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Abstract

Background Cardiac fibrosis is a key feature of pathological cardiac remodelling that significantly impacts heart
function through contributing to stiffness, diastolic dysfunction, and arrhythmias, ultimately leading to heart failure
(HF). Despite extensive research into fibrosis-related matrix alterations, therapeutic advancements are limited, in part
owing to the different nature (reparative vs interstitial) and tissue distribution of fibrosis involved. To identify unique
features of fibrosis phenotypes, we investigated fibroblast (FB) heterogeneity and spatial distribution in left ventricular
myocardium in HF patients with ischemic (ICM) and dilated cardiomyopathy (DCM). Infarct scar was also analysed.

Methods We performed single-nucleus RNA sequencing of 20 human left ventricular tissue samples: from non-
failing, NF (N=4), DCM (N=6) and ICM (N=5) hearts, and from the ICM scar region (N=>5). The data was subjected

to bioinformatic analysis, included clustering, differential expression, ligand-receptor inference, and pseudotime
trajectory mapping to delineate FB transitions and regional fibrosis signatures. To identify localisations of FB states and
cellular neighbourhoods, data was integrated with publicly available spatial transcriptomics datasets.

Results We identified distinct FB subpopulations across failing and non-failing hearts. Resident FB states showed
preferential perivascular and interstitial distribution in NF and exhibited significant depletion in HF, giving rise to
different disease states. We identified shared and unique activation ligands driving the onset of FB transitions as well
as transcriptional differences between scar and interstitial fibrosis, and between ICM and DCM interstitial fibrosis.
Trajectory analysis revealed distinct differentiation pathways for FB depending on its originating resident FB, with
specific transcription factors guiding each transition.

Conclusions These findings provide a comprehensive framework for understanding fibroblast dynamics,
highlighting the heterogeneity and spatial complexity of fibrosis in human end-stage HF, and offering potential
therapeutic targets to mitigate fibrosis while preserving scar integrity.
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Background

Cardiac fibrosis remains one of the least tractable fea-
tures of pathological cardiac remodelling [1, 2], yet it has
a major functional impact as fibrosis contributes to stiff-
ening of the heart and diastolic dysfunction, as well as to
disturbed electrical conduction and associated arrhyth-
mias. Progressive interstitial fibrosis underlies transi-
tion to heart failure (HF) in hypertensive heart disease
and contributes to HF with preserved ejection fraction
(HFpEF) [3, 4]. Reparative fibrosis occurs subsequent to
myocardial infarction (MI), where it serves to maintain
cardiac integrity after the loss of cardiomyocytes (CM).
Understanding the mechanisms that determine the type
of fibrosis induced — beneficial or not—is therefore a
priority for the development of new therapies. The well-
known beneficial action of angiotensin and aldosterone
pathway antagonists against fibrosis [5-8] is partly medi-
ated via effects on the differentiation of fibroblasts (FB)
into myofibroblasts (myoFB), the effector cells of matrix
remodelling and fibrosis. Inducing de-differentiation of
myoFB to a more resting state to reverse fibrosis is an
active area of research [9—-12]. Pirfenidone, first used for
pulmonary fibrosis has now also shown benefit in HF
[13]. While the mechanism of action of this drug is not
fully established, reducing pro-fibrotic pathways such as
TGEF-P activation are proposed.

FB phenotypic alterations are induced by different
cues, including mechanical load and inflammation [14].
Recent studies have demonstrated how exploiting inflam-
matory signalling could reduce fibrosis. For example,
by immuno-depletion of IL-1B, which is expressed by
monocytes and macrophages [15, 16] or engineering
T-cells or macrophages to express chimeric receptors
against the fibroblast associated protein (FAP) antigen
[17, 18]. Furthermore, interaction between CM and FB
through paracrine signalling is an essential element in
pathological remodelling during pressure overload [19].
These mechanical and/or inflammatory signals, including
TGF-B and IL1p, act on FB to increase their capacity to
deposit and remodel the ECM, to promote their prolifer-
ation, and to adopt a more contractile MyoFB phenotype.
While different sources for FB have been invoked such as
from endothelial, hematopoietic, or smooth muscle ori-
gins, lineage tracing shows that FB achieve these addi-
tional functions and phenotypes via differentiation from
resident cardiac quiescent FB [20-22].

Single cell RNA sequencing (scRNA-Seq) approaches
has accelerated the definitive identification of the diver-
sity of FB phenotypes that explain the different func-
tions described for these cells in the normal and failing
heart. These studies have also provided insights into the

signalling cues and intercellular signalling pathways acti-
vated during remodelling, such as after ischemic injury
[23] or angiotensin II stimulation [24]. Further studies
analysing intercellular communication and using spatial
transcriptomics have led to the concept of cardiac niches
with FB subpopulations in nexus with different immune
cell types, e.g. CCR2 + macrophages and CM (reviewed in
(25]).

Single-nucleus (sn)RNA-seq approaches have also pro-
vided new information on the cellular landscape, includ-
ing that of FB, of the non-diseased human heart [26, 27]
and how it is altered in HF, including with dilated cardio-
myopathy (DCM) [28-30] and post-MI [31]. Despite this
progress, human data on FB biology remain limited, par-
ticularly spanning different aetiologies and disease stages.
Previously, we identified different FB subpopulations in
end-stage human HF, which also suggested differences
between DCM and ischemic cardiomyopathy (ICM) but
lacked the molecular detail to define these FB states [11].
While recent sequencing efforts have advanced these
findings, the nature of the different FB states and their
relationships to one another are yet to be fully explored
across different aetiologies and locations. Moreover, an
understanding of the spatial heterogeneity of resident FB
and the local signalling cues that govern their activation
states, for example in response to MI, that is required
for future targeting, is missing. Indeed, this knowledge is
essential for targeting the interstitial and patchy fibrosis
that contributes to cardiac dysfunction and arrhythmia
while preserving the reparative fibrosis of the infarct scar
(32, 33].

In the present study, we therefore investigated whether
different aetiologies underlying advanced HF in humans
lead to distinct FB signatures, and whether location
within the failing heart defined FB phenotypes. In partic-
ular, we compared scar tissue to interstitial fibrosis, ask-
ing whether unique signatures would allow targeting of
these locations independently.

To these ends, we performed deep snRNA-seq of
patient samples of NF, DCM, ICM mid myocardium, and
ICM-scar. Analysis of the FB identified 9 FB cell states
across aetiologies, with some being highly enriched or
specific to pathology. These FB states showed distinct
patterns of gene expression and potential for regulation
by specific ligands. Through integration with a publicly
available spatial transcriptomic dataset, FB states were
assigned to interstitial, adventitial/vascular, and scar
regions of the heart. This analysis revealed the plasticity
of cardiac FB and identified local drivers underlying FB
heterogeneity in HF thus providing new avenues for their
selective targeting.
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Methods

Human cardiac tissue

Left ventricular (LV) myocardial tissue samples were
obtained from explanted hearts at the time of heart
transplantation and from non-used donor hearts, in col-
laboration with the Transplant team and the Department
of Cardiac Surgery, UZ Leuven. Non-failing samples are
from donor hearts not used for transplantation, where
age allowed valve donation but not transplantation. For
all samples, we obtained basic clinical parameters at
the time of tissue sampling (cardiac history and func-
tional status, medication, anthropometrics, laboratory
measurements). The study protocol conformed to the
Helsinki declaration and was conducted according to
national and European Union regulations on the use of
human tissues and was approved by the ethical commit-
tee of UZ Leuven (S58824). Tissue samples were collected
under RNase free conditions and immediately snap fro-
zen in liquid nitrogen and stored at— 80°C for later use.

Tissue sampling

All hearts are stored and transported on ice at all times
until freezing for no more than 2 h after removal. All
hearts were sampled according to a standardized proto-
col, where biopsies of midmyocardium for available car-
diac regions are directly snap frozen in liquid nitrogen
and adjacent transmural tissues are embedded in OCT
for immunofluorescence and fibrosis studies. Of particu-
lar note, the ICM-scar tissue analysed is taken from heart
with a historical MI>12 months (1-12 years), in which
the scar has matured to support the integrity of the heart.

Sample preparation for snRNA-seq

Isolation of high quality intact nuclei from snap frozen
cardiac tissue was performed according to our recent
study [34]. This protocol is built on expertise in the iso-
lation of CM nuclei from frozen tissue developed in
[35] and further optimization based on [36]. In brief,
70-100 mg of Snap frozen mid-myocardium tissues sam-
ples were mechanically homogenized using Miltenyi gen-
tleMACS™ Tissue Dissociator with gentleMACS M tubes
using the protocol “protein_01” in 5 ml lysis buffer solu-
tion (5 mM CaCL,, 3 mM MgAc, 2 mM EDTA, 0.5 mM
EGTA, 10 mM Tris—HCL in water supplemented prior to
use with 1 mM DDT (Sigma-Aldrich, 646,563), 1 pg/mL
actinomycin D (Sigma-Aldrich, A1410), 0.05% protease
inhibitor cocktail (Sigma-Aldrich, P8340), and 0.04 U/
pL RNA inhibitors-RNase OUT (Thermofisher Scientific,
10,777,019), then incubated on ice for 15 min with extra
5 ml of the same solution supplemented with 0.1% NP-40.
The lysate was then gently filtered through a 30 pum fil-
ter into a 15 ml conical tube, followed by rinsing the fil-
ter once with 2 ml lysis buffer supplemented with 0.1%
NP-40. Nuclei were then centrifuged at 1000 g for 5 min
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at 4 °C. The nuclear pellet was then resuspended in 2 ml
of sucrose buffer solution (1 M sucrose, 3 mM MgAc,
and 10 mM Tris—HCI supplemented with 1 mM DDT,
1 pg/mL actinomycin D, 0.05% protease inhibitor cock-
tail, 0.04 U/uL RNA inhibitors-RNase OUT, and 2 pg/
mL WGA (Sigma-Aldrich, L9640), and laid over another
2 ml sucrose solution in a 5 ml canonical tube. Centrifu-
gation was repeated according to the above parameters.
The supernatant was then removed, and nuclei resus-
pended in 400 pl nuclei wash buffer (PBS including 0.04
U/pL RNA inhibitors-RNase OUT, 2 pg/mL WGA, and
750 pg/mL UltraPure™ BSA), and centrifuged at 650 g for
6 min at 4 °C. The wash step was repeated as per the pre-
vious but with a centrifugation at 500 g. The sample was
then resuspended in staining buffer (wash buffer contain-
ing 0.02 mg/mL DAPI), for 10 min in 1.5 ml tube. Nuclei
were harvested by centrifugation at 500 g for 6 min. The
pellet was then resuspended in 300 pl of PBS, pooled with
the duplicate pellet of each sample, and filtered through a
35 p strainer into FACS tubes. Nuclei were sorted based
on size and DAPI positivity into 40 pl PBS containing
0.04 U/uL RNA inhibitors-RNase OUT and 750 pg/mL
UltraPure™ BSA using a BD Influx flow cytometer with a
100-uM nozzle, and collected in 1.5 ml tubes.

