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 A B S T R A C T

The efficient inversion of matrix polynomials is a critical challenge in computational mathemat-
ics. We design a procedure to determine the inverse of matrices polynomial of multidimensional 
Laplace matrices. The method is based on eigenvector and eigenvalue expansions. The method 
is consistent with previously known expressions of the inverse discretized Laplacian in one 
spatial dimension (Vermolen et al., 2022). The formalism is further extended to obtain closed 
form expressions for time-dependent problems.

. Introduction

The inversion of discretized Laplace inspired matrices is often a crucial, but also rate-determining step in many simulation 
ackages [1–3]. Such simulations may come from diffusion, heat distribution, fluid dynamics and many other modeling problems 
rom science and technology. Even from financial mathematics or filtering in statistics and data science, such problems are important 
o solve [4,5]. Developing efficient solvers and pre-conditioners for these matrices remains a core focus in numerical computing to 
mprove simulation efficiency and accuracy.
The current paper addresses a solution to the problem

𝐴𝑥 = 𝑏,

here 𝐴 ∈ R𝑛×𝑛, where 𝑛 ∈ N is relatively large. Solutions of large linear algebraic systems of equations often proceed by the use of 
rylov subspace methods, multigrid methods or combinations of the two. In the case of very large systems, parallelized algorithms 
ay be beneficial. Such systems often result from the discretization of a partial differential equations (PDEs) based on a Laplacian 
perator, such as

−𝛥𝑢 = −∇ ⋅ (∇𝑢) = 𝑓 (𝐱),  in 𝛺,

here 𝛺 ⊊ R𝑑 is an open, connected, bounded domain, and appropriate boundary conditions are assigned to 𝑢 that warrant existence 
nd uniqueness of the solution. In these cases, the discrete counterpart of the differential operator, being the matrix 𝐴, should be 
nvertible if an adequate discretization (in terms of consistency, stability and hence convergence) is used. Some other PDEs, such 
s the biharmonic equation or the Cahn–Hilliard equation, contain (linear) combinations of powers of Laplace operators. We will 
onsider such types of equations. The resolution of these types of equations is of significant interest due to its broad applicability 
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across multiple disciplines, including physics, chemistry, mathematics, economics [6], and machine learning/AI [7,8]. Their general 
forms encompass several fundamental classes of partial differential equations (PDEs), each governing critical phenomena:

• Elliptic Equations: The Poisson equation, which models electrostatic and magnetostatic fields, incompressible fluid flow (both 
inviscid and viscous), vortex dynamics, and fluid filtration through porous media. Somewhat more complicated, but in the 
same philosophy, we mention (linear) elasticity as an important application in mechanics, and the Euler–Tricomi equation, 
which is essential for studying transonic flow dynamics.

• Parabolic Equations: The extended diffusion equation and the Diffusion–Advection–Reaction (DAR) equation, which describe 
processes such as heat transfer, mass transport, and electromagnetic field propagation. The Black–Scholes equation, widely 
used in mathematical finance for option pricing [9].

• Hyperbolic Equations: The extended wave equation and telegraph equation, which play a crucial role in electromagnetics 
and telecommunications [10]. Other examples concerns Buckley–Leverett or Burgers’ equations that arise in applications in 
modeling flow in porous media.

Given its wide-ranging implications, we propose a simple, accurate, and possibly computationally efficient numerical approach that 
aims to provide an exact solution while maintaining high precision, striking an optimal balance between simplicity and accuracy. 
Furthermore, the approach that we use to obtain closed form solutions to a class of systems of linear equations, as well as inverses 
of classes of matrices is of theoretical value. Convection-based operators, or equations based on odd-order spatial derivatives, as 
well as nonlinear problems, will not be considered in this paper. Furthermore, we will limit ourselves to linear combinations of 
powers of Laplace operators. We will develop a closed-form expression for the solution 𝑥, as well as a formalization to express 𝐴−1. 
One usually does not determine the inverse of a matrix, however, our method allows to do so for theoretical purposes. The analysis 
and approach will be conceptually remarkably simple since it is based on Von Neumann analysis, which we will not use for the 
assessment of stability, but for the sake of determining eigenvalues of 𝐴.

The paper deals with the important class of discrete Laplace matrices. In Section 2, we introduce a numerically efficient method 
based on eigenvector expansions and derive the underlying inversion principle in Section 3. The practical utility and performance of 
our technique are then validated through a series of case studies in Section 4, followed by discussion and conclusions in Section 5.

2. The eigenvector expansion technique

Consider the linear system of equations 
𝐴𝑥 = 𝑏, (1)

where 𝐴 is a nonsingular, symmetric 𝑛× 𝑛 matrix and 𝑥 and 𝑏 are vectors in R𝑛. The matrix 𝐴 has 𝑛 orthogonal eigenvectors by the 
Principal Axis Theorem [11] for symmetric matrices, which form a basis for R𝑛. In particular, there is a set of 𝑛 eigenvectors {𝑣𝑘}, 
and a corresponding set of real eigenvalues {𝜆𝑘}, such that 

𝐴𝑣𝑘 = 𝜆𝑘𝑣𝑘, 𝑘 = 1, 2,… , 𝑛 (2)

and

(𝑣𝑖, 𝑣𝑗 ) = 0 if 𝑖 ≠ 𝑗,

where (⋅, ⋅) is the standard vector inner (dot) product

(𝑥, 𝑦) = 1
𝑛

𝑛
∑

𝑘=1
𝑥𝑘𝑦𝑘.

Since the set of vectors {𝑣𝑘} forms a basis, one can express 𝑏 as a linear combination of those vectors

𝑏 =
𝑛
∑

𝑘=1
𝛽𝑘𝑣𝑘.

As the set of vectors is orthogonal, one can determine the coefficients 𝛽𝑘 by forming inner products of Eq.  (2) with each of the 
elements of the set {𝑣𝑘}. For example, to obtain an expression for 𝛽𝑗 , we form the inner product of Eq.  (2) with 𝑣𝑗 and simplify

(𝑏, 𝑣𝑗 ) =

( 𝑛
∑

𝑘=1
𝛽𝑘𝑣𝑘, 𝑣𝑗

)

=
𝑛
∑

𝑘=1
𝛽𝑘(𝑣𝑘, 𝑣𝑗 ) = 𝛽𝑗 (𝑣𝑗 , 𝑣𝑗 ).

Hence, 

𝛽𝑗 =
(𝑏, 𝑣𝑗 )

(𝑣𝑗 , 𝑣𝑗 )
. (3)

Note that we did not yet normalize the eigenvectors of 𝐴. We can express the solution 𝑥 of (1) as a linear combination of the vectors 
{𝑣𝑘}

𝑥 =
𝑛
∑

𝑐𝑘𝑣𝑘.

𝑘=1

2 
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If 𝑥 is to be a solution of 𝐴𝑥 = 𝑏, then

𝐴

( 𝑛
∑

𝑘=1
𝑐𝑘𝑣𝑘

)

= 𝑏.

