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Abstract
Background  Cardiac fibrosis is a key feature of pathological cardiac remodelling that significantly impacts heart 
function through contributing to stiffness, diastolic dysfunction, and arrhythmias, ultimately leading to heart failure 
(HF). Despite extensive research into fibrosis-related matrix alterations, therapeutic advancements are limited, in part 
owing to the different nature (reparative vs interstitial) and tissue distribution of fibrosis involved. To identify unique 
features of fibrosis phenotypes, we investigated fibroblast (FB) heterogeneity and spatial distribution in left ventricular 
myocardium in HF patients with ischemic (ICM) and dilated cardiomyopathy (DCM). Infarct scar was also analysed.

Methods  We performed single-nucleus RNA sequencing of 20 human left ventricular tissue samples: from non-
failing, NF (N = 4), DCM (N = 6) and ICM (N = 5) hearts, and from the ICM scar region (N = 5). The data was subjected 
to bioinformatic analysis, included clustering, differential expression, ligand-receptor inference, and pseudotime 
trajectory mapping to delineate FB transitions and regional fibrosis signatures. To identify localisations of FB states and 
cellular neighbourhoods, data was integrated with publicly available spatial transcriptomics datasets.

Results  We identified distinct FB subpopulations across failing and non-failing hearts. Resident FB states showed 
preferential perivascular and interstitial distribution in NF and exhibited significant depletion in HF, giving rise to 
different disease states. We identified shared and unique activation ligands driving the onset of FB transitions as well 
as transcriptional differences between scar and interstitial fibrosis, and between ICM and DCM interstitial fibrosis. 
Trajectory analysis revealed distinct differentiation pathways for FB depending on its originating resident FB, with 
specific transcription factors guiding each transition.

Conclusions  These findings provide a comprehensive framework for understanding fibroblast dynamics, 
highlighting the heterogeneity and spatial complexity of fibrosis in human end-stage HF, and offering potential 
therapeutic targets to mitigate fibrosis while preserving scar integrity.
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Background
Cardiac fibrosis remains one of the least tractable fea-
tures of pathological cardiac remodelling [1, 2], yet it has 
a major functional impact as fibrosis contributes to stiff-
ening of the heart and diastolic dysfunction, as well as to 
disturbed electrical conduction and associated arrhyth-
mias. Progressive interstitial fibrosis underlies transi-
tion to heart failure (HF) in hypertensive heart disease 
and contributes to HF with preserved ejection fraction 
(HFpEF) [3, 4]. Reparative fibrosis occurs subsequent to 
myocardial infarction (MI), where it serves to maintain 
cardiac integrity after the loss of cardiomyocytes (CM). 
Understanding the mechanisms that determine the type 
of fibrosis induced – beneficial or not—is therefore a 
priority for the development of new therapies. The well-
known beneficial action of angiotensin and aldosterone 
pathway antagonists against fibrosis [5–8] is partly medi-
ated via effects on the differentiation of fibroblasts (FB) 
into myofibroblasts (myoFB), the effector cells of matrix 
remodelling and fibrosis. Inducing de-differentiation of 
myoFB to a more resting state to reverse fibrosis is an 
active area of research [9–12]. Pirfenidone, first used for 
pulmonary fibrosis has now also shown benefit in HF 
[13]. While the mechanism of action of this drug is not 
fully established, reducing pro-fibrotic pathways such as 
TGF-β activation are proposed.

FB phenotypic alterations are induced by different 
cues, including mechanical load and inflammation [14]. 
Recent studies have demonstrated how exploiting inflam-
matory signalling could reduce fibrosis. For example, 
by immuno-depletion of IL-1β, which is expressed by 
monocytes and macrophages [15, 16] or engineering 
T-cells or macrophages to express chimeric receptors 
against the fibroblast associated protein (FAP) antigen 
[17, 18]. Furthermore, interaction between CM and FB 
through paracrine signalling is an essential element in 
pathological remodelling during pressure overload [19]. 
These mechanical and/or inflammatory signals, including 
TGF-β and IL1β, act on FB to increase their capacity to 
deposit and remodel the ECM, to promote their prolifer-
ation, and to adopt a more contractile MyoFB phenotype. 
While different sources for FB have been invoked such as 
from endothelial, hematopoietic, or smooth muscle ori-
gins, lineage tracing shows that FB achieve these addi-
tional functions and phenotypes via differentiation from 
resident cardiac quiescent FB [20–22].

Single cell RNA sequencing (scRNA-Seq) approaches 
has accelerated the definitive identification of the diver-
sity of FB phenotypes that explain the different func-
tions described for these cells in the normal and failing 
heart. These studies have also provided insights into the 

signalling cues and intercellular signalling pathways acti-
vated during remodelling, such as after ischemic injury 
[23] or angiotensin II stimulation [24]. Further studies 
analysing intercellular communication and using spatial 
transcriptomics have led to the concept of cardiac niches 
with FB subpopulations in nexus with different immune 
cell types, e.g. CCR2 + macrophages and CM (reviewed in 
[25]).

Single-nucleus (sn)RNA-seq approaches have also pro-
vided new information on the cellular landscape, includ-
ing that of FB, of the non-diseased human heart [26, 27] 
and how it is altered in HF, including with dilated cardio-
myopathy (DCM) [28–30] and post-MI [31]. Despite this 
progress, human data on FB biology remain limited, par-
ticularly spanning different aetiologies and disease stages. 
Previously, we identified different FB subpopulations in 
end-stage human HF, which also suggested differences 
between DCM and ischemic cardiomyopathy (ICM) but 
lacked the molecular detail to define these FB states [11]. 
While recent sequencing efforts have advanced these 
findings, the nature of the different FB states and their 
relationships to one another are yet to be fully explored 
across different aetiologies and locations. Moreover, an 
understanding of the spatial heterogeneity of resident FB 
and the local signalling cues that govern their activation 
states, for example in response to MI, that is required 
for future targeting, is missing. Indeed, this knowledge is 
essential for targeting the interstitial and patchy fibrosis 
that contributes to cardiac dysfunction and arrhythmia 
while preserving the reparative fibrosis of the infarct scar 
[32, 33].

In the present study, we therefore investigated whether 
different aetiologies underlying advanced HF in humans 
lead to distinct FB signatures, and whether location 
within the failing heart defined FB phenotypes. In partic-
ular, we compared scar tissue to interstitial fibrosis, ask-
ing whether unique signatures would allow targeting of 
these locations independently.

To these ends, we performed deep snRNA-seq of 
patient samples of NF, DCM, ICM mid myocardium, and 
ICM-scar. Analysis of the FB identified 9 FB cell states 
across aetiologies, with some being highly enriched or 
specific to pathology. These FB states showed distinct 
patterns of gene expression and potential for regulation 
by specific ligands. Through integration with a publicly 
available spatial transcriptomic dataset, FB states were 
assigned to interstitial, adventitial/vascular, and scar 
regions of the heart. This analysis revealed the plasticity 
of cardiac FB and identified local drivers underlying FB 
heterogeneity in HF thus providing new avenues for their 
selective targeting.

Keywords  Heart failure, Fibrosis, Fibroblast, SnRNA sequencing, Transcriptomics
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Methods
Human cardiac tissue
Left ventricular (LV) myocardial tissue samples were 
obtained from explanted hearts at the time of heart 
transplantation and from non-used donor hearts, in col-
laboration with the Transplant team and the Department 
of Cardiac Surgery, UZ Leuven. Non-failing samples are 
from donor hearts not used for transplantation, where 
age allowed valve donation but not transplantation. For 
all samples, we obtained basic clinical parameters at 
the time of tissue sampling (cardiac history and func-
tional status, medication, anthropometrics, laboratory 
measurements). The study protocol conformed to the 
Helsinki declaration and was conducted according to 
national and European Union regulations on the use of 
human tissues and was approved by the ethical commit-
tee of UZ Leuven (S58824). Tissue samples were collected 
under RNase free conditions and immediately snap fro-
zen in liquid nitrogen and stored at − 80 °C for later use.

Tissue sampling
All hearts are stored and transported on ice at all times 
until freezing for no more than 2  h after removal. All 
hearts were sampled according to a standardized proto-
col, where biopsies of midmyocardium for available car-
diac regions are directly snap frozen in liquid nitrogen 
and adjacent transmural tissues are embedded in OCT 
for immunofluorescence and fibrosis studies. Of particu-
lar note, the ICM-scar tissue analysed is taken from heart 
with a historical MI > 12 months (1–12 years), in which 
the scar has matured to support the integrity of the heart.

Sample preparation for snRNA-seq
Isolation of high quality intact nuclei from snap frozen 
cardiac tissue was performed according to our recent 
study [34]. This protocol is built on expertise in the iso-
lation of CM nuclei from frozen tissue developed in 
[35] and further optimization based on [36]. In brief, 
70–100 mg of Snap frozen mid-myocardium tissues sam-
ples were mechanically homogenized using Miltenyi gen-
tleMACS™ Tissue Dissociator with gentleMACS M tubes 
using the protocol “protein_01” in 5 ml lysis buffer solu-
tion (5 mM CaCL2, 3 mM MgAc, 2 mM EDTA, 0.5 mM 
EGTA, 10 mM Tris–HCL in water supplemented prior to 
use with 1 mM DDT (Sigma-Aldrich, 646,563), 1 µg/mL 
actinomycin D (Sigma-Aldrich, A1410), 0.05% protease 
inhibitor cocktail (Sigma-Aldrich, P8340), and 0.04 U/
μL RNA inhibitors-RNase OUT (Thermofisher Scientific, 
10,777,019), then incubated on ice for 15 min with extra 
5 ml of the same solution supplemented with 0.1% NP-40. 
The lysate was then gently filtered through a 30  μm fil-
ter into a 15 ml conical tube, followed by rinsing the fil-
ter once with 2  ml lysis buffer supplemented with 0.1% 
NP-40. Nuclei were then centrifuged at 1000 g for 5 min 

at 4 °C. The nuclear pellet was then resuspended in 2 ml 
of sucrose buffer solution (1  M sucrose, 3  mM MgAc, 
and 10  mM Tris–HCl supplemented with 1  mM DDT, 
1  µg/mL actinomycin D, 0.05% protease inhibitor cock-
tail, 0.04 U/μL RNA inhibitors-RNase OUT, and 2  µg/
mL WGA (Sigma-Aldrich, L9640), and laid over another 
2 ml sucrose solution in a 5 ml canonical tube. Centrifu-
gation was repeated according to the above parameters. 
The supernatant was then removed, and nuclei resus-
pended in 400 μl nuclei wash buffer (PBS including 0.04 
U/μL RNA inhibitors-RNase OUT, 2  µg/mL WGA, and 
750 µg/mL UltraPure™ BSA), and centrifuged at 650 g for 
6 min at 4 °C. The wash step was repeated as per the pre-
vious but with a centrifugation at 500 g. The sample was 
then resuspended in staining buffer (wash buffer contain-
ing 0.02 mg/mL DAPI), for 10 min in 1.5 ml tube. Nuclei 
were harvested by centrifugation at 500 g for 6 min. The 
pellet was then resuspended in 300 µl of PBS, pooled with 
the duplicate pellet of each sample, and filtered through a 
35 µ strainer into FACS tubes. Nuclei were sorted based 
on size and DAPI positivity into 40  µl PBS containing 
0.04 U/μL RNA inhibitors-RNase OUT and 750  µg/mL 
UltraPure™ BSA using a BD Influx flow cytometer with a 
100-µM nozzle, and collected in 1.5 ml tubes.