10x library preparation and alignment

Single sorted nuclei were counted using a LUNA-FL™
Counter (Logos Biosystems) in duplicates, after which
nuclei were centrifuged and then resuspended to a tar-
get concentration of 1,000 nuclei/pl and loaded on the
Chromium Controller (10x Genomics) to achieve a tar-
geted recovery of 6,000—10,000 nuclei per reaction. 3’
gene expression libraries were prepared according to
the manufacturer’s instructions of the v3 Chromium
Single Cell Reagent Kits (10x Genomics). Quality control
of ¢cDNA and final libraries was carried out by Bioana-
lyzer High Sensitivity DNA Analysis (Agilent). Librar-
ies were sequenced using a NovaSeq 6000 (Illumina)
at the Genomics Core facility at KU Leuven targeting
80,000 read pers nucleus. Nuclei were aligned to the
human GRCh38-3.0.0 transcriptome with “Include-
introns=TRUE” using the CellRanger (v6.0.1) soft-
ware (10x Genomics) according to the 10xGenomics
instructions.

Background removal with CellBender

All 20 samples were of high quality in terms of num-
ber of nuclei, reads per nuclei, and genes detected, and
were processed to remove ambient RNA using Cell-
Bender [37]. Samples were processed individually using
the remove-background tool from CellBender (v0.2.0) to
correct gene count matrices by removing ambient back-
ground RNA contamination (https://github.com/broadin
stitute/CellBender). Default parameters were used except
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for expected-cells parameter which was adjusted based
on the expected nuclei obtained from CellRanger (v6.0.1)
software.

Separating non-HF samples based on sex genes expression
Each HF sample was run on a separate Chromium 10x
chip lane. However, non-HF samples were run in pairs
and mixed based on sex (one female + one male sample
per lane). Sex chromosome genes were used to demul-
tiplex these samples as shown to work previously [38].
CellBender-corrected gene count matrices (HDF5 out-
put files) from each of the two mixed-donor samples
were imported into R using the Read10X_h5 function.
Donor sex assignment for each nucleus was determined
based on expression of Y-chromosome genes, retrieved
from the Ensembl reference genome (Ensembl release
108; archived at https://oct2022.archive.ensembl.org). A
nucleus was classified as male if the summed expression
across all Y-chromosome genes was greater than zero,
and as female otherwise.

Removing doublets by scDblFinder

Since the majority of our samples were run individually,
there were no homotypic doublets (doublets formed by
nuclei of the same cell type) from two different samples.
However, heterotypic doublets (doublets formed by
nuclei of different cell types), were removed using scD-
blFinder (v1.16.0) [39] using default parameters. scD-
blFinder, which uses SingleCellExperiment object (v
1.24.0) with non-stringent filtering of nuclei. Prior to
removing doublets, nuclei were filtered for mitochon-
drial and ribosomal reads<5%, nCount_RNA >500,
nFeature > 300, and nuclei complexity>0.8 (estimated by
logl0(obj$nFeature_RNA)/log10(obj$nCount_RNA)).
Thresholding was based on the expected doublet rate
which is estimated using the empirical rule applicable
to 10 x data, which is approximately 1% per 1000 nuclei
captured.

Clustering, sub-clustering, and annotationn of cardiac cell
types and FB cell states

Individual sample matrices were imported into the
Seurat package (v5.0.1) [40] and combined into a Seurat
object after removing background, separating NF sam-
ples, and removing doublets. No further filtering was
performed on the complete object. Normalization was
performed using NormalizeData() function with Log-
Normalize method and scaling factor of 10,000. Highly
variable genes (3000 genes) were obtained by FindVari-
ableFeatures() function using vst method, and scaling
was performed using ScaleData() function by regressing
mitochondrial reads and nCount_RNA to respect the
heterogeneity within the different cell types (CM have
higher counts and mitochondrial read % than other cell
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types). Then, dimensions were reduced by RunPCA(),
and samples were integrated using RunHarmony() func-
tion (v1.2.0) [41] with default parameters and by consid-
ering individual heart source as a batch to account for
individual biological heterogeneity. Harmony generated
dimensions were used subsequently in the analysis. A
nearest-neighbour graph was constructed using Find-
Neighbors() function using 31 dimensions obtained from
elbow plot assessment. The Uniform Manifold Approxi-
mation and Projection (UMAP) dimensional reduction
technique was performed using the RunUMAP() func-
tion with 31 harmony dimensions. Nuclei were clustered
with the FindClusters() function, applying the Louvain
algorithm at a resolution of 0.2. This resolution was cho-
sen based on prior literature to enable robust identifi-
cation of the major cardiac cell types. Cluster markers
were identified using Wilcoxon tests as implemented in
Seurat’s FindAllMarkers function with parameters logfc.
threshold=0.5 and min.pct=0.1, and p values were
adjusted using the Bonferroni method. Final assign-
ment of clusters to major cardiac cell types was guided
by established marker genes reported in the literature.
Annotations were validated using Azimuth’s reference-
based annotation (v0.4.6) [26, 29, 40, 42] and automated
heart mapping with default settings (Additional file 1:
Fig. S1g).

FB sub-clustering was performed by subsetting FB
nuclei and redoing similar steps as above with the follow-
ing differences: the number of variable genes was set to
2000 using the vst method, scaling was performed while
regressing nCount_RNA only, mitochondrial genes were
removed prior to marker analysis, 34 harmony dimen-
sions were used, for creating UMAP and finding neigh-
bours, and 0.4 resolution was used for clustering. The
clustering resolution was selected empirically to balance
over-splitting with sufficient granularity to resolve bio-
logically meaningful subpopulations, guided by marker
genes of clusters at different resolutions, and by assessing
clustering trees origins as resolution increases using clus-
tree (v0.5.1) [43]. Additionally, clusters were compared
and contextualized with published single-cell cardiac
atlases (see below). FB cell states markers were identified
using Wilcoxon tests as implemented in Seurat’s FindAll-
Markers function with parameters logfc.threshold =0.25
and min.pct=0.1, and p values were adjusted using the
Bonferroni method.

Comparison of FB clusters to literature

To compare our FB clusters with those described in
published studies, we applied the Tversky index (a=0.5,
p=0.5) to quantify similarity between FB states marker
gene sets to those from [16, 26, 29, 31, 44, 60, 68, 69].
Index values range from O to 1, with higher scores reflect-
ing greater overlap. Similarity scores were computed
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against reference clusters from prior cardiac fibroblast
atlases and visualized as heatmaps, allowing us to contex-
tualize our clusters relative to known fibroblast states and
highlight subtle transcriptional distinctions (Additional
file 1: Fig. S5). Similarly, we compared our FB clusters
with those reported in atherosclerosis from Wirka et al.
[45] using the Tversky index.

Cell type composition analysis

To test for differences in FB cluster composition across
disease groups, we used the speckle R package (v 1.2.0)
[46]. Cluster proportions were calculated and trans-
formed per sample using getTransformedProps with
‘logit’ transformation. Differences in overall cluster com-
position across groups (NF, DCM, ICM, and ICM-scar)
were first tested using propeller.anova. Pairwise group
comparisons were then performed with propeller.ttest
using contrasts defined in a linear model design matrix.
Multiple testing correction was performed using the
Benjamini—-Hochberg false discovery rate (FDR) pro-
cedure. Only clusters that were significant in both the
global ANOVA (FDR < 0.05) and at least one pairwise test
(FDR<0.05) were retained as robust findings.

SASP module scoring across fibroblast clusters

We computed a senescence-associated secretory phe-
notype (SASP) module score per nucleus using Seurat
AddModuleScore function with a curated SASP gene set
[47], then compared scores across FB clusters using violin
plots with cluster means overlaid.

Differential gene expression analysis

Differential expression was assessed using a pseudobulk
strategy using DESeq2 package (v1.42.0) using default
settings unless specified otherwise [48]. Lowly expressed
genes were filtered by retaining only those with counts > 1
in at least 10 cells. Pseudobulk counts was modelled
with a negative binomial generalized linear model, with
median-of-ratios normalization. Significance testing
was performed with Wald test. Multiple testing correc-
tion was performed using the Benjamini—Hochberg FDR
method.

To assess whether specific cardiac cell types exhibited
stronger transcriptional responses in each HF condition
compared to NF, we compared the number of differen-
tially expressed genes (DEGs) identified in each major
cardiac cell type across disease conditions vs NF. For
this purpose, single-nucleus profiles were aggregated
into pseudobulk counts per cluster and per sample using
Seurat::AggregateExpression (sum method). Differential
expression analysis was then performed at the sample
level with DESeq2. For each cluster separately, a DESeq2
dataset was constructed with design= ~ condition (con-
dition levels: NF, DCM, ICM, ICM-scar). Contrasts
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were defined to compare each disease group against NF
(DCM-NF, ICM-NF, ICM-scar-NF). Genes were con-
sidered differentially expressed if they met both statisti-
cal significance and effect size thresholds: an adjusted p
value (Benjamini—Hochberg correction)<0.05 and an
absolute log2 fold-change (|log2FC|)>1. To control for
compositional effects on DEG detection, we downsam-
pled each major cell type in every sample to equal abun-
dance and repeated the analyses, yielding nearly identical
results (Additional file 1: Fig. S3d-e).

For the activated FB state comparison, we restricted
the analysis to nuclei belonging to FB1 and FB4 clus-
ters. Pseudobulk counts were aggregated per cluster and
per sample, and differential expression was tested with
DESeq2 using a design formula ~ cluster. A contrast was
defined to compare FB4 versus FB1. To specifically inves-
tigate extracellular matrix remodeling, we intersected the
DEG results with a curated matrisome gene set [49] htt
ps://github.com/mahmoudibrahim/KidneyMap. ECM-r
elated DEGs were further filtered by requiring an abso-
lute log, fold-change greater than 0.5 and an adjusted p
value <0.05, and were annotated as upregulated in either
FB4 or FBI.

To identify transcriptional programs distinguishing
resting from activated FB states to identify resting-acti-
vated state pairs, we applied the same pseudobulk differ-
ential expression strategy as described above. Differential
expression was performed separately within the three
resting fibroblast clusters (FBO, FB2, FB3) and within the
activated fibroblast clusters (FB1, FB4, FB5). For each
cluster, one-versus-rest contrasts were defined using a
no-intercept design (design= ~0+ cluster) and numeric
contrasts to compare each cluster against the other two.
Genes were considered significant if they met both sta-
tistical and effect size thresholds (adjusted p value <0.05
and log,FC>1, selecting genes upregulated in the focal
cluster). The resulting gene sets were then intersected
to identify commonly regulated genes across resting
and activated fibroblast states, enabling the definition of
“resting—activated pairs” Overlap between these gene
sets was visualized using the UpSetR package (v 1.4.0)
[50].

