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Abstract
Background Myotonic Dystrophy Type 1 (DM1), the most common genetic neuromuscular disorder in adults, poses

significant challenges for drug development due to its multisystem nature and high clinical variability in symptoms and

disease progression. With a growing number of therapies entering clinical trials, this study addresses the urgent need

for biomarkers that can serve as surrogate endpoints.

Methods We profiled 437 serum samples from adult DM1 patients collected at two timepoints of the OPTIMISTIC trial

using bottom-up mass spectrometry with data-independent acquisition. Associations between protein expression, the dis-

ease-causing CTG-repeat and 25 clinical outcome measures were studied using linear mixed-effect models. All key study

findings were validated in an independent cohort of 69 DM1 patients and 10 healthy controls.
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Results Of the 259 identified proteins, 161 showed significant associations with the CTG-repeat length (FDR< 5%).

Hypogammaglobulinemia was confirmed and shown to be worse in severely affected patients. A strong proteomic signa-

ture was associated with clinical measures of functional capacity, with the 6-Minute Walk Test showing the strongest signal

(70 associations, FDR< 5%). These novel associations reveal a compelling link between chronic inflammation and reduced

functional capacity. A machine learning algorithm identified a minimal set of 13 proteins robustly reflecting both the

underlying genetic defect and functional capacity.

Conclusions DM1 induces a broad disease fingerprint in the serum proteome, predominantly affecting proteins of the

immune system. A carefully selected panel of proteins showed the greatest potential to meet the statistical criteria

required for surrogate endpoints in clinical trials.
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Background
MyotonicDystrophy type1(DM1) is aprogressive,multisystem
disease with an estimated prevalence of 1 in 8,000, with some
studies reporting a locally much higher prevalence such as 1 in
550 in the Saguenay-Lac-Saint-Jean area in Northeastern
Quebec and 1 in 2100 for the state of New York.1,2 Various
organ systems are involved in the disease, causing symptoms
such as muscular weakness, myotonia, severe fatigue, apathy,
cataracts, diabetes and various respiratory, cardiac and gastro-
intestinal problems. DM1 is caused by a trinucleotide expansion
ofmore than50CTGrepeats in theDM1proteinkinase (DMPK)
gene3–5. While often serving as a proxy for disease severity, the
magnitude of the (progenitor) CTG repeat expansion has only a
moderate negative correlationwith the age of disease onset and a
moderate positive association with the severity of the clinical
phenotype.6 Furthermore, it has been shown that interruptions
of the CTG-repeat by variant repeats, such as CCG or CGG,
are associated with a milder clinical phenotype.7

The largest randomized controlled clinical trial in DM1,
OPTIMISTIC, has investigated the effect of personalized
Cognitive Behavioural Therapy (CBT), with the optional
addition of graded exercise therapy, in a cohort of more
than 250 genetically characterized DM1 patients. While it
has been shown that CBT can, on average, slightly but sig-
nificantly improve the capacity for activity and participation
of DM1 patients, themagnitude of the improvements and the
improved disease aspects were highly heterogenous.8,9 This
result highlights an important limitation in current DM1 clin-
ical trial research. Theheterogeneity of the patient population
asks for more targeted clinical trials of patient subpopula-
tions with shared disease characteristics. However, patient
subpopulations are currently not well-defined, and subgroup
analyses in a classical statistical framework may suffer from
reduced statistical power.

In novel clinical trial designs, biomarkers are a valuable add-
ition to the evaluation of therapy effects. Given the shared
molecular dysregulations induced by the CTG expansion, one

may expect more homogenous molecular responses to an inter-
vention in comparison to clinical responses. Furthermore, these
molecular changes may be more sensitive to change, preceding
clinical benefits such as delayed disease progression. Since an
ideal biomarker can be efficiently obtained with a low burden
for patients, analyses of (peripheral) blood have sparked great
interest in biomarker research. For various neurological and psy-
chiatric disorders, including Duchenne Muscular Dystrophy,
Huntington’s disease, major depressive disorder and DM1,
disease-relevant findings have been reported in blood.10–13

This finding aligns with our earlier transcriptomic research of
the OPTIMISTIC cohort, where we identified significant asso-
ciationsbetween theCTGrepeat and608genesexpressed inper-
ipheral blood, of which 97 returned to more normal expression
levels in patients who clinically improved.14