Using the eigenvector property of 𝑣𝑘, one gets
𝑛
∑

𝑘=1
𝑐𝑘𝐴𝑣𝑘 =

𝑛
∑

𝑘=1
𝛽𝑘𝑣𝑘

⇒
𝑛
∑

𝑘=1
𝑐𝑘𝜆𝑘𝑣𝑘 =

𝑛
∑

𝑘=1
𝛽𝑘𝑣𝑘.

By forming inner products with 𝑣𝑗 , we obtain
𝑛
∑

𝑘=1
𝑐𝑘𝜆𝑘(𝑣𝑘, 𝑣𝑗 ) =

𝑛
∑

𝑘=1
𝛽𝑘(𝑣𝑘, 𝑣𝑗 ).

Using orthogonality,
𝑐𝑗𝜆𝑗 (𝑣𝑗 , 𝑣𝑗 ) = 𝛽𝑗 (𝑣𝑗 , 𝑣𝑗 ).

Thus

𝑐𝑗 =
𝛽𝑗
𝜆𝑗

.

Hence we conclude that, if the matrix 𝐴 possesses a set of 𝑛 orthogonal eigenvectors, then the solution to 𝐴𝑥 = 𝑏 is given by the 
eigenvector expansion

𝑥 =
𝑛
∑

𝑘=1

𝛽𝑘
𝜆𝑘

𝑣𝑘,

where 𝜆𝑘 ≠ 0 is the eigenvalue associated with 𝑣𝑘, and the 𝛽𝑘’s are determined from Eq.  (3). The above relation is valid if the matrix 
𝐴 is diagonalizable and if the matrix has 𝑛 orthonormal eigenvectors. This holds for real, symmetric or Hermitian matrices. However, 
in many cases, there is no explicit relation for the eigenvalues and eigenvectors of the matrix, which reduces the applicability of 
this formula. In the case of Laplace matrices, we will take advantage of the explicit forms of the eigenvalues and eigenvectors. Note 
that this procedure is analogous to the procedures used in separation of variables in solving partial differential equations and that 
we did not yet normalize the eigenvectors.

3. The principle for inverses of matrix polynomials

We continue with the system 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑛×𝑛 is a symmetric positive definite matrix (for instance representing the finite 
difference representation of the Laplace operator with Dirichlet boundary conditions), which gives positive (real-valued) eigenvalues 
and orthogonal eigenvectors. Let the normalized eigenvectors of 𝐴 be given by 𝑣𝑘, 𝑘 = 1,… , 𝑛, with respective eigenvalues 𝜆𝑘, then 
we arrive at the following expression for the solution 

𝑥 =
𝑛
∑

𝑗=1
𝑥𝑗𝑣𝑗 =

𝑛
∑

𝑗=1

1
𝜆𝑗

(𝑏, 𝑣𝑗 )𝑣𝑗 . (4)

This entirely fits within the eigenvalue expansion in the continuous case. The next step is to express the inverse 𝐴−1 in terms of the 
eigenvalues and eigenvectors. In determining the inverse, one can proceed columnwisely. Let 𝑔

𝑘
 be the 𝑘th column of 𝐴−1, then 𝑔

𝑘
satisfies 

𝐴𝑔
𝑘
= 𝑒𝑘 = […1…]𝑇 . (5)

Here 𝑒𝑘 is a vector with zeros, except for the 𝑘th position where it has the value 1. Using Eq.  (4), this implies that 

𝑔
𝑘
=

𝑛
∑

𝑗=1

1
𝜆𝑗

(𝑒𝑘, 𝑣𝑗 )𝑣𝑗 =
𝑛
∑

𝑗=1

𝑣𝑗𝑘
𝑛𝜆𝑗

𝑣𝑗 , (6)

where 𝑣𝑗𝑘 represents the 𝑘th component of the 𝑗th eigenvector of 𝐴. Note that we used 𝑒𝑘 and the division by 𝑛 for the inner product. 
In order to get element (𝐴−1)𝑖𝑘, one computes from 

(𝐴−1)𝑖𝑘 = 𝐺𝑘𝑖 =
𝑛
∑

𝑗=1

𝑣𝑗𝑘
𝑛𝜆𝑗

𝑣𝑗𝑖, (7)

where 𝐺 = [𝑔
1
… 𝑔

𝑛
] is the matrix with the 𝑔-vectors as its columns. Hence, formally 𝐴−1 = 𝐺𝑇 . Note that 𝐴−1 is symmetrical since 

the inverse of a symmetric positive definite matrix is also symmetric positive definite, and therefore we have 𝐴−1 = 𝐺. The principle 
3 
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of the above equation is used in the computations that will follow in the later sections. Furthermore, we note that if 𝜆𝑗 and 𝑣𝑗
form an eigenpair of the symmetric positive definite matrix 𝐴, then the matrix 𝐴𝑚, 𝑚 ∈ Z, is also symmetric positive definite with 
eigenpair 𝜆𝑚𝑗  and 𝑣𝑗 . Hence the solution to 

𝐴𝑚𝑥 = 𝑏, (8)

is given by 

𝑥 =
𝑛
∑

𝑗=1

1
𝜆𝑚𝑗

(𝑏, 𝑣𝑗 )𝑣𝑗 , (9)

and the inverse of 𝐴𝑚, denoted by 𝐴−𝑚, is given by 

(𝐴−𝑚)𝑖𝑘 =
𝑛
∑

𝑗=1

𝑣𝑗𝑘
𝑛𝜆𝑚𝑗

𝑣𝑗𝑖. (10)

This is generalized in the following assertion: 

Theorem 1.  Let 𝐴 be an 𝑛 × 𝑛 matrix over R with eigenvalues 𝜆1, 𝜆2,… , 𝜆𝑛 (counting algebraic multiplicities). For any polynomial
𝑃𝑚(𝑥) = 𝑎𝑚𝑥

𝑚 + 𝑎𝑚−1𝑥
𝑚−1 +⋯ + 𝑎1𝑥 + 𝑎0,

the matrix 𝑃𝑚(𝐴) has eigenvalues 𝑃𝑚(𝜆𝑖) for 𝑖 = 1,… , 𝑛.

Proof.  For the proof, the reader is referred to [12,13]. □

Corollary 1 (Extension to Diagonalizable Matrices). If 𝐴 is diagonalizable with 𝐴 = 𝑄𝐷𝑄−1, then

𝑃𝑚(𝐴) = 𝑄
⎛

⎜

⎜

⎝

𝑃𝑚(𝜆1)
⋱

𝑃𝑚(𝜆𝑛)

⎞

⎟

⎟

⎠

𝑄−1.

