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ABSTRACT: Mass Spectrometry Imaging (MSI) data sets are
markedly different from optical images. However, analysis
algorithms often overlook the intricacies of this kind of data. In
MSI, a frequently observed phenomenon is variability in signal
intensity between pixels caused by factors other than differences in
analyte concentrations. Another common issue is the presence of
ions with overlapping isotopic envelopes resulting in isobaric
interference. The first factor causes random variations of the signal
from the same anatomical regions. The second can cause the spatial
distribution of a single peak to represent a mixture of spatial
distributions of several analytes. Both factors affect the accuracy of
data analysis methods such as MSI segmentation. In this article, we
demonstrate that accounting for the intricate structure of MSI data
can increase the accuracy of the analysis results. We propose an approach that leverages recent advancements in computational mass
spectrometry to separate overlapping isotopic envelopes and mitigate pixel-to-pixel variability of signal intensity. We implemented
the approach in spatialstein, an open-source workflow that provides a tentative annotation of an MSI data set with molecular
formulas, generates a deconvolved ion image for each annotated ion, and segments each deconvolved ion image into regions of
distinct intensity of the corresponding analyte. The structure of the workflow is modular, making it highly modifiable and applicable,
whole or in parts, to other studies. The spatialstein workflow is available at https://github.com/mciach/spatialstein.

1. INTRODUCTION
Harnessing the size and complexity of Mass Spectrometry
Imaging (MSI) data requires the use of dedicated algorithms
and data analysis methods.1−3 Among the most popular
methods is segmentation, i.e., identification of regions with
characteristic chemical compositions.1,2,4 Such regions are
usually interpreted as corresponding to biologically or
anatomically distinct parts of the sample, such as tissues,
lesions, tumors, etc.5,6 This approach offers a simple and
reliable approach to distinguish and characterize anatomical
regions and identify novel biomarkers.7−9

However, the correspondence between segments and
anatomical regions can be hindered by a number of
phenomena inherent to mass spectrometry and MS imaging
technology. A particular phenomenon typical for MSI data is
referred to as pixel-to-pixel variability of signal intensity.10,11

The intensities of signals in MSI data can be influenced by
multiple factors, such as the number of ionized molecules, the
number of ions transferred to and through the spectrometer,
ionization suppression and/or matrix inhomogeneity.12 Since
these are different for every pixel and cannot be fully
controlled, there is a variation of the signal intensity between

pixels that is caused by other factors than the differences in
chemical composition. Pixel-to-pixel variability of the inten-
sity10,11 is a recognized factor that decreases the accuracy and
usability of MSI data segmentation.4,13

The second characteristic feature of MSI data is the presence
of overlapping isotopic envelopes (OIE) of ions with similar
masses. The isotopic peaks of such envelopes can merge,
especially if the resolving power is limited. When a single peak
corresponds to several analytes with different spatial
distributions, the resulting segmentation combines several
regions with different chemical compositions, decreasing its
correctness and usability. The problem of OIEs has been
extensively studied in many areas of mass spectrometry,14−20

both from the experimental and computational perspectives. In
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the context of MSI, it has been attracting a growing attention
with the development of data analysis approaches such as ratio
images,21 charge-deconvolution algorithms for lower resolution
data,22 approaches to resolve isobaric interferences using
spatial information,23 and experimental advancements such as
Tandem MSI and Ion Mobility MSI. However, further research
is needed to better understand the potential impact of OIEs on
downstream analyses such as data segmentation and to develop
improved computational methods to mitigate it.
In this manuscript, we present spatialstein, a

workflow for segmentation of MSI data that accounts for
OIEs and pixel-to-pixel variability (Figure 1). We show that
methods originally developed for optical images that do not
explicitly model these phenomena can result in highly
inaccurate segmentation. In particular, they can return
segments that do not correspond to any anatomical region
or, in extreme cases, suggest high concentration specifically
outside of the true localization region of an analyte. On the
other hand, separating OIEs and mitigating the pixel-to-pixel
variability allows for a more accurate segmentation with an
improved correspondence to the underlying anatomical
regions. Additionally, spatialstein provides a tentative
assignment of molecular formulas of ions detected in the
analyzed MSI data set, as well as the deconvolved ion images of
these ions.

2. MATERIALS AND METHODS

2.1. The masserstein Algorithm
A common approach to estimate the proportions of ions with
OIEs is to obtain their reference spectra (e.g., by theoretical
prediction) and fit them to the data in a way that the
coefficients of the fitted combination are equal to the estimated
proportions of signal corresponding to each ion. This approach
is referred to by several different names in various fields of
spectroscopy, including linear deconvolution, linear decom-
position, curve fitting, or linear regression of spectra.14,24,25

Since linear deconvolution uses the entire isotopic envelopes
rather than single peaks, it can resolve overlapping signals and
provide a better estimation of the relative proportions.
One of the tools for linear deconvolution of spectra is the

Python 3 package masserstein.24 It is a general-purpose
tool suitable for various types of spectroscopic data, including
mass and NMR spectra of various types of molecules.25,26 The
advantage of this tool over the competing approaches is the use
of optimal transport theory for matching experimental and
theoretical signals. This makes it robust to differences in
resolution of the compared spectra, line shape distortions,

small calibration errors and shifts in peak locations caused e.g.,
by centroiding inaccuracies.26−29 Solutions based on optimal
transport theory were shown to outperform competing
approaches in terms of the accuracy of the estimated
proportions of mixture consituents, both in NMR spectrosco-
py26 and mass spectrometry.30

Mass shifts, centroiding inaccuracies, and different reso-
lutions of compared spectra complicate typical workflows for
MSI data analysis. This is because many analysis methods are
sensitive to small differences in the m/z values of compared
peaks. A common way to solve these problems is to bin mass
spectra and align them between pixels. A particular advantage
of masserstein in this context is that, thanks to the
aforementioned robustness, it does not require these
operations. Processing spectra without the need for mass
binning and alignment avoids the loss of information in the
preprocessing stage and simplifies the overall workflow. This
makes masserstein a natural candidate for a linear
deconvolution tool for MSI data. The downside to the optimal
transport paradigm is an increased computational time, which
can be mitigated by an appropriate annotation of signals to
decrease the number of features in the mass spectra.
The input to masserstein is a mass spectrum in either

profile or centroid mode and either a library of reference
spectra or a list of chemical formulas of the analytes of interest.
In the latter case, theoretical reference mass spectra are
automatically calculated with IsoSpec.31 The output is a list
of estimated proportions of the ions, as well as the remaining
signal not matched to any of the reference spectra. Ion signals
estimated with masserstein can directly replace mono-
isotopic peak intensities as input to most downstream analysis
methods such as image segmentation.
The software requires the user to specify two parameters

that depend on the mass accuracy, resolving power of the
instrument, and the intensity limit of detection. The parameter
kmixture is the penalty for removing excess signal in the
experimental spectrum. The parameter kcomponents is the penalty
for removing excess signal in the theoretical spectra. The values
of both parameters are expressed as the expected difference in
m/z between corresponding theoretical and experimental
signals:25,26 kmixture is the expected maximum m/z window
around an experimental peak to match it to a signal from any
theoretical spectrum, and kcomponents is the expected maximum
m/z window around a theoretical peak to match it to an
experimental one. However, for any values of the κ parameters,
masserstein can further adjust the distances between
matched signals based on the shapes of the isotopic