In addition, direct comparison of ICM vs DCM FB was
performed at the single-nuclei level using Seurat’s Wil-
coxon rank-sum test (FindMarkers) with thresholds of
|avg_log2FC|>0.25 and adjusted p value<0.05. To fur-
ther distinguish aetiology-specific differences from those
associated with fibrosis, we repeated this comparison in
a pseudobulk framework while explicitly modeling fibro-
sis. Counts were aggregated per sample, and a DESeq2
model was fitted with the design ~ condition + fibrosis_z,
where fibrosis was standardized (z-scored) per sample.
This allowed testing of DCM vs ICM differences while
adjusting for fibrosis burden as a continuous covariate,
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to ensure that identified signatures were independent of
fibrosis levels.

Pathway analysis by ClusterProfiler

The ClusterProfiler (v4.10.0) [51] (https://github.com/
YuLab-SMU/clusterProfiler) R package was utilized to
study enriched pathways (GO and KEGG). A list of dif-
ferentially expressed genes was used with log2FC>0.25
and adjusted p value<0.05. Genes with positive log2FC
values were used to identify pathways enriched in dif-
ferent cell types and FB phenotypes using compare-
Cluster() function. For pathways enriched in different
groups, or genes obtained from correlation analysis using
enrichGO() and enrichKEGG() functions as specified in
the figures. Biological pathways “BP” subontology and
qvalueCutoff=0.05 was used in the analysis. The Sim-
plify() function on the enrichResult was used to merge
redundant pathways with the following parameters (cut-
off=0.7, by="p value", select_fun=min). In addition, to
specifically confirm the enrichment of circadian genes in
the comparison of DCM versus ICM after adjusting for
fibrosis burden, we tested the GO terms GO:0048511
(“rhythmic process”) and GO:0032922 (“circadian regula-
tion of gene expression”). Genes with log2FC>0.25 and
adjusted p value<0.2 were used as the input gene list,
while all genes tested in the DESeq2 model were used as
the background set. Fisher’s exact test (equivalent to a
hypergeometric test) was applied to quantify enrichment
by constructing a 2 x2 contingency table of overlapping
and non-overlapping genes between the DEG list and the
circadian gene set. Enrichment was considered signifi-
cant at p value <0.05.

Trajectory analysis and gene modules by monocle3 and
Slingshot

Trajectory analysis of FB phenotypes were performed
using monocle3 (v1.0.0) R package [52]. A Seurat object
of clustered FB was converted to a monocle3 object and
Seurat clusters and UMAP was used to build the trajec-
tory. A principal graph was fitted using the learn_graph()
function, and FB nuclei were assigned a pseudotime
value using order_cells() function based on their projec-
tion on the principal graph learned after choosing FBO as
the root state.

The graph_test() function was utilized to find genes
that vary between groups of FB nuclei in the UMAP plot.
This function is based on Moran's I spatial autocorrela-
tion analysis and was performed with “principal_graph”
neighbor graph and q-value threshold of 0.05. Then, the
varying genes detected in the previous step were grouped
into modules through Louvain community analysis with
find_gene_modules() function, which principally runs
UMAP on the genes instead of cells. Parameters were set
to default. The modules were clustered either based on 1)
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condition or 2) phenotype. Results were visualized using
pheatmap() (v 1.0.12) and clustered with the Ward D2
method. GeneNMF (v0.9.2) [53], a non-negative matrix
factorization approach to extract consensus gene pro-
grams, confirmed Module 7 by running multiNMF on
ICM samples (k=4:9, min.exp =0.05) and deriving meta-
programs with getMetaPrograms (metric="cosine",
weight.explained =0.8, nMP =13, min.confidence=0.7),
wherein 7/10 Module-7 genes mapped to one metagene
with significant resemblance (Fisher test, FDR =0.038).

To further analyse the trajectories separately during
FBO-FB1, FB2-FB5, and FB3-FB4 differentiation, we uti-
lized the Slingshot [54] package (v2.10.0). We subset
the corresponding states pairs from the Seurat object
and recomputed UMAP embeddings. Lineages were
initialized with the resting state as the starting cluster
(start.clus = FBO/FB2/FB3), learned via getLineages, and
smoothed with getCurves. Before fitting pseudotime
models, we applied a stringent per-trajectory gene filter
to save computational time: genes were retained if they
had>10 counts in>1% of cells in the trajectory subset.
Dynamic gene expression along pseudotime was mod-
eled with tradeSeq (v1.16.0) [55] using NB-GAMs (fit-
GAMY()), and association with pseudotime was tested by
associationTest. Genes were ranked by Wald statistic;
smoothed expression was obtained with predictSmooth
at 100 pseudotime points and visualized as row-scaled
heatmaps (no column clustering). It is important to note
that because these datasets comprise chronic, end-stage
samples collected across individuals, we interpret the
trajectory analysis as a descriptive ordering of continu-
ous gene-expression states rather than evidence of causal
cell-state transitions, and any inferred dynamics should
be considered hypothesis-generating or supporting evi-
dence for findings reached via other means.

For transcription factor (TF) identification, genes sig-
nificantly associated with pseudotime were intersected
with the curated TF catalog from Lambert et al., 2018
(“The Human Transcription Factors”) [56]. For each tra-
jectory, TFs changing along pseudotime were collected;
common and unique TFs across the three FB trajectories
were then derived by set intersections and visualized by
plotting pseudotime vs. smoothed expression.

Correlation analysis

Pearson correlation between the gene of interest and all
other genes was calculated using cor.test() function after
removing lowly expressed genes using aggregated data
per sample. A p value estimate was also reported with the
same function. The same approach was followed in calcu-
lating correlation of gene expression with fibrosis. Genes
were considered correlated when pearson>0.5, and p
value < 0.05 unless otherwise specified elsewhere.
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Cellular communication by NicheNet and CellChat
Analysis was performed using the ‘nichenetr’ R pack-
age (v2.0.0) as described recently [57]. NicheNet uses a
prior model based on integrating previous knowledge on
ligand-to-target signalling pathways. Gene expression
was filtered for min.pct=0.1 and log2 fold ratio>0. 5 in
both analyses. To predict ligands responsible for activat-
ing the resting FB states (FBO, FB2, and FB3), genes posi-
tively correlated with fibrosis within each of these resting
FB states were used as geneset of interest (the genes that
are hypothesized to be expressed as a result of ligand
activity), and genes positively correlated with fibrosis
from all cardiac cells in HF were considered as sender
(ligands that would cause such change in gene expres-
sion). FBO, FB2, and FB3 were considered as the target.
Genes were considered correlated when pearson>0.5,
and p value<0.05. The ‘predict_ligand_activities’ func-
tion was used, and the top upstream ranked ligands were
chosen based on the corrected AUPR (Area Under the
Precision-Recall Curve) values. A heatmap represent-
ing a ligand-target network was created using data of
best ranked ligands and their corresponding target genes
found within differentially expressed genes between the
condition of interest and the reference condition.

CellChat (v1.1.3) was employed to confirm our previ-
ous results by checking communication probabilities
from the main cell types and FB states on FBO, FB2, and
FB3 that were upregulated in HE. A CellChat object list
was made by running the default parameters on HF and
NF datasets separately. Then, a merged cellchat object
was made from the list after lifting the objects to ensure
comparison between the datasets (due to differences
in cell composition). netVisual_bubble() was utilized
to compare the communication probabilities of ligand-
receptor pairs from a group of cells to another group of
cells. Default parameters were used.

Spatial transcriptomic data analysis

Raw histology images and processed Seurat objects
of each slide were downloaded from [31]. For the 1st
approach, FB states markers and major cell type mark-
ers from our snRNAseq dataset was obtained (avg_
log2FC>0.5 for FB and avg log,FC>2 for major cell
types) and genes module scores of each cell state/type
were calculated for each spot using AddModuleScore()
function in Seurat. A module score is a measure used
to quantify the activity or expression of a predefined set
of genes. A high module score of a specific geneset (FB
states/cell types) within each spatial spot thus suggests
the presence of that cell state/type within that spot. For
the 2nd approach, we employed the DOTr package (v0.9)
[58], which facilitates flexible feature transfer to spatial
omics data, to integrate our snRNA-seq data with pro-
cessed spatial transcriptomics datasets from [31] using
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default parameters unless specified. We used our NF
snRNAseq dataset with cardiac cell type and main resting
FB states to deconvolute the spots in each of the NF slides
(N'=4). Similarly, we used our HF snRNAseq dataset with
cardiac celltypes and FB states to deconvolute each of the
visium fibrotic tissue slides (N'=6). The reference dataset
was created using setup.ref function, and the respective
target spatial data was processed by setup.srt function.
Dot object was created with create. DOT function, and
deconvolution for each spatial slide was performed by
run.DOT.lowresolution function (ratios_weight=1, max_
spot_size =20). we evaluated the deconvolution results
using three complementary approaches. First, we com-
pared group-level means, confirming that the deconvo-
luted proportions were consistent with expected biology
(e.g., decreased cardiomyocytes in fibrotic regions; see
Additional file 2: Table S10). Second, we assessed spatial
correspondence with histology, where cell-type enrich-
ments aligned with known anatomical structures, such as
cardiomyocyte-rich regions and vascular niches. Third,
we evaluated the method using the published human
heart snRNA-seq atlas from Kuppe et al. as a reference,
applying the same DOT parameters. We then calculated
Spearman correlations between the cellular composi-
tions of the atlas and the deconvoluted spatial data. These
showed high concordance, comparable to that reported
in the original study (see Additional file 1, Fig. S8a).
The cell-state and cell-type abundance estimates gener-
ated by DOT for all slides were used as input for mistyR
(v1.10.0) [14] to assess the influence of the abundance of
each primary cell type on the abundance of FB states and
other major cell types. The data were modelled using a
multiview framework that considered two distinct spatial
contexts: (1) an intra-view, which examines relationships
within the same spot using create_initial_view() function,
and (2) a juxta-view, which accounts for relationships
between immediate neighbouring spots using add_
juxtaview(neighbor.thr = 155) function. The model output
includes importance scores, where higher values indicate
that the abundance of a specific cell type (target) can be
spatially predicted by another cell type (predictor). The
median standardized importance scores from each view,
aggregated across all slides, were interpreted as indica-
tors of spatial dependencies between cell types-such as
colocalization or mutual exclusion. An importance score
threshold of 0.5 was used to identify meaningful interac-
tions. It is important to note that these interactions are
correlative in nature and do not imply causal relation-
ships. The resulting spatially resolved cell type maps were
validated against known anatomical structures and histo-
logical data.
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Histology for fibrosis and collagen quantification

OCT-embedded tissue block samples from the same
biopsy tube as used for sequencing were utilized to main-
tain a strong correlation between transcriptomic data and
fibrosis quantification. Tissue slices, 5 um in thickness,
were stained using PicroSirius red dye (PolySciences) for
collagen assessment. These sections were then mounted
and visualized under a Zeiss Axioplan microscope using
a 20xmagnification objective. Images were managed
and analysed using Zeiss ZEN 3.7 software. The extent
of fibrosis was quantified through Image] (FIJI) software,
and results were presented as the percentage of the area
covered by the dark staining of fibrotic regions.