Subsequently, knowing the eigenvalues and eigenvectors of 𝐴, then for the general matrix polynomial of order 𝑚, one obtains 
for each eigenpair 𝜆 and 𝑣

𝑃𝑚(𝐴)𝑣 = (𝛽0𝐼 + 𝛽1𝐴 +⋯ + 𝛽𝑚𝐴
𝑚)𝑣 = (𝛽0 + 𝛽1𝜆 +⋯ + 𝛽𝑚𝜆

𝑚)𝑣, (11)

which implies that this matrix polynomial has the same eigenvectors as 𝐴 with eigenvalue 𝑃𝑚(𝜆) = 𝛽0 + 𝛽1𝜆 + ⋯ + 𝛽𝑚𝜆𝑚, which 
according to the Fundamental Theorem of Algebra [14], has at least one (complex) zero and the polynomial can be factorized in 
terms of its zeros by the Factorization Theorem. If 𝛽𝑗 > 0,∀ 𝑗, then this expression will never be zero since 𝜆 > 0 (recall that 𝐴 is 
symmetric positive definite). The matrix polynomial is symmetric positive definite. Therefore, for the equation 

𝑃𝑚(𝐴)𝑥 = 𝑏, (12)

the solution is expressed by 

𝑥 =
𝑛
∑

𝑗=1

1
𝑃𝑚(𝜆𝑗 )

(𝑏, 𝑣𝑗 )𝑣𝑗 . (13)

Hence for the inverse of a matrix polynomial, we get 

(𝑃𝑚(𝐴)−1)𝑖𝑘 =
𝑛
∑

𝑗=1

𝑣𝑗𝑘
𝑛𝑃𝑚(𝜆𝑗 )

𝑣𝑗𝑖. (14)

Hence we have expressed the solution to a linear system of equations and the inverse of a matrix, in case that the matrix is polynomial 
in a symmetric positive definite matrix, 𝐴, in terms of the eigenvalues and eigenvectors of the original matrix 𝐴. Once the eigenvalues 
and eigenvectors of 𝐴 have been determined, then it is straightforward to determine the inverse of any polynomial provided that 
the matrix 𝑃𝑚(𝐴) is nonsingular. Of course we note that in most cases one is not interested in the inverse of the matrix polynomial, 
but merely in the solution 𝑥. In the next section, we will derive some practical results.

4. Case studies

4.1. One dimensional Laplacian matrix

We first illustrate how the method works for a one-dimensional case and we show that our result is consistent with our earlier 
results [15]. For this purpose, we consider a simple Dirichlet problem, given by

{

−𝑢′′ = 𝑓 (𝑥), 0 < 𝑥 < 1,

𝑢(0) = 𝑢(1) = 0.

4 
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We divide the interval (0, 1) into equidistant mesh points, 𝑥𝑗 = 𝑗ℎ with spacing ℎ. Having 𝑛 unknowns, we have (𝑛 + 1)ℎ = 1. Note 
that the total number of nodal points is 𝑛+2 and that the number of degrees of freedom (unknowns) is given by 𝑛. Having Dirichlet 
boundary conditions, gives the 𝑛 × 𝑛-matrix 𝐴 with entries 𝑎𝑖𝑗 ∈ R𝑛×𝑛 are given by 

𝑎𝑖𝑗 =
1
ℎ2

⋅

⎧

⎪

⎨

⎪

⎩

2, if 𝑖 = 𝑗,
−1, if |𝑖 − 𝑗| = 1,
0, otherwise,

𝑖, 𝑗 = 1,… , 𝑛. (15)

or can be expressed as 

𝐴 = 1
ℎ2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋱ ⋮
0 0 ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋱ −1 2 −1
0 0 ⋯ 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (16)

The above matrix results from elimination of the Dirichlet boundary conditions, and is symmetric positive definite. In our previous 
work [15], the solution to the equation 𝐴𝑥 = 𝑏 was obtained through the mapping of the piecewise linear fundamental solution to 
the continuous problem to the finite difference mesh. Since the higher-order derivatives of the fundamental solution are zero, the 
exact solution and numerical solution are equal. This leads to an expression for 𝐴−1. This has been done for generic meshes and 
boundary conditions in R1. Now we use an approach based on the eigenvectors and eigenvalues of this matrix 𝐴. The corresponding 
continuous eigenvalue problem becomes 

{

𝑢′′ + 𝜇2𝑢 = 0,
𝑢(0) = 𝑢(1) = 0.

(17)

The eigenvectors and (normalized) eigenfunctions of this Sturm–Liouville problem are given by 
𝜆̂𝑗 = 𝜇2

𝑗 = 𝑗2𝜋2, 𝜙𝑗 (𝑥) =
√

2 sin(𝑗𝜋𝑥), 𝑗 = 1, 2,… . (18)

As an Ansatz for the eigenvectors of 𝐴, we project the eigenfunction on the finite difference mesh {𝑥𝑗}𝑛𝑗=1, with 𝑥𝑗 = 𝑗ℎ and ℎ = 1
𝑛+1 . 

Then for the 𝑖th row multiplication of 𝐴, one obtains
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝜙𝑘(𝑥𝑗 ) =

1
ℎ2

(−𝜙𝑘(𝑥𝑗 − ℎ) + 2𝜙𝑘(𝑥𝑗 ) − 𝜙𝑘(𝑥𝑗 + ℎ))

=
2
√

2
ℎ2

(1 − cos(𝑘𝜋ℎ)) sin(𝑘𝜋𝑥𝑗 ) = 𝜆𝑘𝜙𝑘(𝑥𝑗 ).

Hence the projection of the eigenfunctions of the continuous problem onto the finite difference mesh points gives the eigenvectors 
of the discretization matrix. Furthermore, the eigenvalues of the discretization matrix are given by 

𝜆𝑘 = 2
ℎ2

(1 − cos(𝑘𝜋ℎ)) = 4
ℎ2

sin2(𝑘𝜋ℎ
2

) ∈ (0, 4
ℎ2

),  for 𝑘 = 1,… , 𝑛, (19)

with corresponding eigenvector 
𝑣𝑘𝑗 =

√

2 sin(𝑘𝜋𝑥𝑗 ) =
√

2 sin(𝑘𝜋𝑗ℎ) = 𝜙𝑘(𝑥𝑗 ) = 𝜙𝑘(𝑗ℎ), 𝑗 = 1,… , 𝑛. (20)

Hence the eigenvectors are indeed constructed from the projection of the eigenfunctions of the continuous Laplace operator onto 
the finite difference mesh. Then the eigenvalues and eigenvectors are available and can be used to compute the solution to 𝐴𝑥 = 𝑏
and the inverse 𝐴−1, as well as the inverse of a matrix polynomial. Using Eq.  (4) for the current one-dimensional Laplace operator 
with Dirichlet boundary conditions, the solution of 𝐴𝑥 = 𝑏 is formally given by 

𝑥 =
𝑛
∑

𝑗=1

ℎ2(𝑏, 𝑣𝑗 )

4 sin2( 𝑗𝜋ℎ2 )
𝑣𝑗 =

ℎ2

𝑛 + 1

𝑛
∑

𝑗=1

∑𝑛+1
𝑘=1(𝑏𝑘𝑣𝑗𝑘)