10x library preparation and alignment
Single sorted nuclei were counted using a LUNA-FL™ 
Counter (Logos Biosystems) in duplicates, after which 
nuclei were centrifuged and then resuspended to a tar-
get concentration of 1,000 nuclei/µl and loaded on the 
Chromium Controller (10x Genomics) to achieve a tar-
geted recovery of 6,000–10,000 nuclei per reaction. 3′ 
gene expression libraries were prepared according to 
the manufacturer’s instructions of the v3 Chromium 
Single Cell Reagent Kits (10x Genomics). Quality control 
of cDNA and final libraries was carried out by Bioana-
lyzer High Sensitivity DNA Analysis (Agilent). Librar-
ies were sequenced using a NovaSeq 6000 (Illumina) 
at the Genomics Core facility at KU Leuven targeting 
80,000 read pers nucleus. Nuclei were aligned to the 
human GRCh38-3.0.0 transcriptome with “Include-
introns = TRUE” using the CellRanger (v6.0.1) soft-
ware (10x Genomics) according to the 10x Genomics 
instructions.

Background removal with CellBender
All 20 samples were of high quality in terms of num-
ber of nuclei, reads per nuclei, and genes detected, and 
were processed to remove ambient RNA using Cell-
Bender [37]. Samples were processed individually using 
the remove-background tool from CellBender (v0.2.0) to 
correct gene count matrices by removing ambient back-
ground RNA contamination (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​r​o​a​​d​i​​n​
s​t​​i​t​u​​t​e​/​C​​e​l​​l​B​e​n​d​e​r). Default parameters were used except 
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for expected-cells parameter which was adjusted based 
on the expected nuclei obtained from CellRanger (v6.0.1) 
software.

Separating non-HF samples based on sex genes expression
Each HF sample was run on a separate Chromium 10x 
chip lane. However, non-HF samples were run in pairs 
and mixed based on sex (one female + one male sample 
per lane). Sex chromosome genes were used to demul-
tiplex these samples as shown to work previously [38]. 
CellBender-corrected gene count matrices (HDF5 out-
put files) from each of the two mixed-donor samples 
were imported into R using the Read10X_h5 function. 
Donor sex assignment for each nucleus was determined 
based on expression of Y-chromosome genes, retrieved 
from the Ensembl reference genome (Ensembl release 
108; archived at ​h​t​t​p​​s​:​/​​/​o​c​t​​2​0​​2​2​.​​a​r​c​​h​i​v​e​​.​e​​n​s​e​m​b​l​.​o​r​g). A 
nucleus was classified as male if the summed expression 
across all Y-chromosome genes was greater than zero, 
and as female otherwise.

Removing doublets by scDblFinder
Since the majority of our samples were run individually, 
there were no homotypic doublets (doublets formed by 
nuclei of the same cell type) from two different samples. 
However, heterotypic doublets (doublets formed by 
nuclei of different cell types), were removed using scD-
blFinder (v1.16.0) [39] using default parameters. scD-
blFinder, which uses SingleCellExperiment object (v 
1.24.0) with non-stringent filtering of nuclei. Prior to 
removing doublets, nuclei were filtered for mitochon-
drial and ribosomal reads < 5%, nCount_RNA > 500, 
nFeature > 300, and nuclei complexity > 0.8 (estimated by 
log10(obj$nFeature_RNA)/log10(obj$nCount_RNA)). 
Thresholding was based on the expected doublet rate 
which is estimated using the empirical rule applicable 
to 10 × data, which is approximately 1% per 1000 nuclei 
captured.

Clustering, sub-clustering, and annotationn of cardiac cell 
types and FB cell states
Individual sample matrices were imported into the 
Seurat package (v5.0.1) [40] and combined into a Seurat 
object after removing background, separating NF sam-
ples, and removing doublets. No further filtering was 
performed on the complete object. Normalization was 
performed using NormalizeData() function with Log-
Normalize method and scaling factor of 10,000. Highly 
variable genes (3000 genes) were obtained by FindVari-
ableFeatures() function using vst method, and scaling 
was performed using ScaleData() function by regressing 
mitochondrial reads and nCount_RNA to respect the 
heterogeneity within the different cell types (CM have 
higher counts and mitochondrial read % than other cell 

types). Then, dimensions were reduced by RunPCA(), 
and samples were integrated using RunHarmony() func-
tion (v1.2.0) [41] with default parameters and by consid-
ering individual heart source as a batch to account for 
individual biological heterogeneity. Harmony generated 
dimensions were used subsequently in the analysis. A 
nearest-neighbour graph was constructed using Find-
Neighbors() function using 31 dimensions obtained from 
elbow plot assessment. The Uniform Manifold Approxi-
mation and Projection (UMAP) dimensional reduction 
technique was performed using the RunUMAP() func-
tion with 31 harmony dimensions. Nuclei were clustered 
with the FindClusters() function, applying the Louvain 
algorithm at a resolution of 0.2. This resolution was cho-
sen based on prior literature to enable robust identifi-
cation of the major cardiac cell types. Cluster markers 
were identified using Wilcoxon tests as implemented in 
Seurat’s FindAllMarkers function with parameters logfc.
threshold = 0.5 and min.pct = 0.1, and p values were 
adjusted using the Bonferroni method. Final assign-
ment of clusters to major cardiac cell types was guided 
by established marker genes reported in the literature. 
Annotations were validated using Azimuth’s reference-
based annotation (v0.4.6) [26, 29, 40, 42] and automated 
heart mapping with default settings (Additional file 1: 
Fig. S1g).

FB sub-clustering was performed by subsetting FB 
nuclei and redoing similar steps as above with the follow-
ing differences: the number of variable genes was set to 
2000 using the vst method, scaling was performed while 
regressing nCount_RNA only, mitochondrial genes were 
removed prior to marker analysis, 34 harmony dimen-
sions were used, for creating UMAP and finding neigh-
bours, and 0.4 resolution was used for clustering. The 
clustering resolution was selected empirically to balance 
over-splitting with sufficient granularity to resolve bio-
logically meaningful subpopulations, guided by marker 
genes of clusters at different resolutions, and by assessing 
clustering trees origins as resolution increases using clus-
tree (v0.5.1) [43]. Additionally, clusters were compared 
and contextualized with published single-cell cardiac 
atlases (see below). FB cell states markers were identified 
using Wilcoxon tests as implemented in Seurat’s FindAll-
Markers function with parameters logfc.threshold = 0.25 
and min.pct = 0.1, and p values were adjusted using the 
Bonferroni method.

Comparison of FB clusters to literature
To compare our FB clusters with those described in 
published studies, we applied the Tversky index (α = 0.5, 
β = 0.5) to quantify similarity between FB states marker 
gene sets to those from [16, 26, 29, 31,  44, 60, 68, 69]. 
Index values range from 0 to 1, with higher scores reflect-
ing greater overlap. Similarity scores were computed 
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against reference clusters from prior cardiac fibroblast 
atlases and visualized as heatmaps, allowing us to contex-
tualize our clusters relative to known fibroblast states and 
highlight subtle transcriptional distinctions (Additional 
file 1: Fig. S5). Similarly, we compared our FB clusters 
with those reported in atherosclerosis from Wirka et al. 
[45] using the Tversky index.

Cell type composition analysis
To test for differences in FB cluster composition across 
disease groups, we used the speckle R package (v 1.2.0) 
[46]. Cluster proportions were calculated and trans-
formed per sample using getTransformedProps with 
‘logit’ transformation. Differences in overall cluster com-
position across groups (NF, DCM, ICM, and ICM-scar) 
were first tested using propeller.anova. Pairwise group 
comparisons were then performed with propeller.ttest 
using contrasts defined in a linear model design matrix. 
Multiple testing correction was performed using the 
Benjamini–Hochberg false discovery rate (FDR) pro-
cedure. Only clusters that were significant in both the 
global ANOVA (FDR < 0.05) and at least one pairwise test 
(FDR < 0.05) were retained as robust findings.

SASP module scoring across fibroblast clusters
We computed a senescence-associated secretory phe-
notype (SASP) module score per nucleus using Seurat 
AddModuleScore function with a curated SASP gene set 
[47], then compared scores across FB clusters using violin 
plots with cluster means overlaid.

Differential gene expression analysis
Differential expression was assessed using a pseudobulk 
strategy using DESeq2 package (v1.42.0) using default 
settings unless specified otherwise [48]. Lowly expressed 
genes were filtered by retaining only those with counts > 1 
in at least 10 cells. Pseudobulk counts was modelled 
with a negative binomial generalized linear model, with 
median-of-ratios normalization. Significance testing 
was performed with Wald test. Multiple testing correc-
tion was performed using the Benjamini–Hochberg FDR 
method.

To assess whether specific cardiac cell types exhibited 
stronger transcriptional responses in each HF condition 
compared to NF, we compared the number of differen-
tially expressed genes (DEGs) identified in each major 
cardiac cell type across disease conditions vs NF. For 
this purpose, single-nucleus profiles were aggregated 
into pseudobulk counts per cluster and per sample using 
Seurat::AggregateExpression (sum method). Differential 
expression analysis was then performed at the sample 
level with DESeq2. For each cluster separately, a DESeq2 
dataset was constructed with design = ~ condition (con-
dition levels: NF, DCM, ICM, ICM-scar). Contrasts 

were defined to compare each disease group against NF 
(DCM-NF, ICM-NF, ICM-scar-NF). Genes were con-
sidered differentially expressed if they met both statisti-
cal significance and effect size thresholds: an adjusted p 
value (Benjamini–Hochberg correction) < 0.05 and an 
absolute log2 fold-change (|log2FC|) > 1. To control for 
compositional effects on DEG detection, we downsam-
pled each major cell type in every sample to equal abun-
dance and repeated the analyses, yielding nearly identical 
results (Additional file 1: Fig. S3d-e).

For the activated FB state comparison, we restricted 
the analysis to nuclei belonging to FB1 and FB4 clus-
ters. Pseudobulk counts were aggregated per cluster and 
per sample, and differential expression was tested with 
DESeq2 using a design formula ~ cluster. A contrast was 
defined to compare FB4 versus FB1. To specifically inves-
tigate extracellular matrix remodeling, we intersected the 
DEG results with a curated matrisome gene set [49] ​h​t​t​
p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​a​h​m​​o​u​​d​i​b​​r​a​h​​i​m​/​K​​i​d​​n​e​y​M​a​p. ​E​C​M​-​r​
e​l​a​t​e​d DEGs were further filtered by requiring an abso-
lute log2 fold-change greater than 0.5 and an adjusted p 
value < 0.05, and were annotated as upregulated in either 
FB4 or FB1.

To identify transcriptional programs distinguishing 
resting from activated FB states to identify resting-acti-
vated state pairs, we applied the same pseudobulk differ-
ential expression strategy as described above. Differential 
expression was performed separately within the three 
resting fibroblast clusters (FB0, FB2, FB3) and within the 
activated fibroblast clusters (FB1, FB4, FB5). For each 
cluster, one-versus-rest contrasts were defined using a 
no-intercept design (design = ~ 0 + cluster) and numeric 
contrasts to compare each cluster against the other two. 
Genes were considered significant if they met both sta-
tistical and effect size thresholds (adjusted p value < 0.05 
and log2FC > 1, selecting genes upregulated in the focal 
cluster). The resulting gene sets were then intersected 
to identify commonly regulated genes across resting 
and activated fibroblast states, enabling the definition of 
“resting–activated pairs.” Overlap between these gene 
sets was visualized using the UpSetR package (v 1.4.0) 
[50].