Figure 1. The spatialstein workflow takes as input a list of MSI data sets (step In1) and a set of candidate molecular formulas of ions (step In2),
and outputs a tentative assignment of molecular formula to peaks (Out 1), a set of deconvolved single ion images (Out 2), and the regions of
distinct average intensity in each image (Out 3). The workflow starts with preprocessing the MSI data sets (step S1) and generating theoretical
spectra of the candidate ions (step S2). Next, the MSI data sets are annotated using masserstein to detect which candidate ions are present and
provide a tentative assignment of molecular formulas (step S3). The isotopic envelopes of the annotated ions are then deconvolved with
masserstein (step S4) for a robust estimation of their signal. These steps result in a list of deconvolved ion images for each annotated ion (step
Out1) and a list of corresponding molecular formulas (step Out2). In a downstream analysis, the estimated signals are segmented using a spatially
aware algorithm spatialDGMM (step S5) to find distinct regions of analyte concentration in the MSI data (step Out3).
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envelopes.25 This makes the κ parameters flexible thresholds
rather than strict m/z windows commonly used in other
approaches, which further increases the robustness of the
approach and allows for a more flexible tuning of the
parameters.30

2.2. The Cardinal Package and spatialDGMM
Segmentation Algorithm

One of the most common approaches to MSI data analysis is
segmentation, which partitions data into regions of distinct
chemical composition.4,5,32 MSI data segmentation methods
can be roughly divided into two types: multivariate and
univariate. Multivariate segmentation methods, such as spatial
shrunken centroids4 implemented in the open-source
Cardinal package for MSI data analysis,33 partition the
data set based on multiple features, such as peaks. In contrast,
univariate segmentation methods consider one feature at a
time.
The combination of multiple features in multivariate

methods can reinforce the signal in the spectra, thereby
providing a more accurate segmentation. However, multi-
variate methods rely on the assumption that the spatial
distributions of all the analytes can be partitioned into a single
common set of segments. This assumption is often unrealistic,
because MSI data sets usually contain ions with distinct,
potentially overlapping regions of localization. Although
multivariate approaches provide a comprehensive character-
ization of molecular differences in a tissue, univariate
segmentation can be more appropriate when the goal is to
localize and quantify specific biomarkers or metabolites with
high precision. It allows for clearer biological interpretation,
easier comparison between tissue regions, and reduces the risk
of overfitting or misleading correlations among ions. There-
fore, univariate methods may provide more meaningful
segmentations for each ion, which can be later summarized
using methods such as hierarchical clustering.13,34 The
drawback of univariate segmentation methods is that they
are more prone to artifacts of OIEs and to pixel-to-pixel
variability of the signal.
The sensitivity of segmentation methods to pixel-to-pixel

variability has already been noted and addressed by some
authors, who have demonstrated that accounting for spatial
relations between pixels can mitigate this effect and improve
the quality of segmentation.4,10,13,35,36 Accordingly, several
algorithms for spatially aware segmentation methods were
developed. However, most of the efforts focused on multi-
variate segmentation. The spatialDGMM algorithm, im-
plemented in the Cardinal package,33 addressed the lack of
spatially aware univariate segmentation methods. The algo-
rithm is based on Bayesian approach to Gaussian Mixture
Models.13 The use of Gaussian Mixture Models makes it
suitable for segments of different sizes, and the Bayesian
approach allows for applying a spatial filter to posterior
probabilities of segment assignment in order to mitigate the
effect of pixel-to-pixel variability.
2.3. The spatialtein Workflow

In this work, we combine masserstein and spa-
tialDGMM into spatialstein, a workflow for linear
deconvolution and spatially aware segmentation of MSI data
robust to OIE and pixel-to-pixel variability. The overview of
the proposed workflow is shown in Figure 1. The input to the
workflow is an MSI dataset in .imzML format, a list of chemical
formulas of the analytes of interest, and their ionization

adducts. The output of the workflow is a set of molecular
formulas of detected analytes, the corresponding deconvolved
ion images, and the segmentation results of each image.
The analysis proceeds in four main steps:

(1) A simple preprocessing, including normalization and
centroiding (but without the need for m/z binning or
alignment thanks to the use of masserstein)

(2) Tentative data annotation (peak assignment), either
using a “fast” strategy based on the average spectrum or
a “thorough” strategy based on annotating each pixel
separately and pooling annotations

(3) Signal quantification through a linear deconvolution of
spectra, using masserstein to obtain an accurate
signal estimation in the presence of OIE without the
need for m/z binning and alignment

(4) Image segmentation with a spatially aware algorithm
spatialDGMM to mitigate pixel-to-pixel variability of
the signal caused, e.g., by random differences in ion
statistics

Below, we describe each step of the workflow in detail,
including example data sets used for its evaluation and how to
find appropriate values of parameters at each step. A further
discussion of selected steps, as well as possible alternative
approaches and their advantages and disadvantages, is available
in the Supporting Information. There, we also discuss some
additional considerations and common pitfalls that can lead to
incorrect results, including model violations (i.e., discrepancies
between the theoretically predicted and experimentally
measured signals) and how to identify and correct them.
All the computations were performed on a personal laptop

computer with an 11th Gen Intel Core i7−11850H @ 2.50
GHz processor and 16 GB RAM.
2.4. Input Data Sets (Figure 1, Step In1)