4 sin2( 𝑗𝜋ℎ2 )
𝑣𝑗 , (21)

where 𝑣𝑗𝑘 =
√

2 sin(𝑗𝜋𝑘ℎ) has been chosen. Further for the inner product, 𝑛 + 1 has been chosen since the number of intervals 
𝑥𝑗 −𝑥𝑗−1 = ℎ is 𝑛+1. This gives consistency with ’continuous inner product’ based on an integral. Note further that 𝑣𝑗,𝑛+1 = 0, which 
implies that the 𝑛 + 1-th term does not have any influence and the only adaptation is the division by 𝑛 + 1 instead of 𝑛 for the sake 
of consistency with the 𝑛 + 1 intervals. Hence the inverse of 𝐴 is expressed by 

(𝐴−1)𝑖𝑘 = 𝐺𝑘𝑖 =
ℎ2

4(𝑛 + 1)

𝑛
∑

𝑗=1

𝑣𝑗𝑘
sin2( 𝑗𝜋ℎ2 )

𝑣𝑗𝑖 =
ℎ2

2(𝑛 + 1)

𝑛
∑

𝑗=1

sin(𝑗𝜋𝑘ℎ)
sin2( 𝑗𝜋ℎ2 )

sin(𝑗𝜋𝑖ℎ). (22)

This principle can be used for different boundary conditions as long as we do not have Neumann conditions on both boundaries 
because of singularity of 𝐴 (then 𝐴−1 does not exist at all, so it becomes pointless). However, double Neumann conditions can be 
used for matrix polynomials. For the one-dimensional case, this new approach is of hardly any value compared to the fundamental 
5 



S. Asghar et al. Results in Applied Mathematics 29 (2026) 100686 
solution approach which is useful since the fundamental solutions are piecewise linear in R1, which makes the truncation errors zero 
under the use of finite differences or finite elements as a result of the second derivative being zero between adjacent meshpoints.

For the 1D Laplace equation with Dirichlet boundary conditions, the inverse matrix is given by 

(𝐴−1)𝑖𝑘 = ℎ2
( 𝑛 + 1 − 𝑘

𝑛 + 1
𝑖 − (𝑖 − 𝑘)+

)

, (23)

which is a much simpler expression (see for instance [15]). However, for higher dimensionality, the fundamental solution is typically 
a logarithmic function, which has global nonzero higher-order partial derivatives, and hence the truncation error will not vanish. 
The same holds for polynomials of Laplace operators, even in 1D, such as the relatively simple case −𝑢′′ + 𝑢. For this reason, the 
fundamental solutions are no longer useful for both higher-dimensional problems and problems, which entail polynomials of the 
Laplace operator. It is easy to verify, by means of implementing both formulas in the computer, that these different expressions are 
equal. However, it is more elegant to verify this rigorously from a mathematical point of view using discrete Fourier transforms. 
We will summarize the result as a theorem and prove the equality. 

Theorem 2.  Let 𝐴 be given by Eq.  (16), then its inverse is given by

(𝐴−1)𝑖𝑘 = ℎ2
( 𝑛 + 1 − 𝑘

𝑛 + 1
𝑖 − (𝑖 − 𝑘)+

)

= ℎ2

2(𝑛 + 1)

𝑛
∑

𝑗=1

sin(𝑗𝜋𝑘ℎ)
sin2( 𝑗𝜋ℎ2 )

sin(𝑗𝜋𝑖ℎ).

Proof.  We remark that we just computed the right-hand side and that the first equality was determined in [15]. Hence, these 
expressions should give the same value. However, because these expressions look very different, we will algebraically demonstrate 
that they are consistent. Since the functions 𝜙𝑘(𝑥) =

√

2 sin(𝑘𝜋𝑥) are eigenfunctions and eigenvectors (using 𝑣𝑗 = 𝜙𝑘(𝑥𝑗 )) of the 
Laplace and Laplace matrix, respectively. Since the Laplace matrix is symmetric, the eigenvectors are orthogonal (in the continuous 
case, this holds as well, of course). Hence, the functions satisfy

𝑛
∑

𝑗=1
𝜙𝑘(𝑥𝑗 )𝜙𝑙(𝑥𝑗 ) = 0,  if 𝑘 ≠ 𝑙.

We can normalize the functions by choosing 𝛼 in 𝜙𝑘(𝑥𝑗 ) = 𝛼 sin(𝑘𝜋𝑗ℎ) so that
𝑛
∑

𝑗=1
𝛼2 sin2(𝑘𝜋𝑗ℎ) = 1.

To this extent, we compute
𝑛
∑

𝑗=1
sin2(𝑘𝜋𝑗ℎ) =

𝑛
∑

𝑗=1

( 1
2
− 1

2
cos(2𝑘𝜋𝑗ℎ)

)

= 𝑛
2
− 1

4

𝑛
∑

𝑗=1

(

𝑒2𝑘𝜋𝑗ℎ𝑖 + 𝑒−2𝑘𝜋𝑗ℎ𝑖
)

= 𝑛
2
− 1

4

𝑛
∑

𝑗=1
(𝑒2𝑘𝜋ℎ𝑖)𝑗 − 1

4

𝑛
∑

𝑗=1
(𝑒−2𝑘𝜋ℎ𝑖)𝑗

= 𝑛
2
− 1

4

(

1 − 𝑒2𝑘𝜋(𝑛+1)ℎ𝑖

1 − 𝑒2𝑘𝜋ℎ𝑖
− 1 + 1 − 𝑒−2𝑘𝜋(𝑛+1)ℎ𝑖

1 − 𝑒−2𝑘𝜋ℎ𝑖
− 1

)

= 𝑛 + 1
2

,

where we used (𝑛 + 1)ℎ = 1, and the fact that the complex exponential is one if the argument is any integer times 2𝜋. This implies 
that we have 𝛼 =

√

2
𝑛+1 , hence in the discrete setting, we have the following normalized eigenvectors

𝑣𝑘𝑗 = 𝜙𝑘(𝑥𝑗 ) =
√

2
𝑛 + 1

sin(𝑘𝜋𝑗ℎ).

For a general discrete function, we can write the discrete sine Fourier transform by

𝑓 (𝑥𝑖) =
𝑛
∑

𝑘=1
𝑐𝑘𝜙𝑘(𝑥𝑖),

using normalized functions, we have

𝑐𝑘 =
𝑛
∑

𝑗=1
𝑓 (𝑥𝑗 )𝜙𝑘(𝑥𝑗 ).

Note that Eq.  (23) can be written as

(𝐴−1)𝑖𝑘 = ℎ2
( 𝑛 + 1 − 𝑘𝑥𝑖 − (𝑥𝑖 − 𝑥𝑘)+

)

=
𝑛
∑

𝑐𝑙𝜙𝑙(𝑥𝑖).
𝑛 + 1 𝑙=1

6 
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Inserting 𝜙𝑙(𝑥) =
√

2
𝑛+1 sin(𝑙𝜋𝑥), gives

𝑐𝑙 =
𝑛
∑

𝑗=1
(𝐴−1)𝑗𝑘𝜙𝑙(𝑥𝑗 ) =

√

2
𝑛 + 1

𝑛
∑

𝑗=1
ℎ2

( 𝑛 + 1 − 𝑘
𝑛 + 1

𝑗 − (𝑗 − 𝑘)+
)

sin(𝑙𝜋𝑗ℎ).

