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ABSTRACT

Refractory alloys (RAs) are promising materials due to their exceptional physicochemical
properties, but most research remains at the laboratory scale. For broader adoption,
advancements in manufacturing are essential. Because their high stability makes conventional
methods like machining and casting difficult, additive manufacturing (AM) is emerging as an
effective approach for fabricating refractory alloy components. However, AM’s repeated non-
equilibrium  thermal cycles introduce undesired features (e.g. defects, anisotropic
microstructures, and residual stresses), which are magnified due to RAs’ unique properties. This
paper comprehensively reviews the state-of-the-art methods of AM for refractory alloys. It
explores data analytics techniques to establish design rules based on multi-fidelity experimental
and computational methods. Furthermore, it investigates integrated, collaborative efforts to
harmonise standalone databases, information, knowledge, and predictive models at multi-
physics, multi-stage, and multi-scale. Unlike the existing literature that focuses primarily on
material systems or process fundamentals, this work provides an integrated perspective on AM
of refractory alloys from a data analytics standpoint, highlighting the roles of integrated
computational materials engineering (ICME), verification, validation, and uncertainty
quantification (VW&UQ), and digital twin-driven qualification in overcoming data scarcity and
accelerating rapid qualification.
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1. Intr ion S . . ;
troductio features intrinsic properties such as a high melting

Refractory metals, such as tungsten (W), molybdenum
(Mo), niobium (Nb), tantalum (Ta), and rhenium (Re),
have significant potential for engineering applications
in extremely harsh environments due to their excep-
tional physicochemical properties, microstructural stab-
ility, and outstanding mechanical properties at
elevated temperatures [1,2]. For example, pure W

point (3420°C), great hardness, large thermal conduc-
tivity (175 W/m.°C), excellent strength at room and elev-
ated temperatures, and radiation-shielding capability.
Therefore, W-based alloys have been widely used in
electronics, medical, and nuclear applications [3]. Simi-
larly, each refractory metal exhibits distinct attractive
properties, and alloys based on these metals are used
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in various industries [4]. Despite their advantageous
properties, manufacturing refractory metals is inherently
complex and requires specialised techniques due to
poor machinability, intrinsic brittleness, and oxidation
issues. If these limitations could be adequately
addressed, refractory metals and alloys would have a sig-
nificant impact on advanced technological applications,
particularly in aerospace and nuclear applications [5,6].

The broad adoption of refractory alloys (RAs) for prac-
tical industrial applications is mainly hindered by a lack
of knowledge about their manufacturability [7,8]. First,
the sizes and geometrical complexity of refractory RAs
fabricated by conventional manufacturing processes
(e.g. powder metallurgy, casting, and machining) are
limited. Second, the cost of RAs is significantly higher
than that of most conventional alloys due to the
inclusion of expensive elements and the associated
cost of processing them [9]. Third, the design rules
among process-structure—property-performance (PSPP)
relationships of RAs have not been thoroughly investi-
gated, due to the lack of cost-efficient, integrated exper-
imental and computational modelling methods. Due to
these limitations, it is challenging to fabricate RAs
using conventional methods, especially for large-sized
structures with complex shapes [10]. To address these
issues, manufacturing engineers and material scientists
are increasingly exploring the additive manufacturing
(AM) processes to utilise the promising features of
refractory metals for structural and functional parts [11].

AM provides several attractive advantages, e.g. com-
plexity-free fabrication, suitable solutions for one-off or
small batches of production parts, sustainable manufac-
turing due to low material waste, and reduction of lead
times [12]. Moreover, AM can support the production of
intricate parts with excellent mechanical properties,
essential for applications in high-temperature environ-
ments, such as turbine components in aerospace. There-
fore, metal AM processes potentially offer the best
solution to fabricate functional and structural com-
ponents from RAs. To address the first limitation men-
tioned in the previous paragraph, AM supports
complex part fabrication and scalable manufacturing
capabilities by utilising layer-by-layer stacking mechan-
isms. To overcome the second limitation, AM offers
near-net shape fabrication, which is suitable for manu-
facturing structures (e.g. for aerospace applications)
with a high buy-to-fly ratio (BTF), resulting in reduced
material waste and overall cost. To manage the third
limitation, AM can leverage advanced sensors and
utilise cost-efficient high-throughput experimental
methods (HTEM) to characterise the relationships
among process, structure, property, and performance
(PSPP) for ‘alloy-on-demand’ fabrication [13,14].

The layer-by-layer deposition in the AM process
creates many of its own challenges, such as the non-
equilibrium, repeated thermal cycles, which induce soli-
dification-remelting-recrystallization in the previously
deposited layers [15]. Consequently, this process gener-
ates several unwanted features, e.g. (1) heterogeneous
microstructures and defects [16] and (2) the residual
stress developed due to extreme thermal gradients
[17]. In the case of additively manufactured refractory
alloys (AM-RAs), these unwanted features are
magnified due to the exceptional physicochemical prop-
erties of refractory elements [18]. Accordingly, current
AM-RAs often have deteriorated mechanical and chemi-
cal properties due to a lack of fundamental knowledge
of AM-RAs. Understanding non-equilibrium thermodyn-
amics, the enormous compositional space, and the
unusual kinetic properties in RAs is necessary to estab-
lish a control framework that mitigates these unwanted
features. In this regard, data analytics (DA), which is
defined as ‘a process of examining data to extract and
create valuable information for decision-making’, can
be considered one of the possible solutions to address
the issues and challenges in AM-RAs [19].

The DA techniques have been widely used in AM for
high-performance alloys (e.g. Inconel 625 and Ti-6Al-4V)
for better process understanding and improvement of
mechanical properties [20]. The goals of DA for AM are
to establish methods and design rules for near-optimal
process planning, real-time process control, part qualifi-
cation, and performance assurance [21]. Physics-
informed, data-driven modelling approaches with
uncertainty consideration are an effective tool for inves-
tigating and establishing those attributes [22,23]. Never-
theless, in addition to the complexity arising from the
multi-physics and multi-scale aspects of AM, there are
several critical issues in AM-RAs, such as the lack of data-
bases on physicochemical properties in RAs and the
extensive resource requirements for conducting exper-
iments [24]. Such a database should initially include ther-
mophysical parameters (e.g. thermal conductivity, heat
capacity, diffusion coefficients), mechanical properties
under service-relevant conditions (e.g. fatigue, creep,
corrosion), and microstructural descriptors linked to
process parameters (e.g. grain morphology, defect
density, texture). Equally important is the adoption of
standardised data formats and open-access platforms
to facilitate integration with machine learning (ML)
frameworks. Developing such a resource would directly
support the reduction of uncertainty and enable more
reliable, data-driven, and physics-informed modelling
for AM-RAs.

The objectives of this paper are to (1) review the
state-of-the-art in AM-RAs, (2) identify current technical



limitations and critical research challenges from a DA
perspective, and (3) outline future research and develop-
ment directions. RAs and AM classifications will be pre-
sented in Section 2. The metal AM-RAs will be
reviewed in Section 3. The DA techniques for AM-RAs
will be investigated from a microscopic perspective in
Section 4, while Section 5 introduces an integrated
framework from a macroscopic perspective. Section 6
will summarise the findings and discuss future directions
in research and development to accelerate the develop-
ment of AM-RAs.

2. Background
2.1. Classification of refractory metals and alloys

Refractory metals are a group of metallic elements
highly resistant to heat and wear. These metals (e.g. W,
Mo, Nb, Ta, and Re) have melting points above 2400°C
and high creep resistance. A wider definition, which is
used by the materials science community, identifies
refractory metals as those having melting points above
1800°C and thus includes nine additional elements,
such as zirconium (Zr), hafnium (Hf), vanadium (V), chro-
mium (Cr), technetium (Tc), ruthenium (Ru), osmium
(Os), rhodium (Rh), and iridium (Ir). The physical proper-
ties of these metals are summarised in Table 1. Their
density ranges from 6.11 (V) to 22.59 g/cm® (Os),
specific heat from 0.13 (W, Os, and Ir) to 0.49 (V) J/g.°C,
thermal conductivity from 22.7 (Zr) to 174.0 (W) W/m.°
C and heat of fusion from 135.8 (Ir) to 422.0 (V) J/g. Inter-
estingly, all refractory metals have a low coefficient of
thermal expansion, in the range from 4.5 x 1075/°C (W)
to 9.6 x 107%/°C (Ru). V, Nb, Ta, Cr, Mo, and W have a
body-centred cubic (BCC) crystal structure. Tc, Re, Ru,
and Os have a hexagonal-close-packed (HCP) crystal
structure, whereas Rh and Ir have face-centred cubic

Table 1. Common physical properties of refractory elements.
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(FCQ) crystal structures. Zr and Hf have an HCP crystal
structure at room temperature and transform to a BCC
structure at higher temperatures.

Refractory metals can be alloyed with other refractory
or non-refractory metals to improve mechanical proper-
ties through different strengthening mechanisms, such
as solid-solution and precipitation strengthening [25].
These alloys are referred to as refractory-metal-based
alloys or simply refractory alloys. Conventional refractory
alloys are based on a single refractory metal and contain
other alloying elements with total concentrations gener-
ally not exceeding 30 at. %. They encompass thirteen
different groups (among the fourteen elements, Tc is
radioactive and cannot be used as a base element), as
shown in Table 1, and each group is named after the
base element, e.g. Nb alloys, Mo alloys, W alloys, etc.

In 2010-2011, a new approach involving refractory
high-entropy alloys (RHEAs) was introduced, driven by
the goal of exploring the vast and complex composition
space [26,27] and developing a new generation of high-
temperature materials capable of functioning under
temperatures and loading conditions beyond those of
Ni-based superalloys [28,29]. Since their introduction,
RHEAs have gained considerable attention for their
ability to maintain strength at temperatures of at least
1600°C and their distinctive thermo-physicochemical
properties [30-34]. RHEAs are defined as alloys com-
posed of four or more refractory elements (referred to
as principal elements), with each element having a con-
centration between 5 and 35 atomic percent. Addition-
ally, RHEAs can include non-principal elements, which
are not necessarily refractory metals and have concen-
trations below 5 at. % [31]. Figure 1 shows the year-
wise number of publications for different refractory
metals fabricated by AM processes. Research activity
on AM of refractory alloys has shown a steady increase
over the past decade, with tungsten being the earliest

A P Tm Ty G A a r
Category Metal  (g/mol)  (g/cm®)  (°Q) Q) (0/g°C) W/meQ)  (x107%/°C)  AHe(J/g) (x107>m)  Crystal Structure
Refractory metals Ta 180.95 16.65 3017 5458 0.14 57.5 6.5 199.0 146 BCC
w 183.84 1925 3422 5555 0.13 174.0 45 192.5 139 BCC
Nb 92.91 857 2477 4744 027 53.7 7.31 3283 146 BCC
Mo 9594 1022 2623 4639 0.25 1385 5.1 390.7 139 BCC
Wider definition Cr 52.00 7.4 1857 2672 0.45 93.7 6.6 325.0 128 BCC
Hf 17849 1331 2233 4603 0.14 23.0 6.6 1429 159 HCP/BCC
Ir 91.22 6.51 1857 4409 027 22.7 58 219.0 160 HCP/BCC
v 50.94 6.11 1902 3409 049 30.7 83 4220 134 BCC
Tc 98.91 1150 2157 4877 0.25 50.6 7. 240.7 136 HCP
Re 18621 2102 318 5596  0.14 48.0 6.6 177.2 137 HCP
Ru 10107 1237 2334 4150 024 117.0 9.63 237.5 134 HCP
0Os 19023 2259 3050 5020  0.13 88.0 6.58 167.2 135 HCP
Rh 10291 1245 1964 3695 0.24 87.2 8.5 208.9 134 FCC
Ir 19222 2256 2466 4428 0.13 147.0 6.5 135.8 136 FCC

Atomic mass (A), density (p), melting point (T,,), boiling point (T), specific heat (Cp), thermal conductivity (N), coefficient of thermal expansion (a), heat of

fusion (AHg), and atomic radius (r).
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system reported in 2009 and rhenium introduced in
2016. This upward trend reflects growing recognition
of the potential of refractory alloys for high-temperature
and extreme-environment applications. The bibliometric
analysis underscores both the timeliness of this review
and the urgent need to consolidate fragmented knowl-
edge across different alloy systems into a systematic
framework.

Although RHEAs occupy a wider composition space
than conventional refractory alloys, their definition is
compositionally limited and excludes a large amount of
refractory multi-principal element alloys (RMPEAs) with
the number of principal elements less than five and/or
a concentration of an alloying element more than 35
at.%. To address these restrictions, a new class of refrac-
tory alloys, referred to interchangeably as refractory
complex concentrated alloys (RCCAs) or RMPEAs, has
recently been introduced and is being investigated
extensively [34]. These alloys are based on two or more
principal refractory elements, and they also may
contain other non-principal alloying elements (refractory
or non-refractory). Non-refractory elements, such as Al, Ti,
and Si, are often added to RCCAs to reduce density,
control the microstructure and phase composition, and
improve properties. By definition, RCCAs occupy much
larger composition space than RHEAs. In fact, RHEAs
can be considered as a special subclass of RCCAs with
high configurational entropy. Depending on their com-
position, RCCAs have a wide range of properties, and
their melting temperature (Tm) can reach up to 3500°C.
Moreover, these alloys display a linear correlation

160 ~

140

120

100

80

60

No. of Publications

40 +

between their densities and melting temperature [35],
indicating that the high-temperature strength and
specific strength of these alloys tend to increase with
higher T,, [36]. Refractory superalloys (RSAs) are a
special group of RCCAs with unique microstructure and
mechanical properties [37]. These alloys contain two nan-
ometer-sized coherent phases, disordered BCC (A2) and
ordered B2, or y', and mimic the microstructures of Ni-
based superalloys. This two-phase microstructure has
high thermal stability in some RSAs and provides superior
strength retention at temperatures up to 1200°C. Another
group of materials is high-entropy superalloys (HESA),
which can exhibit superior creep resistance and yield
strength. For instance, Li et al. [38] designed Ni-5.82Fe-
15.34C0-2.53Al-2.99Ti-2.90Nb-15.97Cr-2.50Mo  (wt.%)
HESA with a yield strength of 1346 MPa at room tempera-
ture and 1061 MPa at 750°C and a density of 7.98 g/cm”.

2.2. AM processes for refractory alloys

Compared to conventional manufacturing processes, it
has been shown that AM processes encompass signifi-
cant benefits during the fabrication of customised,
highly complex, and one-off parts [3]. AM is considered
a sustainable manufacturing process and has advan-
tages in depositing high BTF ratio structures, HTEM
capability [39], and fabrication of functionally graded
materials (FGMs) and multi-materials [40]. Consequently,
AM can serve as an optimal solution to facilitate the
paradigm shift from ‘apply the alloy you have’ to ‘engin-
eer the alloy you need.’ In addition, it has a significant

T T T " T '
2009 2011 2013 2015 2017 2019 2021

T T 1
2023 2025

Jul
Year (July)

Figure 1. Year-wise number of publications in Scopus and Google Scholar databases for different refractory alloys fabricated by addi-

tive manufacturing processes [31].



potential to open a material and manufacturing renais-
sance era via additive manufacturing of RA and RHEA
[41].

According to the American Society for Testing and
Materials (ASTM) F42 Committee [42], AM processes
can be classified into seven groups: powder bed fusion
(PBF), directed energy deposition (DED), material extru-
sion, vat photo-polymerization, binder jetting, material
jetting, and sheet lamination (SL). Among these, PBF
and DED processes are considered the most suitable
processes for the fabrication of refractory alloys due to
the requirement for higher energy to melt these
materials. These processes can be further classified
according to the types of energy sources utilised (e.g.
laser, electron beam, and arc) and feedstocks used (e.g.
powder or wire), as illustrated in Figure 2. A detailed dis-
cussion of the AM processes employed to fabricate RAs
will be provided in Section 3.

2.3. Data analytics

The design space (i.e. window map) of AM-RAs is vast
and complex since it requires investigation of numerous
process parameters (e.g. power, moving speed, layer
thickness, interpass temperature, and feeding rate).

Metal AM Processes

|
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Along with the increase in parameters, the required
number of experiments for process optimisation grows
exponentially, a phenomenon known as the ‘curse of
dimensionality.” Furthermore, any change in a process
parameter can lead to significant variations in the corre-
sponding microstructures, properties, and performance
characteristics. Accordingly, establishing PSPP linkage
can be very complicated due to the curse of dimension-
ality [44] in AM-RAs, as discussed in Section 1. In this
context, it is hypothesised that the DA and its techniques
can be the potential solution to tackle this challenge. DA
can be categorised into four areas: (1) physics-based
analysis, (2) data-driven analysis, (3) physics-informed
data-driven analysis, and (4) its engagements with
uncertainty analysis. In this paper, we categorised
them into (1) Microscopic DA: predictive model and
computational approach for understanding the under-
lying physics from the low-level perspective, and (2)
Macroscopic DA: qualification and decision-support
with uncertainty consideration from the high-level inte-
grative perspective.

From the low-level perspective (unit mathematical
model), the mathematical formulations and simulation
encompass data-driven, physics-based, surrogate, and
physics-informed data-driven models [45,46].

Powder-Bed Fusion (PBF )

Directed Energy Deposition (DED)

Selective Laser

|

Melting (SLM)

Powder-Fed Process

Wire-Fed Process/
Shaped Metal Deposition (SMD)

Direct Metal Laser

Sintering (DMLS)

Laser Engineered Net
Shaping (LENS)

Direct Metal Deposition
(DMD)

Selective Laser

Sintering (SLS)

Laser Additive
Manufacturing (LAM)

Electron Beam Freeform
Fabrication (EBF3)

Electron Beam

Melting (EBM)

:|: Laser
[ ]:Electron beam
|:| : Arc

Direct Laser Deposition
(DLD)

Laser Metal Deposition
Shaping (LMDS)

Laser Metal Deposition
(LMD)

Figure 2. Classification of metal AM processes [43].