To evaluate the performance of spatialstein, we have
used it to analyze three MSI data sets. The first data set,
referred to as the mouse cerebellum, was downloaded from the
MetaboLights dabatase37 (ID MTBLS487). It is a relatively
small MSI data set (81 × 21 pixels, 1701 pixels in total) of a
tissue section of a mouse cerebellum, obtained on a MALDI
Orbitrap instrument with a pixel size of 50 μm, mass resolving
power R = 60 000 at 200 m/z, and low amount of
contaminants and background noise.38 The data set contains
four well-delineated anatomical regions with distinct lipid
concentrations that are relatively easy to find by segmentation:
the background, the white matter, the granular layer and the
molecular layer; tissues were determined with histological
staining in the original work38 (Figure 2A).
The second data set, referred to as the mouse bladder, was

downloaded from the PRIDE database39 (ID PXD001283). It
is a larger data set (260 × 134 pixels, 34840 pixels in total)
obtained from a sample of a mouse bladder40 on a MALDI
LTQ Orbitrap instrument with a pixel size of 10 μm, mass
resolving power of R = 30 000 at 400 m/z, a noticeable
presence of matrix adducts, and overall more complex spectra
than the mouse cerebellum data set (see the average spectra in
Figure S1). This is an example of a more challenging input for
segmentation. It contains 7 main regions: the background, the
adventitial layer, the muscle tissue, the lamina propria, the
myofibroblast layer, the urothelium, and the umbrella cells;
tissues were determined with histological staining in the
original work40 (Figure 2B).
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The third data set, referred to as the simulated data set, was
prepared as a part of this work to illustrate potential pitfalls
associated with MSI data segmentation. It is a relatively small
data set (40 × 40 pixels, 1600 pixels in total) with three lipid
ions with potassium adducts: PC(38:1) (C46H90NO8PK;
854.603 Da), PA(44:0) (C47H93O8PK; 855.624 Da), and
PC(38:0) (C46H92NO8PK; 856.619 Da). The first lipid was
assumed to be concentrated in the top half of the sample; the
second in the bottom half; and the third in a 20 × 20 center
square, resulting in four distinct regions (see Table 1 and
Figure 3). This is a particularly challenging data set that
presents many opportunities for segmentation methods to
produce inaccurate results.

To prepare the simulated data set, a reference optical image
was drawn manually in the GNU Image Manipulation Program
(Figure 3A). Next, for each pixel, the number of ions of each
lipid species was drawn from a Negative Binomial distribution
with the average value depending on the region (listed in Table
1) and a coefficient of variation of 20% (Figure 3B). The
reference isotopic envelopes of the three lipids were generated
with masserstein using IsoSpec.31 Next, we simulated
how ion statistics influence the shape of the isotopic envelopes.
For each lipid in each pixel, the measured intensity of isotopic
peaks was simulated by drawing samples from a multinomial
distribution, with the numbers of trials equal to the drawn
numbers of lipid ions in each pixel, and probability vectors
proportional to the peak heights of the reference isotopic
envelope. After simulating the intensity, the isotopic envelopes
of the three lipids were added together (separately in each
pixel). To simulate additional signals coming from other ions
or the background noise, to each spectrum individually we
added 10 randomly located peaks, jointly accounting for 10%

of the intensity of the spectrum. A Gaussian filter was then
applied to the pixel spectra to simulate a limited resolving
power equal approximately 7000 at m/z 800 (fwhm = 0.12 Da)
(Figure 3C). The code to reproduce the simulation is available
on the spatialstein website https://github.com/
mciach/spatialstein.
2.5. Libraries of Reference Spectra (Figure 1, Steps In2 and
S2)
The spatialstein workflow can be used with either a
library of reference spectra or a library of molecular formulas of
interest. In the latter case, reference spectra are calculated
using IsoSpec.31 Since IsoSpec can calculate the
theoretic al isotopic envelope of any molecular formula, the
user can supply any library of formulas of interest to
spatialstein. Consequently, spatialstein is capa-
ble of analyzing ions with different adducts, as well as
negatively charged ions in MSI data sets collected in negative
mode. Furthermore, spatialstein can be used to analyze
molecules other than lipids, e.g., peptides or polymers, thanks
to the use of general-use software components that have been
validated in multiple research settings.13,30 However, we note
that the library of candidate ions for annotation must strike a
balance (see also the discussion in ref. 30). Insufficiently large
libraries may lead to false-negative results (failure to detect an
ion that is present in the data set), while excessively large
libraries may lead to false-positive results (spurious detection

Figure 2. The mouse cerebellum and mouse bladder data sets used to
evaluate spatialsteinin practical applications. A) An overlay of three
single ion images from the mouse cerebellum MSI data set: 744.49
Da, concentrated in the white matter (magenta); 820.53 Da,
concentrated in the granular layer (green); and 856.58 Da,
concentrated in the molecular layer (red). B) An overlay of three
single ion images from the mouse bladder MSI data set: 842.55 Da,
concentrated in the urothelium (magenta); 851.64 Da, concentrated
in the lamina layer surrounding the urothelium (red); and 422.93 Da,
concentrated in the myofibroblast layer between the lamina and the
urothelium, and in the muscle tissue surrounding the lamina (green).

Table 1. Average Numbers of Lipid Ions in Regions of the
Simulated MSI Data Set

PC (38:1) PA (44:0) PC (38:0)

Region 1 10 000 2 000 1 000
Region 2 1 000 4 000 1 000
Region 3 10 000 2 000 2 000
Region 4 1 000 4 000 2 000

Figure 3. The simulated data set used to evaluate the performance of
spatialsteinin particularly challenging scenarios. (A) The reference
images of lipid concentrations used to generate the simulated MSI
data set; color intensity represents the average number of ions. B)
The distribution of the simulated number of ions of each lipid in the
simulated MSI data set, showing pixel-to-pixel variability. C) The
average spectra of each distinct region of the data set, showing OIEs.
The corresponding region of the MSI data set is highlighted in the
top-right corner of each spectrum.
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of ions which are absent from the spectra, caused, e.g., by
fitting to the background noise or fitting multiple ions to a
single isotopic envelope).
In this study, to show an example application of

spatialstein, we created a relatively small library of
glycerophospholipid and sphingolipid ions with potassium
adducts, because such ions were reported in the original
studies in which the mouse bladder and cerebellum data sets
were published. Furthermore, isobaric interference due to
OIEs is a recognized problem for these molecules18,41 allowing
us to test the performance of spatialstein.
Molecular formulas of glycerophospholipids and sphingoli-

pids were downloaded from the LIPID MAPS database42

(accessed March 28, 2022; 3571 unique formulas correspond-
ing to 14504 lipid IDs within 30 lipid subclasses). Formulas
containing elements other than CHNOP were discarded,
leaving 3523 formulas corresponding to 14454 lipid IDs. The
remaining formulas were used to calculate theoretical spectra
of lipid ions with potassium adducts using IsoSpec31 in
masserstein (peak intensity threshold = 0.05). The
spatialstein workflow allows the user to restrict the
analyzed m/z range in order to focus on a selected group of
molecules and speed up the computations. To test this
functionality, spectra with the monoisotopic mass lower than
700 Da or greater than 900 Da were discarded, resulting in
1206 theoretical spectra, corresponding to 6922 different lipid
IDs within 22 subclasses. We refer to the remaining 1206 ions
as the candidate ions.
For the simulated data set, the reference library consisted of

the three lipid ions used in the simulation.
2.6. Data Preprocessing (Figure 1, Step S1)