We use the relation 

𝑠𝑛(𝑧) =
𝑛
∑

𝑘=0
𝑘𝑧𝑘 =

𝑛
∑

𝑘=1
𝑘𝑧𝑘 =

⎧

⎪

⎨

⎪

⎩

1
2 𝑛(𝑛 + 1), if 𝑧 = 1,
𝑧(1 − (𝑛 + 1)𝑧𝑛 + 𝑛𝑧𝑛+1)

(1 − 𝑧)2
, if 𝑧 ≠ 1.

(24)

This relation can be demonstrated by mathematical induction or by differentiation and subsequent multiplication by 𝑧 of the 
geometric series. By writing sines and cosines as linear combinations of complex exponentials, we can use the above relation to 
arrive at

𝑛
∑

𝑘=1
𝑘 sin(𝑘𝑥) =

(𝑛 + 1) sin(𝑛𝑥) − 𝑛 sin((𝑛 + 1)𝑥)
4 sin2( 𝑥2 )

, 𝑥 ≠ 2𝑝𝜋, 𝑝 ∈ Z, (25)

𝑛
∑

𝑘=1
𝑘 cos(𝑘𝑥) =

(𝑛 + 1) cos(𝑛𝑥) − 𝑛 cos((𝑛 + 1)𝑥) − 1
4 sin2( 𝑥2 )

, 𝑥 ≠ 2𝑝𝜋, 𝑝 ∈ Z. (26)

The above relation is used to write 
𝑛
∑

𝑗=1
(𝑗 − 𝑘)+ sin(𝑗𝑙𝜋ℎ) =

𝑛
∑

𝑗=𝑘+1
(𝑗 − 𝑘) sin(𝑗𝑙𝜋ℎ) =

𝑛−𝑘
∑

𝑝=1
𝑝 sin((𝑝 + 𝑘)𝑙𝜋ℎ). (27)

This is further worked out by
𝑛−𝑘
∑

𝑝=1
𝑝 sin((𝑝 + 𝑘)𝑙𝜋ℎ) = sin(𝑘𝑙𝜋ℎ)

𝑛−𝑘
∑

𝑝=1
𝑝 cos(𝑝𝑙𝜋ℎ) + cos(𝑘𝑙𝜋ℎ)

𝑛−𝑘
∑

𝑝=1
𝑝 sin(𝑝𝑙𝜋ℎ)

= sin(𝑘𝑙𝜋ℎ)
(𝑛 − 𝑘 + 1) cos((𝑛 − 𝑘)𝑙𝜋ℎ) − (𝑛 − 𝑘) cos((𝑛 − 𝑘 + 1)𝑙𝜋ℎ) − 1

4 sin2( 𝑙𝜋ℎ2 )

+ cos(𝑘𝑙𝜋ℎ)
(𝑛 − 𝑘 + 1) sin((𝑛 − 𝑘)𝑙𝜋ℎ) − (𝑛 − 𝑘) sin((𝑛 − 𝑘 + 1)𝑙𝜋ℎ)

4 sin2( 𝑙𝜋ℎ2 )

=
(𝑛 − 𝑘 + 1) sin(𝑛𝑙𝜋ℎ) − (𝑛 − 𝑘) sin(𝑙(𝑛 + 1)𝜋ℎ) − sin(𝑘𝑙𝜋ℎ)

4 sin2( 𝑙𝜋ℎ2 )

=
(𝑛 − 𝑘 + 1) sin(𝑛𝑙𝜋ℎ) − sin(𝑘𝑙𝜋ℎ)

4 sin2( 𝑙𝜋ℎ2 )
.

Here we used sin(𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦, (𝑛 + 1)ℎ = 1 and the fact that the sine is zero in arguments that are multiples of 𝜋. 
Hence, for 𝑐𝑙, we obtain

𝑐𝑙 =
√

2
𝑛 + 1

ℎ2
[

𝑛 + 1 − 𝑘
𝑛 + 1

(𝑛 + 1) sin(𝑛𝑙𝜋ℎ)
4 sin2( 𝑙𝜋ℎ2 )

−
(𝑛 − 𝑘 + 1) sin(𝑛𝑙𝜋ℎ) − sin(𝑘𝑙𝜋ℎ)

4 sin2( 𝑙𝜋ℎ2 )

]

=
√

2
𝑛 + 1

ℎ2
sin(𝑘𝑙𝜋ℎ)
4 sin2( 𝑙𝜋ℎ2 )

.

Hence, this gives

(𝐴−1)𝑖𝑘 =
𝑛
∑

𝑙=1
𝑐𝑙

√

2
𝑛 + 1

sin(𝑖𝑙𝜋ℎ) = ℎ2

2(𝑛 + 1)

𝑛
∑

𝑙=1

sin(𝑘𝑙𝜋ℎ)
sin2( 𝑙𝜋ℎ2 )

sin(𝑖𝑙𝜋ℎ). □

By this we have demonstrated consistence of the current result with the earlier [15], simpler result for one spatial dimension with 
Dirichlet boundary conditions. Consistency for different boundary conditions can be approached using similar principles, although 
the algebra may be a little more tedious. We therefore omit this at this stage. Our new approach gives the exact inverse of the 
matrix represented by a discrete Fourier transform. We realize that the new approach to invert the one-dimensional Laplace matrix 
is much more toilsome than the earlier procedure. However, computing the solution from a polynomial matrix equation was not 
possible with the earlier method, whereas the current method can be used to compute the solution to this problem. For the sake of 
illustration, we solve the following problem

{

−𝑢′′ + 𝛼𝑢 = 1,  for 𝑥 ∈ (0, 1),
𝑢(0) = 𝑢(1) = 0.

The solution can be seen in Fig.  1 for different values of 𝛼 ≥ 0. For 𝛼 > 0, the simple formula previously found for the inverse [15] 
cannot be used since the fundamental solution is composed by hyperbolic sines and cosines and hence contains non-zero higher-order 
7 
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Fig. 1. Solutions to the equation −𝑢′′ + 𝛼𝑢 = 1 for different 𝛼-values 𝛼 = 0, 1, 10, 100, 1000.

derivatives, which gives a nonzero truncation error. In [15], an approximation of the inverse based on hyperbolic sines and cosines 
with error (ℎ3∕2) has been derived.

4.2. Two dimensional Laplace on a rectangle

Gueye [16] gave an exact inversion of a symmetric pentadiagonal Toeplitz matrix for the semi-analytic solution of 2D Poisson 
equation. For this case, no explicit relation for the inverse of the discretization matrix is known to the best of our knowledge. We 
consider a unit square with 𝑁 unknowns at equidistant spacing ℎ in both directions. Hence there are 𝑛 = 𝑁2 unknowns in total. 
We consider the simple Laplacian with homogeneous Dirichlet conditions, which typically reads as

.

{

−𝛥𝑢 = 𝑓 (𝑥, 𝑦),  for (𝑥, 𝑦) ∈ 𝛺 = (0, 1)2,
𝑢|𝜕𝛺 = 0.