Wire + Arc Additive
Manufacturing (WAAM)

‘{ Metal Inert Gas (MIG) ‘

—{ Tungsten Inert Gas (TIG) ‘

—‘ Plasma
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Nevertheless, the curse of dimensionality of AM [47] and
an enormous compositional design space in RCCAs [48]
limit the effectiveness of the design rule establishment
through a data-driven approach (e.g. design of exper-
iments (DoE) and ML). To overcome this issue, HTEM,
one of the low-fidelity experimental methods for screen-
ing new alloys [49], can be cost-effectively utilised to
establish the design rule [50]. In this regard, high-
fidelity physics-based models such as computational
fluid dynamics (CFD) can be implemented to study and
understand the underlying physical phenomena during
the fabrication process at different length scales. To
overcome the high computational costs [51], surrogate
models (e.g. response surface, artificial neural network,
and kriging models) can be developed by reducing
high-order models into low-order approximations [48].
Moreover, artificial intelligence (Al)/ML can be inte-
grated with experimental results utilising big data ana-
lytics techniques [52]. In addition, dimension reduction
schemes (e.g. principal component analysis (PCA)) can
also be used to reduce dimensions in high-dimensional
microstructures/properties [53]. However, implementing
big data analytics of AM-RAs is challenging due to the
requirement for expensive experiments. Perhaps the
most appealing approach to utilise big data analytics
in AM is a physics-informed data-driven approach [45].

Given the complexity of the processes, AM lends itself
nicely to physics-based guidance. The accuracy and
reliability of the physics-informed data-driven approach
can be enhanced by integrating uncertainty quantifi-
cation analysis [54]. A DA framework is necessary to
provide (1) the unit mathematical model for the PSPP
design establishment with uncertainty management
and (2) the means to understand the mechanisms at
the microscopic level. However, the foundational knowl-
edge and investigation efforts are significantly lacking in
this regard. For AM-RA, decisions are still made based on
experience since neither the capabilities nor the
resources are available to manage the conflicting and
complicated problems. The details will be discussed in
Section 4.

From a high-level perspective (top-down or systems
engineering), DA can be viewed as performance assur-
ance (PA), which includes quality assurance (QA), and
encompasses approaches such as integrated compu-
tational materials engineering (ICME) [55]. The objective
of ICME is to (1) select materials to satisfy requirements
or develop new alloys, (2) determine and optimise man-
ufacturing process conditions, and (3) fabricate the new
alloy structures. The ultimate goal of PA is to satisfy
conflicting requirements, e.g. the customer’s require-
ments, the manufacturer’s profit, and government regu-
lations (e.g. air pollution), which are related to multi-

criteria decision-making (MCDM) techniques. The QA
enables us to ensure the predefined part properties
before, during, and after the AM process while mana-
ging the process repeatability and product reproducibil-
ity [56]. These high-level DA approaches have several
critical hurdles: (1) the high uncertainty and complexity,
and (2) the inability to deal with multiple conflicting
objectives. In short, decision-making is a complex
problem due to the multiple conflicting objectives of
stakeholders, making it considerably challenging to
determine a near-optimal solution that satisfies all
requirements and constraints. However, DA’s founda-
tional knowledge and integration efforts for AM-RAs’
fabrications are significantly lacking. To accomplish
these, a generalised framework will be required for
managing heterogeneous, multiple conflicting objec-
tives, uncertainty, and uncertainty propagation. The
details will be discussed in Section 5.

2.4. Scope and contributions

Several review papers on additive manufacturing and/or
refractory alloys and/or data analytics have recently
been published. This paper aims to distinguish itself by
providing a comprehensive, well-balanced, and concise
review in terms of AM-RAs from the DA perspective.
The current study distinguishes itself from the other
reviews outlined in Table 2 by presenting a critical analy-
sis of AM for RAs from a data analytics perspective,
aiming to accelerate the development of materials
beyond Nickel-based superalloys. While other reviews
primarily focus on material systems [2,3,57-59] or
general applications of ML in AM [60,61], the present
study integrates the AM process within a comprehensive
digital thread. Its innovative approach is rooted in
addressing the fundamental complexity and data scar-
city inherent to AM-RAs through advanced compu-
tational and analytic frameworks. The paper outlines
future research directions centred on adopting
physics-informed machine learning (PIML) and transfer
learning (TL) to address the limitations of experimental
data. Crucially, this paper stands out by investigating
the integration of advanced concepts like Integrated
Computational Materials Engineering (ICME), verifica-
tion, validation, and uncertainty quantification
(VW&UQ), and digital twin-driven rapid qualification for
AM-RAs, providing a five-stage macroscopic view
(design, process planning, fabrication, post-processing,
and test/qualification) to achieve quality assurance.

There are several critical research questions (RQs) to
utilise the benefits of the AM-RAs.



Table 2. Comparison of existing review papers and the present study.
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Contribution/ Novelty

Role of data-driven approaches and ML

Detailed coverage of synthesis methods and mechanical,
corrosion, and radiation properties of RHE materials.
Classifies the use of RHEA in composite materials (as

Technical analysis of crack suppression strategies:
remelting, scanning strategies, substrate heating &

AM fundamentals as applied to W, including equations
for dynamic viscosity, temperature profiles/cooling
rates, and quantitative descriptions of scanning

Systematic review, including keyword co-occurrence
and clustering analysis, to map research hotspots.
Provides statistical insights into ML research in AM

Summaries in tabular format of the wide range of
experimental processing parameters used in literature
and their empirical consequences on W printability

Highlighting the ‘rhenium effect’ and discussing key
research gaps (e.g. micro-mechanisms underlying
peak ductility and hot-zone embrittlement in welding)

Year, Ref. Primary focus/Materials
2025, [2] RHEAs, RHE-Cs*, RHE-Ce*
matrix or reinforcement)
2022, [3] AM of refractory metal W and W
alloys
effects of alloying elements
2022 [57]  AM of W, W-based alloys &
composites
parameters
2022, [60] ML, BDA*, and DfAM* for ML/BDA/IoT and DfAM specifically in AM for the
aerospace aerospace sector
2022 [61]  Application of ML for AM
2022, [59] AM of W and W-based alloys
(e.g. W-Ta, W-Ni-Fe)
2025, [58]  Mo-Re alloys, focusing on
strengthening mechanisms,
multi-scale simulations
This study  AM of RAs from a data analytics

perspective

Integrated framework using ICME, VV&UQ, Predictive
Analytics, and digital twin-driven rapid qualification
methods. Also addresses advanced techniques like TL
and PIML to overcome limited experimental data

Secondary. Focuses primarily on materials science
and experimental results

Minimal. Focuses on experimental optimisation of
processing parameter windows

Identified as future opportunity. Suggests deep
learning/ML could guide LPBF processes and
clarify complex molten pool fluid dynamics

Central for design, optimisation, monitoring,
quality control, and improving the product
lifecycle

Central. Reviews and classifies ML technologies
across core AM domains, focusing on defect
detection, monitoring, and process modelling

Implicit/Traditional Modelling. Focus is on
synthesising existing experimental data to
define usable process windows (printability
maps)

Secondary. Discussed within the framework of
multi-scale computations, mentioning machine-
learning potentials

Central. DA, ICME, PIML, TL, multi-fidelity
modelling, and Verification, Validation, and
Uncertainty Quantification (VW&UQ) are core
themes

RHE-Cs: Refractory High-Entropy Composites, RHE-Ce: Refractory High-Entropy Ceramics, * BDA: Big Data Analytics, DFAM: Design for Manufacturing.

RQ1: What are the limitations, critical research issues,
and technical challenges for AM-RAs?

RQ2: What are the DA techniques used to investigate
multi-physics and multi-scale phenomena, as well as
the defect formation? And what are the limitations of
the existing DA techniques?

RQ3: What are the verification/validation and uncer-
tainty quantification (VWV&UQ) and performance assur-
ance (PA) criteria in AM-RA?

RQ4: What are the design rule establishment approaches
in AM-RA?

RQ5: What are the digital twin-driven qualification
methods?

RQ6: What are the future research and development
tasks for the AM-RAs?

We structured our review paper based on responses to
these questions, as indicated in Figure 3. In Section 3,
we review the current state-of-the-art in terms of AM-
RAs, and in Section 4, we identify the current limitations
and their critical research issues in design, process plan-
ning, fabrication, post-processing, and test/qualification
from the microscopic DA perspective. Section 5 dis-
cusses VV&UQ, design rule establishment, ICME, PA,
and digital twin-based qualification from the macro-
scopic DA perspective. We summarise the lessons
learned from this review and identify future research
directions in Section 6.

[ Motivations & Goals (Sections 1 & 2) J

U

[ Literature Review of AM for RAs (Section 3) ]

U

/ 4.1. Design )
Microscopic | 4.2. Process Planning
DA 4.3. Fabrication
(Section 4) 4.4. Post-processes
\ 4.5. Test, Qualification, & Certification )
4 5.1. VW & UQ \
Macroscopic | 5.2. Design Rule Establishment
DA 5.3. ICME
(Section 5) 5.4. MCDM for Performance Assurance
\_ 5.5. Integrated Framework for QA Y,
[ Conclusion & Future Directions (Section 6) ]

Figure 3. Structure and overview of this review and outlook of
AM-RAs.

3. Literature review of AM for RAs

In this Section, the literature related to AM-RA of W, Mo,
Nb, Re, and Ta will be discussed, and their microstructural
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Table 3. Properties of AM Refractory metals and alloys.

Process Structure Property/Performance
Tensile (T)
Grain size Hardness Compressive (C)
Material Type Phases (um) (HV) (MPa) Reference
W-based Pure W EBM - 66-100 - 120-282(T, 800 °C)  [68]
LPBF BCC 11.3-224.7 300-467 933-1036 (T) [63,65,66,90-103]
LDED BCC - 710 - [104,105]
EBM - 224-427 366-380 - [106]
WAAM - - - - [107]
W-Ta LPBF BCC 5.18-6.43 454.28 1393 (Q) [108-113]
W-Fe LMD BCC + Intermetallics - 400-750 3200 (Q) [114]
W-Mo LPBF BCC + W,C/Mo,C - - - [115]
W-Nb LPBF - - 1.7 - [75]
EBM - ~30 418-696 1892 (Q) [116]
W-Ni LPBF - - 300-355 - [117]
LMD - - - 420-580 (T) [118]
W-Ni-Fe LPBF BCC + FCC - 555 MPa 839-1198 (T) [71,119-121]
LDED BCC + FCC 23.8-25.5 5.7-6.0 GPa 872-1037 (T) [72,119,122]
W-Ni-Cu LPBF BCC + FCC - 330-410 - [123]
W-Oxides (Y,05) LPBF - - 462.5 - [67,124]
W-Carbides (TaC, TiC, ZrC)  LPBF W+ W,C 2.5-15 670-810 - [73,125,126]
Mo Based  Pure Mo LPBF - - - 350 (C) [76]
LPBF - - ~212 ~340 (T) [77]
PBS - - - 400 (Q) [127]
LBPF - - - ~1000 (C) [79]
EBPBF BCC - - - [80]
LPES - - 340 - [44]
Mo +C LPBF a Mo + HCP Mo,C 10~20 350 - [128,129]
LPBF a Mo + HCP Mo,C 134 - - [130]
Mo + TiC EPBS a Mo + FCC (Ti)C + HCPMo,C - - - [79]
TZM LPBF - - - - [131]
LPBF - - - - [81]
WAAM - - 188~194 192 (T) [7,82]
LPBF BCC + FCC 1.5-4.8 - - [132]
LPFS - - - - [74,133,134]
Mo-8.55i-5.6B LPBF a Mo + MosSiB, + MosSis - 815 - [135]
Mo-16.5Si-7.5B LPBF a Mo + MosSi + MosSiB, - - - [83,84,136]
Mo-6.7Si-13.3B-5Ti-5C EBM a Mo + MosSiB, + TiC - 1000~1638 - [137]
Mo-5Si-10B-10Ti-10C LPBF a Mo + MosSiB, + TiC - 1100~1300 - [138]
LPBF - - - 180 (C) [139]
Mo - 47.5Re PBS - - - 1000 (C) [78]
W-2.5Ta, W-7.5Ta, W-15Ta  LPBF BCC - 420-470 1200-1500 (C) [140]
Nb Based Pure Nb EPBF BCC ~250 - 135-141 (T) [86]
LPBF - 70 230-370 639 (T) [85]
Nb-W-Mo-Zr EBM BCC + Nb,C, (Nb,Zr)C - - - [141]
LPBF BCC + ZrO+ Nb,C + (Nb,Zr)C - - 679 (T) [87]
Nb-10Hf-1Ti LPBF - 28 - 595-674 (T) [88]
627-674 (C)
Ta Based Pure Ta EBM BCC - - - [142]
LPBF - 69-138 205-445 570-650 (T) [89,143-150]
LPFS - - - - [151,152]
LWPS - - 99-114 218-261 (T) [153]
Ta-Ti LPBF BCC + HCP - - 235-320 (T) [154]

features (e.g. grain size, morphology, and phase),
observed defects (e.g. cracks and porosity), and mechan-
ical properties (e.g. hardness, tension, and compressive
strength) will also be thoroughly reviewed. The corre-
sponding information is summarised in Table 3.

3.1. Pure W and W-alloys

Various researchers have investigated AM for pure W
since it is typically used in nuclear fusion reactors as a
plasma-facing material. It requires better thermo-physico-
chemical properties, including high melting points and

great thermal conductivity [62]. However, AM for W is
challenging, and researchers have reported porosity,
cracks, oxidation, and heterogeneous microstructures in
the deposited structures [3]. This may contribute to the
high ductile-to-brittle transition temperature (DBTT)
(~200-400°C) and high residual stresses, leading to
crack formation and propagation [63,64]. Cracks primarily
nucleate at the tungsten oxides formed during the soli-
dification process [65-67] and propagate along the
high-angle grain boundaries [63,64].

To overcome cracking, Ledford et al. [68] preheated
the powder up to about 1800°C before deposition and



successfully fabricated crack-free W components utilis-
ing electron beam melting (EBM). These samples
showed mechanical strengths (282 MPa at 800°C) inter-
mediate between those of cast and wrought materials.
Ren et al. [69] were able to produce crack-free W
samples using different scanning velocities to control
the thermal gradient, thereby reducing residual stress
formation. The substrate was preheated to temperatures
of 1150 and 1500°C during the process. Moreover, Ren
et al. [69] and Guo et al. [66] recently achieved the
highest compressive strength of 1760 and 902 MPa for
the pure W. To mitigate porosity, as studied by Dorow-
Gerspach et al. [70] the substrate was preheated to
1000°C and high densification (relative density >99%)
was achieved using a laser power of 170 W. The high
preheat temperature presents a challenge because W
has a very low recrystallization temperature.

To further improve printability and enhance proper-
ties, the impact of different alloying elements and sec-
ondary-phase particle combinations has been studied.
The alloying elements, including Cu, Fe, Mo, Ni, Ta, and
their combination, have relatively low melting points
compared to W. Hence, they melt first and act as
binders to connect the W powders. Chen et al. [71]
and Wang et al. [72] prepared crack-free samples by
applying W-7Ni-3Fe material using selective laser
melting (SLM) and laser melting deposition (LMD), and
the prepared samples showed mechanical properties
of 1198 and 1037 MPa in tensile tests, respectively. In
addition, it was reported that the addition of second-
ary-phase particles, especially ZrC [73] and Y,05 [67],
was shown to refine grain size and help inhibit cracking
behaviour. Crack-free tungsten alloys, such as W-Cu [74],
and W-Nb [75], were successfully deposited using the
carefully selected process parameters (e.g. a scanning
speed of 360 mm/s and volumetric energy density of
476 J/mm>).

3.2. Pure Mo and Mo-alloys

The AM processing of pure Mo and Mo-based alloys
has mainly focused on the fabrication of pure Mo,
TZM (Mo-0.48Ti-0.09Zr-0.02C), and Mo-Si-B series
alloys. In the case of pure Mo, most investigations
have focused on the PBF, and the effect of high
DBTT (~100°C) on crack generation was identified as
a common challenge [76-78]. Furthermore, the manu-
facturing of pure Mo by wire-based EBM and arc
melting was also studied. In the case of wire + arc
additive manufacturing (WAAM), defects, including
cracks and pores, were found and quantitatively and
statistically analyzed through 3D computed tomogra-
phy (CT) [79,80]. Various researchers have tried to
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mitigate these issues by minimising the thermal gradi-
ent through process optimisation, adding alloying
elements, and carbide/oxide additives. Rock et al.
[79] reported the fabrication of crack-free and dense
pure Mo by electron beam PBF by raising the
preheat temperature of the build plate to
1000~1200°C. In addition, using the PBF process,
crack-free Mo-TiC MMCs were also fabricated from
Mo + TiC powder, which was prepared via the mechan-
ical alloying (MA) process. No cracks were formed
during the AM processing of a TZM alloy by PBS, but
the density was found to be relatively low (maximum
80%) [81].

When using WAAM to process TZM, micro-cracks
were formed, and large grain sizes (compared to laser
powder bed fusion (LPBF)) were found [7,82]. Oxide par-
ticles were dispersed in the inter-dendritic phase
regions, resulting in grain refinement and fracture
toughness enhancements. The Mo-Re series alloys
have also been investigated as space propulsion
materials for ultra-high temperature applications. The
addition of 47.5 wt.% Re to Mo was shown to decrease
the DBTT by about 250°C and significantly increase the
mechanical strength [83,84]. The ultimate compressive
strength was measured to be around 400 MPa in unal-
loyed Mo, while for Mo-47.5 Re, it was up to 1000 MPa,
which the authors attributed to the solid solution
strengthening effect.