For the mouse bladder and cerebellum data sets, all pixel
spectra were normalized by equalizing their total ion current in
order to account for artifacts such as varying laser intensity,
ionization efficiency or matrix inhomogeneity.43 The total ion
current was calculated by numerical integration of intensities in
profile mode (trapezoid method). Next, all pixel spectra were
restricted to the mass range of 700 to 900 Da. Since the
simulated data set did not include artifacts causing differences
in total ion current of the pixel spectra, it was not normalized.
The pixel spectra were centroided using the masser-

stein package according to a tutorial from the project’s
website. For the mouse cerebellum and bladder data sets, the
peaks were integrated within the full width at half-maximum of
signal intensities, with a maximum width of the integration
region 0.2 Da. For the simulated data set, the peaks were
integrated within the full width at 20% of maximum intensity,
maximum integration region 0.4 Da. The correctness of the
results was assessed by a visual inspection of randomly selected
pixel spectra overlaid in both profile and centroid modes, as
well as by comparing single ion images of selected lipid ions
generated from MSI data sets in centroided and profile mode
(Supplementary Figure S2).
2.7. Peak Assignment (Figure 1, Steps S3, Out1)

As a part of this work, we have designed, implemented and
evaluated two annotation strategies that differ by their
sensitivity and computational complexity. The first one,
which we call “fast” (or, equivalently, average, then annotate),
resembles the approach for MSI data annotation based on
accurate mass matching. For each data set, theoretical spectra
from the library were fitted to the centroided average spectrum
of the data set using masserstein. Stringent mass accuracy

criteria were used in order to select only the best-fitting ions
(kmixture = 0.005, kcomponents = 0.01). With these values of the κ
parameters, the proportions of analyte abundances estimated
by masserstein may not be accurate enough for
quantification (because the threshold of 0.005 Da can be too
stringent to capture all the signal from an analyte), but can be
used as a rough indication of the presence or absence of an
analyte. Accordingly, a formula was assigned if it had a nonzero
estimated proportion. This strategy resulted in 31 and 128
formulas, respectively, for the bladder and cerebellum data set,
and the computations took 1 and 5 s.
The second strategy, which we call “thorough” (or,

equivalently, annotate, then average), was designed to detect
more ions that could be hidden within overlapping isotopic
envelopes in the average spectra or present in low amounts in
the data, at the cost of an increased computational time. An
advantage of this strategy is the use of spatial information to
refine the annotation. First, the reference spectra from the
library were fitted to each pixel spectrum separately using
masserstein with the same stringent mass accuracy
criteria. The computations took 92 s and 10 min on 16
CPUs for the cerebellum and the bladder, respectively. Next, in
each data set, the estimated lipid ion proportions were
averaged over all pixels to calculate the average proportion of
the ion in the data set. This average mimics the estimation of
proportions from an average spectrum: while in the “fast”
strategy we first take the average of all spectra and then
estimate the proportions of analytes, in the “thorough” strategy
we first estimate the proportions of analytes in each spectrum
and then average out the proportions. Since this strategy is
sensitive to random noise, annotating all ions with nonzero
proportions (205 and 236 for the bladder and cerebellum,
respectively) was not feasible. A histogram of averaged
estimated proportions showed a clear bimodal distribution,
indicating a natural threshold of 10−9 for both data sets
(Supplementary Figure S8). Furthermore, ions with propor-
tions under this threshold were detected in low numbers of
pixels (Supplementary Figure S3). Therefore, we assigned ions
with estimated average proportions greater than 10−9, which
produced 180 and 209 annotated ions for the bladder and
cerebellum, respectively. A comparison of the two strategies is
discussed further in the Supporting Information. The
subsequent analyses in this manuscript use the results from
the annotate, then average strategy.
In the mouse bladder data set, both approaches correctly

identified ions SM(34:1), PC(32:0), PC(34:1) and PC(38:4)
that were experimentally annotated in the original work,40

corroborating a correct annotation. However, we note that the
other annotations obtained using purely computational
methods on MS1 spectra and not confirmed by tandem MS
may contain false positives and false negatives and should not
be viewed as definitive assignments. Therefore, we refer to
these annotations as tentative.
The annotation step was skipped for the simulated data set,

and the three lipids used to generate it were used in the
subsequent steps. This was done to ensure that the results
obtained on the simulated data set evaluated only the effects of
OIE and pixel-to-pixel variability.
2.8. Estimation of Lipid Ion Proportions (Figure 1, Steps
S4, Out2)

For the mouse bladder and cerebellum data sets, the
appropriate values for the masserstein parameters kmixture
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and kcomponents were determined by first identifying three lipids
with no observed OIE in the average spectra of either data set:
PC(32:0), PC(34:1), and PC(38:4), referred to as the test
lipid ions. Due to the lack of OIE interference, appropriate
parameter values should result in deconvolved ion images of
the three lipids identical to their single-ion images.
Accordingly, the optimal values of the parameters were
found by comparing the deconvolved and the single-ion
images of these lipids and identifying parameter values which
give the highest similarity measured by the correlation of the
signal.
To limit computational complexity, 1000 pixels were

randomly sampled. For each combination of κ values in the
range of 0.002, 0.004, 0.006, ..., 0.03, the reference isotopic
envelopes of the three lipids above were fitted to the spectra of
the sampled pixels. Next, the correlations were calculated
between the intensities of the monoisotopic peaks and the
proportions estimated with masserstein. In agreement
with the results for other applications of masserstein,30 a
relatively large range of parameter values resulted in accurate
estimation results (Supplementary Figure S4). The parameters
kmixture = 0.012, kcomponents = 0.016, which resulted in correlation
values of 0.99, 0.98, and 0.97 for the bladder and 0.99, 0.99,
and 0.99 for the cerebellum for the three test lipid ions,
respectively, were selected for further processing. The
correctness of these parameter values was further verified by
a visual comparison of the single-ion and the deconvolved ion
images for the three test lipid ions (Supplementary Figure S5).
Using these parameter values, the reference spectra of all

ions obtained in the peak assignment step were fitted to each
pixel spectrum of the mouse bladder and cerebellum data sets,
resulting in deconvolved ion images for the ions (Figure 1,
Out2). The computations took 29 s and 301 s for the mouse
cerebellum and bladder data set, respectively.
For the simulated data set, we used parameter values kmixture