In addition, direct comparison of ICM vs DCM FB was 
performed at the single-nuclei level using Seurat’s Wil-
coxon rank-sum test (FindMarkers) with thresholds of 
|avg_log2FC|> 0.25 and adjusted p value < 0.05. To fur-
ther distinguish aetiology-specific differences from those 
associated with fibrosis, we repeated this comparison in 
a pseudobulk framework while explicitly modeling fibro-
sis. Counts were aggregated per sample, and a DESeq2 
model was fitted with the design ~ condition + fibrosis_z, 
where fibrosis was standardized (z-scored) per sample. 
This allowed testing of DCM vs ICM differences while 
adjusting for fibrosis burden as a continuous covariate, 
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to ensure that identified signatures were independent of 
fibrosis levels.

Pathway analysis by ClusterProfiler
The ClusterProfiler (v4.10.0) [51] (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​
Y​u​L​a​​b​-​​S​M​U​​/​c​l​​u​s​t​e​​r​P​​r​o​f​i​l​e​r) R package was utilized to 
study enriched pathways (GO and KEGG). A list of dif-
ferentially expressed genes was used with log2FC > 0.25 
and adjusted p value < 0.05. Genes with positive log2FC 
values were used to identify pathways enriched in dif-
ferent cell types and FB phenotypes using compare-
Cluster() function. For pathways enriched in different 
groups, or genes obtained from correlation analysis using 
enrichGO() and enrichKEGG() functions as specified in 
the figures. Biological pathways “BP” subontology and 
qvalueCutoff = 0.05 was used in the analysis. The Sim-
plify() function on the enrichResult was used to merge 
redundant pathways with the following parameters (cut-
off = 0.7, by = "p value", select_fun = min). In addition, to 
specifically confirm the enrichment of circadian genes in 
the comparison of DCM versus ICM after adjusting for 
fibrosis burden, we tested the GO terms GO:0048511 
(“rhythmic process”) and GO:0032922 (“circadian regula-
tion of gene expression”). Genes with log2FC > 0.25 and 
adjusted p value < 0.2 were used as the input gene list, 
while all genes tested in the DESeq2 model were used as 
the background set. Fisher’s exact test (equivalent to a 
hypergeometric test) was applied to quantify enrichment 
by constructing a 2 × 2 contingency table of overlapping 
and non-overlapping genes between the DEG list and the 
circadian gene set. Enrichment was considered signifi-
cant at p value < 0.05.

Trajectory analysis and gene modules by monocle3 and 
Slingshot
Trajectory analysis of FB phenotypes were performed 
using monocle3 (v1.0.0) R package [52]. A Seurat object 
of clustered FB was converted to a monocle3 object and 
Seurat clusters and UMAP was used to build the trajec-
tory. A principal graph was fitted using the learn_graph() 
function, and FB nuclei were assigned a pseudotime 
value using order_cells() function based on their projec-
tion on the principal graph learned after choosing FB0 as 
the root state.

The graph_test() function was utilized to find genes 
that vary between groups of FB nuclei in the UMAP plot. 
This function is based on Moran's I spatial autocorrela-
tion analysis and was performed with “principal_graph” 
neighbor graph and q-value threshold of 0.05. Then, the 
varying genes detected in the previous step were grouped 
into modules through Louvain community analysis with 
find_gene_modules() function, which principally runs 
UMAP on the genes instead of cells. Parameters were set 
to default. The modules were clustered either based on 1) 

condition or 2) phenotype. Results were visualized using 
pheatmap() (v 1.0.12) and clustered with the Ward D2 
method. GeneNMF (v0.9.2) [53], a non-negative matrix 
factorization approach to extract consensus gene pro-
grams, confirmed Module 7 by running multiNMF on 
ICM samples (k = 4:9, min.exp = 0.05) and deriving meta-
programs with getMetaPrograms (metric = "cosine", 
weight.explained = 0.8, nMP = 13, min.confidence = 0.7), 
wherein 7/10 Module-7 genes mapped to one metagene 
with significant resemblance (Fisher test, FDR = 0.038).

To further analyse the trajectories separately during 
FB0-FB1, FB2-FB5, and FB3-FB4 differentiation, we uti-
lized the Slingshot [54] package (v2.10.0). We subset 
the corresponding states pairs from the Seurat object 
and recomputed UMAP embeddings. Lineages were 
initialized with the resting state as the starting cluster 
(start.clus = FB0/FB2/FB3), learned via getLineages, and 
smoothed with getCurves. Before fitting pseudotime 
models, we applied a stringent per-trajectory gene filter 
to save computational time: genes were retained if they 
had > 10 counts in > 1% of cells in the trajectory subset. 
Dynamic gene expression along pseudotime was mod-
eled with tradeSeq (v1.16.0) [55] using NB-GAMs (fit-
GAM()), and association with pseudotime was tested by 
associationTest. Genes were ranked by Wald statistic; 
smoothed expression was obtained with predictSmooth 
at 100 pseudotime points and visualized as row-scaled 
heatmaps (no column clustering). It is important to note 
that because these datasets comprise chronic, end-stage 
samples collected across individuals, we interpret the 
trajectory analysis as a descriptive ordering of continu-
ous gene-expression states rather than evidence of causal 
cell-state transitions, and any inferred dynamics should 
be considered hypothesis-generating or supporting evi-
dence for findings reached via other means.

For transcription factor (TF) identification, genes sig-
nificantly associated with pseudotime were intersected 
with the curated TF catalog from Lambert et al., 2018 
(“The Human Transcription Factors”) [56]. For each tra-
jectory, TFs changing along pseudotime were collected; 
common and unique TFs across the three FB trajectories 
were then derived by set intersections and visualized by 
plotting pseudotime vs. smoothed expression.

Correlation analysis
Pearson correlation between the gene of interest and all 
other genes was calculated using cor.test() function after 
removing lowly expressed genes using aggregated data 
per sample. A p value estimate was also reported with the 
same function. The same approach was followed in calcu-
lating correlation of gene expression with fibrosis. Genes 
were considered correlated when pearson > 0.5, and p 
value < 0.05 unless otherwise specified elsewhere.
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Cellular communication by NicheNet and CellChat
Analysis was performed using the ‘nichenetr’ R pack-
age (v2.0.0) as described recently [57]. NicheNet uses a 
prior model based on integrating previous knowledge on 
ligand-to-target signalling pathways. Gene expression 
was filtered for min.pct = 0.1 and log2 fold ratio > 0. 5 in 
both analyses. To predict ligands responsible for activat-
ing the resting FB states (FB0, FB2, and FB3), genes posi-
tively correlated with fibrosis within each of these resting 
FB states were used as geneset of interest (the genes that 
are hypothesized to be expressed as a result of ligand 
activity), and genes positively correlated with fibrosis 
from all cardiac cells in HF were considered as sender 
(ligands that would cause such change in gene expres-
sion). FB0, FB2, and FB3 were considered as the target. 
Genes were considered correlated when pearson > 0.5, 
and p value < 0.05. The ‘predict_ligand_activities’ func-
tion was used, and the top upstream ranked ligands were 
chosen based on the corrected AUPR (Area Under the 
Precision-Recall Curve) values. A heatmap represent-
ing a ligand-target network was created using data of 
best ranked ligands and their corresponding target genes 
found within differentially expressed genes between the 
condition of interest and the reference condition.

CellChat (v1.1.3) was employed to confirm our previ-
ous results by checking communication probabilities 
from the main cell types and FB states on FB0, FB2, and 
FB3 that were upregulated in HF. A CellChat object list 
was made by running the default parameters on HF and 
NF datasets separately. Then, a merged cellchat object 
was made from the list after lifting the objects to ensure 
comparison between the datasets (due to differences 
in cell composition). netVisual_bubble() was utilized 
to compare the communication probabilities of ligand-
receptor pairs from a group of cells to another group of 
cells. Default parameters were used.

Spatial transcriptomic data analysis
Raw histology images and processed Seurat objects 
of each slide were downloaded from [31]. For the 1 st 
approach, FB states markers and major cell type mark-
ers from our snRNAseq dataset was obtained (avg_
log2FC > 0.5 for FB and avg_log2FC > 2 for major cell 
types) and genes module scores of each cell state/type 
were calculated for each spot using AddModuleScore() 
function in Seurat. A module score is a measure used 
to quantify the activity or expression of a predefined set 
of genes. A high module score of a specific geneset (FB 
states/cell types) within each spatial spot thus suggests 
the presence of that cell state/type within that spot. For 
the 2nd approach, we employed the DOTr package (v0.9) 
[58], which facilitates flexible feature transfer to spatial 
omics data, to integrate our snRNA-seq data with pro-
cessed spatial transcriptomics datasets from [31] using 

default parameters unless specified. We used our NF 
snRNAseq dataset with cardiac cell type and main resting 
FB states to deconvolute the spots in each of the NF slides 
(N = 4). Similarly, we used our HF snRNAseq dataset with 
cardiac celltypes and FB states to deconvolute each of the 
visium fibrotic tissue slides (N = 6). The reference dataset 
was created using setup.ref function, and the respective 
target spatial data was processed by setup.srt function. 
Dot object was created with create.DOT function, and 
deconvolution for each spatial slide was performed by 
run.DOT.lowresolution function (ratios_weight = 1, max_
spot_size = 20). we evaluated the deconvolution results 
using three complementary approaches. First, we com-
pared group-level means, confirming that the deconvo-
luted proportions were consistent with expected biology 
(e.g., decreased cardiomyocytes in fibrotic regions; see 
Additional file 2: Table S10). Second, we assessed spatial 
correspondence with histology, where cell-type enrich-
ments aligned with known anatomical structures, such as 
cardiomyocyte-rich regions and vascular niches. Third, 
we evaluated the method using the published human 
heart snRNA-seq atlas from Kuppe et al. as a reference, 
applying the same DOT parameters. We then calculated 
Spearman correlations between the cellular composi-
tions of the atlas and the deconvoluted spatial data. These 
showed high concordance, comparable to that reported 
in the original study (see Additional file 1, Fig. S8a). 
The cell-state and cell-type abundance estimates gener-
ated by DOT for all slides were used as input for mistyR 
(v1.10.0) [14] to assess the influence of the abundance of 
each primary cell type on the abundance of FB states and 
other major cell types. The data were modelled using a 
multiview framework that considered two distinct spatial 
contexts: (1) an intra-view, which examines relationships 
within the same spot using create_initial_view() function, 
and (2) a juxta-view, which accounts for relationships 
between immediate neighbouring spots using add_
juxtaview(neighbor.thr = 155) function. The model output 
includes importance scores, where higher values indicate 
that the abundance of a specific cell type (target) can be 
spatially predicted by another cell type (predictor). The 
median standardized importance scores from each view, 
aggregated across all slides, were interpreted as indica-
tors of spatial dependencies between cell types-such as 
colocalization or mutual exclusion. An importance score 
threshold of 0.5 was used to identify meaningful interac-
tions. It is important to note that these interactions are 
correlative in nature and do not imply causal relation-
ships. The resulting spatially resolved cell type maps were 
validated against known anatomical structures and histo-
logical data.
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Histology for fibrosis and collagen quantification
OCT-embedded tissue block samples from the same 
biopsy tube as used for sequencing were utilized to main-
tain a strong correlation between transcriptomic data and 
fibrosis quantification. Tissue slices, 5  µm in thickness, 
were stained using PicroSirius red dye (PolySciences) for 
collagen assessment. These sections were then mounted 
and visualized under a Zeiss Axioplan microscope using 
a 20 × magnification objective. Images were managed 
and analysed using Zeiss ZEN 3.7 software. The extent 
of fibrosis was quantified through ImageJ (FIJI) software, 
and results were presented as the percentage of the area 
covered by the dark staining of fibrotic regions.