3.3. Pure Nb and Nb-alloys

Nb alloys are mainly used in aviation components with
a high BTF ratio, and research on alloys in practical use
is being actively conducted to reduce component
manufacturing costs. Using AM for pure Nb has led
to crack-free deposited structures, a success which
can be attributed to the intrinsic ductility characteristic
of Nb at room temperature [85,86]. Liu et al. [85]
deposited pure Nb with LPBF and investigated the
effect of oxygen content on the mechanical properties.
The results indicated that although a high oxygen
content reduced the tensile elongation by about
90%, the ultimate tensile strength (UTS) (639 MPa) con-
siderably improved when compared to previous
studies. Chen et al. [87] prepared Nb521 (Nb-5W-
2Mo-1Zr) parts using LPBF and found that the micro-
structure was composed of a Nb matrix containing
fine, ~100 nm in size, Nb,C, (Nb, Zr) C, and ZrO, pre-
cipitates. Due to the formation of nano-sized ZrO,,
the sample had a UTS of 679 MPa, indicating a
higher strength than other AM-processed Nb. In
addition, Awasthi et al. [88] prepared C103 (Nb-Hf-Ti)
samples using LPBF and measured the oxygen
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concentration. The results showed that the oxygen
content (455 ppm) exceeded the ASTM B654/B654 M
threshold by 255 ppm, which was attributed to the
oxygen content (444 ppm) of the powder used.

3.4. Pure Re and Ta and their alloys

Since pure Ta has excellent corrosion resistance and bio-
compatibility, it is commonly used in medical implants.
Research on porous structures with low elastic moduli
and large surface areas has been actively conducted
using powder-bed processes. In the study of Lian et al.
[89], the mechanical properties of pure Ta manufactured
by LPBF were assessed as a function of volumetric
energy density (157-342 J/mm?3) and revealed that
process conditions with lower volumetric energy den-
sities resulted in an increase in mechanical properties
due to the rise in grain boundary density.

3.5. Refractory medium/high entropy and RCCAs

Refractory alloys can be categorised into four broad
classes based on their formation entropy and the
number of individual alloying elements, namely

refractory low, medium, and high entropy alloys, and
refractory complex concentrated alloys. Among them,
RHEAs achieve better stability due to their high
entropy and absence of brittle intermetallic phases. As
a result, they exhibit exceptional thermo-physicochem-
ical properties that have attracted the AM community’s
attention. Compared to traditional methods (e.g.
casting, powder metallurgy, and vacuum arc melting)
for fabricating these alloys, AM has demonstrated super-
iority due to its advantages of higher precision, greater
efficiency, and better accommodation for complex-
shaped parts. Different AM processes have been
employed to fabricate RHEA. Dobbelstein et al.
[155,156] successfully prepared RHEAs TiZrNbHfTa and
TiZrNbTa using a laser metal deposition (LMD) method.
In other studies, using EBM, Zadorozhnyy et al. [157]
and Katz-Demyanetz et al. [158] fabricated BCC-struc-
tured TiVZrNbTa and Aly sCrMoNbTag 5, respectively.
Studies have been conducted to control the concen-
tration of Nb in the basic composition of TiZrHfNb, to
significantly improve ductility by suppressing the ‘w’
phase formation and subsequent embrittlement [159].
The RHEA WMoTaNb has been fabricated utilising
different AM techniques such as DED, SLM, and selective

Table 4. Refractory medium and high entropy alloys, structures, and properties.

Process Structure Property/ Performance
Tensile (T)
Grain size Hardness ~ Compressive (C)
Entropy Material Type Phases (pum) Porosity  Crack (HV) (MPa) References
RMEA NbMoTa LPBF - 25 - ¢} - - [162]
NbMoTi LPBF FCC+BCC 41 X X 445.84 - [163]
Nb-40Ti-20Ta LPBF BCC 12 o) 0 217-337 1000 (C) [164]
RHEA WNiFeCo LPBF BCC + intermetallic - - X - - [71]
WMoTaNb LPFS BCC 0-10 X X 493 - [39,165]
LPBF BCC 13.4 - - 826 - [161]
WMoTaNbC EBM BCC 12.3 X X 720 1200 (C) [160]
WMoTaNbV LPBF BCC 16.3 - o] - - [166]
WyxNbMoTa LPFS BCC 20 X - 459.2-497.6 - [167]
WMoTaTi LPBF BCC + HCP 10 X X - [168]
WMoTaNbVFeCoCrNi  EBM BCC + FCC + Laves - o o 819-853 915 (C, 1200°C) [169]
NbMoTaTiNi LPFS BCC+y 0.8-2.1 X X 1000 - [170]
NbMoTaTig 5Nig s LPBF - 10 X X - 2297 (C, 25°C) [162]
651 (C, 1000°C)
NbMoTaTi LPBF - 22 o [¢} - - [162]
NbMoTaNi LPBF - 8 o) [ - - [162]
NisCrsWFegTi LPBF FCC 2 - - - 650-1000 (T) [171]
LPBF FCC 0.3-1 X X - 960 (T) [172]
CoCrNbNiW LPFS BCC + FCC 75 - - 515.4 - [173]
Co-26Cr-5Mo-5W LPBF FCC + HCP - X X - - [174]
AlCoFeNiSmTiVZr LPBF FCC + IM 40-50 X - 258~1080 - [175]
TiZrNbHfTa LPFS BCC - X - 509 - [155]
TiZrHfNbx LPFS BCC, BCC+w 162- 219.5 o o 1000 - [159]
TiZrNbTa LPFS BCC - - - 220~440 - [156]
TiNbCrVNiAl LPFS bcc+o+Ti2Ni 1-35 - - 400~1000 - [176]
TiVZrNbTa EBM BCC 1-3 - - - - [157]
FesoCrigMosB16C4Nbg ~ WAAM  a-Fe matrix + particles - - - 680~1000 - [177]
AlMog sNbTag sTiZr LPFS BCC + interdendritic HCP - - - - [178]
Aly sCrMoNbTag 5 EBM BCC - - - - - [158]
CoCrMoNDbTig4+CNT  LPFS BCC+HCP +TIC - - - 1000 2000 (C) [179]
RCCA NbTaTiZr LPFS - - ¢} - - [180]
MoNbTaVTiCu LAM BCC - o X - - [181]
Nb-40Ti-20Ta LPBF BCC 11.14-12.04 o) X 217-227 2026 (C) [164]




EBM [155,160,161]. In the study of Melia et al. [39], both
WMoTaNb RHEAs and RCCAs were investigated by com-
bining microscopy and high-throughput mechanical
testing to vary the W, Ta, Nb, and Mo content, respect-
ively. Since WMoTaNb RHEA prepared by SEBM exhib-
ited severe cracking behaviour, Xiao et al. [160]
investigated the WMoTaNbC RHEA, which contains 0.5
wt.% of graphite to suppress cracks. The effect of
adding Ti, Ni, and TipsNips to the NbMoTa refractory
medium entropy alloy (RMEA) was analyzed by Zhang
et al. [162].

In NbMoTa, NbMoTaTi, and NbMoTaNi, both micro-
macro cracks were formed, but in the case of the
NbMoTaTipsNigs sample with both Ti and Ni added,
formability was significantly improved by forming
NisTa (Ti, Nb, Mo) with low stacking fault energy (SFE).
According to the existing literature, most RHEA
systems currently studied and developed are single-
phase BCC solid-solution structures. A few alloys have
two or more phase structures, as listed in Table 4.
Three markers of ', ’X’, and ‘0’ are used in the table,
which indicate ‘the study has not investigated’, ‘has
not observed’, and ‘has observed’ the corresponding
characteristic, respectively.

3.6. Smart or functional materials

3.6.1. Shape memory alloys

Shape memory alloys (SMAs) have been used in a wide
spectrum of applications (e.g. biomedical) due to their
ability to recover large inelastic strains. Several groups
of alloys exhibit shape memory behaviour, including
copper-based alloys (e.g. Cu-Zn and Cu-Al), iron-based
alloys (e.g. Fe-Mn-Si and Fe-Ni-C), and Ni-Ti systems
(nitinol) [182]. RAs have extraordinary thermo-physico-
chemical properties, and combining them with elements
that exhibit shape memory features can lead to numer-
ous potential applications. Yi et al. [183] fabricated Ti-Nb
SMA utilising vacuum arc melting and observed that
mechanical properties improved as the Co content
increased from 0.5 to 3.0 at.%.

Although AM is a promising approach to fabricating
SMAs, limited investigations have been conducted in
this regard [184]. Khimich et al. [185] fabricated porous
and dense samples of low-modulus Ti-Nb alloy using
laser AM. They observed uniaxial grains with identical
microstructure features and phase compositions in
both cases. The use of AM with shape memory alloys
has been comprehensively reviewed in the study of
Mehrpouya et al. [186]. HTEM can be a viable solution
for developing and synthesising new SMAs based on
refractory alloys since it can produce bulk structures of
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chosen compositions. This feature will be discussed in
detail in Section 4.

3.6.2. Multi-materials

A key characteristic of Directed Energy Deposition
(DED) is the capability to produce functionally
graded materials (FGMs) and multi-material com-
ponents by incorporating multiple feeding systems.
When selectively depositing different materials within
a single part, DED can enhance the part’s functionality,
reduce the number of required components, and sim-
plify the assembly process [187]. Other metal AM pro-
cesses, such as LPBF, have also been used to fabricate
multi-materials. Functionally graded materials can
enhance mechanical properties as well as the chemical
resistance of a final part, thereby strengthening the
part performance, as discussed in [188,189]. For
example, bimetallic structures (BSs) have been
employed in aerospace applications, and NASA
reported using Inconel/GRCop84 BS in heat exchan-
gers and channel-cooled nozzles [190].

For refractory alloys, the above issues are signifi-
cantly amplified due to their exceptional thermo-phys-
icochemical characteristics. For example, with the
melting temperature of a refractory metal such as W
(Tn =3422°C) exceeding the vaporisation temperature
of iron (T, =2862°C), traditional welding of steel to
tungsten is infeasible. Table 5 shows the refractory
alloy-based BS, which indicates several studies have
been conducted. For instance, in the case of Cu-W
bimetallic structure, Wei et al. [191] and Tan et al.
[192] employed LPBF. The former used a stainless-
steel (SS) interlayer, which causes good bonding due
to the solid-state and grain boundary diffusion. In
another study [193], bimetallic structures of Inconel
625 and W7Ni3Fe were manufactured using DED-
based AM, as shown in Figure 4(a). Jadhav et al.
[194] manufactured a defect-free BS of Ti6Al4V-NbZr1
by WAAM, as shown in Figure 4(b). They achieved a
maximum UTS of 567 MPa, which is comparable to
that of conventionally and additively manufactured
NbZr1. In addition, an integral structure of a W-Cu
composite and NbZr1 alloy was successfully fabricated
in the study of Karim et al. [195] as shown in Figure
4(c).

As noted by Reichardt et al [196], fabricating FGMs
and bimetallic additively-manufactured structures
(BAMSs) has numerous challenges: (1) alloy compatibility
and obtaining good metallurgical bonding between dis-
similar alloys, (2) intermetallic formation and solubility
limitations, (3) thermal property mismatch (e.g.
different coefficients of thermal expansion (CTE)), and
(4) difficulty in the measurement of residual stress/
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Table 5. Refractory alloy-based BS.

Combination
AM process Base Alloying Comments Ref.
WAAM W7Ni3Fe Inconel 625 Defect-free BS of W7Ni3Fe-Inconel 625 by WAAM [193]
NbZr1 Ti6Al4V Achieved the maximum ultimate tensile strength of 567 MPa [194]
NbZr1 W-Cu An integral structure of W-Cu composite and NbZr1 [195]
Ta Mo-W — A dense network of cracks at the interface of Ta-Mo [40]
- A sharp change in the microstructural evolution at the W-Mo interface
LPBF W CuA Good bonding (solid-state, grain boundary diffusion) with SS interlayer [191]
w Cu Porosities and cracks at the interface [192]
LMD W7Ni3Fe Inconel 718 - 100% improvement in thermal diffusivity and yield strength [11]
- 50% reduction in modulus of elasticity
TA15 Ti2AINb Tensile strength of 909.27 MPa and elongation of 6.73%. [197]
TA15 Ti2AINb Tensile strength of 1025 MPa and elongation of 7.3% [198]
Ti2AINb yTiAl From substrate, elastic modulus gradually increases from 105 to164 GPa [199]
Ti Mo From substrate yield (681-579), ultimate tensile (791-686 MPa) and elongation (10-25%). [200]
TiZrNbTa® Increasing the Zr to Nb results in finer and harder multiphase microstructures. [156]

“Compositionally graded.

Figure 4. Bimetallic structures (a) Inconel 625-90WNiFe [193], (b) Ti6Al4V-NbZr1 [194], and (c) W-Cu-NbZr1 by WAAM [195].

strain at the interface due to limited gauge volume
(which is approximately 1T mm while the intermetallic
interface is in scale of hundred micrometers). Addition-
ally, a lack of knowledge about weld-pool dynamics,
intermetallic formation, and residual stress significantly
complicates the process.

3.6.3. High-throughput experimental methods
(HTEM)

Refractory alloys and RHEAs/RCCAs encompass vast
compositional regions in which novel materials with
interesting structural and functional properties may be
discovered. However, this potential is accompanied by
the challenge of effectively producing and screening
these alloys. Conventional approaches based on
casting, simulation, and experimental characterisation
are too time-consuming to cover such a large compo-
sitional space. Thus, high-throughput synthesis offers a
reduced-complexity solution for investigating a broad
range of compositions in the material and analytics
space. For instance, Dobbelstein et al. [201] performed
a high-throughput synthesis of the Ti-Zr-Nb-Hf-Ta
system using DED. They analyzed the compositionally
graded variants of the RHEA and characterised the

mechanical and microstructural properties. Moorehead
et al. [202] combined high-throughput materials syn-
thesis with characterisation and modelling techniques
to fabricate arrays of high-entropy alloys in the Mo-Nb-
Ta-W system utilising powder DED, as exhibited in
Figure 5. Other researchers have also studied this
approach for different alloy compositions, for example,
CoCrFeMnNi and CoCrFeNiTi high-entropy alloys
[203,204] and MoNbTaW and WMoVTaNbAI refractory
high entropy alloys [39,205]. However, HTEM sitill
requires a great number of experiments, which are
time-consuming and cost-intensive. Moreover, in the
case of the AM-RA, microstructural defects and poor
mechanical properties (as detailed in Section 4.2) com-
plicate their fabrication. To address these issues, the
integration of high-throughput methods with ML
[206,207] and CALculation of PHAse Diagrams
(CALPHAD) [208] has been investigated.

3.7. Summary of the current state-of-the-art in
AM of RAs

RAs inherently have several manufacturing issues, such
as (1) rapid oxidation, (2) brittleness at room
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Figure 5. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing [202].

temperature, and in some cases (3) phase instability
[34,209]. AM components experience non-equilibrium
thermal cycles and are characterised by inherent uncer-
tainty and complexity. This section summarises the
state-of-the-art studies on AM-RAs, and the following
themes emerge:

e Many RAs are susceptible to rapid oxidation at elev-
ated temperatures, which has hindered their
broader application. To address this, various
effective strategies have been developed to protect
refractory alloys in high-temperature environments.
The application of protective coatings and the incor-
poration of elements that favour the formation of pro-
tective oxide layers (e.g. Al, Cr, Ti, or Si) have been
shown to be possible solutions.

¢ RAs typically have a BCC crystal structure, and their
stress—strain behaviour strongly depends on temp-
erature. In addition, since they have higher DBTT,
mostly above room temperature, they exhibit brittle-
ness at room temperature, and AM intensifies this
behaviour.

e AM induces unwanted defects (e.g. pores, cracks, and
micro-segregations) and microstructural heterogene-
ities, which makes the AM-RA processing challenging.
Post-processing is required to remove these defects
and improve mechanical properties, which will be dis-
cussed in Section 4.4.

e Residual stresses are developed in AM structures due
to the thermal gradients caused by rapid cooling and
heating and repeated phase transformations. In AM-
RAs, residual stresses are a critical issue due to the sig-
nificant difference between melting and preheat
temperatures. Also, residual stresses are reported to

affect the DBTT, a critical phenomenon of BCC
materials.

o Refractory alloys have a stochastic nature, and this is
intensified by the inherent complexities and uncer-
tainties in AM, highlighting that process repeatability
and part reproducibility can be a concern in AM-RAs.
For example, fatigue and creep performance of AM-
RA structures is highly dependent on the manufactur-
ing parameters, refractory alloy elements, and
process-induced defects. This trend magnifies the
importance of VV&UQ for quality assurance.

The AM-RAs show great potential for high-tempera-
ture applications. The next section will discuss this
topic from a data analytics perspective. Many research
groups have investigated the manufacturability of RAs
to determine near-optimal parameters for fabricating
crack-free parts with high relative density and improved
mechanical properties. In general, high residual stresses
and DBTT have been shown to induce crack formation in
AM-processed pure refractory metals, decreasing their
mechanical properties and thermal conductivity. To
address this issue, and advance manufacturability,
recent studies focus on optimising AM process par-
ameters and incorporating alloying elements to
influence residual stresses and solidification behaviour.

4, Technical challenges and research
opportunities from the data analytics
perspective

The AM research for refractory alloy structures is still in
its early stages, and advancements continue to face
several challenges, as discussed in Section 3. First,
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refractory alloys are considered rare and expensive
materials. Thus, it is difficult for research groups with
limited resources to engage in this area of research
(e.g. AM systems and materials). Second, due to the
unique thermo-physicochemical properties, RAs intro-
duce significant complexity and uncertainty into their
AM processing. For instance, due to the high melting
point and thermal conductivity of W, it is challenging
to deposit multi-layer components without defects.
Third, the PSPP relationship has not yet been compre-
hensively investigated, and fundamental processing
knowledge is significantly lacking. Currently, most AM
processes for RAs depend on empirical knowledge and
experience to determine the process parameters, often
through Edison or DoE methods. Trial-and-error
methods often fail to understand the AM processes for
RAs comprehensively. Therefore, to ensure the required
quality and performance of deposited RA structure, the
relationships among PSPP should be characterised
through mechanisms such as design rules [210]. DA
techniques, such as modelling, simulation, and optimis-
ation have been recognised as the key enablers for
design rule establishment [211]. By integrating exper-
imental and computational methods, meaningful data
and predictive models can be developed, enabling an
integrated framework to support better decision-
making, which will be discussed in Section 5.