= 0.2, kcomponents = 0.5. The higher values of the parameters
reflect a lower resolution of the spectra in the simulated data
set. Since these parameters allowed for a sufficiently accurate
deconvolution, we did not optimize them further.
2.9. Univariate Segmentation of MSI Data Sets (Figure 1,
Steps S5, Out3)

The deconvolved ion images were saved in .imzML format and
loaded into the R programming language using the
Cardinal v3.6.5 library.33 Next, the data sets were
segmented using the spatialDGMM function from the same
library (Supplementary Figure S5) into low- and high-
intensity segments (k = 2) with spatial smoothing to mitigate
pixel-to-pixel variability (r = 3, β = 6 for the simulated data set;
r = 1, β = 4 for the cerebellum data set; r = 3, β = 6 for the
bladder data set). The r and β parameters were selected based
on a visual inspection of the segmentation results and a
comparison with the deconvolved ion images for 12 randomly
selected lipids in the mouse bladder and cerebellum data sets,
and the 3 lipids in the simulated data set.
In order to assess the impact of pixel-to-pixel variability on

the segmentation, we have compared the results of
spatialDGMM with a simple thresholding of intensity.
The K-means algorithm (k = 2) was used to obtain an
automatic intensity threshold for each lipid ion separately
(treating the intensity of a lipid ion in each pixel as a 1D
column vector). Since the K-means algorithm does not use the
spatial information about the pixels, we refer to this approach

as the spatially naiv̈e segmentation. Accordingly, refer to the
spatialDGMM as the spatially aware approach.

3. RESULTS AND DISCUSSION

3.1. The Inherent Complexity of MSI Data Complicates the
Analysis and Interpretation of Single-Ion Images

To demonstrate the potential pitfalls of the conventional
approaches to MSI data segmentation, in particular on lower
resolution instruments, we simulated a 40 × 40 pixel MSI data
set with mass resolution R = 7000 at m/z 800, consisting of
three lipids: PC (38:1), 854.603 Da; PA(44:0), 855.624 Da;
and PC(38:0), 856.619 Da. PC(38:1) was localized in the top
half; PA(44:0) in the bottom half; and PC(38:0) in a 20 × 20
square in the middle of the image (Figure 3A,B). The
monoisotopic peak of PA (44:0) was within the isotopic
envelope of PC(38:1), and the monoisotopic peak of
PC(38:0) was within the isotopic envelopes of PC(38:1)
and PA(44:0) (Figure 3C).
For PC (38:1), which was not subject to OIE interference,

the monoisotopic peak intensity accurately reflected the spatial
localization of this lipid. The correlation between the true
number of simulated ions of this lipid and its monoisotopic
peak intensity was equal to ρ = 0.99 (Figure 4), indicating that
the monoisotopic peak intensity accurately reflected the
localization of the lipid in the sample.
However, for the two lipids that were subject to the OIE

interference, the spatial distributions of their monoisotopic
intensities did not reflect their true localizations (Figure 4A,B).
The signal of PC(38:0) was spread over the image and did not
show any meaningful localization regions. Accordingly, the

Figure 4. Simulated data set: overlapping isotopic envelopes distorted
the apparent spatial distribution of analytes. The correlations between
the true number of simulated ions and either the monoisotopic peak
area or the signal estimated via linear deconvolution are shown in the
top-right corners of the images. A) The true number of simulated ions
of each lipid. B) The monoisotopic peak intensity of PA(44:0) was
overshadowed by PC(38:1), and that of PC(38:0) was distorted by
the two other lipids. C) Separating the overlapping isotopic envelopes
with linear deconvolution corrected the spatial distributions.
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correlation of the signal and the number of ions was equal to ρ
= 0.54. The signal of PA(44:0) was higher in the bottom half
of the image, despite the lipid being localized in the top half.
This reversal of apparent localization was caused by the high
signal intensity of PC(38:1) in the top half, which influenced
the apparent intensity of the monoisotopic peak of PA(44:0).
Consequently, the correlation between the number of ions and
the peak intensity was equal to only ρ = 0.04.
The example demonstrates that OIE interference can

introduce extensive changes to the apparent distribution of
signal intensity. Influence from high-intensity ions can
confound the spatial distribution of the signal, and in extreme
cases, overshadow it. In these cases, the signal of analytes needs
to be estimated with an approach robust to OIE to avoid
incorrect results in downstream analyses.
3.2. Linear Deconvolution Identified the Correct Spatial
Distributions of Ions in the Presence of OIE

Using spatialstein to separate OIE resulted in an
accurate spatial distribution of lipid intensity (Figure 4C). The
estimated signal of PA(44:0) was localized in the bottom half
and that of PC(38:0) in the center square. The correlation
between the true number of simulated ions and the signal
estimated with linear deconvolution increased to ρ = 0.99 and
0.94 for PA(44:0) and PC(38:0) respectively. The correlation
for PC(38:1) remained unchanged at ρ = 0.99, consistent with
the lack of interference due to OIE for this lipid. This
demonstrates that linear deconvolution can estimate accurate
spatial distributions of analytes even in the presence of severe
interferences due to OIE.
To confirm that spatialstein correctly separates

overlapping signals in real MSI data sets as well as in simulated
ones, we performed a computational experiment in which we
temporarily lowered the mass resolutions of the spectra in the
mouse bladder data set by applying a Gaussian filter (σ = 0.043
m/z) to each spectrum in profile mode, effectively broadening
the signals. This resulted in merging of the monoisotopic peak
of SM(40:1), a lipid located in muscle tissue, with the M+1
peak of PC(36:2), a lipid concentrated in the urothelium
(Supplementary Figure S10). The resulting single ion image
suggested that SM(40:1) is distributed throughout the whole
tissue. Nevertheless, spatialstein was still able to
correctly deconvolve the ion image and return the correct
spatial distribution of both lipids (Supplementary Figure S10).
This result indicates that spatialstein can be a viable
alternative to costly high-resolution instruments to resolve

overlapping peaks of identified analytes. The remaining results
on the mouse bladder data set shown in this work were
obtained with the original resolution.
3.3. In Experimental Data Sets, Distortions Caused by OIE
Were Infrequent but Severe