The corresponding eigenvalue problem is given by
−𝛥𝜙̂𝑗1 ,𝑗2 = 𝜆̂𝑗1 ,𝑗2 𝜙̂𝑗1 ,𝑗2 = 𝜇̂2

𝑗1 ,𝑗2
𝜙̂𝑗1 ,𝑗2 = (𝜇̂2

𝑗1
+ 𝜇̂2

𝑗2
)𝜙̂𝑗1 ,𝑗2 ,

where 𝑗1, 𝑗2 ∈ N× = N ⧵ {0}, and 𝜇̂2
𝑗𝑝

= 𝜋2𝑗2𝑝 , hence for the eigenvalues, we have

𝜆̂𝑘1 ,𝑘2 = 𝜇̂2
𝑘1 ,𝑘2

= 𝜋2(𝑘21 + 𝑘22), 𝑘𝑗 = 1, 2, 3,… ,

and for the eigenfunctions we have
𝜙̂𝑗1 ,𝑗2 (𝑥, 𝑦) = 2 sin(𝜋𝑗1𝑥) sin(𝜋𝑗2𝑦).

The 2D finite difference approach with constant spacing and 𝑁 unknowns per spatial dimension, gives the following discretization 
matrix (shown for 𝑁 = 4)

𝐴 = 1
ℎ2

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

4 −1 0 −1 0 0 0 0 0 ...
−1 4 −1 0 −1 0 0 0 0 ...
0 −1 4 0 0 −1 0 0 0 ...
−1 0 0 4 −1 0 −1 0 0 ...
0 −1 0 −1 4 −1 0 −1 0 ...
0 0 −1 0 −1 4 0 0 −1 ...
0 0 0 −1 0 0 4 −1 0 ...
0 0 0 0 −1 0 −1 4 −1 ...
0 0 0 0 0 −1 0 −1 4 ...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

,

⎝ ∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶⎠

8 
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with the following eigenvalues for the discrete system 

𝜆𝑘1 ,𝑘2 = 4
ℎ2

(

sin2(
𝑘1𝜋ℎ
2

) + sin2(
𝑘2𝜋ℎ
2

)
)

, for 𝑘𝑗 ∈ {1,… , 𝑁}, (28)

with eigenvectors
𝑣𝑗,𝑘̂ = 𝑤(𝑗1 ,𝑗2),(𝑘1 ,𝑘2) = 2 sin(𝑗1𝜋𝑘1ℎ) sin(𝑗2𝜋𝑘2ℎ), for 𝑗𝑚, 𝑘𝑚 ∈ {1,… , 𝑁},

where the 𝑗-indexes and 𝑘-indexes, respectively, denote the label of the eigenvector and the entry of this eigenvector. The eigenvalues 
are easily determined by substitution of the eigenvectors into the system 𝐴𝑣 = 𝜆𝑣 and by similar treatment as in 1D. In the current 
notation, the eigenvector is a two-dimensional array (matrix). In order to transform this into a one dimensional (solution) vector, 
we use the following transformation

{

𝑗 = (𝑗2 − 1)𝑁 + 𝑗1,
𝑘̂ = (𝑘2 − 1)𝑁 + 𝑘1,

 for 𝑗1, 𝑗2, 𝑘1, 𝑘2 ∈ {1,… , 𝑁},  and 𝑗, 𝑘̂ ∈ {1,… , 𝑛},

to make 𝑣 a one-dimensional array of length 𝑛 = 𝑁2. The inverse transformation is given by

(𝑗1, 𝑗2) =

{

(mod(𝑗,𝑁), trunc(𝑗,𝑁) + 1),  if mod(𝑗,𝑁) ≠ 0,
(𝑁, trunc(𝑗,𝑁)),  if mod(𝑗,𝑁) = 0.

Further, we redefine
𝜆𝑘̂ = 𝜆𝑘1 ,𝑘2 , 𝑘1, 𝑘2 ∈ {1,… , 𝑁}, 𝑘̂ ∈ {1,… , 𝑛}.

To solve the equation 𝐴𝑥 = 𝑏, we get 

𝑥 =
𝑛
∑

𝑗=1

1
𝜆𝑗

(𝑏, 𝑣𝑗 )𝑣𝑗 . (29)

For the sake of illustration, we apply the method to the simple Laplace problem
{

−𝛥𝑢 = 1,  in 𝛺 = (0, 1)2,
𝑢|𝜕𝛺 = 0.

The solution is compared to the classical use of a direct solver in Matlab, and the solution by both methods is plotted in Fig.  2. No 
difference can be observed, and the numerical difference was of the order of machine precision. The same was repeated in Fig.  3, 
where we solved the following boundary value problem:

⎧

⎪

⎨

⎪

⎩

𝛥2𝑢 − 𝛥𝑢 + 𝑢 = 1,  in 𝛺 = (0, 1)2,

𝑢|𝜕𝛺 = 0, 𝜕𝑢
𝜕𝑛

|𝜕𝛺 = 0.

No difference between the two approaches has been observed with a difference in the order of machine precision.
For the sake of illustration of the use of boundary conditions, we consider the case

{

−𝛥𝑢 = 1, in 𝛺 = (0, 1)2,
𝑢(0, 𝑦) = 𝑢(𝑥, 0) = 0,  and 𝜕𝑢𝜕𝑛 = 0,  for 𝑥 = 1 and 𝑦 = 1.

The eigenvalues and normalized eigenfunctions for the continuous problem are given by

𝜆̂𝑘1 ,𝑘2 =
(𝜋
2

)2
((2𝑘1 − 1)2 + (2𝑘2 − 1)2), 𝑘1, 𝑘2 = 1, 2, 3,… ,

𝜙𝑘1 ,𝑘2 (𝑥, 𝑦) = 2 sin
(𝜋
2
(2𝑘1 − 1)𝑥

)

sin
(𝜋
2
(2𝑘2 − 1)𝑥

)

, 𝑘1, 𝑘2 = 1, 2, 3,… .

Using nodes 𝑥𝑗 = 𝑗ℎ, 𝑦𝑗 = 𝑗ℎ, 𝑥𝑛 = 𝑦𝑛 = 1, gives ℎ = 1
𝑁 . This gives the following eigenvalues of the discretization matrix

𝜆𝑘1 ,𝑘2 = 4
ℎ2

(

sin2(𝜋
4
(2𝑘1 − 1)) + sin2(𝜋

4
(2𝑘2 − 1))

)

, 𝑘1, 𝑘2 ∈ {1,… , 𝑁}.

Similar procedures as in the case of fully Dirichlet conditions can be used here to get the inverse of the discretization matrix and 
the solution to a matrix equation 𝐴𝑥 = 𝑏.

4.3. Higher dimensional Laplace matrix on a (hyper) cube

For the time being, we consider a unit (hyper)cube domain in R𝑑 with a Laplacian under Dirichlet boundary conditions, which 
reads as

{

−𝛥𝑢 = 𝑓 (𝐱),  for 𝐱 ∈ 𝛺 = (0, 1)𝑑 ,

𝑢|𝜕𝛺 = 0.