Here, we expanded on thiswork by performing proteomic
analysis of 437 serum samples collected at two timepoints of
the OPTMISTIC trial. The most considerable differences in
protein expression between patientswere linked to the size of
the CTG-repeat and confirmed the known hypogammaglo-
bulinemia in DM1.15–17 A strong proteomic fingerprint
was also associated with multiple measures of functional
capacity, showing primarily an increase in components of
the complement system in patients with reduced functional
performance. Rather than relying on individual associations
with disease pathology or physical activity, we demonstrate
that a set of 13 proteins collectively has the strongest poten-
tial to meet the criteria for surrogate endpoints in clinical
trials. All key study findings, including the set of 13 proteins,
were independently validated in an extensive cohort of 69
patients with DM1 and 10 healthy controls.

Methods

Sample sources
OPTIMISTIC clinical trial samples. All primary analyses were
based on the samples and metadata that were collected
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during the OPTIMISTIC clinical trial (NCT02118779).8,18

In this European multi-centre clinical trial, 255 genetically
confirmed adult DM1 patients across four European coun-
tries were enrolled. Patients were randomized either into
the intervention arm (n= 128), consisting of personalized
cognitive behavioural therapy (CBT) with optionally the
addition of graded exercise therapy (GET, n= 32), or the
control arm (n= 127), consisting of standard of care. In
both study arms, a rich phenotypic characterisation was
obtained by assessing more than 25 outcome measures.
We grouped these outcome measures into 6 disease
domains (Functional capacity; Fatigue; Social Functioning,
Behaviour and Impact on Caregivers; Cognitive Function,
Depression, Illness Coping; Disease Impact, Severity and
Pain; Apathy) and listed them together with their abbrevia-
tions in Table 1. Details of the individual outcome measures,
including scoring ranges, have been published elsewhere.8,9

Additionally, whole blood was collected at multiple time-
points for biomarker analyses (10 ml for DNA analysis,
10 ml for RNA analysis and 10 ml serum). Serum was
isolated from serum-specific BD Vacutainer tubes

(Ref 368815) and centrally stored at −80°C at the John
Walton Muscular Dystrophy Research Centre Biobank.19

Serum samples obtained at the start of the trial (n= 252)
and at the primary trial endpoint after 10 months (n= 211)
were sent to the Department of Biomolecular Medicine at
Ghent University, Belgium, for mass-spectrometry based
proteome analyses.

Canadian and German cohort samples. External validation
of the study findings was implemented on a cohort of
Canadian (n= 56) and German (n= 13) DM1 patients.
DM1 patients from the Canadian cohort were recruited
between 2011–2013 as part of a larger longitudinal
study, all of whom having participated in the first phase
of the study between 2002 and 2004. Inclusion criteria
were to have the late-onset, adult or juvenile phenotype
of DM1 confirmed by genetic analysis and to be aged
18 years or older. CTG repeat length was determined
using the same methodology as that used in previous
studies.20,21 All clinical assessments were performed by
the same physiotherapist. The 6-Minute Walk Test

Table 1. Overview of OPTIMISTIC outcome measures.