The annotation step of spatialstein in “thorough” mode
discovered 209 tentative lipid ions in the cerebellum data set
and 180 in the bladder data set. To validate our results, we
have compared them with annotations provided in the
METASPACE platform, computed using the pySM algo-
rithm.44 At FDR level 10%, METASPACE annotates the
mouse cerebellum data set with 49 ions, and the mouse
bladder data set with only one ion. To compare these
annotations with the results of spatialstein, we selected
ions with molecular formulas present in our reference library of
candidate ions. At FDR level 10%, this resulted in 21 unique
molecular formulas in the mouse cerebellum, all of which were
identified by spatialstein in both the fast and the
thorough annotation strategies (see Supplementary Figure S6
for a comparison of spatialstein in “fast” and
“thorough” mode with METASPACE at 10% and 20% FDR
level). No ions from our library were identified in the mouse
bladder by METASPACE at FDR level 10%. Furthermore,
METASPACE with full LIPID MAPS as a reference library
annotates the mouse bladder with only one molecular formula
at FDR 10%. The formula corresponds to Apigenin, a plant
flavonoid, and likely represents a false positive annotation. This
observation supports our view that annotations done on MS1
spectra, while useful for preliminary or exploratory analyses,
should be regarded as tentative unless confirmed with
additional experimental evidence such as Tandem MS.
Apigenin was not present in our reference library and,
consequently, was not annotated by spatialstein.
Quantifying the signals of the lipid ions with linear

deconvolution indicated large differences in the numbers of
pixels in which those lipids were present. For the cerebellum
data set, the number of pixels in which a given lipid was
detected ranged from 1 to 1700, and for the bladder data set, it
ranged from 1 to 17836 (Supplementary Figure S7). While
lipids present only in a handful of pixels might be biologically
interesting, they can also correspond to contaminants, spurious
annotations of background noise, or other factors leading to
false positive results. Furthermore, the correctness of their
estimated spatial distributions is difficult to assess. Therefore,
for subsequent analyses, we have selected lipids which were

Figure 5. Correcting for the overlapping isotopic envelopes with masserstein and for the pixel-to-pixel variability of intensities with spatialDGMM
clearly delineated the concentration regions of lipids in the mouse cerebellum data set. A single peak at 783.571 Da was composed of signals of two
ions with complementary spatial distributions: the (tentative) PA(O-40:1) localized inside the white matter, and the (tentative) SM(37:1) localized
outside. A) The single ion image of 783.571 Da, showing a relatively uniform distribution over the tissue; B, C) The deconvolved ion images of two
ions contributing to the single ion image at 783.571 Da, showing complementary spatial distributions; D, E) spatialDGMM segmentation of the
deconvolved ion images into high- and low-intensity regions.
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present in at least 400 pixels in the cerebellum and 1000 pixels
in the bladder. These numbers of pixels were sufficient to
visually identify the anatomical structures in which the lipids
localized in the deconvolved ion images. This additional spatial
filter resulted in 77 ions in the cerebellum and 44 ions in the
bladder. All the 21 ions selected from METASPACE in mouse
cerebellum passed the spatial filter.
In both data sets, the signal estimated with the linear

deconvolution step of spatialstein was usually highly
correlated with the monoisotopic peak intensity, indicating a
lack of interference due to OIE (ρ ≥ 0.9) for 57 out of 77 ions
in the cerebellum and 28 out of 44 ions in the bladder data set;
Supplementary Figure S9). However, in both data sets we also
detected lipid ions whose spatial distributions of the
monoisotopic peak intensity were different from the spatial
distribution estimated with linear deconvolution, indicating
interferences from OIE (ρ < 0.8 for 13 ions in the cerebellum
and 6 ions in the bladder).
In some cases, interferences due to OIE severely impacted

the apparent localizations of lipids. In the mouse cerebellum
data set, the single ion image for the peak 783.5716 Da was
distributed throughout the whole tissue. However, spa-
tialstein annotated this peak with two lipids: a tentative
phosphatidic acid plasmalogen, PA(O-40:1), C43H85O7P,
783.567 Da, and a tentative sphingomyelin, SM(37:1),
C42H85N2O6P, 783.578 Da. The spatial distributions of those
lipids estimated with spatialstein were complementary,
with PA (O-40:1) concentrated specifically in the white matter
and SM(37:1) concentrated specifically outside of it (Figure
5). A manual analysis of the isotopic peaks in the profile-mode
average spectra of those tissues confirmed the presence of two
ions with complementary spatial distributions, corroborating
the results of spatialstein (Supplementary Figure S11).
Notably, the “fast” annotation strategy (based on the average
spectrum) failed to annotate these lipids due to their
overlapping isotopic envelopes in the average spectrum.
In the mouse bladder data set, OIE interferences were less

severe. Linear deconvolution indicated that some single-ion
images showed larger localization regions than true ones. For
example, the peak intensity of tentative PC(36:3) (formula
identical to PE(39:3)) suggested that the lipid is localized in all
of the urothelium tissue. Linear deconvolution indicated that
the lipid localizes mostly in the umbrella cells, suggesting that
the signal in the remaining part of urothelium may come from
other ions (Supplementary Figure S12, cf. Figure 2). After
linear deconvolution, the spatial distributions of some lipids
were more precise than indicated by their single-ion images.
For example, for the tentative PC(35:2) (formula identical to
PE(38:2)), localized in the umbrella cells, the single-ion image
suggested the presence of the lipid in random individual pixels
outside of this tissue. Linear deconvolution, which is more
robust to random noise signals, removed the lipid’s signal from
these pixels (Supplementary Figure S12).
3.4. Pixel-to-Pixel Variability of Signal Intensity Impacted
Segmentation in Addition to OIE

To analyze the impact of pixel-to-pixel variability on
segmentation, we have segmented the simulated data set
using two approaches: a simple intensity thresholding (referred
to as the spatially naiv̈e approach) and spatialDGMM
segmentation (referred to as the spatially aware approach).
After separating OIE, the spatially naiv̈e approach produced

a coarse visual identification of the localization regions of the

analytes (Figure 6, Supplementary Figure S15). However, this
approach did not provide a sufficient level of accuracy for

quantitative analyses, as the segments were highly rugged due
to pixel-to-pixel variability and contained pixels from different
concentration regions. The percentage of pixels correctly
assigned to high- and low-concentration segments was 91% for
PC (38:1), but only 75% and 85% for PA(44:0) and PC(38:0)
respectively (Figure 6, Supplementary Figure S15).
A spatially naiv̈e segmentation of the mouse bladder data set