This section will discuss technical challenges and
research opportunities in AM of RA structures from
the DA perspective. Considering unique features (e.g.
excessive residual stresses due to the high thermal gra-
dient, complexity in compositional refractory elements,
and a wide range of physiochemical properties in
refractory elements), innovative and transformative
approaches are required for the design and manufac-
turing of refractory alloys. Based on the AM digital
thread concept [212], the subsections are organised
into five stages: design, process planning, fabrication,
post-processing, test, qualification, and certification.

4.1. Design

AM technologies provide significant design flexibility to
fabricate complex components, customise products,
minimise material waste, and develop customised pro-
ducts. The following sections will discuss two aspects
of design in the AM processes: geometric design,
which includes topology optimisation (TO) and genera-
tive design (GD), and alloy design. In addition, the appli-
cations of DA and ML in enhancing the design process
will also be reviewed.

4.1.1. Geometric design

Geometric design, specifically Design for Additive Manu-
facturing (DfAM), is a practice aimed at encouraging
designers to explore and create innovative design con-
cepts optimised for additive manufacturing. Leveraging
the unique capabilities of AM, its goals often include
improving performance through unique design
decisions or lowering the BTF, reducing structural
weight without sacrificing performance, and minimising
environmental impact [213-215]. These objectives are
essential for refractory alloys that contain heavy
elements (e.g. W, Ta, and Mo), resulting in high densities
(eg. 1236 and 9.94g/cm®> for WNbMoTaV and
TiZrHfNbTa, respectively). In addition, RAs are expensive
and difficult to machine, which further complicates their
fabrication. Therefore, DfAM methods (i.e. TO and GD)
are required to address these challenges.

TO is an iterative approach implemented to opti-
mise part design while preserving performance
requirements and constraints [216]. The growing
emphasis on sustainable mobility and higher energy
efficiency has encouraged research into lightweight
and ready-to-assemble parts by utilising the freeform
fabrication capability in AM [217,218]. Research in
employing TO for refractory alloys is relatively imma-
ture. Kumaran et al. [219] proposed TO for AM of
(SS316L and AISi10Mg) piston. They fabricated the
sandwich structure by involving two different AM tech-
niques: the PBF process (lower AlSi10Mg portion) and
the DED process (an upper AlSi10Mg portion). Introdu-
cing extra AM-related constraints, such as support
structures/overhangs, minimum printable features, ani-
sotropic material properties, and thermal strain/stress
into TO results in more complex boundary conditions.
Consequently, TO methods face additional challenges
in identifying the optimal solution using an efficient
and fast-converging simulation process [220,221]. In
addition, TO requires iterative simulations, creating
challenges when adopting current thermo-mechanical
simulations to perform multiple iterations for TO. The
more commonly used inherent strain-based approach
has limitations in accounting for dynamically changing
strains caused by phase transformations, geometry-
heat source interactions, and complex geometries.
Consequently, such approaches rely on qualitative
optimisation rather than quantitative optimisation
due to a lack of accuracy in predicting distortion and
residual stress. An example of related research con-
ducted by Mishra et al. [222] emphasises using TO
for controlling a heat history during the deposition
process to obtain desired mechanical properties, as
shown in Figure 6.
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Figure 6. Design for material properties of additively manufactured metals using topology optimisation [222].

GD is an increasingly popular approach that can
create potential solutions for designers by exploring
the design space using rule-based or algorithm-based
systems. Although TO be a common practice in industry,
the advent of GD may allow for further critical refine-
ment of parts while maintaining the required functional-
ity. In addition, the advantages of GD are enhanced
when combined with AM, which allows for material
savings and improves part performance [223].

Researchers have recently integrated TO with GD
approaches, such as generative adversarial networks
(GANs), and proposed a new concept, deep generative
design, which derives the learning capability from the
iteration process and existing design datasets [224]. Li
et al. [225] proposed generative adversarial network-
based topology optimisation for the design of 2D micro-
structures with extreme material properties. In addition,
Venugopal et al. [226] investigated structural and
thermal generative design using a reinforcement learn-
ing-based search strategy for AM. They proposed com-
putationally efficient methods for exploring generative
designs of structurally and thermally loaded parts with
improved functional performance and additive manu-
facturability. These concepts strive to more effectively
incorporate existing AM knowledge — such as design
constraints, design rules, and manufacturability - into

the GD process, enabling the exploration of more suit-
able AM design solutions. In the context of GD for AM-
RAs, further research is needed to integrate AM-
specific constraints and develop efficient decision-
making tools that assist designers in defining optimis-
ation criteria and categorising potential solutions.
Generative Al is increasingly recognised for its ability
to produce a wide range of design alternatives, making it
an important tool in the design field and reshaping tra-
ditional methodologies. This technology acts as a collab-
orator in the design process by generating novel and
diverse design forms. Through ML and pattern recog-
nition, generative Al analyzes large datasets of designs,
which enables it to produce innovative solutions
[227,228]. In addition, the human-in-the-loop concept
has also been at the center of attention in different
stages of the manufacturing processes, for a collabora-
tive decision support [229,230]. In addition, Data-
driven design frameworks are emerging, but are
limited by the scarcity of high-quality, labelled datasets
and the difficulty of capturing the interplay between
geometry, process parameters, and final properties
[231]. Digital metallurgy and tessellated design frame-
works, supported by ML, are enabling the creation of
functionally graded and compositionally complex geo-
metries, but require further development in integrating
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real-time feedback and multi-material compatibility
[232,233].

4.1.2. Alloy design

The possible combinations of refractory alloys are almost
infinite, and it is impossible to investigate all possible
combinations with the limitations of resources. It is sig-
nificantly challenging to deposit, test, and characterise
the compositions and properties [234]. The vast compo-
sitional space of refractory alloys makes traditional trial-
and-error alloy design inefficient. ML and high-through-
put computational methods are now used to predict
phase stability, mechanical properties, and corrosion
resistance, enabling rapid screening and optimisation
[235,236]. In addition, explainable ML models and
multi-objective optimisation frameworks have success-
fully identified new high-performance alloys, but chal-
lenges remain in model interpretability, transferability
to new alloy systems, and the integration of domain
knowledge [237,238].

To characterise the PSPP, an efficient method for
establishing new design rules is necessary. The motiv-
ation for innovating new alloys is based on the hypoth-
esis of exceeding the performance limitations of pure
metals or currently available alloys in engineering appli-
cations. The new alloys may be designed via efficient
experimental methods (e.g. HTEM), as discussed in
Section 3.6.3. However, HTEM still requires time-consum-
ing and cost-intensive experiments. Moreover, micro-
structural defects and poor mechanical properties in
AM-RA (for more details, see Section 4.2) complicate
their fabrication. To address these issues, Liu et al.
[239] performed a comparative study of predicting
high entropy alloy phase fractions with traditional ML
and deep neural networks using CALPHAD, as shown
in Figure 7(a).
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The CALPHAD-based software packages (e.g. Thermo-
Calc [240]) have been developed to generate thermodyn-
amic databases, solve for general phase equilibria, com-
position-dependent material properties, and generate
phase diagrams [241]. Numerous research studies have
been conducted using CALPHAD for alloy design. For
instance, in a recent study, Singh et al. [242] validated
thermal conductivity predictions on elemental solids,
binary and ternary alloys, and RHEAs by comparing exper-
imental results with thermodynamic simulations (e.g.
CALPHAD). Additionally, the Thermo-Calc modules
enable material-to-material calculations, allowing for
the easy variation of the weight percent of specific
materials within a system. For example, Ta, as an elemen-
tal addition, can act as an alloying or binding species to Re
and W, forming metal carbides and metal oxides. To illus-
trate these phases, the stable fundamental phases in a W-
Re-Ta-C system are shown schematically in Figure 7(b)
[243]. HTEM and CALPHAD, as well as their integration
with other computational or ML approaches, have been
shown to be efficient methods for characterising the
PSPP relationship in AM-RA. Although the combination
of HTEM and numerical simulations has not yet been
widely applied to AM of refractory alloys, recent work
[244] demonstrates how combinatorial synthesis, high-
throughput characterisation, and computational model-
ling can be integrated to accelerate the discovery of
new materials. Similar approaches could serve as a blue-
print for future AM-RA studies, where systematic data
generation and simulation feedback loops may over-
come the challenges of data scarcity.

4.2. Process planning

AM process parameters significantly impact the gener-
ated microstructures, as well as the corresponding
mechanical properties and part performance [245]. The
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PSPP linkage, which may be considered design rules,
must be established for the process planning. This
process can be achieved through trial-and-error and
DoE approaches, which are time-consuming and cost-
intensive due to the curse of dimensionality and vast
design space. To address these challenges, DA tech-
niques must be employed to minimise the number of
experiments and increase accuracy. Data analytics and
ML are increasingly used for process parameter optimis-
ation, melt pool modelling, and real-time process
control [246-248]. In this section, we divided the
process planning for PSPPs into four subsections: DA
for process, structure, property, and performance. Each
subsection explains the state-of-the-art research, ident-
ifies knowledge gaps, and addresses research issues, pri-
marily from the DA perspective.

4.2.1. Process

In AM-RA, window maps can be generated to help ident-
ify optimal parameters that lead to required part quality
(e.g. defect-free structures) [59]. For instance, in AM-RA,
Ren et al. [103] investigated the impact of varying laser
power and scanning speed on the surface morphology
of W single tracks, as illustrated in Figure 8(a). Process
parameters, such as interpass temperature, scanning
paths, powder type, and layer thickness, are considered,
adding dimensional complexity. In another study, Dong
et al. [249] studied the hot deformation behaviour and
processing maps of an equiatomic MoNbHfZrTi RHEA,
as presented in Figure 8(b). In addition, Figure 8(c)
shows the hot-processing map, where the contour indi-
cates the power-dissipation factor, and the shaded
portion represents the instability zone. Ivekovic et al.
[102] further introduced the boundaries for three
regions in the W-7Ni-3Fe alloy, highlighting the com-
plexity of PSPP characterisation in refractory materials.
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These window map studies, founded on data-
driven/ experiment-based approaches, are costly to
implement. Many researchers are instead focusing on
employing computational approaches [250], including
process modelling and simulation [251]. For instance,
Doan [252] employed molecular dynamics (MD) simu-
lations to investigate the mechanical behaviour and
microstructure development of TaTiZrV RHEA during
nanoindentation. The study indicated that the [111]-
oriented substrate exhibits the highest average hard-
ness due to the presence of a complex dislocation
network. In a recent survey, Islam et al. [211] investi-
gated an integrated experimental and computational
methodology that can predict the mechanical proper-
ties of wire-arc DED refractory NbZr1 alloy. They per-
formed a crystal plasticity (CP) simulation on the RVE
of NbZr1, predicted the deformation behaviour and
stress-strain curve, and explored the process-struc-
ture—property (PSP) relationship, as shown in Figure
9(a). Additionally, Vanani et al. [253] conducted an
MD simulation to examine the microstructure and
mechanical behaviour of Ti6Al4 V/NbZr1 bimetallic
additively manufactured structures. In addition,
Sharma et al. [254] developed a finite element (FE)
based thermo-kinetic and thermo-mechanical compu-
tational model to simulate the process spanning from
the melt pool scale to the component level for laser-
based AM of pure W. Refractory high-entropy alloys
are particularly difficult to process by AM processes
due to their sensitivity to cracking and defects (e.g.
unmelted powders and keyholes) as shown in Figure
9(b). Mooraj et al. [255] generated a normalised
model-based processing diagram to identify the
process window map. They achieved a nearly defect-
free TiZrNbTa alloy via in-situ alloying of elemental
powders during L-PBF.
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4.2.2. Structure

To gain a comprehensive understanding of the gener-
ated microstructure, DA approaches, particularly
physics-based computational modelling methods, are
perhaps the most insightful. Microstructure modelling
approaches aim to link processing conditions with the
resulting microscopic features of a material, including
grain size, shape, and crystallographic texture. Various
numerical methods, including Phase Field (PF), Cellular
Automata (CA), and Potts Kinetic Monte Carlo (KMC),
can be used to simulate processes such as solidification,
solid-state phase transformations, recrystallization, and
grain growth. These models differ in their resolution
(micro - or mesoscale), computational expense, and
the manner in which they incorporate fundamental
physical principles. For example, PF models require
careful calibration of material and model parameters,
often relying on thermodynamic databases (like
CALPHAD) and atomistic simulations [52].

On the other hand, the CA method uses a finite set of
discrete spatial and temporal units or cells. Unlike PF and
CA models that are based on fundamental physical
mechanisms, the KMC method models grain evolution
using a probabilistic approach. In this regard,
DREAM.3D [211] and Neper [256] are commonly used
software that utilise experimental information to gener-
ate 3D virtual microstructures. Figure 10 shows one
example of the microstructure of the deformed addi-
tively manufactured TiZrHfNb RHEA along the horizontal
direction [159].

4.2.3. Property

To perform computational modelling, temperature-
dependent thermo-physicochemical properties, such as
thermal conductivity, melting point, and density,

among others, are necessary. However, acquiring the
required properties for AM-RAs can be challenging,
especially due to the lack of a universal database. A sig-
nificant research opportunity exists regarding the pre-
diction of microstructures in AM-RA components and
their correlation with process variables, such as scan
speed, input energy, cooling rate, and melt pool geome-
try. These links must be leveraged to control unwanted
features such as heterogeneous microstructure, aniso-
tropic mechanical properties, misorientations of grain
boundaries, and other microstructural defects [257].
Several studies have been conducted to predict and
measure the properties of additively manufactured
refractory alloys. To better understand AM-RA properties
relative to other processes, Mooraj et al. [255] investi-
gated the additive manufacturing of defect-free
TiZrNbTa refractory high-entropy alloy with enhanced
elastic isotropy via in-situ alloying of elemental
powders. Compared to its as-cast counterpart, the as-
printed TiZrNbTa exhibits comparable mechanical prop-
erties with enhanced elastic isotropy. The result of this
study is shown in Figure 11(a). In addition, Li et al.
[235] recently manufactured and characterised novel
Mo-NbW ternary alloys, using experimental observations
to validate predictions from ML and CALPHAD. Their six
as-cast alloys exhibit a single-phase BCC solid solution in
agreement with CALPHAD studies. The predictions of
hardness, based on the ULtrahigh TEmperature Refrac-
tory Alloys (ULTERA) database, were conducted by inte-
grating the measured hardness results into the training
dataset for the iteration of the surrogate model. The
employed framework is shown in Figure 11(b). Although
computational tools such as CALPHAD and ML provide
powerful capabilities for exploring vast alloy design
spaces, a clear gap persists between prediction and
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experimental validation, particularly acute in AM of
refractory alloys. For example, Li et al. [258]
implemented an ML + CALPHAD framework for design-
ing Mo-Nb-W alloys and validated hardness experimen-
tally. Sheikh et al. [259] developed an integrated
printability mapping framework that combines
thermal, microstructural, and defect models, and then

compared the predictions with actual AM data. Wen
et al. [260] applied CALPHAD-driven strategies to miti-
gate cracking in Al-Mg-Si-Ti alloys during LPBF, thereby
linking design intents to real-world outcomes. Bridging
this divide demands well-designed experiments specifi-
cally aimed at verifying and correcting computational
outputs for refractory alloy systems.
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4.2.4. Performance

The performance assessment of AM-RAs is increasingly
conducted using various mesoscale plasticity models
and ML-based surrogate models, driven by advance-
ments in high-performance computing (HPC) and the
availability of robust ML toolkits. For example, the
crystal plasticity framework within the finite element
method (CPFEM) or the Fast Fourier Transform (CPFFT)
approach enables predictions of elastic and plastic ani-
sotropic mechanical behaviour of polycrystals based
on the material’s crystal structure. These microstruc-
ture-aware mesoscale approaches are particularly
effective for AM materials due to their non-traditional,
highly anisotropic microstructures. These models
employ single-crystal constitutive models that account
for grain-scale microstructures and defects, including
grain morphology (size and shapes), crystallographic
texture, and defects such as dislocations, secondary par-
ticles, and voids, all of which can significantly influence
the mechanical properties of AM-RAs.

In addition, CP-based models incorporate key phe-
nomenological deformation features, such as dislocation
slip, deformation twinning, shear band formation, and
damage evolution. These deformation mechanisms are
critical for accurately simulating the complex behaviour
of materials under various loading conditions. The soft-
ware packages commonly used for CPFEM and CPFFT
simulations include DAMASK [261], MOOSE [262],
PRISMS [263], and ABAQUS [264]. Each of these tools
offers unique capabilities, and the integration of these
computationally expensive mesoscale modelling with
ML surrogate models is actively pursued to achieve
more refined and efficient assessments and optimiz-
ations of AM-RAs.

He et al. [265] implemented ML models to predict
strength and fracture strain in RHEAs under com-
pression, focusing on the Nb-Ta-Ti-V-W system. This
approach has the potential to replace the traditional
‘trial and error approach’ for property prediction. Stein-
grimsson et al. [266] developed a physics-based ML
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[267].



approach for modelling the temperature-dependent
yield strengths of medium - or high-entropy alloys. In
addition, Ren et al. [266] proposed a physics-guided
neural network (PGNN) model to predict the fatigue
life of multi-principal element alloys (MPEA). In another
study, Feng et al. [267] studied the high-temperature
creep mechanism of Ti-Ta-Nb-Mo-Zr refractory high-
entropy alloys prepared by LPBF, as shown in Figure
12. Table 5 summarises the reviewed PSPP literature
for additively manufactured refractory alloys.
Additionally, several recent studies demonstrate how
data-driven workflows can be applied to address
failure-related challenges in additive manufacturing. For
example, Garg et al. [268] reviewed Al-enabled mechan-
ical analysis of auxetic metamaterials, highlighting how
machine learning can complement physics-based
models to accelerate performance evaluation. Babu
et al. [269] surveyed the integration of machine learning
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at different stages of the AM workflow, providing insights
into how predictive analytics can enhance PSP under-
standing. More specifically, Lei et al. [270] proposed a
multi-source data-driven ML framework for predicting
fatigue crack paths in polycrystalline superalloys by com-
bining synthetic, simulated, and in-situ experimental
datasets, demonstrating how transfer learning can over-
come data scarcity. It is worth noting that, since AM-RA
parts remain a relatively new approach, systematic evalu-
ations of such components under real service conditions
are still scarce. Future research must extend PSPP studies
beyond manufacturing and performance to encompass
long-term service reliability (Table 6).

