. On treewidth and finite-variable logics. Geerts and Reutter [GR22] introduce a
tensor logic TL over binary relations and show that conjunctive expressions in this language
that have treewidth k& can be expressed in TLg1, the k-variable fragment of TL. In essence,
TL is a form of FO1 evaluated over K-relations.

Geerts and Reutter [GR22] do take free variables into account when defining treewidth.
Specifically, a formula with ¢ free variables has treewidth at least £. Therefore, the treewidth
of the following free-connex conjunctive query,

o(r,y) = 3z, u,v.R(x,y), R(z, 2), R(z,u), R(z,v)

has treewidth at least 2. For this query, therefore, the result by Geerts and Reutter only
implies expressibility in FO%, not FO} as we show in this paper.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