Group Abbreviation Full name Group Abbreviation Full name

Functional Capacity 6MWT Six-minute walk test Cognitive

Function,

Depression, Illness

Coping

TMT Trail Making Test

L5ENMO,

MeanENMO,

M5ENMO

Accelometery – Euclidian

Norm Minus One; least,

mean, maximum 5 h of

activity

SCWTi Stroop Colour-Word Test

- interference score

DM1ActivC DM1-Activ-c BDIFs Beck Depression Inventory

- fast screen

CISActivity Checklist Individual

Strength - subscale activity

ICQ Illness Cognition

Questionnaire

Fatigue CISFatigue Checklist Individual

Strength - subscale fatigue

IMQ Illness Management

Questionnaire

FDSS Fatigue and Daytime

Sleepiness

SES28 Self-Efficacy Scale 28

JFCS Jacobsen Fatigue

Catastrophizing Scale

Disease Impact,

Severity and Pain

MDHI Myotonic Dystrophy Health

Index

Social Functioning,

Behaviour and

Impact on

Caregivers

ASBQ Adult Social Behavioural

Questionnaire

INQoL Individualized

Neuromuscular Quality of

Life Questionnaire - domain

quality of life

SSLD, SSLI, SSLN Social Support

Discrepancies, Interactions,

Negative Interactions

McGillPain McGill Pain Questionnaire

- short version

CSI Caregiver Strain Index Apathy AES-C Apathy Evaluation Scale -

clinical version

AES-I Apathy Evaluation Scale

-informant version
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(6MWT) was performed, where the maximum distance
walked along a 30-meter corridor over a 6-min period
was measured (in meters). Grip strength was assessed using
a Jamar digital dynamometer (Asimow Engineering Co.,
Los Angeles, CA). The mean of three trials was used
for analyses.

DM1 patients from the German cohort were recruited
between 2019 and 2024 in the Department of Pediatric
Neurology of the University Hospital Essen (University
Duisburg-Essen, Germany). Inclusion criteria were clinical
and genetically confirmed DM1. This cohort included paedi-
atric cases (juvenile DM1 patients) as well as diseased parents
(adult DM1 patients). Moreover, serum samples of 10 healthy
donors were collected from the same German site (clinically
unaffected family members and unrelated individuals).

Proteomic analysis of the OPTIMISTIC cohort. Undepleted
serum samples contain proteins in a large dynamic range,
making the identification of low-abundant proteins challen-
ging. To maximize the number of quantified serum proteins,
a state-of-the-art data independent acquisition (DIA)
mass-spectrometry-based workflow for clinical proteomics
was applied at Ghent University. The recorded spectra
were analysed using the DIA-NN software employing the
built-in spectral library prediction.22 Since peptides are
quantified in MS-based proteomics, proteins must be
inferred by matching these peptides to known sequences.
When peptides could not be uniquely assigned to a single
protein, a protein group is reported instead. This group
encompasses all protein matches, thereby preventing the
overestimation of protein identifications. Out of the 463
samples that were processed in this workflow, 11 samples
were lost due to corrupt or incorrectly recordedMS datafiles
(n= 452 samples remaining). For a detailed workflow of the
proteome quantification analysis, including sample prepar-
ation, LC-MS/MS analysis and proteomics data analysis,
please refer to the ‘Mass spectrometry-based protein quanti-
fication of the OPTIMISTIC samples’ section in the
appendix.

Proteomic analysis of the Canadian and German cohort. The
proteomes of the Canadian (n= 56) and German (n= 23,
including n= 10 healthy controls) sera samples were assessed
using a (DIA) mass-spectrometry-based workflow for clinical
proteomics at the Radboud University Medical Center in
Nijmegen. Recorded spectra were then analysed in real-time
using the Proteoscape-implemented version of DIA-NN.23

Similar to the DIA-NN based workflow applied to the
OPTIMISTIC data, peptides that could not be uniquely
matched to a specific protein were instead associated with a
protein group. For a detailed workflow of the proteome quanti-
fication analysis, including sample preparation, LC-MS/MS
analysis and proteomics data analysis, please refer to the
‘Mass spectrometry-based protein quantification of the
Canadian andGerman cohort samples’ section in the appendix.

ELISA-based validation of ITIH3 serum levels. Additionally,
for the Canadian sera samples (n= 56), ELISA-based ITIH3
levelsweremeasured in using the “Human inter-alpha-trypsin
inhibitor heavy chain H3 (ITIH3) ELISA kit” (CSB-
EL011896HU, Cusabio). The assay was performed at the
Department of Neurology of the University Hospital
Düsseldorf (Germany) according to themanufacturer’s proto-
col. In brief, samples and standards were added to the pre-
coated plate, followed by addition of horseradish peroxidase
conjugate. The plate was then incubated for 30 min at 37°C.
The wells were washed five times, and TMB substrate was
added. The plate was then incubated for 20 min at 37°C.
Subsequently, the stop solutionwas added to end the reaction,
and the optical densitywasmeasuredwith amicroplate reader
(Tecan) at 450 nm. Samples were used in a dilution of 1:500
and measured in duplicate.