4.3. Fabrication

In AM, robust in-situ monitoring and control systems are
desired to detect part imperfections and reduce the

Table 6. Reviewed PSPP literature for additively manufactured refractory alloys.

DA Tool Material AM Process Structure Property Performance Ref
FE w L-PBF Melt pool simulation Grain morphology Thermal conductivity - [254]
Input laser influence Crack Young's module
CPFFT NbZr1 WAAM Build direction Grain size distribution Tensile strength - [211]
Deposition direction Deformation behaviour Yield strength
CFD Mo EBSM Melt pool Phase transformation Surface roughness - [271]
FEM Temperature field Porosity, voids
CFD Mo PBF Melt pool Balling - - [272]
BPNN Spreading velocity Porosity
FEM W LM Scan track thermal model Crack network DBTT - [63]
Morphology Residual stress
CcpP W L-PBF Temp. gradient Crack Residual stress - [273]
Microstructure Dislocation behaviour
Crystal orientation
CALPHAD Ti-Nb L-PBF Process conditions Grain growth - - [274]
PF Melt pool Segregation
Thermal profile Solidification kinetics
CALPHAD  AlysCrMoNbTag 5 EBM - Grain size - - [158]
Phase contents
CALPHAD  CrygMoy5TaysTilsVys VAM Parameters optimisation Phase formation Compressive strength - [275]
DED
RF TiNbHfTaW SLM - - Hardness - [276]
GB CrNbHfTaw Young’s modulus
VNbHfTaW Conductivity
GBT TiZrNbTa L-PBF Process window Anisotropy Yield strength - [255]
Tensile strength
GAN RHEAs database [277] LAM - - Hardness - [278]
DL
NSGA-II Ti-Al-Nb-Zr L-PBF Process parameters Porosity dilution Microhardness [248]
RF
GBDT
- TiZrHfNb LMD Process window Phase evolution Tensile strength - [159]
Element distribution Deformation
- W SLM Process window Density Compressive strength - [103]
Surface morphology Fracture morphology
Pore, Crack
- MoNbTaW L-DED - Microstructure analysis Hardness - [39]
Chemical composition
- TiZrNbTa LMD Melt pool size In-situ alloying Microhardness - [156]
Pulse energy Texture
Equiatomic composition
- TiTaNbMoZr L-PBF - Phase constituent Creep [267]
Morphology evolution
Strengthening
Deformation
- C103 Nb alloy L-PBF - - Tensile strength Creep [279]
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uncertainty of part performance. Recent advances in AM
offer the ability to minimise undesired defects such as
balling, porosity, cracking, and other anomalies.
However, research efforts on real-time monitoring and
control of AM-RA face difficulties due to challenges in
the acquisition of technically meaningful data and a
lack of knowledge in AM-RA.

4.3.1. Real-time monitoring

To improve part quality, NIST reported the need to
develop monitoring methods and a robust feedback
control system [280]. In such systems, the first step is to
acquire sufficient and reliable real-time data as feedback
signals from the AM process. Since the interactions in the
metal AM are highly complex, numerous processes and
part signatures are required to be monitored. Process
monitoring systems can help understand the deposition
process, defect formation, and evolution, and ultimately
ensure a high-quality final product. This can be achieved
by utilising physically accurate signatures to link process
parameters with part quality. These signatures can be 1D
(e.g. voltage, current, height, and temperature), 2D (e.g.
high-dynamic-range images and thermal images), or 3D
(e.g. CMM) [281]. A few studies have been conducted
on real-time monitoring of AM-RA. For instance, a study
conducted by Kim et al. [282] presents a convolutional
neural network (CNN)-based real-time monitoring algor-
ithm to detect an abnormal WAAM process for Mo. The
effectiveness of the CNN classifiers was validated by
applying a class-activation mapping method. It was con-
cluded that the CNN classifiers were adequately trained
since they captured the critical regions in voltage

images for both normal and abnormal cases. In addition,
Cho et al. [283] employed a CNN to detect anomalies
during the WAAM process for fabricating Mo alloys. The
details of the procedure employed can be observed in
Figure 13.Table 7 presents the various real-time monitor-
ing methods and the types of data acquired for AM-RA. As
the literature suggests, this area remains highly unex-
plored, and many approaches employed for different
materials have not been applied to study refractory
alloys.

4.3.2. In-situ control

After gathering and labelling process monitoring data,
the subsequent step involves establishing a link
between this data and observed defects or quality
levels. Given the complex, nonlinear, and currently
incomplete understanding of this relationship, ML pro-
vides a suitable and effective approach. Supervised
CNNs are the most commonly used method due to
their exceptional performance in image processing and
speech recognition tasks [287]. Reinforcement learning
can be used to optimise metal AM processes by adjust-
ing parameters like power, speed, and layer thickness in
real-time to mitigate defects and ensure quality [288]. In
a study, Wasmer et al. [289] attempted to employ
reinforcement learning methods for identifying melt
pool behaviour under different energy inputs. In
addition, Knaak et al. [290] suggested employing
reinforcement learning to develop feedback control
models and successfully showed that this method
could optimise parameters during the process.
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Table 7. Real-time monitoring methods for AM-RA.
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AM
Data Type Objective process Material DA Tool Ref
Power Defect Detection WAAM Mo CNN [282]
High-Speed IR Camera  Temperature maps L-PBF Nb-based alloy C103 Stefan-Boltzmann scaling [284]
HDRI Balling, Bead cut WAAM Mo CNN [283]
DXR (with high-speed  Solidification analysis, Melt pool L-PBF Tig.aZroaNbg1Ta ¢4 CALPHAD (ThermoCalc and TCHEA4 [285]
IR) morphology Tio.a6V0.375Cr0.111Tao02s  database)
Synchrotron X-ray In-situ alloying observation, Melt flow L-DED MoNbTiV - [286]
IR Imaging dynamics
CMM Geometry - - - -
Pyrometer Defect Detection - - - -
Acoustic Emissions Overheating, Cracking - - - -
Ultrasonic Porosity, Balling - - - -
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Figure 14. (a) A representative X-ray image of laser-matter interactions, (b) melt pool boundary and temperature distribution at a

specific time frame during the deposition process [286].

Another approach to achieve in-situ process control is
to employ thermal or mechanical strategies [3,39]. They
enable favourable characteristics, such as a refined
microstructure, minimised porosity, reduced distortion/
warpage, and a preferred stress state. Rolling can be
either interpass rolling [291] (i.e. as a cold work after

the deposition) or in-situ rolling [292] (i.e. as an immedi-
ate hot work above recrystallization temperature).,
Wang et al. [286] studied the in-situ X-ray and thermal
imaging to observe melt pool dynamics during alloying
utilising laser-directed deposition, as shown in Figure 14.
Table 8 shows the different thermal and mechanical

Table 8. In-situ control strategies used for non-refractory alloys that can be implemented for AM-RA.

AM
Approach Objective Process Material Ref. (non-RA)
Rolling (in-situ, interpass)  Enhancing ductility and tensile microstructure refinement WAAM Inconel 718 [291,293]
Laser shock forging Enhancing fatigue life, reducing residual stress LMD 316L SS [294]
Hot forging Refining the microstructure, reducing process defect LPBF AlSi10Mg [295]
Induction heating Reduction in residual stress, microstructure refinement SLM Ni-superalloys [296]
Magnetic field Microstructure refinement, altering weave structure LDED TC 112 [297]
In-situ shot peening Microstructure refinement, improving mechanical properties SLM GH3230° [298]
Ultrasonic impact Grain refinement, recrystallization WAAM Ti-6Al-4V [299]
peening
Friction-stir processing Enhancing mechanical properties, grain refinement WAAM Al-Zn-mg-cu [300]
Electromagnetic stirring Enhancing tensile strength, microhardness, and corrosion WAAM Inconel625 — HSLA steel FGMs [301]
resistance

Hot hammering Repairing layers, enhancing mechanical properties WAAM Steel [302]
Cryogenic cooling Improving surface quality and integrity LMD Tie4 [303]

*Ti-based alloy.
PNi-based superalloy.
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strategies employed for in-situ control in the metal AM
process. For AM-RA, our review indicates no in-situ
control strategies have been employed so far; hence,
there is a substantial research gap and potential for
future studies in this area.

4.4. Post-processing

In AM-RAs, post-processing includes the removal of
support material and enhancement of surface texture
(e.g. shot peening and polishing), accuracy (e.g. machin-
ing), aesthetics (e.g. painting, priming, and polishing),
and properties. Among these processes, heat treatment
(HT), hot isostatic pressing (HIP), and subtractive pro-
cesses will be further discussed.

4.4.1. Heat treatment and hot isostatic pressing
(HIP)

HT and HIP are used to improve the part properties
through (1) residual stress reduction, (2) porosity
reduction, (3) generation of fine and uniform microstruc-
ture, and (4) increases in ductility. Studies have shown
HIP with 1800°C, 4 hr., and 180 MPa can remove cracks
in AMed tungsten [97]. Therefore, these post-processes
should be available to optimise an RA material’s proper-
ties [304]. Knowledge of HT and HIP for AM-RAs is signifi-
cantly lacking due to the cost-intensive AM processing
and the additional requirement of specialised post-pro-
cessing equipment (e.g. furnaces). Therefore, to date,
few studies have been conducted to explore this research
area. For instance, Tanvir et al. [305] evaluated the effec-
tiveness of hot isostatic pressing (HIP) in mitigating por-
osity in TZM-NbZr1 bimetallic structures fabricated via
the WAAM process. Two distinct HIP conditions and a
combined HIP and heat treatment (HT) were investi-
gated. The pore area fraction decreased from 4 + 0.05%
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in the as-built condition to 3.05+0.02% and 1+0.01%
after treatment at (HIP1: 1200°C) and (HIP2: 1500°C),
respectively. Porosity was further reduced to 0.01+
0.005% with HIP at 1800°C followed by HT, as shown in
Figure 15. In another study by Qin et al. [306], the
effects of HIP treatment (850°C/1350°C, 150 MPa, 4 h)
on the microstructure and mechanical properties of
LPBF Ta were investigated. After HIP, all the mechanical
properties of LPBF Ta were significantly improved. The
hardness, ultimate tensile strength, and elongation of
Ta improved to 273 HV, 551 MPa, and 43.4%, with a rela-
tive increase of 40.72%, 16.24%, and 18.26%, respectively.

Recent work has shown that composition tuning, and
process optimisation can effectively mitigate cracking
and elemental segregation in complex concentrated
alloys. For example, Song et al. [307] demonstrated
that hot isostatic pressing combined with microalloying
strategies improved both strength and ductility of LPBF-
fabricated Al-Cr-Fe-Ni-V high-entropy alloys by promot-
ing microcrack closure and precipitation strengthening.
Similarly, Wang et al. [308] reported that in Haynes
230, nanoprecipitate transformations induced during
HIP enabled effective crack inhibition and a transition
in deformation mechanisms, thereby enhancing mech-
anical performance. These cases highlight that targeted
alloy design and process adjustments provide a comp-
lementary path to addressing the inherent challenges
of AM-fabricated refractory and high-entropy alloys.

As AM for RAs is relatively new, databases to support
their analysis are currently lacking. Near-optimal HT/HIP
conditions are difficult to determine with experiments
because infinite combinations in RHEAs are possible,
thus necessitating DA approaches to fill this gap. The
CALPHAD analysis can be used to determine the near-
optimal heat treatment and HIP conditions [309]. For
example, to study precipitation kinetics during intrinsic
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Figure 15. (a) Average pore area fraction (in %) of all conditions, indicating a porosity level in the cross-section of the TZM/NbZr1
bimetal interface (calculated using ImageJ software), and (b) Histogram of pore size (diameter) distribution at the interface before

and after HIP treatments [305].



HT, a model alloy can be selected based on initial simu-
lations using the TC Prisma precipitation module in Ther-
moCalc. Then, in-situ (e.g. Differential Scanning
Calorimetry) and ex-situ (e.g. Atom Probe Tomography)
measurements can be performed using linear time-
temperature profile HT to capture the precipitation kin-
etics for simple time-temperature profiles [310]. A
number of studies have employed Gleeble [311] and
JMatPro [312] to extract thermo-mechanical properties.
For instance, Huang et al. [313] studied the mechanical
properties of AlsMo,NbsgHf;3Tise« at high temperatures,
including 600, 700, and 800°C, using a Gleeble 3800
thermal simulation testing machine.

4.4.2. Subtractive process

Due to the process repeatability and part reproducibility
issues [314], AM parts often need to be machined for
geometrical accuracy and property enhancement/
surface roughness. Typically, RAs are difficult to
machine since they have low ductility and preserve
high mechanical properties at elevated temperatures,
which result in intensive tool wear, increased cutting
force, chatter, and vibrations [315]. The DBTT in refrac-
tory alloys is usually above the room temperature (e.g.
for tungsten, it is ~200-400°C) [3].

AM processes can cause an increase in DBTT in RAs,
making their machining significantly more compli-
cated. To address these difficulties, experimental and
computational approaches have been employed.
Experiment-based approaches include (1) optimising
the machining parameters, (2) employing coolant
systems, (3) optimising tool selection (e.g. polycrystal-
line diamond (PCD) tools), (4) utilising assisted
machining (e.g. laser [316], ultrasonic [317], and
vibration [318] assisted machining) and (5) adopting
non-conventional methods (e.g. electro discharge
machining (EDM), electrochemical machining (ECM)
and abrasive water jet [319]). Computational model-
ling approaches such as finite element methods

5kV X800 " 20pm
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(FEM) [320] and crystal plasticity (CP) [321] can be
used to simulate the machining by estimating the
cutting forces and observing the impact of variations
in process parameters (e.g. cutting velocity) and tool
geometry (e.g. rake angle).

To the best of our knowledge, so far, there are very
few studies focusing on the machining of AM-RAs
[322]. Yang et al. [323] studied the cutting performance
and chip characteristics of WNbMoTaZr, s RHEA during
machining with different feed rates and cutting
speeds. Figure 16(a) shows the serrated chips formed
during the deposition process. However, computational
methods, including FEM and CPFEM, have been shown
to be more accessible (Figure 16(b)) [324-326]. For
instance, a FEM-based digital twin for difficult-to-
machine materials [327] can be developed for RAs to
predict tool wear, microstructural changes, and variables
for machining process optimisation, such as cutting
forces, temperature gradient, and metal chip formation.
Coupling AM with material removal processes (e.g.
milling and turning) has become common.

In most cases of adopting subtractive manufactur-
ing for post-processing, computer numerical control
(CNC) machining is integrated with DED, and the
post-processing is achieved with milling and turning
[328]. For precisely manufacturing complex parts or
moulds (such as those with cooling channels), a
viable approach is to use AM to create a near-net-
shape part, followed by layer-by-layer milling. Studies
using intermediate milling on each layer of maraging
steel samples have shown improvements in surface
quality, hardness, microstructure, and anisotropy
[329]. Recently, the influence of distinct AM and sub-
tractive manufacturing parameters has been analyzed
for property improvement using experiments con-
ducted on a fully integrated hybrid manufacturing
process for non-refractory metals [330-332]. As the lit-
erature suggests, no studies have been conducted on
hybrid manufacturing of AM-RA.
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Figure 16. (a) Micrographs of serrated chip formation during machining of WNbMoTaZr, s [323], (b) Comparison of simulated and

experimental results for chip formation in Ti6V4 [326].
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Figure 17. Comparison of steady-state creep rates among
several different types of HEAs: BCC Nb45Ta25Ti15Hf15 (or
NTTH investigated in [337]), TaNbHfZ(Ti (or the Senkov alloy
[338]), wrought FCC CrCoNi [339], AM oxide dispersion strength-
ened (ODS) CrCoNi [340], a commercial single crystal FCC/L12
two-phase Ni-based superalloy CMSX-4, as well as the FCC
matrix of CMSX-4 (also a concentrated solid solution) [341].

4.5. Test, qualification, and certification

Compared to the additively manufactured high-strength
alloys (e.g. Inconel 625 and Ti-6Al-4V), RAs can be widely
used in extremely harsh environments. Therefore, to
maintain higher quality, detailed material characteris-
ation and rigorous testing at extreme temperatures are
required. Accordingly, different methods of test, qualifi-
cation, and certification have been proposed, including
geometric dimensioning and tolerancing [333,334],
round-robin tests [335], materials characterisation in
extreme environments, and non-destructive evaluation
(NDE) techniques. This subsection will discuss the
materials characterisation in extreme environments
and with NDE.

4.5.1. Material characterisation at extreme
environments

The material properties obtained through conventional
characterisation approaches may not accurately rep-
resent the material’s performance in extreme environ-
ments. For instance, at high temperatures, the effect of
oxidation is likely to become much more prevalent.
This highlights the importance of considering high-
temperature oxidation behaviours, which directly
influence the high-rate/high-pressure mechanical
behaviour of materials. The stochastic nature of AM pro-
cesses and the brittle behaviour of RAs present
additional challenges, and large statistical datasets are
required to describe the distribution of material failure

modes. These challenges are compounded when consid-
ering extreme environments (e.g. the combined effect of
temperature, corrosion, and pressure). For high-temp-
erature tests, these challenges have limited the range
of maximum test temperature to ~1500°C. For the cryo-
genic temperatures, these tests can be performed in a
coolant such as liquid helium (~—260°C) or liquid nitro-
gen (~—190°C) [336]. In a recent study, the tensile creep
behaviour of a vacuum arc-melted NbysTaysTiisHfi5
refractory high entropy alloy was investigated over a
constant true stress range of 50-300 MPa at a tempera-
ture of 900°C [337]. Figure 17 shows the comparison of
creep rates for different RHEAs.