9 
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Fig. 2. Solutions to the Poisson equation −𝛥𝑢 = 1 with 𝑢|𝜕𝛺 = 0. The top figure represents the solution obtained by the current procedure, the 
bottom figure represents the solution by classical solution methods.

The same analysis can be done for a ‘hyperbeam’ in R𝑑 as well. The corresponding eigenvalue problem is given by

−𝛥𝜙̂𝑗1 ,…,𝑗𝑑 = 𝜇̂2
𝑗1 ,…,𝑗𝑑

𝜙̂𝑗1 ,…,𝑗𝑝 =
𝑑
∑

𝑝=1
𝜇2
𝑗𝑝
𝜙̂𝑗1 ,…,𝑗𝑝 ,

where 𝜇2
𝑗𝑝
 represents the 𝑗𝑝th eigenvalue of the operator − 𝜕2

𝜕𝑥2𝑝
(.) in the 𝑝th coordinate direction. The eigenfunctions 𝜙̂𝑗1 ,…,𝑗𝑑 ∶ R𝑑 ⟶

R, are given by

𝜙̂𝑗1 ,…,𝑗𝑑 (𝐱) =
∏

𝑝={1,…,𝑑}
𝜙𝑝,𝑗𝑝 (𝑥𝑝) = 2𝑑∕2

∏

𝑝∈{1,…,𝑑}
sin(𝜋𝑗𝑝𝑥𝑝),where𝜙𝑝,𝑗𝑝 (𝑥𝑝) =

√

2 sin(𝜋𝑗𝑝𝑥𝑝),

for a Dirichlet problem in a hypercube [0, 1]𝑑 . The eigenvalues are given by
𝜆̂ = 𝜇̂2 = 𝜋2(𝑘2 +⋯ + 𝑘2 ), 𝑘 ∈ N×.
𝑘1 ,…,𝑘𝑑 𝑘1 ,…,𝑘𝑑 1 𝑑 𝑗

10 
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Fig. 3. Solutions to the fourth-order equation 𝛥2𝑢 − 𝛥𝑢 + 𝑢 = 1 with 𝑢|𝜕𝛺 = 0 and 𝜕𝑢
𝜕𝑛
|𝜕𝛺 = 0. The top figure represents the solution obtained by 

the current procedure, the bottom figure represents the solution by classical solution methods.

The multi-dimensional finite difference approach allows the construction of eigenvectors by projecting the eigenfunctions on the 
meshpoints. Having 𝑁 unknowns per coordinate direction, this amounts to 𝑛 = 𝑁𝑑 unknowns in a d-dimensional hyperbeam. This 
gives the following eigenvalues 

𝜆𝑘1 ,…,𝑘𝑑 = 4
ℎ2

∑

𝑝∈{1,…,𝑑}
sin2(

𝑘𝑝𝜋ℎ
2

), for 𝑘𝑗 ∈ {1,… , 𝑁}, (30)

with eigenvectors

𝑣𝑗,𝑘̂ = 𝑤(𝑗1 ,…,𝑗𝑑 ),(𝑘1 ,…,𝑘𝑑 ) = 2𝑑∕2
∏

𝑝∈{1,…,𝑑}
sin(𝑗𝑝𝜋𝑘𝑝ℎ), for 𝑗𝑚, 𝑘𝑚 ∈ {1,… , 𝑁},

where the 𝑗-indexes and 𝑘-indexes, respectively, denote the label of the eigenvector and the entry of this eigenvector. In the current 
notation, the eigenvector is a two-dimensional array (matrix). In order to transform this into a one-dimensional (solution) vector, 
11 
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we use the following transformation
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑗 = (𝑗𝑑 − 1)𝑁𝑑−1 +⋯ + (𝑗2 − 1)𝑁 + 𝑗1 =
𝑑
∑

𝑝=2
(𝑗𝑝 − 1)𝑁𝑝−1 + 𝑗1 =

𝑑
∑

𝑝=1
(𝑗𝑝 ⋅𝑁𝑝−1) −

𝑑−1
∑

𝑝=1
𝑁𝑝,

𝑘̂ = (𝑘𝑑 − 1)𝑁𝑑−1 +⋯ + (𝑘2 − 1)𝑁 + 𝑘1 =
𝑑
∑

𝑝=2
(𝑘𝑝 − 1)𝑁𝑝−1 + 𝑘1 =

𝑑
∑

𝑝=1
(𝑘𝑝 ⋅𝑁𝑝−1) −

𝑑−1
∑

𝑝=1
𝑁𝑝,

where we used the simplification that in the discretization we have 𝑛 unknowns per dimension, hence in R𝑑 , we have 𝑛𝑑 unknowns.

4.4. Time dependent problems

The procedure can be used to any first order time-dependent problem. However, for the sake of presentation, we consider a 
time-dependent diffusion problem for 𝑢 = 𝑢(𝐱, 𝑡), given by

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡 − 𝛥𝑢 = 0, 𝑡 > 0, 𝐱 ∈ 𝛺,
𝑢(0, 𝐱) = 𝑢0(𝐱), 𝐱 ∈ 𝛺,
𝑢|𝜕𝛺 = 0, 𝑡 > 0.

After applying a spatial discretization method (semi-discretization), one arrives at
{

𝑢′ + 𝐴𝑢 = 0, 𝑡 > 0,
𝑢𝑖(0) = 𝑢0(𝐱𝑖).

Here 𝐱𝑖 represents the position of the 𝑖th nodal point in the spatial discretization. For the sake of presentation, we consider the Euler 
backward method for the time-integration with time-step 𝛥𝑡. This gives

(𝐼 + 𝛥𝑡𝐴)𝑢𝜏 = 𝑢𝜏−1.

Here 𝜏 represents the time-step and 𝑢𝜏 denotes the approximation of 𝑢(𝜏𝛥𝑡). Recursively, this becomes
(𝐼 + 𝛥𝑡𝐴)𝜏𝑢𝜏 = 𝑢0,

where 𝑢0 = 𝑢(0). Hence we need to invert the matrix (𝐼+𝛥𝑡𝐴)𝜏 . Note that this expression can be rewritten in the following polynomial 
form

(𝐼 + 𝛥𝑡𝐴)𝜏 =
𝜏
∑

𝑖=0

(

𝜏
𝑖

)

𝛥𝑡𝑖𝐴𝑖.

It is easy to show that the eigenvectors of 𝐴 and (𝐼+𝛥𝑡𝐴)𝜏 are the same and that the eigenvalues of (𝐼+𝛥𝑡𝐴)𝜏 are given by (1+𝛥𝑡𝜆)𝑛, 
where 𝜆 is any eigenvalue of 𝐴. This can be written as the following closed-form expression

(𝐼 + 𝛥𝑡𝜆)𝜏 =
𝜏
∑

𝑖=0

(

𝜏
𝑖

)

𝛥𝑡𝑖𝜆𝑗 .