Histology for top FB states markers from Human Protein
Atlas

Proteins encoded by top markers for each state were
checked in Human Protein Atlas (https://www.prote
inatlas.org/) [59]. Antibodies are labelled with DAB
(3,3'-diaminobenzidine) and the resulting brown staining
indicates where an antibody has bound to its correspond-
ing antigen.

Data visualization

All visualizations were performed in R. Most plots were
prepared using the same packages utilized to perform
the analysis. Some plots were visualized using ggplot2
(v3.5.1) or scCustomize (v 2.0.1).

Statistics and reproducibility

No formal sample size calculations were conducted as
this is an exploratory study. Sample size was based on
heart and tissue availability across the different groups
and was chosen with a design for deep sequencing to
recover high cell numbers. Each sample in each condi-
tion represents a unique biological replicate. No samples
were excluded from the analysis. All analyses were per-
formed using R Software, 4.3.2. Statistical tests used and
number of biological replicates per condition are indi-
cated in the legends. Data were considered significantly
different when the p value or adjusted p value padj (or Q)
were < 0.05. Where relevant, individual sample data are
shown in the supplemental figures. For image analysis,
the investigator was blinded.

Results

Global cellular landscape and changes with heart failure
We performed snRNA-seq (10xGenomics) on nuclei
isolated from cardiac tissue (mid-myocardium) snap-
frozen at the time of transplantation, representing these
HF aetiologies (ICM; N=5; DCM; N=6). Data was com-
pared with closely aged-matched non-failing donor
hearts (NF; N=4) (Fig. 1a). Five samples taken from a
visibly scarred region of ICM hearts were also analysed

Page 8 of 27

(ICM-scar; N=5, 3 of which were matched with ICM
samples) (Fig. la). Samples were distributed between
male and female (Additional file 2: Table S1). NF samples
were demultiplexed based on sex genes. As indicated by
Sirius Red staining, fibrosis was more prevalent in HF
samples, particularly scar, although substantial variabil-
ity was detected (Fig. 1b-c). To optimize capture of lowly
expressed genes, cell types and cell-type heterogeneity
within each sample, we targeted 8,000 nuclei per sample
at a read depth of 80,000 reads per nucleus. After qual-
ity control, 142,024 qualified nuclear transcriptomes
remained that had a median of 2,288 genes and 5,672
counts detected (Additional file 1: Fig. Sla and b for per
sample data).

Louvain clustering of the snRNA-seq dataset yielded
18 clusters (Fig. 1d), representing 13 different cell types,
which were annotated according to their expression of
cell specific markers (Additional file 1: Fig. Sle), top
expressed genes (Additional file 2: Table S2), and con-
ventional biological functions using Gene Ontology path-
ways (Additional file 1: Fig. S1f). Amongst these clusters,
FB were most abundant, accounting for ~35% of all cells
(Additional file 2: Table S3), followed by CM and endo-
thelial cells (EC), which were also highly prevalent. The
remaining nuclei included myeloid cells (MC), pericytes,
smooth muscle cells (SMC), lymphoid cells, endocardial,
lymphatic EC, mast, neuronal, and adipocytes (Fig. 1d).
While MC mainly comprised macrophages, B and T cells
were identified in distinct clusters. Confirming successful
nuclear isolation and data processing, all cell types con-
tributed to all conditions, sex, and sequencing batches
(Additional file 1: Fig. S2a-c).

Next, we investigated how cell type composition
changed in HF (Fig. le, Additional file 1: Fig. S2d, and
Additional file 2: Table S4). While the presence of fibro-
sis suggested increased FB abundance in HF, this was
not observed in the compositional analysis (see Addi-
tional file 1: Fig. S2d for per heart data). Differential gene
expression (DEG) analysis of pseudo bulk snRNA-Seq
data identified FB as the cell type showing the greatest
transcriptional alterations in all HF groups compared to
NF (Fig. 1f). This substantial alteration in FB gene expres-
sion was also apparent in correlation analysis, where
expression of fibrosis-related genes (TGFB1, COLI1AI)
and enrichment of cell pathways (RNA machinery) cor-
related positively with fibrosis determined histologically
(Additional file 1: Fig. S3a-c and Additional file 2: Table
S5). The greater number of DEG in FB was retained after
downsampling of data to achieve equivalent numbers of
all cell types, indicating that this higher number of DEG
was not related to the greater proportion of FB in the
myocardium (Additional file 1: Fig. S3d-e). CM exhibited
the next greatest number of DEG in all HF regionsCM-
related gene pathways, including muscle development,
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Fig. 1 Cellular distribution and contribution to the failing human heart. a Overview of human hearts and aetiologies for cardiac tissue samples, taken
from the mid myocardium of the LV free wall. NF, non-failing unused donor heart, DCM dilated cardiomyopathy, ICM ischemic cardiomyopathy. In ICM
hearts, samples were taken from non-scar and scar tissue. Adapted from smart.serviercom. b Images of fibrosis near the regions sampled for RNA se-
quencing. Sirius red staining. ¢ Fibrosis quantification as percentage of Sirius Red staining of the total area. Data represents mean + SD. Kruskal-Wallis test
used. Dunns multiple comparison test was used. *, p value <0.05; **, p value <0.01. d. 2D visualisation (UMAP dimensionality reduction) of pooled data
from all samples (142,024 nuclei), highlighting different cell types. e Relative abundance of each FB cluster across disease groups (NF: n=4; DCM: n=6;
ICM: n=5; ICM-scar: n=5), measured in the integrated snRNA-seq dataset (same colour code as in panel d). Cluster proportions were analyzed using the
speckle R package. Benjamini-Hochberg FDR correction was used. No statistical significance was observed after correction. f Percentages of differentially
expressed genes (DEGs) in each cell type comparing every HF condition vs non-HF determined in pseudo-bulk analysis. CM; Cardiomyocytes, FB; Fibro-
blasts, EC; Endothelial cells, SMC; Smooth muscle cells, MC; Myeloid cells
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Fig. 2 Fibroblast heterogeneity within non-failing and failing human hearts. a 2D visualisation (UMAP) of FB subclustering (49,308 nuclei), highlight-
ing identified FB states. b Relative abundance of each FB cluster across different conditions, as measured in the integrated snRNA-seq dataset. Cluster
proportions were analysed with the speckle R package. Benjamini—-Hochberg FDR correction was used (NF: n=4; DCM: n=6; ICM: n=5; ICM-scar: n=5).
*c indicates all HF groups are significant compared to NF with FDR<0.05. * indicates significance for the selected comparisons with FDR <0.05. ¢ Dot
plot showing the top five marker genes of each subcluster. Dot colour and size correspond to the expression of each gene and the proportion of cells
expressing each gene, respectively. d The top five enriched Gene Ontology pathways of each FB cluster. The number in parenthesis indicates the number
of DEGs. e Volcano plot showing FB1 (left side) and FB4 (right side) differentially expressed genes. Some matrix genes are labelled. Q; adjusted p value. f
Heatmap showing enrichment of PROGENy pathways in different FB clusters. g. Bar plot showing FB proliferation proportion in different regions based

on cell cycle scoring

contraction, and fatty acid oxidation, showed negative
correlations with histological fibrosis (Additional file
1: Fig. S3a-c and Additional file 2: Table S5). Together,
these data highlight FB as a highly plastic cell type, which
undergoes substantial remodelling during HE.

Clustering of fibroblasts into subpopulations

Based on their transcriptomes, cardiac FB have been sub-
divided into multiple substates, which correlate with dif-
ferent functional properties and activation state [26-31,
60]. We therefore investigated whether the transcrip-
tomic changes in FB could be explained by alterations
in FB substate identity and proportions. Unsupervised
sample-level analysis of FB showed that aetiology and
location, i.e. DCM, ICM non-scar and ICM-scar, are the
main determinants of sample separation (Additional file
1: Fig. S4a). Sub-clustering of FB from NF, ICM, DCM
and ICM-scar (7 =49,308 nuclei) identified 9 FB substates
that varied in their presence and relative proportions
according to the biological condition (Fig. 2a-b; Addi-
tional file 1: Fig. S4b presents data for each heart). FBO,
FB2, and FB3 dominated in NF tissue.

In HF, while FBO, FB2, and FB3 remained major con-
tributors, emergence of FB1 and FB4 across all HF
groups, resulted in an increase in the overall heterogene-
ity of HF FB. FB5 also increased significantly in ICM-scar.
FB7 and FB8 were uniquely expressed in ICM-scar, albeit
at a very low abundance. FB6, was equally abundant
across all conditions.

Resident FB populations of the NF heart

To investigate the relevance of each FB state to aetiol-
ogy, their functional phenotype was first investigated
by analysis for enrichment of marker genes (Fig. 2c and
Additional file 2: Table S6) and pathways in the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGQG) relative to all other clusters in the
dataset (Fig. 2d, Additional file 1: Fig. S4c, and Additional
file 2: Table S7 and 8).

The dominance of FBO, FB2 and FB3 states in NF and
their reduction in pathology categorized these FB states
as contributors to the normal functioning of the NF
heart. Moreover, these proposed resting FB populations
expressed genes involved in the housekeeping function
of FB to deposit and remodel the ECM. Specifically, FBO

is characterized by expression of genes and pathways
associated with extracellular matrix (ECM) structure,
and of its remodelling i.e. the metalloendopeptidases,
and hydrolase activities. With 216 enriched genes, this
FB state showed the least specialization in its transcrip-
tional remodelling in HEF, including between NF and Scar
(compared to other clusters. Figure 2d x-axis in paren-
theses), suggesting it represents a more resting FB state.
FB2 was enriched for genes encoding the growth factors
FGF7 and FGF10, complement, FOS-related genes, and
BMPER, while matrix-related genes were less expressed.
These genes contributed to upregulated pathways related
to growth factors, glycosaminoglycans, glucocorticoid
receptor binding, tyrosine kinase activity, and MAPK,
FoxO, and JAK-STAT signalling. Together, the patterns of
expressed genes and enriched pathways suggest a more
signalling/regulatory function for this state than in ECM
secretion. FB3 is distinguished by a signature of gene
expression and pathways involved in ECM-modulation,
including the procollagen C-endopeptidase enhancer
(PCOLCE?2) involved in collagen maturation, and fibrillin
1 (FBN1I), and pathways involved in ECM and ECM com-
ponents, actin, cadherin, and integrin binding. Together,
these findings underline the important role of this cluster
in matrix modulation and mechanosensing.