Because data in materials science is often scarce due
to the expense of experiments and simulations, there
should be greater emphasis on ML techniques that
guide data acquisition. This includes methods such as
active learning, Bayesian optimisation, bandit optimis-
ation, and reinforcement learning, which utilise ML
models in a closed loop to determine which experiments
to conduct iteratively, simulations to perform, or expert
queries to make. Active learning and Bayesian optimis-
ation are becoming increasingly popular for designing
experiments in materials science. Prior work in the past
few years [342-346] has demonstrated that active learn-
ing and Bayesian optimisation hold great potential for
efficient experimental design in extreme environments,
offering substantial improvements over traditional
approaches, such as factorial design. While rapid and
accurate materials development and evaluation remain
challenging, progress has been made toward Al-driven
high-throughput methods that pave the way for acceler-
ated materials development for combined extreme con-
ditions. For materials designed for these extreme
environments, the parameter space for composition,
synthesis, and even characterisation is extremely
complex and not well-suited to traditional reductionist
methods [347]. This complex space necessitates rapid
decision-making, which AI/ML methods can provide.
Specifically, ML techniques that incorporate existing or
hypothesised physical and chemical principles are
expected to be highly effective in accelerating the devel-
opment of materials for extreme conditions.

4.5.2. Non-destructive evaluation (NDE)

Non-destructive evaluation (NDE) methods such as X-ray
computed tomography (CT) and micro-focus CT (u-CT)
are widely used for inspecting intricate AM parts (as
demonstrated by NASA [348] and NIST [349]). These tech-
niques are currently employed to identify porosity, cracks,
and dimensional inaccuracies in AM components [350].
However, these methods have not been shown to be suit-
able for inspecting refractory metal parts because these



metals have high atomic numbers, resulting in high radio-
opacity. These properties lead to significant scatter,
shallow penetration, and a poor signal-to-noise ratio, pro-
ducing unusable images for defect detection. Further-
more, ultrasonic inspection is generally challenging to
apply to AM parts due to their inherent surface roughness,
requiring surface preparation for proper application.
Therefore, the existing NDE methods still have several
limitations. First, it is not a closed-loop control approach,
indicating that real-time inspection during the AM
process is not feasible. Second, most NDE methods focus
on defect detection (e.g. porosity and cracks), but micro-
structures and mechanical properties are also important
aspects and should be investigated for qualification.

Automating NDE can guarantee consistent and
precise analysis of test results, including signals, data,
images, and patterns. Al/ML methods show great
promise for achieving automated and efficient evalu-
ation of NDE data and test results. Recently, Al has
been successfully integrated with various NDE appli-
cations [351]. For example, statistical ML techniques
can predict defect characteristics by leveraging existing
defect datasets, utilising their capability to estimate
unknown values from training data [352]. Furthermore,
the use of neural networks in NDE is a growing trend
in material structural design and material performance.
Specific examples of neural network implementation in
NDE can be found in the study by Saleem et al. [353].

Leveraging NDE technologies for testing and qualifi-
cation, particularly concerning refractory alloys,
remains largely unexplored. NDE 4.0, which integrates
advanced technologies and digital transformation into
traditional NDE practices, is gradually becoming more
prevalent. However, the future, referred to as NDE 5.0,
is currently being shaped by the collaboration of
humans and intelligent machines working together
through real-time evaluation, computation, and com-
munication. Currently, the digital twin concept [354]
and digital twin-based qualification offer a potential
near-term solution [355], particularly when used to
monitor performance, enabling the determination of
key remaining useful life (RUL) parameters of the phys-
ical twin. Other valuable applications of digital twins in
NDE include early warning systems, anomaly detection,
prediction, and optimisation, which will be discussed
in detail in Section 5.5.

Beyond digital twin-assisted DE, recent developments
in NDE for AM have introduced advanced approaches
particularly relevant for refractory alloys, which pose
unique inspection challenges due to their high atomic
number and density. Wu et al. [356] highlighted the inte-
gration of machine learning and digital-twin-driven
frameworks to improve the detection accuracy, data
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processing, and reliability of NDE in large and complex
metal AM components. Complementarily, Yoon et al.
[357] demonstrated the application of high-energy X-
ray computed tomography and advanced ultrasonic
imaging for tungsten-based alloys, emphasising the
potential of hybrid multi-modal inspection systems to
overcome signal attenuation and achieve sub-surface
defect localisation. These emerging techniques demon-
strate the increasing feasibility of intelligent, physics-
aided NDE systems that integrate with digital twin
environments for real-time quality assurance in AM-RA.

Studies have shown that using Al/ML techniques like
CNNs can double the accuracy of defect detection and
characterisation (such as sizing) compared to traditional
methods [358]. These technological advancements will
significantly transform the future of NDE and mainten-
ance, repair, and overhaul operations across nearly all
industries.

5. Integration from the data analytics
perspective

This section describes the knowledge gaps and research
issues from the top-down perspective, while Section 4
describes them from the bottom-up perspective. In the
following section, VW&UQ, with a focus on AM-RA, will
be discussed first. Then design rule establishment and
the related efforts and challenges will be reviewed. Sub-
sequently, ICME tools and their applications in design
rule establishment and the PSPP relationship will be dis-
cussed. Finally, a multi-criteria decision-making and inte-
gration framework for quality assurance will be
investigated.

5.1. Vv&UQ

As with AM in general, AM-RA faces process repeat-
ability and part reproducibility issues [314]. AM
models and simulations (such as physics-based,
data-driven, or physics-informed data-driven models)
provide an attractive means to study the variabilities
in the quantities of interest (Qols) (such as geometric
accuracy, porosity, residual stress, or strength), and to
support process optimisation and control. AM is a
complicated, multi-scale, multi-physics process; there-
fore, analytics approaches benefit from multiple
models to describe the various aspects of the
process [359,360]. Each of these models encompasses
its own sources of uncertainty [361]. In addition,
uncertainties inherent in the experimental setup,
measurements, and data processing algorithms may
introduce uncertainty in the prediction results of ML
models developed using experimental data.
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Therefore, to effectively improve AM processes (e.g.
process design, process control, and resource allo-
cation) using ML models, it is crucial to verify and vali-
date these models, account for various sources of
uncertainty (i.e. aleatory and epistemic), and continu-
ously update them as real-time data becomes avail-
able. This subsection will discuss model verification
and validation, review proposed approaches in the
existing literature, and provide an in-depth expla-
nation of uncertainty elements, including quantifi-
cation, propagation, and management.

It is worth noting that, despite growing interest in
developing quantitative PSPP linkages for AM-RA, rig-
orous validation frameworks remain largely underde-
veloped. Recent advances in thermophysical
modelling and UQ for refractory systems, such as
those by Bowling et al. [362]on niobium alloys, have
highlighted how uncertainty in thermal conductivity
and elastic modulus measurements can reach up to

Similarly, Nonato et al. [363] proposed a probabilistic
UQ framework using Latin Hypercube Sampling to
quantify the variability in mass and atomic radii in
high-entropy alloys, demonstrating the sensitivity of
phase prediction to small uncertainties in elemental
composition. At a broader scale, Giles et al. [364]
incorporated both aleatory and epistemic uncertain-
ties into deep-learning models predicting vyield
strength and plasticity in refractory HEAs, emphasis-
ing that experimental variability often exceeds
model uncertainty. Complementary efforts by Shargh
et al. [240] and Li et al. [258] have begun bridging pre-
diction and validation by integrating deep learning,
CALPHAD, and experimental synthesis to verify micro-
structure and phase-formation predictions. These
studies highlight that establishing multi-physics
PSPP validation frameworks with embedded uncer-
tainty quantification and propagation remains an
essential, yet still largely unexplored, future direction
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5.1.1. Model verification and validation

Verification is ‘the process of determining that a model
or simulation implementation and its associated data
accurately represent the developer's conceptual and
mathematical description and specifications’ [365]. Vali-
dation is ‘the process of determining the degree to
which a model or a simulation is an accurate represen-
tation of the real world from the perspective of the
intended uses of the model or the simulation’ [360].
The V&V process is necessary to utilise any developed
simulations and DA results for performance prediction
of the process [366]. Figure 18 identifies the activities
and products in a recommended V&V approach [367].
Two elements of verification are identified in this frame-
work: code verification and calculation verification. More
details can be found on [367].

Different researchers have explored the verification of
physics-based computational models of AM-RA, such as
the melt pool [368], solidification [369], and residual
stress [211]; however, validation is significantly lacking
in this regard. When the AM process model is used for
decision-making, validation can be carried out at two
stages: validation of (1) physics-based model prediction
and (2) model-based process decisions. The former is
performed by quantifying the difference between the
model prediction and experimental observation [258],
and the latter (e.g. process parameter optimisation) is
done by conducting experiments at optimal and nonop-
timal process parameter values [3]. In AM, experimental
data is used to validate individual physics-based models,
such as the melt pool model and solidification model.
For instance, Wang et al. [273] developed a thermo-
mechanical coupled dislocation density-based CP
model and applied this model to investigate the evol-
ution of temperature, stress, and dislocation behaviours
in single crystal and polycrystalline W during AM. They
also validated the mechanical model by predicting the

Table 9. Uncertainty sources [370-372].
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yield stresses of single-crystal W at different tempera-
tures and comparing them with the experimental data.
Modelling and simulation of the AM-RA process is in
its initial stage, and its V&V is yet to be thoroughly
studied. To the best of our knowledge, no research has
been published in this area.

5.1.2. Uncertainty quantification

UQ for AM-RA requires explicit identification and
quantification of epistemic uncertainty (due to lack of
knowledge) and aleatory uncertainty (due to natural
variability). Epistemic uncertainty is subdivided into
model uncertainty and data uncertainty [370-372]. The
former is caused by uncertainty regarding the calibration
of model parameters, model formulation, and solution
approximation error. The latter can be due to sparse
data (e.g. data generation and performing experiments
are expensive for AM-RA), imprecise data (interval
data), measurement error (e.g. it is very challenging to
measure the peak temperature during AM of W), and
qualitative data. Aleatory uncertainty mainly originates
from equipment, process parameters, and inherent
variability in material properties [360,373]. A detailed
classification of uncertainty types, sources, and
examples is listed in Table 9.

Current research on UQ in AM processes can be cate-
gorised as: (1) experimental UQ of AM, (2) UQ of melt
pool models, and (3) UQ of solidification (microstructure)
models. For (1) at the process level, AM experiments are
repeated with varying process parameters. Statistical
analysis (e.g. analysis of variance (ANOVA) and signal-
to-noise ratio (SNR) [374]) is then employed to assess
the impact of these parameters on product quality,
using the resulting data. Because experimental data for
AM-RA is limited and costly to obtain, efficient DoE
[375] and sampling techniques (e.g. random, stratified,

Uncertainty type

Sources

Examples

Epistemic Model uncertainty Model parameters

Model form

Solution approximation

Data uncertainty

Aleatory Equipment

Process parameters

Material properties

Measurement error
Experiment data
Model approximations
Simplification
Subjectivity

Surrogate model error
Numerical approx.
Programming mistakes
Imprecise data

Sparse data
Measurement error
Measurement errors
Input parameters
Boundary conditions
Thermal properties
Mechanical properties

Conflicting data, human error

Systematic error, random error, sensor error

Truncation, numerical treatment, mathematical formulations
Dimension reduction, assumptions, model conceptualizations
Model preference, knowledge limitation

Model assumptions

Iterative convergence, discretization errors, roundoff error
Inefficient code

Sparse data, qualitative data, subjective data

Inadequate experimentations

Missing Data

Instrument calibration

Powder particle radius, fluctuation of laser scan speed
Interpass temperature, system excitation

Diffusion coefficient, absorption coefficient

Friction coefficient
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and Poisson disk sampling) have only been partially
explored [376].

Concerning potential AM-RA adaptations, notably,
(2) UQ of the melt pool is crucial since its result can
be used as input for other models. In this regard,
Garg et al. [377] performed uncertainty and sensitivity
analysis for the melt pool model to identify the most
sensitive parameters. Anderson and Delplanque [378]
implemented DAKOTA and ALE3D software to
explore the UQ of the melting process. For (3) UQ of
solidification, limited studies have been conducted
due to the cost and time intensity of AM-RAs. For
example, Ma et al. [379] used DoE and FE models to
identify the critical variables in LPBF. Loughnane
[380] developed a UQ framework for microstructure
characterisation in AM, and Cai and Mahadevan [381]
studied the effect of cooling rate on the microstruc-
ture and considered various sources of uncertainty
during the solidification process. In terms of UQ expli-
citly for AM-RAs, to the best of our knowledge, no
research has been carried out due to a lack of exper-
imental data, which is challenging to acquire. Refrac-
tory alloys are more prone to specific uncertainties
than other materials. To generate a simulation model
of AM-RA, researchers must take simplified assump-
tions, which can induce uncertainties in the results.

5.1.3. Uncertainty propagation and aggregation

Quantifying uncertainty propagation (UP) in AM-RA is
challenging due to (1) difficulties in data generation
(i.e. epistemic) and (2) process variations (i.e. aleatory).
Uncertainties are propagated and aggregated through-
out the modelling process. Each step in a modelling
approach (either data-driven, physics-based, or
physics-informed data-driven) induces some uncertainty
in the calculation. For example, in the CPFEM model gen-
eration, uncertainty is propagated from the first step (i.e.
determination of process parameters) to the last (i.e.
mechanical performance diagrams). In addition, Ye
et al. [382] demonstrated the P-S-P surrogate linkages,
i.e. multi-fidelity Gaussian process (MFGP), multi-output
Gaussian process (MOGP), functional Gaussian process
(FGP), involve models of GP and its variants that accom-
pany uncertainties, as shown in Figure 19. The common

approach for analyzing UP through a model is sampling
(e.g. Monte Carlo sampling) [383]. Although sampling
methods are conceptually simple, large datasets are
needed, which is extremely challenging and time -
and cost-intensive in the case of AM-RA. More advanced
approaches for UP analysis that may be more suitable for
AM-RA include polynomial chaos [384], stochastic collo-
cation [385], response surface approximation methods
[371], and Bayesian inference, along with a Taylor expan-
sion [386].

In addition, modelling the complete AM process
involves multiple levels. Lower-level model outputs
(like those from powder bed or heat source models)
feed into higher-level models (such as melting pool or
solidification models). Because various parameters and
model outputs are interconnected, understanding how
uncertainty propagates from process and environmental
parameters to the final quantities of interest (Qols)
requires multi-level UQ methods and uncertainty aggre-
gation analysis. Besides this multi-level UQ, some analy-
sis models may also involve coupling between different
simulation models (for example, coupling between FE
and CA models).

In a study conducted by Tapia et al. [387], UP analysis
was performed on two different simulation models for
LPBF: a reduced-order thermal model and a higher-
fidelity finite element thermal model. A UP framework
was generated based on generalised polynomial chaos
expansion to quantify the uncertainty in melt pool pre-
dictions as a function of uncertainty in process par-
ameters that are input to the models. The UP
framework was employed to validate these models
using experimental measurements obtained from the
LPBF system. In another study, Kotha et al. [386] devel-
oped an uncertainty-quantified parametrically hom-
ogenised constitutive model (PHCM) for dual-phase
titanium alloys (e.g. Ti6242S). They employed Bayesian
inference and a Taylor-expansion-based UP method to
quantify and propagate different uncertainties in
PHCM, such as model reduction error, data sparsity
error, and microstructural uncertainty. As the literature
suggests, no studies have been conducted on the analy-
sis of uncertainty propagation and aggregation of AM-
RA, though the reviewed approaches appear adoptable.
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Figure 19. Uncertainty propagation through PSP surrogates [382].
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Figure 20. Overall UQ and UM frameworks for the AM process [372].

5.1.4. Uncertainty management

In uncertainty management, three issues need to be
addressed: reducing the number of variables, reducing
the uncertainty of AM models, and optimising the
process parameters to reduce the effect of uncertainty
sources, as shown in Figure 20 [372]. Dimensional
reduction aims to omit the less important variable in
AM by performing global sensitivity analysis (GSA),
which ranks the contribution of each variable based on
Qols. For uncertainty reduction, adaptive surrogate
models must be generated, and experimental designs
must be collaborated to validate and verify the model
[388]. For this, a physics-informed, data-driven approach
with UQ is the viable solution. The details are discussed
in Section 4.3. The final goal, which is AM-RA optimis-
ation, can be pursued through reliability-based design
optimisation (RBDO) or robust design optimisation
(RDO). More details can be found in [24]. It will be dis-
cussed in more detail in Section 5.4, the multi-criteria
decision-making (MCDM).

5.2. Design rules establishment

For the design rule establishment, including the estab-
lishment of PSPP relationships, DA techniques can be
utilised at multi-scale, multi-stage, and multi-physics to
understand and elucidate the AM-RAs. However, it
remains significantly challenging to characterise
relationships and establish the design rules with

respect to the different AM processes, materials, and
requirements due to the curse of dimensionality. In
addition, the number of combinations of RAs is almost
infinite, indicating that it is nearly impossible to investi-
gate all possible combinations, especially in RHEA
[21,50,257]. To address these issues, the following sub-
sections will discuss transfer learning, ontological
mapping, and a physics-informed ML approach.

5.2.1. Transfer learning

Utilising ML techniques, the relationships between
process, structure, property, and performance can be
elucidated [389]. Transfer learning (TL) is a promising
group of approaches where the model of one product
(source) may be reused for another product (target)
with limited new target data [390], and it has been uti-
lised to tackle the curse of dimensionality in AM [391].
The TL for AM studies is well-discussed in the study of
Tang et al. [392]. In the following paragraphs, TL and
its applications in AM will be discussed, and then its
advantages in AM-RA will be introduced.