Histology for top FB states markers from Human Protein 
Atlas
Proteins encoded by top markers for each state were 
checked in Human Protein Atlas (​h​t​t​p​​s​:​/​​/​w​w​w​​.​p​​r​o​t​e​
i​n​a​t​l​a​s​.​o​r​g​/) [59]. Antibodies are labelled with DAB 
(3,3'-diaminobenzidine) and the resulting brown staining 
indicates where an antibody has bound to its correspond-
ing antigen.

Data visualization
All visualizations were performed in R. Most plots were 
prepared using the same packages utilized to perform 
the analysis. Some plots were visualized using ggplot2 
(v3.5.1) or scCustomize (v 2.0.1).

Statistics and reproducibility
No formal sample size calculations were conducted as 
this is an exploratory study. Sample size was based on 
heart and tissue availability across the different groups 
and was chosen with a design for deep sequencing to 
recover high cell numbers. Each sample in each condi-
tion represents a unique biological replicate. No samples 
were excluded from the analysis. All analyses were per-
formed using R Software, 4.3.2. Statistical tests used and 
number of biological replicates per condition are indi-
cated in the legends. Data were considered significantly 
different when the p value or adjusted p value padj (or Q) 
were < 0.05. Where relevant, individual sample data are 
shown in the supplemental figures. For image analysis, 
the investigator was blinded.

Results
Global cellular landscape and changes with heart failure
We performed snRNA-seq (10x Genomics) on nuclei 
isolated from cardiac tissue (mid-myocardium) snap-
frozen at the time of transplantation, representing these 
HF aetiologies (ICM; N = 5; DCM; N = 6). Data was com-
pared with closely aged-matched non-failing donor 
hearts (NF; N = 4) (Fig.  1a). Five samples taken from a 
visibly scarred region of ICM hearts were also analysed 

(ICM-scar; N = 5, 3 of which were matched with ICM 
samples) (Fig.  1a). Samples were distributed between 
male and female (Additional file 2: Table S1). NF samples 
were demultiplexed based on sex genes. As indicated by 
Sirius Red staining, fibrosis was more prevalent in HF 
samples, particularly scar, although substantial variabil-
ity was detected (Fig. 1b-c). To optimize capture of lowly 
expressed genes, cell types and cell-type heterogeneity 
within each sample, we targeted 8,000 nuclei per sample 
at a read depth of 80,000 reads per nucleus. After qual-
ity control, 142,024 qualified nuclear transcriptomes 
remained that had a median of 2,288 genes and 5,672 
counts detected (Additional file 1: Fig. S1a and b for per 
sample data).

Louvain clustering of the snRNA-seq dataset yielded 
18 clusters (Fig. 1d), representing 13 different cell types, 
which were annotated according to their expression of 
cell specific markers (Additional file 1: Fig. S1e), top 
expressed genes (Additional file 2: Table S2), and con-
ventional biological functions using Gene Ontology path-
ways (Additional file 1: Fig. S1f ). Amongst these clusters, 
FB were most abundant, accounting for ~ 35% of all cells 
(Additional file 2: Table S3), followed by CM and endo-
thelial cells (EC), which were also highly prevalent. The 
remaining nuclei included myeloid cells (MC), pericytes, 
smooth muscle cells (SMC), lymphoid cells, endocardial, 
lymphatic EC, mast, neuronal, and adipocytes (Fig.  1d). 
While MC mainly comprised macrophages, B and T cells 
were identified in distinct clusters. Confirming successful 
nuclear isolation and data processing, all cell types con-
tributed to all conditions, sex, and sequencing batches 
(Additional file 1: Fig. S2a-c).

Next, we investigated how cell type composition 
changed in HF (Fig.  1e, Additional file 1: Fig. S2d, and 
Additional file 2: Table S4). While the presence of fibro-
sis suggested increased FB abundance in HF, this was 
not observed in the compositional analysis (see Addi-
tional file 1: Fig. S2d for per heart data). Differential gene 
expression (DEG) analysis of pseudo bulk snRNA-Seq 
data identified FB as the cell type showing the greatest 
transcriptional alterations in all HF groups compared to 
NF (Fig. 1f ). This substantial alteration in FB gene expres-
sion was also apparent in correlation analysis, where 
expression of fibrosis-related genes (TGFB1, COL1A1) 
and enrichment of cell pathways (RNA machinery) cor-
related positively with fibrosis determined histologically 
(Additional file 1: Fig. S3a-c and Additional file 2: Table 
S5). The greater number of DEG in FB was retained after 
downsampling of data to achieve equivalent numbers of 
all cell types, indicating that this higher number of DEG 
was not related to the greater proportion of FB in the 
myocardium (Additional file 1: Fig. S3d-e). CM exhibited 
the next greatest number of DEG in all HF regionsCM-
related gene pathways, including muscle development, 
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Fig. 1  Cellular distribution and contribution to the failing human heart. a Overview of human hearts and aetiologies for cardiac tissue samples, taken 
from the mid myocardium of the LV free wall. NF, non-failing unused donor heart, DCM dilated cardiomyopathy, ICM ischemic cardiomyopathy. In ICM 
hearts, samples were taken from non-scar and scar tissue. Adapted from smart.servier.com. b Images of fibrosis near the regions sampled for RNA se-
quencing. Sirius red staining. c Fibrosis quantification as percentage of Sirius Red staining of the total area. Data represents mean ± SD. Kruskal–Wallis test 
used. Dunns multiple comparison test was used. *, p value < 0.05; **, p value < 0.01. d. 2D visualisation (UMAP dimensionality reduction) of pooled data 
from all samples (142,024 nuclei), highlighting different cell types. e Relative abundance of each FB cluster across disease groups (NF: n = 4; DCM: n = 6; 
ICM: n = 5; ICM-scar: n = 5), measured in the integrated snRNA-seq dataset (same colour code as in panel d). Cluster proportions were analyzed using the 
speckle R package. Benjamini–Hochberg FDR correction was used. No statistical significance was observed after correction. f Percentages of differentially 
expressed genes (DEGs) in each cell type comparing every HF condition vs non-HF determined in pseudo-bulk analysis. CM; Cardiomyocytes, FB; Fibro-
blasts, EC; Endothelial cells, SMC; Smooth muscle cells, MC; Myeloid cells
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Fig. 2 (See legend on next page.)
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contraction, and fatty acid oxidation, showed negative 
correlations with histological fibrosis (Additional file 
1: Fig. S3a-c and Additional file 2: Table S5). Together, 
these data highlight FB as a highly plastic cell type, which 
undergoes substantial remodelling during HF.

Clustering of fibroblasts into subpopulations
Based on their transcriptomes, cardiac FB have been sub-
divided into multiple substates, which correlate with dif-
ferent functional properties and activation state [26–31, 
60]. We therefore investigated whether the transcrip-
tomic changes in FB could be explained by alterations 
in FB substate identity and proportions. Unsupervised 
sample-level analysis of FB showed that aetiology and 
location, i.e. DCM, ICM non-scar and ICM-scar, are the 
main determinants of sample separation (Additional file 
1: Fig. S4a). Sub-clustering of FB from NF, ICM, DCM 
and ICM-scar (n = 49,308 nuclei) identified 9 FB substates 
that varied in their presence and relative proportions 
according to the biological condition (Fig.  2a-b; Addi-
tional file 1: Fig. S4b presents data for each heart). FB0, 
FB2, and FB3 dominated in NF tissue.

In HF, while FB0, FB2, and FB3 remained major con-
tributors, emergence of FB1 and FB4 across all HF 
groups, resulted in an increase in the overall heterogene-
ity of HF FB. FB5 also increased significantly in ICM-scar. 
FB7 and FB8 were uniquely expressed in ICM-scar, albeit 
at a very low abundance. FB6, was equally abundant 
across all conditions.

Resident FB populations of the NF heart
To investigate the relevance of each FB state to aetiol-
ogy, their functional phenotype was first investigated 
by analysis for enrichment of marker genes (Fig. 2c and 
Additional file 2: Table S6) and pathways in the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) relative to all other clusters in the 
dataset (Fig. 2d, Additional file 1: Fig. S4c, and Additional 
file 2: Table S7 and 8).

The dominance of FB0, FB2 and FB3 states in NF and 
their reduction in pathology categorized these FB states 
as contributors to the normal functioning of the NF 
heart. Moreover, these proposed resting FB populations 
expressed genes involved in the housekeeping function 
of FB to deposit and remodel the ECM. Specifically, FB0 

is characterized by expression of genes and pathways 
associated with extracellular matrix (ECM) structure, 
and of its remodelling i.e. the metalloendopeptidases, 
and hydrolase activities. With 216 enriched genes, this 
FB state showed the least specialization in its transcrip-
tional remodelling in HF, including between NF and Scar 
(compared to other clusters. Figure  2d x-axis in paren-
theses), suggesting it represents a more resting FB state. 
FB2 was enriched for genes encoding the growth factors 
FGF7 and FGF10, complement, FOS-related genes, and 
BMPER, while matrix-related genes were less expressed. 
These genes contributed to upregulated pathways related 
to growth factors, glycosaminoglycans, glucocorticoid 
receptor binding, tyrosine kinase activity, and MAPK, 
FoxO, and JAK-STAT signalling. Together, the patterns of 
expressed genes and enriched pathways suggest a more 
signalling/regulatory function for this state than in ECM 
secretion. FB3 is distinguished by a signature of gene 
expression and pathways involved in ECM-modulation, 
including the procollagen C-endopeptidase enhancer 
(PCOLCE2) involved in collagen maturation, and fibrillin 
1 (FBN1), and pathways involved in ECM and ECM com-
ponents, actin, cadherin, and integrin binding. Together, 
these findings underline the important role of this cluster 
in matrix modulation and mechanosensing.