Activated FB states in HF

While the abundance of both FB1 and FB4 was low to
negligible in NF, these states were significantly more
abundant in HF across all groups. Indeed, FB1 emerged
as one of the dominant FB states in HF. Enrichment of
FB1 and FB4 for expression of genes associated with FB
activation including POSTN, FAP, TNC, and THBS4 and
in pathways related to ECM tensile strength is support-
ive of these FB states being of an activated phenotype.
To probe the specific contributions of these 2 states to
HF-associated fibrosis, we analysed differential expres-
sion of genes (pseudobulk data) between them focusing
on a curated set of ECM-related genes (termed the matri-
some) [49]. A significant number of these genes was dif-
ferentially expressed (0.5 log, fold change cutoft, total 144
ECM-related DEGs, 61 in FB1 and 83 in FB4) (Fig. 2e).
FB1 enriched genes included tenascin C (TNC), encoding
a matricellular protein with functions including adhesion
of CM to ECM in the BZ after MI [61, 62] and tolloid like
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2 (TLL2), encoding a procollagen C-proteinase member
that facilitates the proteolytic processing of pro-LOX
to LOX [63]. Genes upregulated in FB4 vs FB1 includ-
ing COL22A1, CTHRC1, COL1AI, CILP, and COMP
that contribute to TGF-fB signalling, ECM deposition
and MyoFB activation are consistent with FB4 being of a
more activated state than FB1 [9, 24, 32, 64—67].

FB1 and 4 also express unique patterns of genes unre-
lated to fibrosis. FB1 expresses NRXN3, a gene encoding
a synaptic cell adhesion molecule critical for maintaining
neural connections and aiding cell migration. FB4 shows
increased expression of genes encoding proteins involved
in membrane excitability and calcium handling, includ-
ing FAM155A, which is found in a complex with the non-
selective cation channel NALCN, and of KCNMAI, a
calcium-regulated potassium channel.

Taken together, the analysis identified two activated
FB states in HF. Differences in the degree of activation
of fibrosis-related genes and the presence of uniquely
expressed genes suggest however functional specializa-
tion or differences in origin and/or tissue location of
these two FB states.

Unique FB states characterize the ischemic scar region
Given the central role of FB in sustaining cardiac integ-
rity after MI, we also analysed FB remodelling in the
ICM-scar. This region exhibited the greatest diversity of
FB where, compared to HF, 2 additional substates, FB7
and FB8 emerged, and the abundance of FB5 significantly
increased. FB7 was however only increased in abundance
in 2 out of 5 samples and FB8 in 1 of the 5 scar samples
(Additional file 1: Fig. S4b). Despite their decreased
abundance relative to NF, FBO and FB2 remained signifi-
cant contributors to FB in ICM-scar.

Properties of ICM-scar-enriched FB states were next
investigated. FB5 was enriched for genes associated with
interactions with the ECM and the cytoskeleton (e.g.,
MAGII, MYHI0, ACTA2), and ECM modulation (e.g.,
ELN, COL21A1), which contributed to the pathways
‘actin filament’ and ‘collagen’ Genes with a more signal-
ling function were also enriched in FB5, including those
that inhibit the calcineurin and TGF-f pathways. Consis-
tently, calmodulin binding was enriched in this pathway
analysis. FB7 and FB8 exhibited the greatest number of
enriched genes (931 and 1,087 respectively, compared
to 216-495 in other cell states; Fig. 2d), indicating their
transcriptional diversity and substantial remodelling
during scar formation, and suggestive of greater spe-
cialization. These FB states show some similarity with
each other in gene enrichment, including SERPINEI and
NFATCI and 2, and in pathways involved in inflamma-
tion and hypoxia, including those involving HIF-1 and
TNFa signalling.
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The significant transcriptional changes and low apop-
tosis gene signature (least enrichment of Trail pathway
from PROGENYy; Fig. 2f) in FB7 and FB8 also suggested
a link between these states and cellular senescence.
Consistently, cell cycle gene-scoring detected a general
increased proliferation in HF across all groups, includ-
ing scar (increased G2M/S vs G1) (Additional file 1: Fig.
S4d), whereas FB8 and to a lesser extent FB7, exhibited
a decrease in G2M/S phase genes, suggesting lower cell
proliferation (Fig. 2g). Further supporting the senes-
cent phenotype of FB7 and 8, they showed enrichment
for genes associated with the senescence-associated
secretory phenotype (SASP; for example IL-6, IL-8, and
MMPs) [47] (Additional file 1: Fig. Sde).

FB6 was present in all groups with no alteration in pro-
portion between conditions. This FB state was enriched
in gene sets related to antigen presentation roles, includ-
ing those associated with major histocompatibility
complex, class I and stress induction, such as Human
Leucocyte Antigen (HLA), Heat Shock Proteins (HSP), in
addition to some genes associated with CM (Additional
file 1: Fig. S4f). As this FB state was not influenced by dis-
ease state, we did not examine it further.

Together, these data further demonstrate the unique
nature of scar tissue containing FB in advanced stages of
maturation and senescence, as well as containing resident
and activated FB.

Comparison of identified FB states to published cohorts

Previous single-cell/nucleus RNA-seq studies of human
cardiac cells have also assigned FB to multiple substates.
Given that our aim was to identify FB phenotypes spe-
cific to different aetiologies, including scar, rather than
project our FB onto established states that may not span
the diversity of our sample groups, we assigned FB in an
unbiased manner. To contextualize our findings, we com-
pared marker genes from published cohorts [16, 26, 29,
31, 44, 60, 68, 69] to our states using the Tversky index
(for detailed one-to-one comparisons, see Additional file
1: Fig. S5; extensive figure legend). FBO was predomi-
nantly described as a basal/lipogenic state and aligned
with a universal COL15A1" FB state; FB2 was more con-
sistent with immune/chemokine-responsive state; FB3
reflected a matrix-modulatory state and overlapped with
PI16* universal FB; FB1 and FB4 were mostly captured
as a single activated/myoFB state; FB5 also mapped to
myoFB state; FB6 showed similarities spread across mul-
tiple, variably defined clusters; and FB7 and FB8 were
closest to a SERPINE1* FB population. Supporting the
classification of FB in our dataset, our main FB states
(FBO-FB5) mapped closely to the consensus FB clusters
defined in the cross-study transcriptional patient map
of heart failure [69], with one exception: we resolve two
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Fig. 3 Activation of FB is state and context dependent. a Left, Schematic of the workflow used in the analysis. Right, UpSet plot visualizing the overlap
of differentially expressed genes (DEGs) between activated and native fibroblast states. Each set represents a fibroblast state with the number of DEGs
identified. Native FB states (FBO, FB2, FB3) and activated FB (FB1, FB4, FB5) were compared separately. Intersections indicate genes shared between clus-
ters compared to the other clusters (log, fold change threshold =0.25). b and ¢ UMAP visualization of trajectory inferred by monocle3. Cells are coloured
by cluster (b) or pseudotime (c). The centre of FBO was used as a reference to order cells and assign Pseudotime values for each cell. d Expression levels
of selected genes along pseudotime (COLTAT, FAP, POSTN, and ACTA2). e Venn diagram grouping of the associated transcription factors with pseudotime
along each trajectory. f Individual transcription factors that are shared and specific between trajectories. The colour code relates to the groupings shown

in (f, g). Transcription factor expression over pseudotime

distinct activated FB states (FB1 and FB4), whereas these
two states fall within a single activated state in that study.

Different activated FB states arise via distinct trajectories
from different resting states

The dominance of FBO, FB2, and FB3 in NF, and the
increases in FB1, FB4, and FB5 in HF suggested that
states present in HF derive from those in NF. To test
this, we investigated shared patterns of gene expres-
sion between resting and activated FB states. To these
ends, we first separately identified the genes specifically
enriched amongst each of the resting and activated FB
states and then intersected these to identify the associ-
ated resting-activated FB state pairs (Fig. 3a). The FBO-
FB1 and FB2-FB5 pairs shared the greatest number of
enriched genes, consistent with trajectories from FBO to
FB1 and FB2 to FB5. FB3 showed the most overlap with
FB4, but with close numbers to other activated states.
Similar trajectories were detected in by constructing a
matrix of DEGs of each FB state vs all (Additional file 1:
Fig. S6a).

To further explore these potential pathways of dif-
ferentiation, avoiding introducing bias through exclu-
sion of any FB states, we performed a trajectory analysis
(Fig. 3b). This analysis revealed a trajectory initiating at
FBO that passed through FB1 and ending in FB4 and
another progressing from FB2 towards FB5. FB3 did
not directly progress towards FB4 but was linked to a
branch point with FBO and FB2, in addition to FB6 and
FB7. Pseudotime of differentiation was higher when pass-
ing through FB1 and FB4, consistent with the notion that
FB1 arises from FBO and that FB4 is a more differenti-
ated phenotype than FB1 (Fig. 3c). Of note, FB5 showed
a relatively lower pseudotime compared to other acti-
vated FB, suggesting its greater similarity to resident
FB. Furthermore, supporting a relationship between FB
differentiation trajectory and fibrosis, FB activation and
fibrotic genes (COL1A1, FAP, POSTN) showed increas-
ing expression along the trajectories of differentiation
(Fig. 3d). Of interest, ACTA2 (encoding alpha smooth
muscle actin, «-SMA) showed increased expression in
the middle of the trajectory followed by a rapid decline,
in line with previous data that a-SMA is lost in advanced
disease [9].

Although a direct link between FB3 and FB4 or FB1
was not detected in our analysis, a transition from a

resting state similar to FB3 to more activated states has
been described previously [31], and similarities in gene
expression in atherosclerosis studies support such a link
(Additional file 1: Fig. S6b).

To investigate mechanisms underlying the different dif-
ferentiation paths of each resting state, we analysed gene
expression along differentiation trajectories (pseudotime)
identified by Slingshot for FBO to FB1, FB2 to FB5, and
EB3 to FB4. This analysis identified many DEG that were
common to all trajectories (66.8%), as well as unique
genes and pathways (Supplemental data, Fig. 6¢c-e). Next,
we identified transcription factors that were differen-
tially expressed along the studied trajectories (Fig. 3e).
Again, many were common to all trajectories (70.8%),
while others were unique. While some of the identified
transcription factors have been previously implicated in
FB differentiation and cardiac fibrosis (AEBP1, MEOXI,
RUNX?2, TEADI), others have not (eg. LEF1, TFDP2,
GLI2) (Fig. 3f). Specifically, LEFI was specific to FBO-FB1
differentiation, AEBP1 to FB3-FB4, TFDP2 to FB2-FB5,
and GLI2 was common to all (Fig. 3g and Additional file
1: Fig. Sef). Additionally, RUNX2 was among the tran-
scription factors specific to FBO-FB1 and FB3-FB4 only,
TSC22D1 for FB2-FB5 and FB3-FB4, and GATA6 for
FBO-FB1 and FB2-FB5 (Additional file 1: Fig. S6g i-iii).