supported the same conclusions. The pixel-to-pixel variability
caused highly rugged clusters that allowed only for an
approximate visual identification of localization regions
(Supplementary Figure S13). For example, in the mouse
bladder data set, the tentative PC(32:0) did not have
interference due to OIE, as evidenced by the high similarity
between the single-ion and the masserstein images
(Figure 7A,B). The segments obtained with intensity thresh-
olding indicated that the lipid localized in the muscle tissue.
However, the high-intensity segment was highly rugged
(Figure 7C). Pixel-to-pixel variability impacted the spatial
homogeneity of segments in the mouse cerebellum data set as
well, although the effect was not as clearly visible as in the
other two data sets, likely due to a smaller number of pixels
(Supplementary Figure S14).
These results demonstrate that pixel-to-pixel variability can

highly impact the resulting segmentation even after OIE are

Figure 6. The simulated MSI data set demonstrates how pixel-to-pixel
variability of the signal can influence segmentation results even after
an accurate estimation of the signal with masserstein. A) The
true localization regions of each lipid. B) Due to the pixel-to-pixel
variability, segmenting the signals of lipids (estimated with
masserstein) by intensity thresholding failed to accurately
discover the true concentration regions. The segments were rugged
due to random fluctuations of the intensity around the average level.
C) The spatialstein workflow discovered the true concen-
tration regions of lipids thanks to linear deconvolution of OIE with
masserstein and mitigation of pixel-to-pixel variability with
spatialDGMM.
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resolved and the signals are accurately estimated. The random
changes of signal between pixels are inherent to MSI data,
rather than being a result of inaccurate estimation of the signal.
These random changes cause pixels from different segments to
have similar intensities, and pixels from a single region to have
different intensities. This leads to spatially dispersed clusters
which contain pixels from parts of different anatomical regions.
Consequently, segmentation needs to be done with spatially
aware methods regardless of how the signals of analytes are
estimated.
3.5. Spatially Aware Segmentation of Deconvolved Ion
Images Resulted in an Accurate Characterization of
Tissues
In the simulated data set, spatially aware segmentation of
deconvolved ion images resulted in spatially coherent clusters
with a high degree of agreement with the true localization
regions. For PC (38:1), PA(44:0) and PC(38:0) respectively,
this approach correctly assigned 99%, 93% and 97% of pixels to
low- and high-concentration regions (Figure 6, Supplementary
Figure S15).
In the mouse bladder and cerebellum data sets, spatially

aware segmentation improved the correspondence between
segments and the underlying anatomical regions (Supplemen-
tary Figures S13, S14). Compared to a simple thresholding,
spatialDGMM changed the pixel labels between high- and
low-intensity segments for up to 20% of pixels in both data
sets. On average, spatialDGMM changed the segment labels
for 6% of pixels per lipid for the mouse cerebellum data set and
4% for the mouse bladder data set (Supplementary Figure
S16).
For example, for the tentative PC(32:0) in the mouse

bladder data set, the high-intensity segment obtained with
spatialDGMM accurately highlighted the muscle tissue as
the localization region (Figure 7D). In the mouse cerebellum

data set, segmenting the deconvolved signals of the tentative
PA (O-40:1) and SM(37:1) accurately matched their
anatomical regions of concentration (the white matter for
PA(O-40:1) and the remaining tissue for SM(37:1); see Figure
5, cf. Figure 2, Supplementary Figure S14). This shows that a
combination of OIE deconvolution and spatially aware
segmentation can increase the amount of information that
can be extracted from MSI data sets and can be used to
identify regions of distinct chemical composition.
We note that, when applied to the nondeconvolved peak

intensities of PA(44:0) in the simulated data set, the spatially
aware approach performed worse than intensity thresholding
(Supplementary Figure S15). In this case, the segmentation
algorithm attempted to smooth out clusters that were highly
misplaced due to OIE interference, which only decreased the
agreement between clusters and the true localization regions.
This result highlights the importance of a comprehensive
segmentation workflow that correctly addresses all the inherent
characteristics of the data, as a single incorrectly executed or
omitted step of analysis can propagate throughout the
workflow and result in incorrect segmentation.
3.6. Time- and Memory-Efficient Algorithms Allow for
Processing Large Data Sets

As a final evaluation of spatialstein, we have used it to
analyze a larger MSI data set with a higher mass resolution.
The data set, referred to as mouse brain, generated as a part of
the Lipid Brain Atlas project45 was downloaded from the
METASPACE platform44 (ID 20220419_MouseBrain_fema-
le_217E_433x309_Att30_25μm). It has 133 808 pixels (pixel
size 25μm x 25μm), obtained on an Orbitrap instrument with a
resolving power R = 240 000 at m/z 200.
Since the data set was already centroided, we have skipped

the preprocessing steps of spatialstein and proceeded
directly to annotation in thorough mode on a sample of 40 000
randomly selected pixels. The annotation took approximately
1.5h on 16 CPUs of a personal laptop computer and detected
896 ions, 840 of which were above intensity threshold of 10−9.
By comparison, METASPACE at FDR level 10% reported 43
unique molecular formulas matching our reference library of
candidate ions, all of which were identified by spatias-
tein.
Deconvolution and estimation of proportions (kmixture =

0.012, kcomponents = 0.016) took approximately 6h on 16 CPUs.
The high resolving power of this data set was sufficient to
resolve nearly all of the annotated ions. Nevertheless, we still
have found three ions with indications of potential OIE
interferences (Supplementary Figures S17, S18, S19).
For segmentation (r = 5, β = 8), we selected 274 ions which

were detected in at least 10 000 pixels. The segmentation took
approximately 20 min on 16 CPUs.
We note that since the annotation and deconvolution steps

of spatialstein do not require loading the whole data set
to the computer’s memory, the computational time is the main
limiting factor for these steps. This can be easily mitigated by
using more CPU cores for the analysis. Furthermore,
annotation and deconvolution limit the memory requirements
of downstream analyses by allowing the user to work with
estimated proportion tables rather than imzML data files. For
example, for the mouse brain data set, the original imzML file
size was 2.4Gb, while the resulting proportion table was under
1Gb with no compression and 101Mb after zip compression.