Activated FB states in HF
While the abundance of both FB1 and FB4 was low to 
negligible in NF, these states were significantly more 
abundant in HF across all groups. Indeed, FB1 emerged 
as one of the dominant FB states in HF. Enrichment of 
FB1 and FB4 for expression of genes associated with FB 
activation including POSTN, FAP, TNC, and THBS4 and 
in pathways related to ECM tensile strength is support-
ive of these FB states being of an activated phenotype. 
To probe the specific contributions of these 2 states to 
HF-associated fibrosis, we analysed differential expres-
sion of genes (pseudobulk data) between them focusing 
on a curated set of ECM-related genes (termed the matri-
some) [49]. A significant number of these genes was dif-
ferentially expressed (0.5 log₂ fold change cutoff, total 144 
ECM-related DEGs, 61 in FB1 and 83 in FB4) (Fig.  2e). 
FB1 enriched genes included tenascin C (TNC), encoding 
a matricellular protein with functions including adhesion 
of CM to ECM in the BZ after MI [61, 62] and tolloid like 

(See figure on previous page.)
Fig. 2  Fibroblast heterogeneity within non-failing and failing human hearts. a 2D visualisation (UMAP) of FB subclustering (49,308 nuclei), highlight-
ing identified FB states. b Relative abundance of each FB cluster across different conditions, as measured in the integrated snRNA-seq dataset. Cluster 
proportions were analysed with the speckle R package. Benjamini–Hochberg FDR correction was used (NF: n = 4; DCM: n = 6; ICM: n = 5; ICM-scar: n = 5). 
*c indicates all HF groups are significant compared to NF with FDR < 0.05. * indicates significance for the selected comparisons with FDR < 0.05. c Dot 
plot showing the top five marker genes of each subcluster. Dot colour and size correspond to the expression of each gene and the proportion of cells 
expressing each gene, respectively. d The top five enriched Gene Ontology pathways of each FB cluster. The number in parenthesis indicates the number 
of DEGs. e Volcano plot showing FB1 (left side) and FB4 (right side) differentially expressed genes. Some matrix genes are labelled. Q; adjusted p value. f 
Heatmap showing enrichment of PROGENy pathways in different FB clusters. g. Bar plot showing FB proliferation proportion in different regions based 
on cell cycle scoring
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2 (TLL2), encoding a procollagen C-proteinase member 
that facilitates the proteolytic processing of pro-LOX 
to LOX [63]. Genes upregulated in FB4 vs FB1 includ-
ing COL22A1, CTHRC1, COL1A1, CILP, and COMP 
that contribute to TGF-β signalling, ECM deposition 
and MyoFB activation are consistent with FB4 being of a 
more activated state than FB1 [9, 24, 32, 64–67].

FB1 and 4 also express unique patterns of genes unre-
lated to fibrosis. FB1 expresses NRXN3, a gene encoding 
a synaptic cell adhesion molecule critical for maintaining 
neural connections and aiding cell migration. FB4 shows 
increased expression of genes encoding proteins involved 
in membrane excitability and calcium handling, includ-
ing FAM155A, which is found in a complex with the non-
selective cation channel NALCN, and of KCNMA1, a 
calcium-regulated potassium channel.

Taken together, the analysis identified two activated 
FB states in HF. Differences in the degree of activation 
of fibrosis-related genes and the presence of uniquely 
expressed genes suggest however functional specializa-
tion or differences in origin and/or tissue location of 
these two FB states.

Unique FB states characterize the ischemic scar region
Given the central role of FB in sustaining cardiac integ-
rity after MI, we also analysed FB remodelling in the 
ICM-scar. This region exhibited the greatest diversity of 
FB where, compared to HF, 2 additional substates, FB7 
and FB8 emerged, and the abundance of FB5 significantly 
increased. FB7 was however only increased in abundance 
in 2 out of 5 samples and FB8 in 1 of the 5 scar samples 
(Additional file 1: Fig. S4b). Despite their decreased 
abundance relative to NF, FB0 and FB2 remained signifi-
cant contributors to FB in ICM-scar.

Properties of ICM-scar-enriched FB states were next 
investigated. FB5 was enriched for genes associated with 
interactions with the ECM and the cytoskeleton (e.g., 
MAGI1, MYH10, ACTA2), and ECM modulation (e.g., 
ELN, COL21A1), which contributed to the pathways 
‘actin filament’ and ‘collagen’. Genes with a more signal-
ling function were also enriched in FB5, including those 
that inhibit the calcineurin and TGF-β pathways. Consis-
tently, calmodulin binding was enriched in this pathway 
analysis. FB7 and FB8 exhibited the greatest number of 
enriched genes (931 and 1,087 respectively, compared 
to 216–495 in other cell states; Fig. 2d), indicating their 
transcriptional diversity and substantial remodelling 
during scar formation, and suggestive of greater spe-
cialization. These FB states show some similarity with 
each other in gene enrichment, including SERPINE1 and 
NFATC1 and 2, and in pathways involved in inflamma-
tion and hypoxia, including those involving HIF-1 and 
TNFα signalling.

The significant transcriptional changes and low apop-
tosis gene signature (least enrichment of Trail pathway 
from PROGENy; Fig. 2f ) in FB7 and FB8 also suggested 
a link between these states and cellular senescence. 
Consistently, cell cycle gene-scoring detected a general 
increased proliferation in HF across all groups, includ-
ing scar (increased G2M/S vs G1) (Additional file 1: Fig. 
S4d), whereas FB8 and to a lesser extent FB7, exhibited 
a decrease in G2M/S phase genes, suggesting lower cell 
proliferation (Fig.  2g). Further supporting the senes-
cent phenotype of FB7 and 8, they showed enrichment 
for genes associated with the senescence-associated 
secretory phenotype (SASP; for example IL-6, IL-8, and 
MMPs) [47] (Additional file 1: Fig. S4e).

FB6 was present in all groups with no alteration in pro-
portion between conditions. This FB state was enriched 
in gene sets related to antigen presentation roles, includ-
ing those associated with major histocompatibility 
complex, class I and stress induction, such as Human 
Leucocyte Antigen (HLA), Heat Shock Proteins (HSP), in 
addition to some genes associated with CM (Additional 
file 1: Fig. S4f ). As this FB state was not influenced by dis-
ease state, we did not examine it further.

Together, these data further demonstrate the unique 
nature of scar tissue containing FB in advanced stages of 
maturation and senescence, as well as containing resident 
and activated FB.

Comparison of identified FB states to published cohorts
Previous single-cell/nucleus RNA-seq studies of human 
cardiac cells have also assigned FB to multiple substates. 
Given that our aim was to identify FB phenotypes spe-
cific to different aetiologies, including scar, rather than 
project our FB onto established states that may not span 
the diversity of our sample groups, we assigned FB in an 
unbiased manner. To contextualize our findings, we com-
pared marker genes from published cohorts [16, 26, 29, 
31, 44, 60, 68, 69] to our states using the Tversky index 
(for detailed one-to-one comparisons, see Additional file 
1: Fig. S5; extensive figure legend). FB0 was predomi-
nantly described as a basal/lipogenic state and aligned 
with a universal COL15A1⁺ FB state; FB2 was more con-
sistent with immune/chemokine-responsive state; FB3 
reflected a matrix-modulatory state and overlapped with 
PI16⁺ universal FB; FB1 and FB4 were mostly captured 
as a single activated/myoFB state; FB5 also mapped to 
myoFB state; FB6 showed similarities spread across mul-
tiple, variably defined clusters; and FB7 and FB8 were 
closest to a SERPINE1⁺ FB population. Supporting the 
classification of FB in our dataset, our main FB states 
(FB0–FB5) mapped closely to the consensus FB clusters 
defined in the cross-study transcriptional patient map 
of heart failure [69], with one exception: we resolve two 
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Fig. 3 (See legend on next page.)

 



Page 14 of 27Youness et al. Genome Medicine          (2025) 17:155 

distinct activated FB states (FB1 and FB4), whereas these 
two states fall within a single activated state in that study.

Different activated FB states arise via distinct trajectories 
from different resting states
The dominance of FB0, FB2, and FB3 in NF, and the 
increases in FB1, FB4, and FB5 in HF suggested that 
states present in HF derive from those in NF. To test 
this, we investigated shared patterns of gene expres-
sion between resting and activated FB states. To these 
ends, we first separately identified the genes specifically 
enriched amongst each of the resting and activated FB 
states and then intersected these to identify the associ-
ated resting-activated FB state pairs (Fig.  3a). The FB0-
FB1 and FB2-FB5 pairs shared the greatest number of 
enriched genes, consistent with trajectories from FB0 to 
FB1 and FB2 to FB5. FB3 showed the most overlap with 
FB4, but with close numbers to other activated states. 
Similar trajectories were detected in by constructing a 
matrix of DEGs of each FB state vs all (Additional file 1: 
Fig. S6a).

To further explore these potential pathways of dif-
ferentiation, avoiding introducing bias through exclu-
sion of any FB states, we performed a trajectory analysis 
(Fig.  3b). This analysis revealed a trajectory initiating at 
FB0 that passed through FB1 and ending in FB4 and 
another progressing from FB2 towards FB5. FB3 did 
not directly progress towards FB4 but was linked to a 
branch point with FB0 and FB2, in addition to FB6 and 
FB7. Pseudotime of differentiation was higher when pass-
ing through FB1 and FB4, consistent with the notion that 
FB1 arises from FB0 and that FB4 is a more differenti-
ated phenotype than FB1 (Fig. 3c). Of note, FB5 showed 
a relatively lower pseudotime compared to other acti-
vated FB, suggesting its greater similarity to resident 
FB. Furthermore, supporting a relationship between FB 
differentiation trajectory and fibrosis, FB activation and 
fibrotic genes (COL1A1, FAP, POSTN) showed increas-
ing expression along the trajectories of differentiation 
(Fig.  3d). Of interest, ACTA2 (encoding alpha smooth 
muscle actin, α-SMA) showed increased expression in 
the middle of the trajectory followed by a rapid decline, 
in line with previous data that α-SMA is lost in advanced 
disease [9].

Although a direct link between FB3 and FB4 or FB1 
was not detected in our analysis, a transition from a 

resting state similar to FB3 to more activated states has 
been described previously [31], and similarities in gene 
expression in atherosclerosis studies support such a link 
(Additional file 1: Fig. S6b).

To investigate mechanisms underlying the different dif-
ferentiation paths of each resting state, we analysed gene 
expression along differentiation trajectories (pseudotime) 
identified by Slingshot for FB0 to FB1, FB2 to FB5, and 
FB3 to FB4. This analysis identified many DEG that were 
common to all trajectories (66.8%), as well as unique 
genes and pathways (Supplemental data, Fig. 6c-e). Next, 
we identified transcription factors that were differen-
tially expressed along the studied trajectories (Fig.  3e). 
Again, many were common to all trajectories (70.8%), 
while others were unique. While some of the identified 
transcription factors have been previously implicated in 
FB differentiation and cardiac fibrosis (AEBP1, MEOX1, 
RUNX2, TEAD1), others have not (eg. LEF1, TFDP2, 
GLI2) (Fig. 3f ). Specifically, LEF1 was specific to FB0-FB1 
differentiation, AEBP1 to FB3-FB4, TFDP2 to FB2-FB5, 
and GLI2 was common to all (Fig. 3g and Additional file 
1: Fig. S6f ). Additionally, RUNX2 was among the tran-
scription factors specific to FB0-FB1 and FB3-FB4 only, 
TSC22D1 for FB2-FB5 and FB3-FB4, and GATA6 for 
FB0-FB1 and FB2-FB5 (Additional file 1: Fig. S6g i-iii).

Together, these findings demonstrate that FB differen-
tiation follows a path specific to the resting state.

Conserved and distinct ligands govern resident fibroblast 
activation
Beyond their transition to activated states, resting FBs 
exhibit differences in their transcriptomes between NF 
and HF (Additional file 1: Fig. S7a) that represent the ini-
tial stages of their activation. We therefore investigated 
the identities of the paracrine cues that could instigate 
the activation of these resting (FB0, FB2, and FB3) FB 
states. To this end, we used NicheNet to identify relevant 
ligand-receptor interactions. To restrict the analysis to 
the analysis of fibrosis (treating fibrosis association as a 
surrogate for FB activation), genes from all cell types that 
are positively correlated with fibrosis were considered as 
potential ligands (data from Additional file 1: Fig. S3 and 
Additional file 2: Table S5), and within each resting FB 
cluster, genes that were positively correlated with fibrosis 
were considered as potential targets (Fig.  4a and Addi-
tional file 2: Table S9).