Together, these findings demonstrate that FB differen-
tiation follows a path specific to the resting state.

Conserved and distinct ligands govern resident fibroblast
activation

Beyond their transition to activated states, resting FBs
exhibit differences in their transcriptomes between NF
and HF (Additional file 1: Fig. S7a) that represent the ini-
tial stages of their activation. We therefore investigated
the identities of the paracrine cues that could instigate
the activation of these resting (FBO, FB2, and FB3) FB
states. To this end, we used NicheNet to identify relevant
ligand-receptor interactions. To restrict the analysis to
the analysis of fibrosis (treating fibrosis association as a
surrogate for FB activation), genes from all cell types that
are positively correlated with fibrosis were considered as
potential ligands (data from Additional file 1: Fig. S3 and
Additional file 2: Table S5), and within each resting FB
cluster, genes that were positively correlated with fibrosis
were considered as potential targets (Fig. 4a and Addi-
tional file 2: Table S9).
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Across the three resting FB states, this analysis yielded
an expected repertoire of ligands involved in fibrotic
remodelling, although not all were found in all states, and
in some cases, were unique to one state (Fig. 4b). Notably,
TGF-B, exhibited high regulatory potential for multiple
targets in FBO and FB3, including its receptor TGEPR1,
collagens and periostin but was not prioritized as a ligand
for FB2 activation. CTGF, SERPINEI, FN1, PROSI,
FGF1, and COLIAI however were common to all three
FB states with high potential for regulating expression of
target fibrotic genes. Other activation ligands were spe-
cific to individual states. For example, the junction adhe-
sion molecule JAM?2 for FBO, adhesion molecule ICAM2
for FB2, and the TGF-f superfamily member INHBA for
FB3. These ligands were enriched in pathways related to
chemotaxis, migration, and proliferation (Fig. 4c), cor-
roborating the understanding that fibrosis involves cell
recruitment, expansion, and invasion.

Further analysis of ligand-target relationships for each
FB state revealed common targets for ligands, suggest-
ing a requirement for this interaction for FB activation
irrespective of state (Fig. 4d-f and Additional file 1: Fig.
S7b-c). For example, CTGF, SERPINE1, TGFBI, PROSI,
FGF1I, and COL1A1 were identified as key players influ-
encing fibrotic genes (Fig. 4d-f). Many target genes were
common between FBO, FB2, and FB3 (27.6%), while oth-
ers were specific to each state (Additional file 1: Fig. S7b).
GO pathway analysis of these genes showed common
pathways across all FB states including adherens junc-
tions, SMAD and actin binding (Additional file 1: Fig.
S7¢). Histone demethylase activity and phosphatidylcho-
line binding were specific to FB3 targets, while response
to peptide hormones and protein dephosphorylation
were specific to FB2 targets. FBO did not have any specific
GO pathway.

The cell type origin of key ligands was next identi-
fied through analysis of their expression across the cell
types of the heart, and whether they were differentially
expressed in HF. Although many cardiac cell types con-
tributed, FB and EC were the greatest ligand expressing
cell types across all conditions (Additional file 1: Fig. S7d).
However, and suggesting a dominant role for autocrine
signalling in FB activation, activation ligands were most
differentially expressed in FBs during HF (Additional file
1: Fig. S7e). Relatively few activation ligands were dif-
ferentially expressed during HF in EC on the other hand
(Additional file 1: Fig. S7e). Non-FB expressed ligands
also exhibited high regulatory potential. For example,
JAM?2, a ligand involved in FBO activation, was expressed
in EC and CM and upregulated during HF. PDGFB,
involved in FB2 activation, was expressed in myeloid cells
and upregulated during HF, while FGF1I, involved in FB3
activation, was primarily found in pericytes and smooth
muscle cells (SMCs) and upregulated during HF. This
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suggests distinct interactions between FBO and CM, FB2
and immune cells, and FB3 and the vasculature.

We also examined cell—cell interactions between all
cardiac cell types and the ligands involved without a pri-
ori prioritization of ligands and targets using CellChat
(Fig. 4g-h). The findings were overall consistent with
the above analysis in that the FB targeting ligands which
increased in number and communication probability
in HF vs NF significantly overlapped with those identi-
fied through a priori prioritization in the above analysis
(Additional file 1: Fig. S7f).

Collectively, these findings demonstrate that the acti-
vation of resting FB states within the heart is mediated
by pathways that are common between states, as well as
by pathways unique to each state—the latter suggesting
exposure to unique ligands, potentially within a specific
spatial niche.

Spatial organization of resident FB states

The presence of several resting FB states that follow dis-
tinct activation trajectories involving different ligands
to activated states with potentially specialized functions
raised the question whether these new FB states were
specific to different myocardial locations. We therefore
probed the distributions of these FB states by integrating
our data with a publicly available spatial transcriptomics
dataset of the NF myocardium (Visium, 10x Genom-
ics) [31] (Fig. 5a-b). First, based on genetic markers, the
enrichment of each FB state and major cell type (module
score) within a spot of the Visium array was calculated.
We then used our snRNA-seq dataset as a reference
to deconvolute the spatial transcriptomics data and
assigned weights to each cell type/state abundance within
each spot using DOTr. After validation of the deconvo-
lution approach (see methods, and Additional file 1, Fig.
S8a), MISTy was applied to evaluate the contribution of
each cell type (quantified as and importance score), to
predict the spatial localization/exclusion of FB states (tar-
get) within each spot (intra-view). Analysis regarding the
immediate surrounding spots (juxta-view) can be found
in the Additional file 1, Fig. S8b-f.

Illustrating the architecture of the samples analysed,
CM and SMC showed high module scores in the regions
shown histologically to be rich in CM and vessels, respec-
tively, with MC being found in vascular and CM-rich
areas (Fig. 5b-c). While both FBO markers were dispersed
across the myocardium, FB3 was substantially enriched
around the vasculature. FB2 showed a distribution inter-
mediate between FBO and FB3; i.e. interstitial distribu-
tion but reduced perivascular distribution compared
to FB3. Using an importance cutoff of 0.5 applied to
MISTy’s aggregated estimated standardized importances
(median) to detect the most robust dependencies, we
then investigated the spatial dependencies between each
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Fig. 4 Conserved and distinct ligands govern FB activation onset. a Schematic of the workflow used in the analysis. b Venn diagram grouping the top
ligands identified to contribute to FB activation. ¢ The top 10 enriched Gene Ontology pathways of activation ligands (shown in b). d-f NicheNet ligand-
target matrix denoting the regulatory potential between predicted ligands and activation target genes (positively correlated to fibrosis) in resident FBO
(d), FB2 (e), and FB3 (f) states. g and h Heatmap showing differential interaction strength between HF and NF main cell types with FB as one main cluster
(g) or FBO, FB2, and FB3 states separately (h). The blue colour indicates that the displayed communication is decreased in HF, while the red colour indicates
that communication is increased in HF compared with NF. The bar plots highlight the sum of absolute interaction strength of each cell type as senders

(right) and receivers (top)

resting FB state and between each resting state and other
cell types. In line with their distinct histological local-
izations, SMC location was dependent on the presence
of CM and arterial EC (EC_art) within the Visium spots
(Fig. 5e), showing colocalization with EC_art and exclu-
sion with CM within the Visium spots (data not shown).
Resting FB states showed dependencies with each other,
associated with mutually exclusive localization in differ-
ent spots, particularly when highly expressed (Fig. 5e-f).
FBO and FB2 did not show any dependency with CM,
SMC, MC or EC_art, highlighting the absence of direct
co-localization within each spot. However, FB3 showed
a strong dependency on CM. Analysis of the juxta-view
dependency provides information on the co-occurrence
or exclusion in the immediate neighbourhood (Addi-
tional file 1: Fig. S8b-c). This analysis supported the
spatial distribution of FB3, together with SMC in the vas-
culature but not in CM-rich regions (Additional file 1:
Fig. S7e) while the CM-rich distribution of FBO supports
FBO as being an interstitial FB state (Additional file 1: Fig.
S7f).

Confirming localization of FBO and FB3 to interstitial
and vascular regions respectively, protein markers of
these states, identified as enriched in the RNA-seq analy-
sis, were localized to these regions in the human protein
atlas (HPA). Specifically, as a marker of FB3, we probed
the distribution of VCAN, CD55, FBNI1, FBLN2 (encod-
ing proteins Versican, CD55, Fibrillin 1, and Fibulin 2
respectively) and found them to be strongly expressed
in the vasculature and not the CM-rich area (Fig. 5g and
Additional file 1: Fig. S9a-c). Conversely, the markers of
FBO, LAMBI and COL15A1 (encoding Laminin subunit
beta 1 and Collagen type XV alpha 1 chain proteins,
respectively) were highly expressed in the CM-rich areas
and not in the vasculature (Fig. 5h and Additional file 1:
Fig. S9d).

Together, this integration of single nucleus and spa-
tial RNA-Seq with histochemical analysis strongly sup-
ports the identification of FBO and FB3 as interstitial and
adventitial fibroblasts, respectively.

Spatial organization of FB states after myocardial

infarction

We next investigated whether the spatial distribution of
the resting FB states was altered in HF and whether the
activated states were localized to specific cellular niches,
that contributed to their mechanism of activation.

Analysis was performed as for NF but using datas-
ets from human cardiac tissue after MI during the late
fibrotic phase (n=6) [31]. The tissue remodelling asso-
ciated with this pathology is illustrated in the histologi-
cal images (Fig. 6a, left panel) and Visium data used in
the analysis where fibrotic areas devoid of CM reflecting
the scar are seen (Fig. 6a, right). In the intra-view analy-
sis (Fig. 6b), FBO and FB1 showed high dependencies on
each other. While both FB states were abundant in CM-
rich regions, their localizations were mutually exclusive
at the level of individual spots (Fig. 6¢). Through analysis
of cell neighbourhoods (juxta-view), we determined that
unlike in NF, FB3 was not dependent on SMC (Fig. 6d-e).
Indeed, in contrast to the exclusive peri-vascular distri-
bution seen in NF, FB3 was distributed across the entire
fibrotic region of the scar (Fig. 6f). FB1 and FB4 showed
dependencies on each other in the juxta-view, which
could be seen as a pattern of regional exclusion, where
FB1 was more present in CM-rich areas, while FB4 in
the scar (Fig. 6g). Moreover, FB2 was dependent on MC
showing a pattern of localization with FB3 and MC rich
regions (Additional file 1: Fig. S7h). Lastly, FB5 showed
localization in fibrotic regions that also contained iso-
lated islands of CM (Additional file 1: Fig. S7i).

Together, these findings strongly point to FB1 arising
by transition from the interstitial FBO state, and FB4 from
FB3, which extends its distribution in scar.