Mehta and Shao [393] used federated learning to
train a laser powder bed fusion (LPBF) source defect
detection model. Then they adapted it to the binder
jetting process using rapid fine-tuning with just four
images. While the resulting target model was adequate
for defect detection, its accuracy was slightly lower
than the original LPBF model. Regarding knowledge
transfer between materials, Vigneashwara et al. [390]
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Figure 21. Conceptual representation of transfer learning from low carbon steel to high entropy alloy [394].

developed a TL classification framework to detect LPBF
defects, specifically balling, lack-of-fusion pores, conduc-
tion mode, and keyhole pores. They initially trained two
source CNN models (VGG16 and ResNet18) using spec-
trogram images of acoustic signals from stainless steel
316L line tracks. Target models were then created by
fine-tuning the final layers of these source models with
target data consisting of bronze (CuSn8) spectrogram
images. Their experiments showed a decrease in predic-
tion accuracy when transferring knowledge between
different materials. Shin et al. [394] also proposed
using CNN to extract sufficient image features from
multi-source materials (low carbon steel and stainless
steel), then transferred and fine-tuned the models for
anomaly detection in the target material (Inconel), as
shown in Figure 21. They applied stepwise learning to
extract image features sequentially from individual
source materials, and composite learning is employed
to assign the optimal frozen ratio for converging trans-
ferred and existing features.

5.2.2. Ontological mapping

To overcome the limitations, such as the lack of physical
interpretability and a holistic view of AM life cycles, as
discussed in Section 5.2.1, ontological mapping (OM)

methods can be employed. The main idea is to extract
relationships among AM parameters and the resulting
parts, i.e. establishing design rules. NIST and other
research groups have been investigating ontological
mapping to efficiently relate complex, scattered knowl-
edge [395], as shown in Figure 22.

Roh et al. [396,397] developed an ontology for AM to
represent information for different process models for
laser, thermal, microstructure, and mechanical proper-
ties for metal-based AM of Ti-6Al-4 V. Liang [398] devel-
oped a novel ‘AM-OntoProc’ ontology that promotes the
modelling and re-utilisation of knowledge towards the
AM process planning, where the AM process is supposed
to start from the utilisation of CAD software during the
design stage until the final AM prototype is developed.
Hagedorn et al. [399] utilised the Innovative Capabilities
of Additive Manufacturing (ICAM) ontology, a structured
knowledge model that links business and technical
insights to AM processes. The information in ICAM
covers basic product attributes from the NIST Core
Product Model (CPM) relating to materials, geometry,
and design function, as well as types of manufacturing
processes and services taken over from the manufactur-
ing service description language (MSDL). Most recently,
Ko et al. [395] proposed a novel framework, the data-
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knowledge-design-rule, in which they aimed to extract
knowledge from a public AM database and update
prior knowledge. It can automatically and autonomously
improve knowledge of AM design. In another study, Park
et al. [400] developed a data analytics knowledge base
(DAKB) using the Web Ontology Language (OWL),
which captures diverse knowledge from the experts to
identify DA opportunities.

In the case of AM-RA, integrating transfer learning
and ontological mapping can effectively address data
scarcity. However, a substantial amount of data is
required to achieve improved prediction accuracy,
which poses non-trivial challenges. In addition, imbal-
anced data is another issue faced by the AM processes,
especially for RAs. This indicates that while collecting
process signatures using sensors and other data acqui-
sition devices is inexpensive and well-established, char-
acterising microstructural features and mechanical
performance/properties is significantly time- and cost-
intensive and, in many cases, requires destructive tests.
This statement will be elaborated on in Section 5.2.3.
Integrated TL and ontological mapping, especially in
the case of multisource TL, can induce accumulated
uncertainties, which reduces the process repeatability
and part reproducibility [394]. This issue will be compre-
hensively discussed in Section 5.2.4.

5.2.3. Physics-informed machine learning (PIML)

The effectiveness of using ML as a reliable modelling tool
depends on ensuring consistency with physical prin-
ciples. In addition, data scarcity and imbalanced data
are hindering the modelling of AM-RA processes. To
address these issues, physics-informed machine learning

2 2 5
it Ta o endeon s

Ex-situ data

(PIML), a hybrid method that integrates physics-based
knowledge with big data [401], is gaining significant
interest. Its main goal is to achieve interpretable
models and establish design rules by transforming raw
data into PSPP knowledge. This transformation enables
a comprehensive understanding of the underlying
physics of AM-RA processes, which in turn can be lever-
aged to reduce process defects and increase process
repeatability and part reproducibility.

Although still in its infancy, the PIML paradigm has
already attracted an increasing level of attention due
to its potential for future exploration. Du et al. [402]
showed that a combination of PIML, mechanistic model-
ling, and experimental data can reduce the occurrence
of common defects in AM. By analyzing experimental
data on the defect formation mechanism, they identified
several key variables that reveal the underlying physical
phenomenon. Guo et al. [401] proposed five predomi-
nant ways to integrate physics into ML: (1) model
input, (2) model training, (3) model components, (4)
model architecture, and (5) model output. An example
of model input is described in the study of Guo et al.
[403], where PIML-driven NNs, as shown in Figure 23,
were proposed. They extracted features from thermal
images of melt pools with a CNN and concatenated
the features with physical measures from finite-
element analysis (FEA) simulations before feeding
them to a subsequent ML algorithm for porosity predic-
tion. In another study, Ko et al. [404] proposed a novel
framework driven by physics-guided ML, which included
both physics knowledge and AM data from measure-
ment and monitoring. The research enabled a systematic
approach for combining physics knowledge with real-
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Figure 23. PIML-driven PyroNet + and PyroNet++ [403].

world data, facilitating the development, validation, and
verification of PSP linkages.

The prevailing advantage of PIML is that it enhances
model interpretability and composability, since these
models are underpinned by physical principles. This
approach maintains the high performance of ML,
making it well-suited for modelling and simulating AM-
RA processes. Since physics-based models are frequently
used as sources of the PIML training data for the metal
AM, it is crucial for these models to be as accurate as
possible, especially in the case of RAs, where exper-
iments are expensive. Therefore, it is important to recog-
nise inherent assumptions, simplifications, and
approximations in physics-based models that can com-
promise accuracy [405]. Hence, UQ is one of the most
effective approaches to address these issues. The
accumulation of process repeatability and part reprodu-
cibility issues in AM, along with the stochastic behaviour
of RAs, necessitates the use of UQ for PIML. Ma et al.
[379] pointed out that the quality and properties of
AM deposits can vary significantly even when the
same materials, processing parameters, and type of AM
machine are used. For example, the fatigue life of AM
parts can vary based on the process signatures and
induced defects. To tackle these issues, PIML studies
must be integrated with uncertainty considerations, as
discussed in detail in Section 5.1.

5.2.4. Synthetic data generation

One of the most promising yet underexplored
approaches to addressing data scarcity in the AM-RA is
the use of synthetic data generation. Due to the high
experimental costs and the limited number of available
datasets for refractory systems, researchers are

* Peak temp. T;

increasingly relying on computationally derived datasets
and hybrid learning strategies. However, as noted by
Singh et al. [406], synthetic data generation must be
handled with caution, particularly for refractory or
high-entropy systems, since synthetic oversampling
may distort the phase-property relationships inherent
to experimentally verified data. Their study highlighted
that while the use of SMOTE-Tomek augmentation can
improve classification accuracy, it cannot reliably guar-
antee structural fidelity for complex systems such as
refractory HEAs. Consequently, rigorous physical vali-
dation remains indispensable when extending these
methods to AM-RAs.

Recent work by Rahman et al. [407] reviewed the inte-
gration of synthetic datasets with machine learning (ML)
frameworks across multiple alloy systems, demonstrat-
ing how generative adversarial networks (GANs) and
conditional GANs can expand sparse data domains
while maintaining statistically realistic feature distri-
butions. In particular, they emphasised the utility of
combining CALPHAD, DFT, and experimental data to
generate synthetic training sets that bridge gaps
between scales. Similarly, Swateelagna et al. [238] pro-
posed explainable ML workflows in which synthetic
datasets generated from thermodynamic simulations
are used to train interpretable models for alloy design,
improving predictive accuracy by integrating physical
constraints. These frameworks - although mainly
applied to non-refractory alloys-offer transferable meth-
odologies for future AM-RA research, where limited
datasets constrain the development of robust predictive
models.

Complementary efforts by Kannan and Nandwana
[408] have demonstrated data-driven synthetic alloy



discovery pipelines combining virtual high-throughput
screening with deep generative models. Their approach
integrates latent space sampling from trained neural
networks with physical descriptors to generate hypothe-
tical alloy compositions exhibiting plausible microstruc-
tural and thermodynamic stability. While such methods
have yet to be validated for refractory alloy systems,
they offer a scalable path forward for generating syn-
thetic microstructure-property datasets. In the context
of AM-RAs, combining physics-based models (e.g.
phase-field or cellular automata) with generative frame-
works can enable the creation of realistic synthetic data-
sets that accurately reproduce melt-pool behaviour,
defect formation, and thermal history effects under
extreme processing conditions. Nevertheless, extensive
experimental validation is still required before synthetic
data generation can be fully trusted for the qualification
of refractory alloys.

5.3. Integrated computational materials
engineering (ICME)

An integrated computational materials engineering
(ICME) framework has been recognised as a powerful
tool that can improve the AM process [409]. Its primary
goals are to (1) support decisions in materials selection
and design processes, as discussed in Section 4.1, and
(2) establish the PSPP relationships with uncertainty con-
sideration, as discussed in Section 5.2. It aims to realise
the concept of ‘manufacture the alloy and structure
you need’ [410]. Computational models differ in terms
of their length and time scales, stages, and physical
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Figure 24. Categorisation of different phenomenological com-
putational models, based on length scales and computational
cost [411].
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aspects. Therefore, creating a single computational
model to simulate the holistic PSPP response in metal
AM is challenging. In this context, the hierarchical inte-
gration of multi-scale multi-physics models based on
the ICME approach to link PSPP has emerged as a prag-
matic solution [411]. ICME tools encompass density func-
tional theory (DFT), molecular dynamics (MD), coarse-
graining atomistic modelling methods, kinetic Monte
Carlo (KMC), dislocation dynamics (DD), microscopic
and mesoscopic phase field (PF), FEA, and CP simulation.

Multi-scale characteristics (different phenomena
occur at different scales) induce inherent complexity in
the metal AM process. Figure 24 illustrates various
models and their corresponding length scales, along
with their computational costs. Micro-scale models
focus on local phenomena such as the interaction
between the heat source and powder, heat absorption,
the heat-affected zone, grain evolution, and melt pool
phase transformations. Meso-scale models simulate
changes in composition, thermo-mechanical behaviour,
and temperature-dependent metallurgical properties.
Macro-scale models, which encompass a broader
scope, address process evolution. They use thermal,
thermo-mechanical, and thermo-metallurgical models
to predict temperature fields, molten pool geometry/
residual stress, and distortion/microstructural phase
transformations, respectively [50].

The AM modelling process is inherently complex due
to the multitude of physical phenomena involved,
ranging from the formation of the powder layer to the
melting and solidification of the additive layer. They
include molten pool physics such as temperature
profile, heat transfer, fluid flow, viscosity, vaporisation,
solidification, volume shrinkage, phase transformation,
and morphology of molten pool, as well as process-
wise physical mechanisms, including energy source-par-
ticle interaction, powder layer formation, and heat trans-
fer [50]. As multiscale CA/PF/KMC models enhance our
understanding of the link between processing and the
resulting structure, there is a growing demand for mod-
elling frameworks that can simulate the entire metal AM
fabrication process. This represents a shift in modelling
paradigm, integrating process-structure (PS) and struc-
ture—property (SP) models into a complete PSPP frame-
work. This integrated approach is promising because it
can directly connect process parameters to the mechan-
ical behaviour of AM components through microstruc-
tural models. A significant challenge lies in developing
a reliable information exchange algorithm to effectively
manage data flow between the different multiscale
modelling platforms [411]. Table 10 shows the ICME
tools employed in different research. Here, 'x’ denotes
that the research has studied the corresponding
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3| FERRERNBER aspect, and -’ denotes that it has not been investigated.
mmmT e As the literature suggests, inadequate research has been
dedicated to using ICME tools to investigate materials
g that might help reveal the underlying aspects of AM-
E [ R R R RA, and a huge gap still exists in this area. For instance,
§ to the best of the authors’ knowledge, no comprehen-
sive survey has been conducted to study and model

. the performance of AM-RA using ICME tools.
% XX 1 xxx 1 X1 Current ICME tools and studies are still unable to
= £ establish comprehensive PSPP linkages, particularly in
2 the case of AM-RA, and a holistic approach remains
& unexplored. Motaman et al. [44] illustrated an example

g

of ICME-based PSPP linkage in metal AM, along with a
x hybrid physics-based data-driven strategy for its appli-
cation in the optimal design of a component. They pre-
dicted the performance for design parameter
combination via the ICME-based PSPP linkage. In
another study, Jalalahmadi et al. [412] developed a mod-
elling tool that enables the performance prediction of
AM parts, considering microstructural properties and
fatigue cracks. This tool, called DigitalClone® for Additive
Manufacturing (DCAM), is an ICME tool that includes
models of crack initiation and damage progression
with the high-fidelity process and microstructure model-
ling approaches. However, very few studies have con-
sidered uncertainties associated with the ICME tools
arising from model, structure, parameters, and simplifi-
cations, which are intensified in the case of AM-RA due
to their stochastic nature. Quantifying these uncertain-
ties is necessary to enable robust decision-making and
reliable PSPP linkage. Figure 25 shows an overview of
XXX X X X 1 X X the ICME approach for establishing the process-signa-
ture-structure-property-performance  (PS?P?), which
could be applied in this regard.
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5.4. Multi-criteria decision making for PA:
interoperability and integration issues
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The ultimate goal of DA for AM-RAs can be the ‘perform-
ance assurance (PA)’ [413], which can be achieved by an
integrated, high-level perspective framework. This
framework is necessary for better and robust decision
support since AM inherently has manufacturability,
repeatability, and reproducibility issues [314], issues
compounded in AM-RAs. AM-RAs can be more inten-
sified due to the (1) complexity of AM-RAs; (2) uncer-
tainty induced mainly from the nascent knowledge;
and (3) volatility and variability of processes leading to
measurement errors. To tackle these issues, all the pre-
viously mentioned sections need to be seamlessly inte-
grated to realise the MCDM with uncertainty
consideration [414,415]. The MCDM is applied to satisfy
conflicting requirements and goals. It needs to manage
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Figure 25. Schematic overview of the ICME-based PS?P? linkage for performance prediction of AM-RA.

multiple conflicting objectives with heterogeneous data
and models with uncertainty considerations at multi-
scale, multi-stage, and multi-physics. This produces
two critical questions: (1) model composition and (2)
uncertainty aggregation. The following two paragraphs
discuss them.

First, there are interoperability and integration issues
because the MCDM needs to manage a large amount of
information and different types of data and models
[416]. In the case of AM-RA, the issues are intensified
due to the additional complexities and uncertainties.
For example, consider the question ‘How to compose
disparate analytical problems into a unified analytical
problem?’. Addressing this question requires an investi-
gation into which types of models are best suited for
various features of input/output data (e.g. input type,
availability, fidelity, and size) and manufacturing con-
ditions (e.g. objectives, constraints, and key performance
indicators). The characterisation of methods is necessary
for scaling, normalisation, weighting, and aggregation
(SNWA) [417] with respect to the different data charac-
teristics (e.g. type and integrity), model features (e.g.
type and fidelity), and other conditions (e.g. objectives
and constraints). Each step and method in MCDM
should be carefully determined since the choice of
these significantly affects the decision results.

An additional question may be, ‘Can the aggregated
model be considered reliable even if each model
satisfies the required confidence level? The quantifi-
cation of uncertainty in the aggregated model is challen-
ging because it involves multiple criteria with subjective
normalisation and weighting factors. In other words, the
uncertainties associated with each data and model need
to be scaled, normalised, and weighted. Additionally, the
propagation and aggregation of these uncertainties
must be managed to facilitate the final MCDM analysis.
For example, consider the generation of surrogate
models from high-fidelity computational models and/
or DoEs in AM. For successful MCDM, these models
need to be aggregated into a global surrogate model
(GSM) that considers uncertainty considerations follow-
ing the SNWA procedures to support final decision-
making [418]. In this regard, a reliable and robust
method needs to be developed to integrate analytical
problems from different manufacturing resources for
MCDM, considering uncertainty. However, such a
method does not currently exist.

To tackle these issues, a seamlessly integrated MCDM
framework for AM-RAs is necessary. In the AM commu-
nity, several research groups have been investigating
and developing the integrated decision-support frame-
work, such as (1) Integrated computational materials
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Figure 26. VV and UM for MCDM. Reproduced from [420].

engineering (ICME) discussed in Section 5.3, (2) NIST
Data-driven decision support for additive manufacturing
[400], and (3) NIST Data Integration and management for
additive manufacturing [419]. Efforts such as these
should be leveraged to facilitate a seamlessly integrated
MCDM framework for AM-RAs with uncertainty consider-
ation. As an example, we regenerated the conceptual
schematic diagram of MCDM with uncertainty consider-
ation, based on the previously discussed thoughts and
concepts from [420], as shown in Figure 26. It consists
of several components discussed in the previous sec-
tions such as (1) AM process complexities in Section 2
and 3, (2) measurement techniques in Section 4, (3) sur-
rogate models in Section 4, (4) computation models in
Sections 4 and 5, (5) prediction with uncertainty (knowl-
edge) in Section 5, (6) MCDM in Section 5. It also displays
measurement, modelling, and discretization errors, as
well as VWUQ. The errors are discussed in Section 4,
while VWUQ is discussed in Section 5.