Ethics approval and consent to participate OPTIMISTIC
clinical trial samples. The OPTIMISTIC clinical trial
(NCT02118779) was conducted in accordance with the
Declaration of Helsinki and approved by the medical-ethical
scientific committee for human research at each of the four
participating clinical centres. Prior to the trial, all enrolled
patients provided written informed consent, which included
the usage of the pseudonymized blood samples for the
research purposes of this study. Ethical approval for mass
spectrometry-based proteomics profiling of the serum
samples was obtained from the Ethics Committee of
Ghent University Hospital (B670201940027). For more
specific methodological details of the clinical trial, includ-
ing trial protocols and an overview of all (patient-reported)
outcome measures, please refer to the published trial proto-
col and the main study publication.8,18

Canadian cohort samples. The study was conducted at the
Saguenay Neuromuscular Clinic and was approved by the
Ethics Review Board of the Centre Intégré Universitaire de
Santé et Services Sociaux du Saguenay–Lac-St-Jean
(Chicoutimi, Québec, Canada; #2010-046). Written informed
consent was obtained from all participants including biomar-
kers studies.

German cohort samples. All patients and/or caregivers, as
well as healthy donors, gave written consent to donate
blood samples for research-driven biomarker studies. The
local ethical committee approved biomarker studies on
neuromuscular patients and controls (19-9011-BO).

Availability of data and materials
OPTMISTIC clinical trial. The OPTIMISTIC clinical trial data
have been stored in the Radboud Data Repository under
restricted access and can be requested via https://doi.org/10.
34973/q3tv-0e80. All requests will be reviewed by a panel
comprising from each of the four participating clinical sites,
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with K. Mul serving as chair.8 The mass spectrometry proteo-
mics data of theOPTIMISITIC samples havebeen deposited to
the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD067476.24

External cohorts. The phenotype data used and/or analysed
from the Canadian cohort are available from the correspond-
ing author upon reasonable request following the proper
evaluation of the research protocol by the Ethics Review
Board of the Centre intégré universitaire de santé et de
services sociaux du Saguenay–Lac-St-Jean (Saguenay,
Québec, Canada; cynthia.gagnon4@usherbrooke.ca).

The phenotype data used from the German cohort, includ-
ing the ELISA-based quantification data of ITIH3, are stored
at the Department of Neurology of the University Hospital
Düsseldorf (Heinrich Heine University) and are available
upon request to roos@andreas-roos.de.The mass spectrometry
proteomics data of both the Canadian and German cohort
have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier
PXD060035.24

Results and code availability. For both studies, the full list of
significant protein group associations with the CTG-repeat
and 6MWT scores, as well as the table containing all
Variable Inclusion Probabilities, will be made available
on GitHub after publication. Additionally, all R scripts
used in this work are available via https://github.com/
cmbi/DM1_ReCognitION_Proteomics

Data analysis
All analyseswere implementedwith the statistical programming
languageRwithin theRStudio integrated development environ-
ment.25,26 All figures have been generated using the ggplot2
package and arranged using the cowplot package.27,28 All
selected candidate protein group biomarkers have been asso-
ciated with gene names using UniProt.29 Where appropriate,
data presented in tabular format has been rounded to 4 digits.

Outlier handling of the phenotype data. For all outcome mea-
sures,we calculated the interquartile range (IQR) and consid-
ered measurements with Q1 – 3 * IQR and Q3+ 3 * IQR as
potential outliers. Subsequently, these potential outlierswere
visually inspected to confirm the likelihood of an unreason-
able or faulty measurement that could potentially skew the
results of the statistical frameworks. For the 25outcomemea-
sures of the OPTIMISTIC data, a total of 10 outliers were set
to ‘NA’ (0.09%of the screened datapoints). For theCanadian
cohort, a total of two outliers were set to ‘NA’ concerning the
grip strength (left and right) of one unusually strong patient.

Pre-processing of raw peptide and protein group intensities.
For the OPTIMISTIC study, pre-processing of both the
peptide and protein group data has been implemented;

however, the Canadian cohort validation study focused only
on the protein group data. For the OPTIMISTIC peptide
samples, all identified peptides with different post-
translational modifications (PTMs) were summed up and
total intensity values of less than 10,000 per peptide were
changed to ‘NA’. To identify samples with low/unreliable
peptide detection rates, total peptide abundance per sample
was calculated by summing up all detected peptides. Ten
samples with total intensities lower than Q1 – 3 * IQR were
removed. Five of these samples were from the same row of
a well plate, indicating a possible dilution error. Since the
OPTIMSTIC protein group data were inferred based on
the peptide data, these samples were also removed from the
protein group dataset (n= 442 samples remaining).