FB gene expression signature in scar tissue from ICM

Whether scar FB exhibited features distinct from those
in the remote myocardium was next investigated. While
our analysis identified altered FB state composition of
the ICM-scar, this region remained heavily populated by
resting FB states. To avoid these and unique FB7 and 8
states from biasing the identification of transcriptional
differences between ICM-scar and remote, we assigned
autocorrelated genes (determined using Moran’s I sta-
tistic as applied in monocle3 [52]) within the UMAP to
gene modules and analysed their expression amongst
regions, FB states and conditions (Fig. 7a-b, methods,
and Additional file 2: Table S11). These modules are
segregated between NF, HF and scar. Notably, while
ICM-scar showed some overlap with interstitial ICM, it
also had a distinct profile, showing strong upregulation
of modules 4, 5 and 9, as well as absence of upregula-
tion of module 7, present in HF (Fig. 7b). Supporting the
importance of this module 7 to interstitial fibrosis, it was
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Fig.5 Spatial distribution of FB states in healthy myocardium. a Schematic of analysis approach using published spatial transcriptomics data from human
cardiac tissue to calculate (I) module and (Il) prediction scores. b H&E staining of healthy myocardial tissue and representative sample (ACH003), highlight-
ing CM-rich and vascular regions. Zoomed area shown in following panels. ¢ Spatial visualization of FBO-3, CM, SMC, and MC module scores in ACH003.
Black area indicates vasculature, as identified by H&E. d Schematic of intra-view modelling used to define within-spot interactions. e Median importance
of cell-type abundance (predictors) in predicting other cell-type abundances (targets) within a spot (intra-view; N=4 slides). White indicates importance
below 0.5 threshold. Green values indicate high importance scores which suggest within spot co-localisation or exclusion. f Zoomed region showing
deconvoluted FBO, FB2, and FB3 distributions in ACHO03, with outlined areas indicating distinct FB states (colours correspond to clusters; Bordeaux is an
example of FBO+ spots, green for FB2, and yellow for FB3). g Left, Expression of FB3 marker VCAN across FBO, FB2, FB3 (Wilcoxon rank-sum test; ** = signifi-
cant, ns=not significant). The box shows the interquartile range with the median line. Right, Histological staining of Versican in healthy myocardium (HPA;
heart 5145, antibody CAB008979). Red square shows vascular region; black, CM-rich. Brown DAB staining indicates protein expression. Tissue diameter:
1 mm; scale bar: 200 um. h Left, Expression of FBO marker LAMBT1 in FBO, FB2, FB3 (Wilcoxon rank-sum test; ** =significant, ns=not significant). The box
shows the interquartile range with the median line. Right, Staining of Laminin subunit beta 1 (HPA; heart 2521, antibody HPAO04132). Red square: vascular
region; black: CM-rich. DAB staining indicates protein expression. Tissue diameter: 1 mm; scale bar: 200 um. CM: cardiomyocytes; SMC: smooth muscle

cells; MC: myeloid cells; HPA: Human Protein Atlas

enriched in FBO and activated FB1 (Fig. 7c). These two
FB subtype populations were significantly altered in ICM
and ICM-scar (Fig. 2b). GO pathway analysis of genes in
these modules (Fig. 7d) identified enrichment of metallo-
peptidase activity and Insulin-like growth factor binding
for module 7 genes (Fig. 7e), while scar-enriched mod-
ules 3, 4, 5 and 9 showed enrichment in collagen binding,
ECM constituents, synapse organization, and leuko-
cyte migration. Most module 7 genes are upregulated in
ICM FB compared to both ICM-scar and NF (Fig. 7f),
and ADAMTSI9 were transcriptionally specific to FB
(Fig. 7g). TLL2 belongs to the Tolloid family of metal-
loproteases which processes collagens pro-peptides and
through cleaving pro-LOX enhances its activity promot-
ing collagen cross-linking. The presence of this module
7 in non-scar FB was also detected using Non-negative
Matrix Factorization (NMF) based method (see meth-
ods) [53]. Together, these data suggest that the ICM-scar
FB support a more stable ECM, while interstitial ICM FB
support matrix turnover and remodelling.

Circadian rhythm disruption in DCM alters FB transcription
Although both DCM and ICM exhibit reactive intersti-
tial and perivascular fibrosis, the patterns and degree of
fibrosis between these aetiologies differ ([11]; supplemen-
tary data). Leveraging the snRNA-seq analysis of DCM
and ICM FB, we probed the phenotype of reactive fibro-
sis in these aetiologies. This analysis identified a signifi-
cant number of DEG (300 up and 318 down FDR <0.05)
(Fig. 8a and Additional file 2: Table S12) with ECM orga-
nization and response to TGF-f being among the top GO
upregulated in DCM.

Indeed, several genes related to ECM were differen-
tially expressed in DCM and ICM FB, supporting a tran-
scriptional basis for distinct fibrosis patterns between
these aetiologies (Additional file 1: Fig. S9a). Interest-
ingly, rhythmic processes (rhythmic process, circadian
regulation of gene expression and entrainment of circa-
dian clock by photoperiod) were among top GO terms
enriched in DCM (Fig. 8b). To account for a potential
confounding effect of fibrosis, we modelled fibrosis as a

covariate in the DCM vs ICM comparison (using pseudo-
bulk data approach in DESeq2); enrichment of circadian
genes (Fisher test; p=0.0104) and several ECM-related
differences remained after adjustment, supporting the
robustness of these findings (Additional file 2: Table S13).

Motivated by the reported involvement of circa-
dian clock in cardiac diseases, including DCM [70-72],
we explored the expression of genes underlying these
GO pathways. Involved downregulated genes in DCM
included those responsible for circadian transcription
(NPAS2, ARNTL), whereas upregulated genes included
CRY1, PERI, PER2 and 3, which negatively feedback to
inhibit the transcription of the aforementioned genes.
The downregulation of NPAS2 and ARNTL in DCM was
also apparent in the comparison with NF and ICM-scar,
supporting a specific role in DCM (Fig. 8c). Notably,
time of collection of cardiac samples did not contribute
to differences in expression of these genes, and all DCM
samples showed such transcriptional alterations (Addi-
tional file 1: Fig. S9b). Not all cell types in our analysis,
e.g. CM, showed the same disruption in expression pat-
tern of these genes, suggesting a prominent effect on
circadian rhythm in DCM FB (Additional file 1: Fig. S9c-
d). Given that many clock genes act in transcriptional
control, we next used correlation analysis to identify
the genes transcriptionally affected by this machinery.
ARNTL expression correlated positively with NPAS2,
while PER2 and PER3 were correlated negatively (Fig. 8d
and Additional file 2: Table S12). Notably, NPAS2 expres-
sion strongly correlated with COL5A3 expression, which
was decreased in expression in DCM compared to NF,
ICM and ICM-scar (Fig. 8e). Notably, COL5A3 regulates
the assembly of fibres composed of type I and type V col-
lagens and shows circadian rhythmicity [73].

Together, our data thus identify the unique gene signa-
tures between ICM and DCM FB which may underlie dif-
ferent patterns of interstitial fibrosis.
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Fig. 6 Spatial distribution of FB states in the infarcted myocardium. a Left, Haematoxylin and eosin (H&E) staining of cardiac tissue after Ml and visualiza-
tion of a fibrotic region representative of samples used in the analysis (Fibrotic with mature scar). Sample ACHO06. Right, Deconvoluted CM, MC, and SMC
abundances in the same sample highlighting CM-rich region, scar region, and vascular areas. The indicated black area corresponds to the vasculature
identified by H&E staining of the tissue. b Median importance of cell-type abundance (Predictors) in the prediction of abundances of other cell types (Tar-
gets) within a spot (Intra-view). White cells represent importance below the cut-off threshold (0.5). Green values indicate high importance scores which
suggest within spot co-localisation or exclusion. ¢ Left, Deconvoluted FBO and FB1 abundances in the fibrotic sample showing abundance of FBO and
FB1 in CM-rich areas. Right, zoom in on 1 region with exclusivity of FBO and FB1 within spots. Colours correspond to clusters; Bordeaux is an example of
FBO+spot, and red for FB1. d Median importance of cell-type abundance (Predictors) in the prediction of abundances of other cell types (Targets) in the
immediate neighbouring tissue (Juxta-view). White cells represent importance below the cut-off threshold (0.5). Green value indicates high importance
scores which suggest regional co-localisation or exclusion. e Importance scores showing dependency of FB3 on SMCs in the fibrotic regions according
to the Juxta-view. The box shows the interquartile range with the median line; whiskers indicate min to max data. Two-sided Wilcoxon rank sum test. *, p
value <0.05. f-i Deconvoluted FB3,4,2, and 5 abundances in the fibrotic sample showing abundances of FB3 (f) and FB4 (g) in the scar region, FB2 (h) in
perivascular areas, and FB5 (i) in the fibrotic region where CM-islands are present. CM; Cardiomyocytes, FBO, SMC; Smooth muscle cells, MC; Myeloid cells

Discussion We identified unique trajectories of differentiation that
Fibrosis is a key determinant of deleterious cardiac  coupled specific resting with differentiated states and the
remodelling during HF but is also key to cardiac repair = molecular cues that drive them. By comparing scar with
post-MI [8, 32, 74]. Here, using RNA-seq of cardiac cell non-scar FB, we identified exclusive previously unidenti-
nuclei from NF and HF hearts of different aetiologies fied states in the scar and unique features of FB in non-
we gained new insights into the phenotypic changes scar HF tissues.

and heterogeneity of FB remodelling in HF as well as

the contribution of spatial cellular relationships therein.
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Fig. 7 Scar and interstitial fibrosis specific gene signatures in ICM. a Schematic showing the principle of gene module grouping. Moran’s | statistic is cal-
culated for each gene in the cells' UMAP. A positive value close to 1 indicates positive autocorrelation and suggests that close by cells have similar values
of a certain gene's expression. Then, these genes are taken and grouped by a gene UMAP. b Heatmap showing the enrichment of different gene modules
in HF and NF groups. ¢ Feature plot showing the enrichment of Module 7 genes in FBO and FB1. Enrichment was obtained by calculating a module score
for Module 7 genes. d The top four enriched Gene Ontology pathways of each gene module. e Genes belonging to metallopeptidase activity and insulin
like growth factor 1 (IGF1) binding (IGFBP) pathways. f Heatmap showing the expression of some module 7 genes (shown in e) across different FB states
and different conditions. g Normalized expression level of TLL2 (left) and ADAMTS19 (right) in the snRNA-seq dataset showing specific expression in FB

Emergence of multiple activated FB states increases FB
heterogeneity in HF

Consistent with previous studies, we identified FB
together with CM and EC, as being the most abundant
cell type in the heart [28, 29, 75]. While FB outnum-
bered EC in NF, they were less numerous in HF. This
observation aligns with findings in [75], but not with that
in [29]. The absence of an increase in FB proportion in
these tissues likely reflects a stable fibrotic state that has
developed during the extended time of progression to
late-stage HE.