(See figure on previous page.)
Fig. 3  Activation of FB is state and context dependent. a Left, Schematic of the workflow used in the analysis. Right, UpSet plot visualizing the overlap 
of differentially expressed genes (DEGs) between activated and native fibroblast states. Each set represents a fibroblast state with the number of DEGs 
identified. Native FB states (FB0, FB2, FB3) and activated FB (FB1, FB4, FB5) were compared separately. Intersections indicate genes shared between clus-
ters compared to the other clusters (log₂ fold change threshold = 0.25). b and c UMAP visualization of trajectory inferred by monocle3. Cells are coloured 
by cluster (b) or pseudotime (c). The centre of FB0 was used as a reference to order cells and assign Pseudotime values for each cell. d Expression levels 
of selected genes along pseudotime (COL1A1, FAP, POSTN, and ACTA2). e Venn diagram grouping of the associated transcription factors with pseudotime 
along each trajectory. f Individual transcription factors that are shared and specific between trajectories. The colour code relates to the groupings shown 
in (f, g). Transcription factor expression over pseudotime
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Across the three resting FB states, this analysis yielded 
an expected repertoire of ligands involved in fibrotic 
remodelling, although not all were found in all states, and 
in some cases, were unique to one state (Fig. 4b). Notably, 
TGF-β, exhibited high regulatory potential for multiple 
targets in FB0 and FB3, including its receptor TGFβR1, 
collagens and periostin but was not prioritized as a ligand 
for FB2 activation. CTGF, SERPINE1, FN1, PROS1, 
FGF1, and COL1A1 however were common to all three 
FB states with high potential for regulating expression of 
target fibrotic genes. Other activation ligands were spe-
cific to individual states. For example, the junction adhe-
sion molecule JAM2 for FB0, adhesion molecule ICAM2 
for FB2, and the TGF-β superfamily member INHBA for 
FB3. These ligands were enriched in pathways related to 
chemotaxis, migration, and proliferation (Fig.  4c), cor-
roborating the understanding that fibrosis involves cell 
recruitment, expansion, and invasion.

Further analysis of ligand-target relationships for each 
FB state revealed common targets for ligands, suggest-
ing a requirement for this interaction for FB activation 
irrespective of state (Fig. 4d-f and Additional file 1: Fig. 
S7b-c). For example, CTGF, SERPINE1, TGFB1, PROS1, 
FGF1, and COL1A1 were identified as key players influ-
encing fibrotic genes (Fig. 4d-f ). Many target genes were 
common between FB0, FB2, and FB3 (27.6%), while oth-
ers were specific to each state (Additional file 1: Fig. S7b). 
GO pathway analysis of these genes showed common 
pathways across all FB states including adherens junc-
tions, SMAD and actin binding (Additional file 1: Fig. 
S7c). Histone demethylase activity and phosphatidylcho-
line binding were specific to FB3 targets, while response 
to peptide hormones and protein dephosphorylation 
were specific to FB2 targets. FB0 did not have any specific 
GO pathway.

The cell type origin of key ligands was next identi-
fied through analysis of their expression across the cell 
types of the heart, and whether they were differentially 
expressed in HF. Although many cardiac cell types con-
tributed, FB and EC were the greatest ligand expressing 
cell types across all conditions (Additional file 1: Fig. S7d). 
However, and suggesting a dominant role for autocrine 
signalling in FB activation, activation ligands were most 
differentially expressed in FBs during HF (Additional file 
1: Fig. S7e). Relatively few activation ligands were dif-
ferentially expressed during HF in EC on the other hand 
(Additional file 1: Fig. S7e). Non-FB expressed ligands 
also exhibited high regulatory potential. For example, 
JAM2, a ligand involved in FB0 activation, was expressed 
in EC and CM and upregulated during HF. PDGFB, 
involved in FB2 activation, was expressed in myeloid cells 
and upregulated during HF, while FGF1, involved in FB3 
activation, was primarily found in pericytes and smooth 
muscle cells (SMCs) and upregulated during HF. This 

suggests distinct interactions between FB0 and CM, FB2 
and immune cells, and FB3 and the vasculature.

We also examined cell–cell interactions between all 
cardiac cell types and the ligands involved without a pri-
ori prioritization of ligands and targets using CellChat 
(Fig.  4g-h). The findings were overall consistent with 
the above analysis in that the FB targeting ligands which 
increased in number and communication probability 
in HF vs NF significantly overlapped with those identi-
fied through a priori prioritization in the above analysis 
(Additional file 1: Fig. S7f ).

Collectively, these findings demonstrate that the acti-
vation of resting FB states within the heart is mediated 
by pathways that are common between states, as well as 
by pathways unique to each state—the latter suggesting 
exposure to unique ligands, potentially within a specific 
spatial niche.

Spatial organization of resident FB states
The presence of several resting FB states that follow dis-
tinct activation trajectories involving different ligands 
to activated states with potentially specialized functions 
raised the question whether these new FB states were 
specific to different myocardial locations. We therefore 
probed the distributions of these FB states by integrating 
our data with a publicly available spatial transcriptomics 
dataset of the NF myocardium (Visium, 10 × Genom-
ics) [31] (Fig. 5a-b). First, based on genetic markers, the 
enrichment of each FB state and major cell type (module 
score) within a spot of the Visium array was calculated. 
We then used our snRNA-seq dataset as a reference 
to deconvolute the spatial transcriptomics data and 
assigned weights to each cell type/state abundance within 
each spot using DOTr. After validation of the deconvo-
lution approach (see methods, and Additional file 1, Fig. 
S8a), MISTy was applied to evaluate the contribution of 
each cell type (quantified as and importance score), to 
predict the spatial localization/exclusion of FB states (tar-
get) within each spot (intra-view). Analysis regarding the 
immediate surrounding spots (juxta-view) can be found 
in the Additional file 1, Fig. S8b-f.

Illustrating the architecture of the samples analysed, 
CM and SMC showed high module scores in the regions 
shown histologically to be rich in CM and vessels, respec-
tively, with MC being found in vascular and CM-rich 
areas (Fig. 5b-c). While both FB0 markers were dispersed 
across the myocardium, FB3 was substantially enriched 
around the vasculature. FB2 showed a distribution inter-
mediate between FB0 and FB3; i.e. interstitial distribu-
tion but reduced perivascular distribution compared 
to FB3. Using an importance cutoff of 0.5 applied to 
MISTy’s aggregated estimated standardized importances 
(median) to detect the most robust dependencies, we 
then investigated the spatial dependencies between each 
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Fig. 4 (See legend on next page.)
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resting FB state and between each resting state and other 
cell types. In line with their distinct histological local-
izations, SMC location was dependent on the presence 
of CM and arterial EC (EC_art) within the Visium spots 
(Fig. 5e), showing colocalization with EC_art and exclu-
sion with CM within the Visium spots (data not shown). 
Resting FB states showed dependencies with each other, 
associated with mutually exclusive localization in differ-
ent spots, particularly when highly expressed (Fig. 5e-f ). 
FB0 and FB2 did not show any dependency with CM, 
SMC, MC or EC_art, highlighting the absence of direct 
co-localization within each spot. However, FB3 showed 
a strong dependency on CM. Analysis of the juxta-view 
dependency provides information on the co-occurrence 
or exclusion in the immediate neighbourhood (Addi-
tional file 1: Fig. S8b-c). This analysis supported the 
spatial distribution of FB3, together with SMC in the vas-
culature but not in CM-rich regions (Additional file 1: 
Fig. S7e) while the CM-rich distribution of FB0 supports 
FB0 as being an interstitial FB state (Additional file 1: Fig. 
S7f ).

Confirming localization of FB0 and FB3 to interstitial 
and vascular regions respectively, protein markers of 
these states, identified as enriched in the RNA-seq analy-
sis, were localized to these regions in the human protein 
atlas (HPA). Specifically, as a marker of FB3, we probed 
the distribution of VCAN, CD55, FBN1, FBLN2 (encod-
ing proteins Versican, CD55, Fibrillin 1, and Fibulin 2 
respectively) and found them to be strongly expressed 
in the vasculature and not the CM-rich area (Fig. 5g and 
Additional file 1: Fig. S9a-c). Conversely, the markers of 
FB0, LAMB1 and COL15A1 (encoding Laminin subunit 
beta 1 and Collagen type XV alpha 1 chain proteins, 
respectively) were highly expressed in the CM-rich areas 
and not in the vasculature (Fig. 5h and Additional file 1: 
Fig. S9d).

Together, this integration of single nucleus and spa-
tial RNA-Seq with histochemical analysis strongly sup-
ports the identification of FB0 and FB3 as interstitial and 
adventitial fibroblasts, respectively.

Spatial organization of FB states after myocardial 
infarction
We next investigated whether the spatial distribution of 
the resting FB states was altered in HF and whether the 
activated states were localized to specific cellular niches, 
that contributed to their mechanism of activation. 

Analysis was performed as for NF but using datas-
ets from human cardiac tissue after MI during the late 
fibrotic phase (n = 6) [31]. The tissue remodelling asso-
ciated with this pathology is illustrated in the histologi-
cal images (Fig.  6a, left panel) and Visium data used in 
the analysis where fibrotic areas devoid of CM reflecting 
the scar are seen (Fig. 6a, right). In the intra-view analy-
sis (Fig. 6b), FB0 and FB1 showed high dependencies on 
each other. While both FB states were abundant in CM-
rich regions, their localizations were mutually exclusive 
at the level of individual spots (Fig. 6c). Through analysis 
of cell neighbourhoods (juxta-view), we determined that 
unlike in NF, FB3 was not dependent on SMC (Fig. 6d-e). 
Indeed, in contrast to the exclusive peri-vascular distri-
bution seen in NF, FB3 was distributed across the entire 
fibrotic region of the scar (Fig. 6f ). FB1 and FB4 showed 
dependencies on each other in the juxta-view, which 
could be seen as a pattern of regional exclusion, where 
FB1 was more present in CM-rich areas, while FB4 in 
the scar (Fig. 6g). Moreover, FB2 was dependent on MC 
showing a pattern of localization with FB3 and MC rich 
regions (Additional file 1: Fig. S7h). Lastly, FB5 showed 
localization in fibrotic regions that also contained iso-
lated islands of CM (Additional file 1: Fig. S7i).

Together, these findings strongly point to FB1 arising 
by transition from the interstitial FB0 state, and FB4 from 
FB3, which extends its distribution in scar.