Hence, for the solution 𝑢𝜏 , we get the following formal closed-form expression for the inverse 

𝑢𝜏 =
𝑛
∑

𝑗=1

1
(1 + 𝛥𝑡𝜆𝑗 )𝜏

(𝑢0, 𝑣𝑗 )𝑣𝑗 . (31)

Hence, for the inverse of (𝐼 + 𝛥𝑡𝐴)𝜏 , we get 

(((𝐼 + 𝛥𝑡𝐴)𝜏 )−1)𝑖𝑘 =
𝑛
∑

𝑗=1

𝑣𝑗𝑘
𝑛
(

1 + 𝛥𝑡𝜆𝑗
)𝜏 𝑣𝑗𝑖. (32)

We note that this can be done similarly for other time-integration methods like the Trapezoidal (Crank–Nicolson) Rule. For the 
Trapezoidal time-integration method, one arrives at 

𝑢𝜏 =
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

1 − 𝛥𝑡𝜆𝑗
2

1 + 𝛥𝑡𝜆𝑗
2

⎞

⎟

⎟

⎠

𝜏

(𝑢0, 𝑣𝑗 )𝑣𝑗 . (33)

This theory can be used to obtain closed-form expressions for the numerical solution to some time-dependent problems involving 
(polynomials) of discrete Laplace matrices. In Fig.  4, we show some snapshots for a one-dimensional heat equation 𝑢𝑡 = 𝑢𝑥𝑥 with 
homogeneous Dirichlet boundary conditions and 𝑢 = 1 at 𝑡 = 0. The time-step was 𝛥𝑡 = 0.001, and a backward Euler time-integration 
method was used. It can be seen that the solution behaves as expected: convergence to zero due to the boundary conditions. A major 
advantage of the method is that the numerical solution at any time can be obtained from the initial condition, without the need 
of computing solutions at previous time-steps. The only operation that differs for different time-steps is the power that one has to 
raise for the amplification factor containing the eigenvalues of the discretization matrix. This makes the method very efficient. We 
12 
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Fig. 4. Snapshot at consecutive times of the heat equation 𝑢𝑡 − 𝑢𝑥𝑥 = 0 with 𝑢|𝜕𝛺 = 0 and 𝑢 = 1 at 𝑡 = 0 using the backward Euler time-integration 
method for different 𝜏-values; 𝜏 = 1, 10, 100, 1000, 10000.

Fig. 5. Computation times (wall clock times) using tic-toc in Matlab for a second and fourth order PDE.

have done simulations with the eigenvalue expansion method and with the ordinary finite difference method. We solved a 2D heat 
equation (second order PDE), given by

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡 − 𝛥𝑢 = 0,
𝑢(𝐱, 0) = 1,  on 𝛺,
𝑢|𝜕𝛺 = 0,  for 𝑡 > 0,

and a 4th order equation in 2D, given by
⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡 − 𝛥𝑢 + 𝛥2𝑢 = 0,
𝑢(𝐱, 0) = 1,  on 𝛺,
𝑢|𝜕𝛺 = 𝜕𝑢

𝜕𝑛 |𝜕𝛺 = 0,  for 𝑡 > 0.

The computation time (wall clock time) was 0.29 sec (s) in all cases, regardless of the order of the problem and the number of 
time-iterations, whereas the wall clock time for the finite difference method was determined by the order of the PDE and linearly 
increases with the number of time-iterations, as expected (see Fig.  5). This shows that the new method is very fast, in particular for 
large numbers of time-iterations.
13 
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5. Discussion and conclusions

We have designed a procedure to invert matrices that are in the polynomial space of Laplace matrices for higher dimensional 
problems, for all cases where the matrix polynomial is invertible. The procedure can be used to write a closed-form solution to a 
class of large systems of linear algebraic equations. The method is applicable to problems in (hyper) beams with a regular mesh 
distribution on linear operators that are based on matrix polynomials of Laplace equations. The method is based on the use of 
eigenvectors and eigenvalues of the Laplacian, which can be determined exactly. We are aware of the issues with Robin boundary 
conditions, where the determination of eigenvalues amounts to solving transcendental equations. Then the determination of the 
inverse requires the (numerical) solution of these transcendental equations, which gives a numerical trait. We further acknowledge 
that the method is elaborate and that in future studies it will be important to carry out a more detailed comparison of the efficiency 
of our method with classical iterative schemes such as the (preconditioned) conjugate gradient method or other iterative solution 
procedures. We are also aware that the problems that we can tackle with this method are idealized in the sense of simple geometries 
and Laplace-based problems with constant coefficients. Nevertheless, it is possible to tackle polynomials of Laplace matrices, and 
therefore we think that our approach certainly has some theoretical value. The current method is also helpful to construct closed-form 
expressions for higher order partial differential equations. Furthermore, time-dependent heat equations with implicit time integration 
on (hyper) beams have also been treated with the current method since the matrix to be inverted amounts to a polynomial of the 
discrete Laplace matrix. In case of a backward Euler time integration, a linear relation like 𝐼 +𝛥𝑡𝐴, where 𝐴 represents the discrete 
Laplacian, needs to be inverted. For this class of problems, we observed that the computation time does not depend significantly on 
the number of time-steps and the order of the PDE. Whereas for the classical solving in finite difference methods, the computation 
time increases linearly with the number of time-iterations. In addition, the computation time also depends on the order of the PDE 
in case of classical solving in finite difference methods. A limiting factor is that the current method is applicable to linear problems 
in (hyper) beams. For these problems one can also develop closed-form expressions using separation of variables in continuous 
problems. However, extension to more complex geometries could be done using eigenvalue and eigenvector determination, where 
one only includes the most pivotal eigenvalues for time integration. This matter can be investigated in future studies.

Furthermore, since the application to polynomials of matrices is so straightforward, we can use the method to train a neural 
network with fundamental solutions (in the continuous sense with Dirac delta distributions) for powers of Laplace matrices for 
different spatial dimensionalities, so that the neural network can provide relatively inaccurate, but very quick solutions to real 
systems of linear equations with these matrix polynomials. Here, a DeepONet architecture [17] could be an interesting candidate. 
Further, several recent applications in electronic circuit engineering could use our methodology (see, for instance, [18–20])

Another application of the current method could reside in Laplace filtering, where one uses the (multidimensional) Laplace 
kernel to capture sharp edges and sharp transitions in the data. It detects edges by using a second-order derivative to measure 
the rate of change in an image. Often these derivative filters are applied to a smoothed function to avoid problems with image 
noise amplification [21]. Our method naturally extends to higher-dimensional manifolds (non-curved), making it particularly 
advantageous for applications in medical imaging, such as processing 3D MRI and CT data, and in scientific visualization, where 
robust multi-dimensional edge detection is essential.

We finally remark that the current approach is applicable to cases of diagonalizable matrices with orthonormal eigenvectors, 
which is the case for Hermitian or real, symmetric matrices. However, one must bear in mind that actual practical benefit in terms 
of explicit solutions, can only be accomplished if the eigenvectors and eigenvalues can be determined explicitly. This is the case for 
the many discrete Laplace matrices that we consider. The generalization to more classes of matrices certainly deserves more careful 
attention.
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