Of the cardiac cell types in our analysis, FB exhibited
the greatest number of DEG across aetiologies, second
only to CM. These data highlight the highly plastic nature
of FB that allows them to adapt to different stresses and
environments, and is consistent with the remodelling of
FB to different functional states, with each specializing in
different roles. Previous studies have identified between
4 and 7 FB states in NF heart and 4 and 13 in HF [16, 24,
26, 27, 29, 31, 44, 60]. Potentially owing to the diversity
of samples analysed (NEEDCM, ICM both scar and non-
scar) and the relatively high cell number and sequenc-
ing depth applied, we could detect 9 different cell states,
including some at a low proportion (corresponding to a
low cell number), with great certainty. Our study comple-
ments other studies and expand on them particularly in
the area of FB biology, highlighting location and aetiology
effects on FB activation.

The three resting FB populations (FBO, FB2, and FB3)
that we identified have previously been classified as
basal, oncostatin M receptor (OSMR)-expressing, and
ECM-modulating states, respectively [26]. These three
states were predominant in NF, accounting for over
80% of all FB but showed a significant reduction in HFE.
Consistently, FB2, which was also described as comple-
ment C7+ABCA9+FB state, was previously shown to
decrease in ischaemic hearts [31]. FB3 resembled the
SCARAS + PCOLCE + collagen processing FB [26, 29] and
the MyoFB progenitor FB state reported to be capable of
activation and collagen deposition after MI [31]. Further
supporting this identification as resting states, FBO, and
FB3 corresponded to respectively COLI5A1*, and PI16*
FB states that were reported in a cross-tissue analysis of
FB subpopulations to represent universal FB subtypes
[44].

In HE, a large fraction of the FB population consists
of the activated states, FB1 and FB4, which are low to

absent in NF. Supporting a role in disease-associated
fibrotic remodelling, these FB states expressed higher
levels of fibrosis-related genes such as POSTN and FAP.
FB1 was prominent across all HF samples, while FB4 was
more enriched in DCM and ICM-scar tissue. The more
elevated expression of fibrotic and ECM genes in FB4
suggested this state to be more activated than FB1. Else-
where, FB1 and FB4 have been classified as a single acti-
vated/fibrotic/MyoFB state involved in TGF-p signalling
owing to their similar expression of FB activation mark-
ers [26, 28, 31]. FB1 has also been shown to lie closer
to a TNC +FB state [29] and FB4 to a THBS4 +FB state
[24] and to a state classified by its expression of COMP
(identified in artery/tendon tissue) [44], indicating that it
is closer to the previously described matrifibrocyte state
[9].

FB5 showed a significant increase in DCM, and even
greater in scar. This FB state resembled an ELN +dif-
ferentiated FB state increased in DCM [29], but did not
show substantial similarities with any other published
FB states. FB5 exhibited some similarity to MyoFB but to
a lesser extent than FB1/FB4 [31]. Whether FB5 is typi-
cal MyoFB or a de-differentiated phenotype remains to
be studied. Two additional states were also identified in
the scar, FB7 and 8, further increasing FB heterogeneity
in this tissue. FB7 and FB8, appeared to be undescribed
EB states, though FB7 showed some similarity to SER-
PINE] +and CCL2+FB and FB8 showed some similarity
to COMP +FB [29, 44]. In common between these scar-
enriched states is the presence of MyoFB characteristics
and ECM remodelling capacity (e.g. ELN +in FB5), which
may allow them to sustain the structural integrity of the
scar.

Together, the data support that increased heterogeneity
of FB states in HF contributes to heterogeneity of fibrous
tissue within the failing heart, including more structured
scar tissue. A summary of our cohort and FB states in
relation to literature can be found in Additional file 2:
Table S15.

Location determines pathways for FB activation

The evolution from 3 dominant states in NF to 6 in HF is
consistent with a model in which the 3 resting FB states
of NF, which persist at a lower level in HF, represent
progenitors of the new states that emerge in HE. Previ-
ous reports have identified distinct cellular niches where
FB become activated, suggesting a key role for specific
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activating cues and signalling mechanisms in this process
[16, 31]. Here our data provides new insights into signals
that activate each of the resting states, linked to their
location and that are related to cell-cell signalling.

As well as interaction with other cell types, suggest-
ing a key role for FB in determining their own differen-
tiation, they are preeminent amongst the ligand secreting
cell types [76]. We similarly noted that in HE, FB showed
increased cell-cell interactions including with them-
selves. Through combining this information of inferred
cell-cell interactions with differentiation trajectories
between states, and integration with spatial transcrip-
tomics data sets, we could establish that the three rest-
ing states FBO, 2, and 3 represented progenitors for FB1,
5 and 4, respectively, and determined the main signals

that contributed to their activation. Notably, each of the
resident FB states showed differences in both expression
and localization within the tissue, suggesting specializa-
tion of function. Indeed, our spatial mapping showed
that FB3 predominantly resides in perivascular regions,
whereas FBO is mainly found within interstitial spaces.
Consistently, ligands that contribute to activation of
FBO, such as JAM2, are expressed in EC and CM and
upregulated during HE. PDGFB, involved in FB2 activa-
tion, is expressed in myeloid cells and upregulated during
HE, while FGFI, involved in FB3 activation, is primarily
found in pericytes and smooth muscle cells (SMCs) and
is upregulated during HF. This suggests distinct interac-
tions between FBO and CM, FB2 and immune cells, and
FB3 and the vasculature.
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Consistent with transition from interstitial FBO, acti-
vated FB1 was also localized in the CM-rich interstitium.
FB4 on the other hand, invades fibrotic areas after peri-
vascular FB3 transition. At these locations, FB became
activated by a diverse array of ligands with some being
unique to each resting FB state. FB5 was unlike other
activated states. Specifically, FB5 which resembles a
MyoFB state, and which is enriched in ICM-scar, is unlike
activated FB1 and FB4 in terms of expression and trajec-
tory of differentiation.

Together these data underscore the different spatial
origin and multiple activation trajectories of FB in HEF,
resulting in a new spatial organization into interstitial
fibrosis and scar fibrosis.

Interstitial fibrosis and scar have distinct FB states and
signatures

Replacement scar is indispensable for maintaining LV
structural integrity, and preventing cardiac rupture [32].
Hence, targeting reactive interstitial and perivascu-
lar fibrosis requires identification of targets that are not
shared with scar tissue.

In scar, we found three gene modules enriched in col-
lagen binding, ECM constituents, synapse organization,
and leukocyte migration that were highly upregulated
and not in non-scar, suggesting that this region sup-
ports a more stable ECM niche. Deriving gene modules
in UMAP space has been debated and true metric rela-
tionships between nuclei in the UMAP embedding used
for Moran’s I may not correspond to their proximity in
the original high-dimensional expression space [77].
While this is a limitation of the analysis marking the data
as exploratory, a similar underlying biological signal was
identified in an independent NMF-based analysis.

Importantly, non-scar tissue of ICM but also DCM,
had increased expression of a gene module enriched for
metallopeptidase activity and Insulin-like growth factor
binding, which suggest a role in matrix degradation and
instability. The insulin-like growth factor binding path-
way comprised IGFBP2,3, and 5, and the metallopepti-
dase activity pathway involved ADAMI19, ADAMTS12,
ADAMTS19, CPA6, MME, MMPI6, and TLL2 (Fig. 7e).
IGFBPS5 has been implicated in pulmonary fibrosis [78].
MME-encoded membrane metalloendopeptidase (also
known as Neprilysin) is an endopeptidase responsible
for degrading various vasoactive peptides. TLL2 encodes
tolloid-like 2 (TLL-2), a member of the BMP-1/TLD
metalloprotease family. While TLL-2 is highly expressed
during muscle development, its expression is minimal
under normal physiological conditions adult [79, 80].
Unlike other BMP-1 family members, TLL-2 lacks pro-
collagen C-proteinase activity but plays a role in extracel-
lular matrix remodelling by processing pro-lysyl oxidase
[63, 80], leading to its activation and subsequent collagen
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crosslinking. Additionally, TLL-2 activates myostatin by
cleaving its latent complex, promoting muscle atrophy
and fibrosis [81-83].

Together these data highlight unique features of inter-
stitial and scar FB gene signatures.

Translational perspectives

Our data identify possible molecular targets to reduce
reactive interstitial fibrosis without degrading struc-
tural scar, a challenge typically encountered in ICM,
although the same targets would be useful in non-ICM
pathology. First, we provided trajectories of activation
and differentiation of resting FB, together with the main
transcriptional regulators governing these transitions.
The functional relevance of some of these transcriptional
regulators, including AEBPI and MEOX1I has been pre-
viously recognized. For example, AEBPI was shown to
be increased in patients with persistent hypertrophy
due to aortic stenosis and HF [84]. MEOX1 was shown
to be a key regulator of FB activation linked to cardiac
dysfunction and to be increased in expression follow-
ing the activation of fibroblasts in the human lung, liver,
and kidney [85]. Second, the products of the unique
gene expression patterns in non-scar are potential anti-
fibrotic targets, consistent with clinical data. Neprilysin
inhibition is incorporated into the latest HF treatment
guidelines, particularly in combination with angiotensin
receptor blockers (ARBs) like valsartan (ARNi therapy).
This therapeutic approach has proven highly effective in
reducing the risk of mortality and HF-related hospitaliza-
tions in patients with NYHA class II to III HF [86], and
could be related to reduction of fibrosis. Notably, inclu-
sion of sacubitril inhibition of neprilysin with valsartan in
a mouse model of pressure overload significantly reduced
interstitial fibrosis but had no impact on perivascular
fibrosis, further reinforcing our findings [87].

Our analysis also identified the existence of DCM-spe-
cific FB features related to abnormal circadian rhythm.
Disrupted circadian rhythms have been linked to the
development of DCM in animal models [72]. A recent
study also identified circadian rhythm abnormalities
in DCM patients with sleep apnoea, which correlated
with more severe left ventricular dilation and a higher
incidence of arrhythmias [88]. However, abnormalities
in circadian gene expression were not accompanied by
increased histological fibrosis, suggesting that the cir-
cadian rhythm pathway contributes to the DCM phe-
notype independently of fibrosis. COL5A3 was however
correlated with circadian rhythm and downregulated in
DCM. Whether this collagen isoform remodelling con-
tributes to the decline in matrix tensile strength and the
disrupted myocardial architecture observed in DCM
deserves future investigation.
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Conclusions

Our study identified the resting progenitor FB states and
the activation pathways that result in the heterogeneity
and spatial complexity of fibrosis in human end-stage HF.
The persistence of unique gene expressions in interstitial
fibrosis compared to scar indicates potential for targeted
fibrosis therapies.
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