FB gene expression signature in scar tissue from ICM
Whether scar FB exhibited features distinct from those 
in the remote myocardium was next investigated. While 
our analysis identified altered FB state composition of 
the ICM-scar, this region remained heavily populated by 
resting FB states. To avoid these and unique FB7 and 8 
states from biasing the identification of transcriptional 
differences between ICM-scar and remote, we assigned 
autocorrelated genes (determined using Moran’s I sta-
tistic as applied in monocle3 [52]) within the UMAP to 
gene modules and analysed their expression amongst 
regions, FB states and conditions (Fig.  7a-b, methods, 
and Additional file 2: Table S11). These modules are 
segregated between NF, HF and scar. Notably, while 
ICM-scar showed some overlap with interstitial ICM, it 
also had a distinct profile, showing strong upregulation 
of modules 4, 5 and 9, as well as absence of upregula-
tion of module 7, present in HF (Fig. 7b). Supporting the 
importance of this module 7 to interstitial fibrosis, it was 

(See figure on previous page.)
Fig. 4  Conserved and distinct ligands govern FB activation onset. a Schematic of the workflow used in the analysis. b Venn diagram grouping the top 
ligands identified to contribute to FB activation. c The top 10 enriched Gene Ontology pathways of activation ligands (shown in b). d-f NicheNet ligand-
target matrix denoting the regulatory potential between predicted ligands and activation target genes (positively correlated to fibrosis) in resident FB0 
(d), FB2 (e), and FB3 (f) states. g and h Heatmap showing differential interaction strength between HF and NF main cell types with FB as one main cluster 
(g) or FB0, FB2, and FB3 states separately (h). The blue colour indicates that the displayed communication is decreased in HF, while the red colour indicates 
that communication is increased in HF compared with NF. The bar plots highlight the sum of absolute interaction strength of each cell type as senders 
(right) and receivers (top)
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enriched in FB0 and activated FB1 (Fig.  7c). These two 
FB subtype populations were significantly altered in ICM 
and ICM-scar (Fig. 2b). GO pathway analysis of genes in 
these modules (Fig. 7d) identified enrichment of metallo-
peptidase activity and Insulin-like growth factor binding 
for module 7 genes (Fig.  7e), while scar-enriched mod-
ules 3, 4, 5 and 9 showed enrichment in collagen binding, 
ECM constituents, synapse organization, and leuko-
cyte migration. Most module 7 genes are upregulated in 
ICM FB compared to both ICM-scar and NF (Fig.  7f ), 
and ADAMTS19 were transcriptionally specific to FB 
(Fig.  7g). TLL2 belongs to the Tolloid family of metal-
loproteases which processes collagens pro-peptides and 
through cleaving pro-LOX enhances its activity promot-
ing collagen cross-linking. The presence of this module 
7 in non-scar FB was also detected using Non-negative 
Matrix Factorization (NMF) based method (see meth-
ods) [53]. Together, these data suggest that the ICM-scar 
FB support a more stable ECM, while interstitial ICM FB 
support matrix turnover and remodelling.

Circadian rhythm disruption in DCM alters FB transcription
Although both DCM and ICM exhibit reactive intersti-
tial and perivascular fibrosis, the patterns and degree of 
fibrosis between these aetiologies differ ([11]; supplemen-
tary data). Leveraging the snRNA-seq analysis of DCM 
and ICM FB, we probed the phenotype of reactive fibro-
sis in these aetiologies. This analysis identified a signifi-
cant number of DEG (300 up and 318 down FDR < 0.05) 
(Fig. 8a and Additional file 2: Table S12) with ECM orga-
nization and response to TGF-β being among the top GO 
upregulated in DCM.

Indeed, several genes related to ECM were differen-
tially expressed in DCM and ICM FB, supporting a tran-
scriptional basis for distinct fibrosis patterns between 
these aetiologies (Additional file 1: Fig. S9a). Interest-
ingly, rhythmic processes (rhythmic process, circadian 
regulation of gene expression and entrainment of circa-
dian clock by photoperiod) were among top GO terms 
enriched in DCM (Fig.  8b). To account for a potential 
confounding effect of fibrosis, we modelled fibrosis as a 

covariate in the DCM vs ICM comparison (using pseudo-
bulk data approach in DESeq2); enrichment of circadian 
genes (Fisher test; p = 0.0104) and several ECM-related 
differences remained after adjustment, supporting the 
robustness of these findings (Additional file 2: Table S13).

Motivated by the reported involvement of circa-
dian clock in cardiac diseases, including DCM [70–72], 
we explored the expression of genes underlying these 
GO pathways. Involved downregulated genes in DCM 
included those responsible for circadian transcription 
(NPAS2, ARNTL), whereas upregulated genes included 
CRY1, PER1, PER2 and 3, which negatively feedback to 
inhibit the transcription of the aforementioned genes. 
The downregulation of NPAS2 and ARNTL in DCM was 
also apparent in the comparison with NF and ICM-scar, 
supporting a specific role in DCM (Fig.  8c). Notably, 
time of collection of cardiac samples did not contribute 
to differences in expression of these genes, and all DCM 
samples showed such transcriptional alterations (Addi-
tional file 1: Fig. S9b). Not all cell types in our analysis, 
e.g. CM, showed the same disruption in expression pat-
tern of these genes, suggesting a prominent effect on 
circadian rhythm in DCM FB (Additional file 1: Fig. S9c-
d). Given that many clock genes act in transcriptional 
control, we next used correlation analysis to identify 
the genes transcriptionally affected by this machinery. 
ARNTL expression correlated positively with NPAS2, 
while PER2 and PER3 were correlated negatively (Fig. 8d 
and Additional file 2: Table S12). Notably, NPAS2 expres-
sion strongly correlated with COL5A3 expression, which 
was decreased in expression in DCM compared to NF, 
ICM and ICM-scar (Fig. 8e). Notably, COL5A3 regulates 
the assembly of fibres composed of type I and type V col-
lagens and shows circadian rhythmicity [73].

Together, our data thus identify the unique gene signa-
tures between ICM and DCM FB which may underlie dif-
ferent patterns of interstitial fibrosis.

(See figure on previous page.)
Fig. 5  Spatial distribution of FB states in healthy myocardium. a Schematic of analysis approach using published spatial transcriptomics data from human 
cardiac tissue to calculate (I) module and (II) prediction scores. b H&E staining of healthy myocardial tissue and representative sample (ACH003), highlight-
ing CM-rich and vascular regions. Zoomed area shown in following panels. c Spatial visualization of FB0-3, CM, SMC, and MC module scores in ACH003. 
Black area indicates vasculature, as identified by H&E. d Schematic of intra-view modelling used to define within-spot interactions. e Median importance 
of cell-type abundance (predictors) in predicting other cell-type abundances (targets) within a spot (intra-view; N = 4 slides). White indicates importance 
below 0.5 threshold. Green values indicate high importance scores which suggest within spot co-localisation or exclusion. f Zoomed region showing 
deconvoluted FB0, FB2, and FB3 distributions in ACH003, with outlined areas indicating distinct FB states (colours correspond to clusters; Bordeaux is an 
example of FB0 + spots, green for FB2, and yellow for FB3). g Left, Expression of FB3 marker VCAN across FB0, FB2, FB3 (Wilcoxon rank-sum test; ** = signifi-
cant, ns = not significant). The box shows the interquartile range with the median line. Right, Histological staining of Versican in healthy myocardium (HPA; 
heart 5145, antibody CAB008979). Red square shows vascular region; black, CM-rich. Brown DAB staining indicates protein expression. Tissue diameter: 
1 mm; scale bar: 200 µm. h Left, Expression of FB0 marker LAMB1 in FB0, FB2, FB3 (Wilcoxon rank-sum test; ** = significant, ns = not significant). The box 
shows the interquartile range with the median line. Right, Staining of Laminin subunit beta 1 (HPA; heart 2521, antibody HPA004132). Red square: vascular 
region; black: CM-rich. DAB staining indicates protein expression. Tissue diameter: 1 mm; scale bar: 200 µm. CM: cardiomyocytes; SMC: smooth muscle 
cells; MC: myeloid cells; HPA: Human Protein Atlas
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Discussion
Fibrosis is a key determinant of deleterious cardiac 
remodelling during HF but is also key to cardiac repair 
post-MI [8, 32, 74]. Here, using RNA-seq of cardiac cell 
nuclei from NF and HF hearts of different aetiologies 
we gained new insights into the phenotypic changes 
and heterogeneity of FB remodelling in HF as well as 
the contribution of spatial cellular relationships therein. 

We identified unique trajectories of differentiation that 
coupled specific resting with differentiated states and the 
molecular cues that drive them. By comparing scar with 
non-scar FB, we identified exclusive previously unidenti-
fied states in the scar and unique features of FB in non-
scar HF tissues.

Fig. 6  Spatial distribution of FB states in the infarcted myocardium. a Left, Haematoxylin and eosin (H&E) staining of cardiac tissue after MI and visualiza-
tion of a fibrotic region representative of samples used in the analysis (Fibrotic with mature scar). Sample ACH006. Right, Deconvoluted CM, MC, and SMC 
abundances in the same sample highlighting CM-rich region, scar region, and vascular areas. The indicated black area corresponds to the vasculature 
identified by H&E staining of the tissue. b Median importance of cell-type abundance (Predictors) in the prediction of abundances of other cell types (Tar-
gets) within a spot (Intra-view). White cells represent importance below the cut-off threshold (0.5). Green values indicate high importance scores which 
suggest within spot co-localisation or exclusion. c Left, Deconvoluted FB0 and FB1 abundances in the fibrotic sample showing abundance of FB0 and 
FB1 in CM-rich areas. Right, zoom in on 1 region with exclusivity of FB0 and FB1 within spots. Colours correspond to clusters; Bordeaux is an example of 
FB0 + spot, and red for FB1. d Median importance of cell-type abundance (Predictors) in the prediction of abundances of other cell types (Targets) in the 
immediate neighbouring tissue (Juxta-view). White cells represent importance below the cut-off threshold (0.5). Green value indicates high importance 
scores which suggest regional co-localisation or exclusion. e Importance scores showing dependency of FB3 on SMCs in the fibrotic regions according 
to the Juxta-view. The box shows the interquartile range with the median line; whiskers indicate min to max data. Two-sided Wilcoxon rank sum test. *, p 
value < 0.05. f-i Deconvoluted FB3,4,2, and 5 abundances in the fibrotic sample showing abundances of FB3 (f) and FB4 (g) in the scar region, FB2 (h) in 
perivascular areas, and FB5 (i) in the fibrotic region where CM-islands are present. CM; Cardiomyocytes, FB0, SMC; Smooth muscle cells, MC; Myeloid cells
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Emergence of multiple activated FB states increases FB 
heterogeneity in HF
Consistent with previous studies, we identified FB 
together with CM and EC, as being the most abundant 
cell type in the heart [28, 29, 75]. While FB outnum-
bered EC in NF, they were less numerous in HF. This 
observation aligns with findings in [75], but not with that 
in [29]. The absence of an increase in FB proportion in 
these tissues likely reflects a stable fibrotic state that has 
developed during the extended time of progression to 
late-stage HF.

Of the cardiac cell types in our analysis, FB exhibited 
the greatest number of DEG across aetiologies, second 
only to CM. These data highlight the highly plastic nature 
of FB that allows them to adapt to different stresses and 
environments, and is consistent with the remodelling of 
FB to different functional states, with each specializing in 
different roles. Previous studies have identified between 
4 and 7 FB states in NF heart and 4 and 13 in HF [16, 24, 
26, 27, 29, 31, 44, 60]. Potentially owing to the diversity 
of samples analysed (NF,DCM, ICM both scar and non-
scar) and the relatively high cell number and sequenc-
ing depth applied, we could detect 9 different cell states, 
including some at a low proportion (corresponding to a 
low cell number), with great certainty. Our study comple-
ments other studies and expand on them particularly in 
the area of FB biology, highlighting location and aetiology 
effects on FB activation.

The three resting FB populations (FB0, FB2, and FB3) 
that we identified have previously been classified as 
basal, oncostatin M receptor (OSMR)-expressing, and 
ECM-modulating states, respectively [26]. These three 
states were predominant in NF, accounting for over 
80% of all FB but showed a significant reduction in HF. 
Consistently, FB2, which was also described as comple-
ment C7 + ABCA9 + FB state, was previously shown to 
decrease in ischaemic hearts [31]. FB3 resembled the 
SCARA5 + PCOLCE + collagen processing FB [26, 29] and 
the MyoFB progenitor FB state reported to be capable of 
activation and collagen deposition after MI [31]. Further 
supporting this identification as resting states, FB0, and 
FB3 corresponded to respectively COL15A1⁺, and PI16⁺ 
FB states that were reported in a cross-tissue analysis of 
FB subpopulations to represent universal FB subtypes 
[44].