Figure 7. In the mouse bladder data set, pixel-to-pixel variability
impacted the accuracy of segmentation independently from OIE. A)
The single-ion image of the peak at 772.53 Da indicates that the
analyte localizes in the muscle tissue. B) The spatialstein
workflow annotated this peak with a lipid ion PC(32:0). The
deconvolved ion image is identical to the single-ion image, indicating
well-resolved isotopic envelopes and no interference due to OIE. C)
Despite the lack of OIE interference, intensity thresholding failed to
accurately identify the muscle tissue as the localization region. The
high-intensity segment is rugged due to pixel-to-pixel variability of
signal. D) A spatially aware segmentation with spatialDGMM
mitigated the effect of pixel-to-pixel variability of the signal intensity
and correctly identified the muscle tissue as the localization region.
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4. CONCLUSIONS
Image segmentation methods help to discover distinct
anatomical regions in MSI data sets without any prior
knowledge of the data. However, in order to produce the
correct regions of concentration of analytes, a segmentation
workflow must correctly address the inherent structure of MSI
data. In this work, we have developed a comprehensive
workflow for annotation, linear deconvolution and segmenta-
tion of MSI data sets.
The spatialstein workflow overcomes two major

challenges in MSI segmentation by leveraging recent develop-
ments in computational mass spectrometry: the masser-
stein package for linear deconvolution of spectra, which can
be used for annotation of MSI data set and separation of
overlapping isotopic envelopes, and the spatialDGMM
algorithm, which combines pixels into spatially and chemically
homogeneous segments. A combination of the two approaches
produced a more biologically meaningful univariate segmenta-
tion of MSI data sets.
The implementation of the proposed workflow is available at

https://github.com/mciach/spatialstein. The modular struc-
ture of the implementation, with each module addressing a
specific part of the workflow, makes it applicable whole or in
parts to other studies by users with intermediate knowledge of
the programming languages Python (for annotation and
deconvolution) and R (for segmentation). In particular, each
module can be replaced with a solution preferred by the user
(e.g., a different annotation method), or used on its own as a
part of a pipeline (e.g., to add a deconvolution step to a
multivariate segmentation pipeline). The workflow can be
seamlessly integrated with additional preprocessing steps as
needed. A further advantage of the modular structure is a
greater degree of control over each step, which allows the users
to check the intermediate results, adjust the parameters as
necessary, and thus avoid errors propagating through the
analysis.
We note that each step relies on algorithms that require the

user to specify their parameters. In Supporting Information, we
discuss the recommended practices in parameter estimation for
selected steps. At a minimum, the users are advised to inspect
the results of each step for a handful of different parameter
values. The spatialstein workflow is specifically
designed to give users control over intermediate results,
allowing them to fine-tune parameter values during data
analysis.
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Maes, W.; Gambin, A. An Automated Analysis of Homocoupling
Defects Using MALDI-MS and Open-Source Computer Software. J.
Am. Soc. Mass Spectrom. 2024, 35, 2366−2375.
(31) Łącki, M. K.; Startek, M.; Valkenborg, D.; Gambin, A. IsoSpec:
Hyperfast Fine Structure Calculator. Anal. Chem. 2017, 89, 3272−
3277.
(32) Guo, A.; Chen, Z.; Li, F.; Luo, Q. Delineating regions of
interest for mass spectrometry imaging by multimodally corroborated
spatial segmentation. GigaScience 2023, 12, giad021.
(33) Bemis, K. A.; Föll, M. C.; Guo, D.; Lakkimsetty, S. S.; Vitek, O.
Cardinal v.3: a versatile open-source software for mass spectrometry
imaging analysis. Nat. Methods 2023, 20, 1883−1886.
(34) Eberlin, L. S.; Tibshirani, R. J.; Zhang, J.; Longacre, T. A.;
Berry, G. J.; Bingham, D. B.; Norton, J. A.; Zare, R. N.; Poultsides, G.
A. Molecular assessment of surgical-resection margins of gastric
cancer by mass-spectrometric imaging. Proc. Nal. Acad. Sci. 2014, 111,
2436−2441.
(35) Dexter, A.; Race, A. M.; Steven, R. T.; Barnes, J. R.; Hulme, H.;
Goodwin, R. J.; Styles, I. B.; Bunch, J. Two-phase and graph-based
clustering methods for accurate and efficient segmentation of large
mass spectrometry images. Anal. Chem. 2017, 89, 11293−11300.
(36) Zhang, W.; Claesen, M.; Moerman, T.; Groseclose, M. R.;
Waelkens, E.; De Moor, B.; Verbeeck, N. Spatially aware clustering of
ion images in mass spectrometry imaging data using deep learning.
Anal. Bioanal. Chem. 2021, 413, 2803−2819.
(37) Haug, K.; Cochrane, K.; Nainala, V. C.; Williams, M.; Chang, J.;
Jayaseelan, K. V.; O’Donovan, C. MetaboLights: a resource evolving
in response to the needs of its scientific community. Nucleic Acids Res.
2020, 48, D440−D444.
(38) Bond, N. J.; Koulman, A.; Griffin, J. L.; Hall, Z. massPix: an R
package for annotation and interpretation of mass spectrometry
imaging data for lipidomics. Metabolomics 2017, 13 (11), 128.
(39) Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.;
Hewapathirana, S.; Kamatchinathan, S.; Kundu, D. J.; Prakash, A.;
Frericks-Zipper, A.; Eisenacher, M.; Walzer, M.; Wang, S.; Brazma, A.;
Vizcaíno, J. A. The PRIDE database resources in 2022: a hub for mass
spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50,
D543−D552.
(40) Römpp, A.; Guenther, S.; Schober, Y.; Schulz, O.; Takats, Z.;
Kummer, W.; Spengler, B. Histology by mass spectrometry: label-free
tissue characterization obtained from high-accuracy bioanalytical
imaging. Angew. Chem. Int., Ed. 2010, 49, 3834−3838.
(41) Clinical metabolomics: methods and protocols, Giera, M.;
Sánchez-López, E.; Springer, 2025.
(42) Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E. A.; Glass,
C. K.; Merrill, A. H., Jr; Murphy, R. C.; Raetz, C. R.; Russell, D. W.;
et al. Lmsd: Lipid maps structure database. Nucleic Acids Res. 2007,
35, D527−D532.
(43) Kibbe, R. R.; Muddiman, D. C. Quantitative mass spectrometry
imaging (qMSI): a tutorial. J. Mass Spectrom. 2024, 59 (4), No. e5009.
(44) Palmer, A.; Phapale, P.; Chernyavsky, I.; Lavigne, R.; Fay, D.;
Tarasov, A.; Kovalev, V.; Fuchser, J.; Nikolenko, S.; Pineau, C.; et al.
FDR-controlled metabolite annotation for high-resolution imaging
mass spectrometry. Nat. Methods 2017, 14, 57−60.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c04737
Anal. Chem. 2026, 98, 364−375

374



(45) Bassini, L. F.; Schede, H. H.; Capolupo, L.; Alieh, L. H. A.;
Venturi, F.; Valente, A.; Droin, C.; Banos, D. T.; Khven, I.; Asirim, E.
Z., et al. The lipidomic architecture of the mouse brain. bioRxiv. 2025.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c04737
Anal. Chem. 2026, 98, 364−375

375