5.5. Integrated framework for quality assurance

Complete qualification of a new AM process and
materials often requires thousands of individual tests,
millions of dollars, and years to complete in the aero-
space industry [421]. Even though the process is well-
established for general components, each AM part
needs to be tested in many cases to ensure process
repeatability and product reproducibility [422]. In
recent years, AMed parts have made great strides, with
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guidelines and paths provided through agencies in stan-
dards guidance. However, in the case of AM-RAs, AM
issues will be further magnified, presenting greater chal-
lenges and incurring higher costs, as described in
Section 4.5. This will be one of the main hindrances for
its wide adoption. In accordance with this, reliable and
efficient qualification methods are essential for the
AM-RA structures, as they are intended for use in
extreme environments (e.g. high temperatures and
radioactivity).

To address these issues, research groups are actively
investigating DA and digital twins from a holistic per-
spective [423,424]. This research mainly aims to digitally
analyze measured process signatures and validate/
qualify a part, rather than conducting physical tests,
which are one of the NDE methods. In Huang et al.
[425,426], the concept ‘certify-as-you-build’ is first pre-
sented, which is an integrated framework for quality
assurance (QA). In addition, a digital twin-driven rapid
qualification method has been proposed, as shown in
Figure 27 [355]. Seo et al. [413] proposed a QA frame-
work consisting of four stages: QA plan, prospective,
concurrent, and retrospective validations. Despite its
potential, no studies have comprehensively demon-
strated the effectiveness of digital twin-driven qualifica-
tion frameworks in metal AM.

Although digital twins offer a promising path toward
closed-loop control in additive manufacturing, their
realisation for refractory alloys presents especially
severe demands. In extreme processing environments,
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Figure 27. Schematic representation of the Digital Twin [355].

integrating multi-sensor data streams (e.g. thermal
imaging, acoustic emission, coaxial melt pool vision,
and laser line scanning) into a robust digital twin archi-
tecture is nontrivial. For instance, Chen et al. [427] devel-
oped a multi-sensor fusion-based digital twin for robotic
DED that synchronises acoustic, thermal, vision, and
scanning data within the 3D volume to detect defects
and drive corrective toolpath adjustments in real time.
Liu et al. [428] proposed a deep neural operator-
enabled digital twin for LPBF that merges physics-
based melt pool simulations with in-situ sensor feedback
to predict future states and adapt parameters dynami-
cally. Li et al. [429] introduced a parameterised
physics-based twin model that calibrates between simu-
lation and experiment to predict defects and surface
quality. These examples highlight how sensor fusion,
model assimilation, and real-time analytics can be inte-
grated in a DT framework [430]. However, due to the
harsher conditions and sensor challenges in AM of
refractory alloys, achieving reliable digital twin architec-
tures remains a key open challenge and a focus for
future investigations.

In addition, Since process signatures can represent
the complicated interactions of process parameters
with multi-physics (e.g. surface tension, viscosity, and
thermo-capillary effects), which ultimately define final
part quality, it can be hypothesised that they can
provide valuable information for qualifying the part
through an analytical approach. However, a full data-
driven approach is required for qualifying the AM part
via the digital twin-driven qualification since only real-
time process signatures can contain information
related to the process repeatability and part reproduci-
bility issues [314]. Although the computational
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modelling approach can support the qualification, it
cannot be directly used for the qualification since it is
unable to handle the dynamically changing real-time
process signatures. Therefore, it is important to acquire
physically accurate and enough process signatures for
a reliable qualification analysis. However, it is challen-
ging to acquire the physically correct and/or enough
data from the AM-RA due to the difficulties in measure-
ment as well as aleatory/epidemic sources, as discussed
in Sections 4.3 and 5.1, respectively. While DT
approaches are promising for AM part qualification,
they are not yet mature enough for providing a viable
option.

6. Summary, challenges and outlook

Currently, nickel-based superalloys (e.g. Inconel 718) are
the most widely used metallic materials in components
that operate at temperatures exceeding 500°C (e.g.
turbine blades). However, its maximum operating temp-
erature is limited by its relatively low melting tempera-
ture. Recently, refractory alloys, including RHEAs, have
been considered as a great potential for application at
temperatures beyond the working temperature of
nickel-based superalloys (above ~1000-1100°C), due to
their extraordinary thermo-physicochemical properties.
Research has demonstrated [431,432] how advanced
experimental and modelling approaches can elucidate
temperature-dependent deformation and plasticity loss
mechanisms in Ni-based superalloys. Such studies
provide valuable guidance for extending similar meth-
odologies to AM of refractory alloys in future research.
In addition, utilising the benefits of AM, geometrically
complex and multi-functional refractory structures can
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be fabricated successfully, which is nearly impossible in
conventional manufacturing processes. Unfortunately,
many RAs face significant challenges, including rapid oxi-
dation at high temperatures and intrinsic brittleness at
room temperature. Additionally, non-equilibrium
repeated thermal cycles and sharp thermal gradients
that occur during AM induce residual stresses and micro-
structural anisotropy within the component. Further-
more, as an evolving technology, AM faces challenges
related to process repeatability and part reproducibility.
These issues can be intensified for AM-RAs due to the
requirement of higher heat input to melt them, leading
to significant complexity, uncertainty, and challenges.

6.1. Summary and response to research
questions

This study explored the state-of-the-art AM for refractory
alloys across various stages of design, process planning,
manufacturing, post-processing, and test/qualification/
certification. Next, it identified the knowledge gaps
and critical research issues in each stage as well as
potential solutions. It can be summarised that an inte-
grated experimental and computational approach is
essential for elucidating the underlying physics and
applying the knowledge to real-life manufacturing.
Since the AM for refractory alloy structures is both
cost-intensive and time-consuming, the computational
modelling approach is preferable.

In Section 2.4, six research questions were identified,
and through this study, we have addressed them as
follows:

e RQI1: What are the limitations, critical research issues,
and technical challenges for AM-RAs?

AM-RAs exacerbate core AM issues, including manu-
facturability, repeatability, and reproducibility, due to
higher heat input, non-equilibrium thermal cycles,
residual stresses, and microstructural anisotropy. These
factors increase complexity and uncertainty, particularly
in high-temperature service applications.

e RQ2: What DA techniques are used to investigate multi-
physics/multi-scale phenomena and defect formation,
and what are their limitations?

The current study discusses a range of DA techniques,
from convolutional neural networks applied to thermal
imaging for porosity detection to PIML frameworks
that link PSPP relationships with process signatures.
These approaches demonstrate strong potential but
remain constrained by sparse and imbalanced datasets,

approximations in physical models, and limited uncer-
tainty quantification. The review emphasises that for
AM-RAs, data scarcity and experimental inaccessibility
make the coupling of DA with uncertainty management
particularly critical.

e RQ3: What are the VW&UQ and performance assurance
(PA) criteria in AM-RA?

The study emphasises that robust verification and
validation necessitate both code- and calculation-level
checks, as well as rigorous comparison of simulations
with experimental benchmarks. Uncertainty quantifi-
cation is treated as essential, addressing both aleatory
variability and epistemic gaps across multi-model
workflows. Ultimately, performance assurance in AM-
RAs depends on integrated frameworks that combine
VW&UQ with multi-criteria decision-making to ensure
reliability under operational conditions.

e RQ4: What are the design-rule establishment
approaches in AM-RA?

Design rules in AM-RAs are framed within the ICME
paradigm, where process-structure—property—perform-
ance relations provide the foundation for codified guide-
lines. The current study highlights the role of data-driven
knowledge bases, ontology-supported frameworks, and
design-rule extraction methods that can evolve dynami-
cally as more RA data becomes available. This empha-
sises that design rules must remain adaptive and data-
informed, rather than static or prescriptive.

e RQ5: What are the digital-twin-driven qualification
methods?

Our study focused on digital twin-driven rapid qualifi-
cation approaches, including ‘certify-as-you-build’ strat-
egies that link real-time monitoring with simulation-
based prediction. While these methods hold promise
for accelerating qualification, the manuscript notes
their current immaturity for metallic systems, especially
RAs, given the demand for high-fidelity process signa-
tures and validated multi-scale models. Nevertheless,
digital twin integration is positioned as a transformative
path toward reducing qualification time and cost in
future AM-RA applications.

¢ RQ6: What are the future research and development
tasks for AM-RAs?

Finally, the outlook emphasises that future progress
requires tighter integration of experimental and



computational approaches, with computation increas-
ingly used to reduce cost and time. It highlights the
need for DA-ready frameworks that can handle hetero-
geneous data, conflicting objectives, and uncertainty
propagation in qualification. Establishing systematic
physicochemical databases, advancing PIML and trans-
fer learning, and embedding these within digital twins
are identified as essential steps for the next generation
of AM-RA research.

6.2. Challenges

AM-RAs present a unique set of challenges and opportu-
nities across the entire value chain, from initial design to
final certification. Unlike conventional superalloys,
refractory alloys possess exceptionally high densities
and operate in extreme environments, requiring
careful attention to both geometric and compositional
design. Moreover, the complexity of their PSPP relation-
ships demands integrated experimental and compu-
tational approaches at every stage, from process
planning to qualification. The following sections syn-
thesise the key considerations and current gaps across
five critical domains of design, process planning, fabrica-
tion, post-processing, and test/qualification.

¢ Design: Design can be divided into geometric design
and chemical composition design. Refractory alloys
typically have a higher density compared to superal-
loys. Since refractory alloys can be widely used in
aerospace applications, a more stringent geometric
design is necessary to ensure lightweight and
safety. This can be achieved by topological optimis-
ation and generative design approaches. For chemical
composition design, an integrated experimental and
computational approach is necessary to avoid
unwanted features and satisfy requirements, since
its design space is enormous. However, investigations
are significantly lacking, and related ICME is absent for
refractory metals and alloys.

¢ Process planning: Due to the curse of dimensionality
and the high cost in AM for refractory alloys, the
establishment of design rules is significantly challen-
ging. An integrated experimental and computational
approach is necessary to investigate the PSPP. In par-
ticular, computational modelling approaches, e.g. (1)
numerical thermomechanical FEM for residual stress,
(2) solidification models (e.g. cellular automata,
kinetic Monte Carlo, and phase field) for the predic-
tion and analysis of microstructure, and (3) CPFEM
for the analysis of the deformation behaviour, can
be effectively used to understand the underlying
physics and subsequent correlations. To achieve this
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objective, further investigations on experiments (e.g.
neutron diffraction) and computations (e.g. JMatPro)
are necessary. HTEM and transfer learning can be
effective ways to develop design rules of AM for
refractory alloys.

o Fabrication: To ensure part quality, real-time moni-
toring and process control systems are necessary.
This step involves the accurate measurement of phys-
ical process signatures and pre-processing them for
further analysis. It can be challenging due to the
lack of knowledge and difficulties in measurements
and calibration. For process control, reinforcement
learning and transfer learning can be effective sol-
utions. However, its related knowledge and investi-
gations remain significantly limited in AM RAs. Also,
further investigations into (1) in-situ control (e.g.
machining and cold rolling) for performance improve-
ment and (2) multi-materials for enhanced multi-func-
tionality are needed.

e Post-processing: To improve mechanical properties
and optimise component performance, post-proces-
sing (e.g. heat treatment and machining) is often
necessary. However, significant investigation efforts
are lacking due to limited facility accessibility and
associated high cost. Thus, computational modelling
approaches, such as CALPHAD for the heat treatment
and CPFEM for the machining, can be effectively
implemented to gain additional insights.

+ Test/qualification/certification: Additively manufac-
tured refractory alloys require significantly higher
quality standards and stricter testing compared to
nickel - or titanium-based alloys due to their poten-
tial use in extreme environments, such as nuclear
reactors. Such testing and qualification methods are
not fully developed. Non-destructive evaluation
(NDE) can be considered an effective method in this
regard, provided it is available. The digital twin-
driven NDE method, based on ML models (e.g.
LSTM) derived from process signatures, is promising.

6.3. Outlook

To overcome these challenges and to realise the
concept of ‘apply the alloy you have’ to ‘manufacture
the alloy and structure you need’ and ‘certify-as-you-
build,’ data analytics (DA) is necessary from an inte-
grated, high-level perspective. Future research direc-
tions can include:

* Integrated Computational Materials Engineering
(ICME) for Performance Assurance: The integrated
decision support framework must manage
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heterogeneous, multiple, and conflicting objectives,
data, and models across multi-scale, multi-stage,
and multi-physics domains, as well as uncertainty
and its propagation. In this situation, the seamlessly
integrated MCDM method is considered as one of
the possible solutions to resolve this highly complex
problem. The decision-support techniques have
several critical hurdles: (1) their high uncertainty and
complexity; (2) their inability to deal with multiple,
conflicting objectives; and (3) the dynamicity of the
evolving  manufacturing  systems. Integrated
decision-support efforts in AM can include NIST
Data-driven decision support for additive manufac-
turing, (2) NIST Data Integration and management
for additive manufacturing, and ICME. Nonetheless,
the research efforts need to be extended to support
decision-making for AM of refractory alloy structures.
Such frameworks are directly applicable to aerospace
propulsion and nuclear energy systems, where ICME-
driven multi-objective optimisation can accelerate
the qualification of molybdenum-based thruster
nozzles and rhenium-tungsten heat shields, reducing
costly experimental iterations.

o PSPP establishment: It is significantly challenging to
establish the PSPP design rules in AM-RA, due to the
curse of dimensionality as well as the infinite compo-
sitional combinations in RHEA. A multi-fidelity com-
putational and experimental modelling approach is
necessary to effectively elucidate the underlying
physics and to establish the PSPP design rules. For
example, HTEM can be a low-fidelity experimental
modelling approach. In addition, transfer learning
can be a possible solution to tackle the curse of
dimensionality via transferring the well-established
design rules to cases with incomplete or limited
data. A validated PSPP framework would directly
support fusion and high-temperature energy appli-
cations, such as the design of tungsten divertor
plates [433].

o Interoperability and integration for hetero-
geneous data and models: Various types of datasets
must be incorporated for predictive models, and
different predictive models need to be combined
for further in-depth analysis. However, this process
is challenging, as it involves multiple criteria with sub-
jective normalisation and weighting factors. Reliable
and robust methods are needed to address analytical
problems arising from disparate manufacturing
resources in multi-criteria decision-making scenarios.
For this purpose, it is necessary to characterise
methods for scaling, normalisation, weighting, and
aggregation (SNWA) with respect to the different
data characteristics (e.g. type and integrity), surrogate

model features (e.g. type and fidelity), and other con-
ditions (e.g. objectives and constraints).

o Verification/Validation and Uncertainty Quantifi-
cation: Due to the complexity and uncertainty in
AM-RA, more issues related to manufacturability,
process repeatability, and part reproducibility are
expected to arise. To manage these issues, VV&UQ is
required, including uncertainty management.
However, it is challenging to generate enough data
due to the difficulties and high costs of AM-RA. For
this, a physics-informed, data-driven approach can
be the possible solution. For example, a CPFEM-
informed, ML approach with uncertainty quantifi-
cation can predict the tensile strength with its
variations.

» Integrated framework for quality assurance: Since
AM-RA structures can be widely used in harsh
environments, their quality should be strictly
assured before their use, compared to high-perform-
ance alloys (e.g. Ti-6Al-4 V and Inconel 625). For this,
real-time process monitoring and in-situ control are
necessary. In addition, the digital twin-based NDE
method, which analyzes process signatures, can be
a potential solution to realise the paradigm of
‘certify-as-you-build.’

In summary, AM’'s complexity-free fabrication capa-
bility, with its exceptional and unique properties, can
be utilised across various industries. Due to their out-
standing properties, refractory alloy structures will be
used in high-temperature, corrosion, and irradiation
applications, including but not limited to the aerospace
industry, turbine blades, land-based power plants,
nuclear reactors, radiation-shielding systems, and bio-
medical applications. The authors believe that this criti-
cal review and perspective will provide the research
community with proper guidance and an outline regard-
ing future research directions for refractory metals and
alloys.
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3D Three-Dimensional

Al Artificial Intelligence

AM Additive Manufacturing

BPNN Back Propagation Neural Network

BTF Buy-to-Fly (Ratio)

CALPHAD CALculation of PHAse Diagrams

CFD Computational Fluid Dynamics

CPFFT Crystal Plasticity Fast Fourier Transform
DA Data Analytics

DBTT Ductile to Brittle Transition Temperature
DED Directed Energy Deposition

DFAM Design for Additive Manufacturing

DIC Digital Image Correlation

DL Deep Learning

DoE Design of Experiments

DNN Deep Neural Network

DT Digital Twin

DXR Dynamic Synchrotron X-ray Radiographic
EBM Electron Beam Melting

FE Finite Element

FGM Functionally Graded Material

GAN Generative Adversarial Network

GBT Gradient Boosted Tree

GD Generative Design

HTEM High-Throughput Experimental Methods
HDRI High Dynamic Range Image

ICME Integrated Computational Materials Engineering
IGA Isogeometric Analysis

ILF Input Laser Flux

IR Infrared

LAM Laser Additive Manufacturing

LPBF Laser Powder Bed Fusion

L-DED Laser Directed Energy Deposition
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Abbreviation Full term Abbreviation Full term

LMD Laser Metal Deposition QA Quality Assurance

MD Molecular Dynamics RA Refractory Alloy

ML Machine Learning RF Random Forest

MPa Mega Pascal RCCA Refractory Complex Concentrated Alloy

MPEAs Multi-Principal Element Alloys RHEA Refractory High-Entropy Alloys

NSGA-II Non-dominated Sorting Genetic Algorithm |l RMPEAs Refractory Multi-Principal Element Alloy

oM Optical Image SLM Selective Laser Melting

PA Performance Assurance TO Topology Optimisation

PCA Principal Component Analysis uQ Uncertainty Quantification

PBF Powder Bed Fusion VAM Vacuum Arc Melting

PSPP Process—Structure-Property—Performance VW&UQ Verification, Validation, and Uncertainty Quantification

WAAM Wire Arc Additive Manufacturing
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