In HF, a large fraction of the FB population consists 
of the activated states, FB1 and FB4, which are low to 

absent in NF. Supporting a role in disease-associated 
fibrotic remodelling, these FB states expressed higher 
levels of fibrosis-related genes such as POSTN and FAP. 
FB1 was prominent across all HF samples, while FB4 was 
more enriched in DCM and ICM-scar tissue. The more 
elevated expression of fibrotic and ECM genes in FB4 
suggested this state to be more activated than FB1. Else-
where, FB1 and FB4 have been classified as a single acti-
vated/fibrotic/MyoFB state involved in TGF-β signalling 
owing to their similar expression of FB activation mark-
ers [26, 28, 31]. FB1 has also been shown to lie closer 
to a TNC + FB state [29] and FB4 to a THBS4 + FB state 
[24] and to a state classified by its expression of COMP 
(identified in artery/tendon tissue) [44], indicating that it 
is closer to the previously described matrifibrocyte state 
[9].

FB5 showed a significant increase in DCM, and even 
greater in scar. This FB state resembled an ELN + dif-
ferentiated FB state increased in DCM [29], but did not 
show substantial similarities with any other published 
FB states. FB5 exhibited some similarity to MyoFB but to 
a lesser extent than FB1/FB4 [31]. Whether FB5 is typi-
cal MyoFB or a de-differentiated phenotype remains to 
be studied. Two additional states were also identified in 
the scar, FB7 and 8, further increasing FB heterogeneity 
in this tissue. FB7 and FB8, appeared to be undescribed 
FB states, though FB7 showed some similarity to SER-
PINE1 + and CCL2 + FB and FB8 showed some similarity 
to COMP + FB [29, 44]. In common between these scar-
enriched states is the presence of MyoFB characteristics 
and ECM remodelling capacity (e.g. ELN + in FB5), which 
may allow them to sustain the structural integrity of the 
scar.

Together, the data support that increased heterogeneity 
of FB states in HF contributes to heterogeneity of fibrous 
tissue within the failing heart, including more structured 
scar tissue. A summary of our cohort and FB states in 
relation to literature can be found in Additional file 2: 
Table S15.

Location determines pathways for FB activation
The evolution from 3 dominant states in NF to 6 in HF is 
consistent with a model in which the 3 resting FB states 
of NF, which persist at a lower level in HF, represent 
progenitors of the new states that emerge in HF. Previ-
ous reports have identified distinct cellular niches where 
FB become activated, suggesting a key role for specific 

(See figure on previous page.)
Fig. 7  Scar and interstitial fibrosis specific gene signatures in ICM. a Schematic showing the principle of gene module grouping. Moran’s I statistic is cal-
culated for each gene in the cells’ UMAP. A positive value close to 1 indicates positive autocorrelation and suggests that close by cells have similar values 
of a certain gene's expression. Then, these genes are taken and grouped by a gene UMAP. b Heatmap showing the enrichment of different gene modules 
in HF and NF groups. c Feature plot showing the enrichment of Module 7 genes in FB0 and FB1. Enrichment was obtained by calculating a module score 
for Module 7 genes. d The top four enriched Gene Ontology pathways of each gene module. e Genes belonging to metallopeptidase activity and insulin 
like growth factor 1 (IGF1) binding (IGFBP) pathways. f Heatmap showing the expression of some module 7 genes (shown in e) across different FB states 
and different conditions. g Normalized expression level of TLL2 (left) and ADAMTS19 (right) in the snRNA-seq dataset showing specific expression in FB



Page 23 of 27Youness et al. Genome Medicine          (2025) 17:155 

activating cues and signalling mechanisms in this process 
[16, 31]. Here our data provides new insights into signals 
that activate each of the resting states, linked to their 
location and that are related to cell–cell signalling.

As well as interaction with other cell types, suggest-
ing a key role for FB in determining their own differen-
tiation, they are preeminent amongst the ligand secreting 
cell types [76]. We similarly noted that in HF, FB showed 
increased cell–cell interactions including with them-
selves. Through combining this information of inferred 
cell–cell interactions with differentiation trajectories 
between states, and integration with spatial transcrip-
tomics data sets, we could establish that the three rest-
ing states FB0, 2, and 3 represented progenitors for FB1, 
5 and 4, respectively, and determined the main signals 

that contributed to their activation. Notably, each of the 
resident FB states showed differences in both expression 
and localization within the tissue, suggesting specializa-
tion of function. Indeed, our spatial mapping showed 
that FB3 predominantly resides in perivascular regions, 
whereas FB0 is mainly found within interstitial spaces. 
Consistently, ligands that contribute to activation of 
FB0, such as JAM2, are expressed in EC and CM and 
upregulated during HF. PDGFB, involved in FB2 activa-
tion, is expressed in myeloid cells and upregulated during 
HF, while FGF1, involved in FB3 activation, is primarily 
found in pericytes and smooth muscle cells (SMCs) and 
is upregulated during HF. This suggests distinct interac-
tions between FB0 and CM, FB2 and immune cells, and 
FB3 and the vasculature.

Fig. 8  Circadian rhythm disruption characterizes interstitial fibrosis in DCM. a Volcano plot showing ICM (left side) and DCM (right side) DEG. Some 
relevant genes are labelled. Q; adjusted p value. b The top 15 enriched Gene Ontology pathways of DCM FB DEGs compared to ICM FB. c Violin plots of 
normalized expression of NPAS2 (upper) and ARNTL (lower) in FB across different conditions. d Volcano plot representing positively (right) and negatively 
(left) correlated genes to NPAS2. The red colour represents the genes that have an absolute Pearson coefficient value > 0.5 and adjusted p value < 0.05. e 
Violin plot of normalized expression of COL5A3 in FB across different conditions
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Consistent with transition from interstitial FB0, acti-
vated FB1 was also localized in the CM-rich interstitium. 
FB4 on the other hand, invades fibrotic areas after peri-
vascular FB3 transition. At these locations, FB became 
activated by a diverse array of ligands with some being 
unique to each resting FB state. FB5 was unlike other 
activated states. Specifically, FB5 which resembles a 
MyoFB state, and which is enriched in ICM-scar, is unlike 
activated FB1 and FB4 in terms of expression and trajec-
tory of differentiation.

Together these data underscore the different spatial 
origin and multiple activation trajectories of FB in HF, 
resulting in a new spatial organization into interstitial 
fibrosis and scar fibrosis.

Interstitial fibrosis and scar have distinct FB states and 
signatures
Replacement scar is indispensable for maintaining LV 
structural integrity, and preventing cardiac rupture [32]. 
Hence, targeting reactive interstitial and perivascu-
lar fibrosis requires identification of targets that are not 
shared with scar tissue.

In scar, we found three gene modules enriched in col-
lagen binding, ECM constituents, synapse organization, 
and leukocyte migration that were highly upregulated 
and not in non-scar, suggesting that this region sup-
ports a more stable ECM niche. Deriving gene modules 
in UMAP space has been debated and true metric rela-
tionships between nuclei in the UMAP embedding used 
for Moran’s I may not correspond to their proximity in 
the original high-dimensional expression space [77]. 
While this is a limitation of the analysis marking the data 
as exploratory, a similar underlying biological signal was 
identified in an independent NMF-based analysis.

Importantly, non-scar tissue of ICM but also DCM, 
had increased expression of a gene module enriched for 
metallopeptidase activity and Insulin-like growth factor 
binding, which suggest a role in matrix degradation and 
instability. The insulin-like growth factor binding path-
way comprised IGFBP2,3, and 5, and the metallopepti-
dase activity pathway involved ADAM19, ADAMTS12, 
ADAMTS19, CPA6, MME, MMP16, and TLL2 (Fig. 7e). 
IGFBP5 has been implicated in pulmonary fibrosis [78]. 
MME-encoded membrane metalloendopeptidase (also 
known as Neprilysin) is an endopeptidase responsible 
for degrading various vasoactive peptides. TLL2 encodes 
tolloid-like 2 (TLL-2), a member of the BMP-1/TLD 
metalloprotease family. While TLL-2 is highly expressed 
during muscle development, its expression is minimal 
under normal physiological conditions adult [79, 80]. 
Unlike other BMP-1 family members, TLL-2 lacks pro-
collagen C-proteinase activity but plays a role in extracel-
lular matrix remodelling by processing pro-lysyl oxidase 
[63, 80], leading to its activation and subsequent collagen 

crosslinking. Additionally, TLL-2 activates myostatin by 
cleaving its latent complex, promoting muscle atrophy 
and fibrosis [81–83].

Together these data highlight unique features of inter-
stitial and scar FB gene signatures.

Translational perspectives
Our data identify possible molecular targets to reduce 
reactive interstitial fibrosis without degrading struc-
tural scar, a challenge typically encountered in ICM, 
although the same targets would be useful in non-ICM 
pathology. First, we provided trajectories of activation 
and differentiation of resting FB, together with the main 
transcriptional regulators governing these transitions. 
The functional relevance of some of these transcriptional 
regulators, including AEBP1 and MEOX1 has been pre-
viously recognized. For example, AEBP1 was shown to 
be increased in patients with persistent hypertrophy 
due to aortic stenosis and HF [84]. MEOX1 was shown 
to be a key regulator of FB activation linked to cardiac 
dysfunction and to be increased in expression follow-
ing the activation of fibroblasts in the human lung, liver, 
and kidney [85]. Second, the products of the unique 
gene expression patterns in non-scar are potential anti-
fibrotic targets, consistent with clinical data. Neprilysin 
inhibition is incorporated into the latest HF treatment 
guidelines, particularly in combination with angiotensin 
receptor blockers (ARBs) like valsartan (ARNi therapy). 
This therapeutic approach has proven highly effective in 
reducing the risk of mortality and HF-related hospitaliza-
tions in patients with NYHA class II to III HF [86], and 
could be related to reduction of fibrosis. Notably, inclu-
sion of sacubitril inhibition of neprilysin with valsartan in 
a mouse model of pressure overload significantly reduced 
interstitial fibrosis but had no impact on perivascular 
fibrosis, further reinforcing our findings [87].

Our analysis also identified the existence of DCM-spe-
cific FB features related to abnormal circadian rhythm. 
Disrupted circadian rhythms have been linked to the 
development of DCM in animal models [72]. A recent 
study also identified circadian rhythm abnormalities 
in DCM patients with sleep apnoea, which correlated 
with more severe left ventricular dilation and a higher 
incidence of arrhythmias [88]. However, abnormalities 
in circadian gene expression were not accompanied by 
increased histological fibrosis, suggesting that the cir-
cadian rhythm pathway contributes to the DCM phe-
notype independently of fibrosis. COL5A3 was however 
correlated with circadian rhythm and downregulated in 
DCM. Whether this collagen isoform remodelling con-
tributes to the decline in matrix tensile strength and the 
disrupted myocardial architecture observed in DCM 
deserves future investigation.
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Conclusions
Our study identified the resting progenitor FB states and 
the activation pathways that result in the heterogeneity 
and spatial complexity of fibrosis in human end-stage HF. 
The persistence of unique gene expressions in interstitial 
fibrosis compared to scar indicates potential for targeted 
fibrosis therapies.
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