For the protein group data of both studies, intensities of less
than10,000perproteingroupwere set to ‘NA’. Technical repli-
cates, which were only present in the external validation
dataset, were averaged. For the OPTIMISTIC dataset, protein
groups and associated peptides linked to the expected contami-
nants trypsin and bovine albumin were excluded. In contrast,
for the Canadian cohort, the iRT-Kit protein group was
removed. Next, for all the datasets, intensity values were log2
transformed and all samples were subsequently scaled using
the ‘equalMedianNormalization’ function of the R package
DEqMS (independently per dataset).30

Peptides or protein group measurements with intensities
lower than Q1 – 3 * IQR for that particular peptide or
protein group across samples were removed. For the
OPTIMISTIC samples, 2916 peptide measurements (0.29%
of screened datapoints) and 141 protein group measurements
(0.13% of screened datapoints) were set to ‘NA’ because of
substantially different abundances across samples. Likewise,
for the external validation dataset, 29 protein groups were
set to ‘NA’ (0.22% of screened datapoints). During the last
filter step, peptides or protein groups identified in fewer
than 100 (OPTIMISTIC data, 23%) or 20 (external validation
data, 36%) samples were removed because they are neither
useful as biomarkers nor for robust statistical inference. In
doing so, 25 peptides (n= 2670 remaining) and one protein
group (n= 259 remaining) of the OPTIMISTIC data and
223 protein groups (n= 259 remaining) of the external valid-
ation data were removed.

As a quality control procedure, mean-variance plots
were generated for the protein group datasets. For the 189
paired OPTIMISTIC samples (from the same patient, at
two timepoints), the Pearson correlation was calculated
for each protein group between the baseline and the
matched 10-month sample. This was compared with the
average Pearson correlation of each protein group
between the baseline and all other 10-month samples. For
five baseline samples of the OPTIMISTIC datasets, no
phenotype data were present, as these patients were ultim-
ately not enrolled in the clinical trial. Accordingly, these
peptide and protein group samples were removed, resulting
in a final sample size of n= 437.

van As et al. 5



An additional dataset was analysed based on the combined
set of the Canadian (n= 56) and German (n= 23, including 10
healthy controls) samples. The pre-processing of this com-
bined cohort was similar to the protein group datasets
above, except that no intensity minimum of 10,000 was set
and no outliers were removed. This dataset of 79 samples
(comprising both Canadian and German cohorts) was exclu-
sively used for the comparison of the top identified biomar-
kers in DM1 patients (n= 69) versus healthy controls (n= 10).

Principal component analyses. Principal component analyses
(PCA) were implemented independently for the full peptide
and protein group datasets of the OPTIMISTIC study, com-
bining samples from both timepoints. Because PCA
requires complete datasets, samples within the 25th quantile
for the number of identified peptides or protein groups were
filtered out (respectively 327 and 315 samples remaining for
the peptide and protein group data). Subsequently, both the
peptide and protein group datasets were filtered for mole-
cules present in all filtered samples (901 peptides and 173
protein groups remaining). The PCA was implemented
using the R function ‘prcomp’ with the arguments
‘center’ and ‘scale’ set to TRUE. To study the amount of
variance of each principal component that can be attributed
to different phenotype measures, mixed effect models were
fitted for the first 10 principal components using the ‘lmer’
function of the lme4 package with default settings31 [1].

Principal component ∼ Phenotype Measure

+ (1|PatientID) 1[ ]
Marginal R-squared values (R-squared values attributable to

the fixed effects) were obtained using the ‘r.squaredGLMM’
function of the MuMIn package32 and associations were visua-
lized using the ggcorrplot package.33

Statistical analyses. For the OPTIMISTIC protein group data,
four different statisticalmixed effectmodelswere implemented
for eachproteingroup to respectively study the associationwith
the CTG repeat [2], associations with different outcome mea-
sures [3], the effect of the cognitive behavioural therapy
(CBT) [4] and the effect of the graded exercise therapy
(GET) [5]. To account for proteomic differences attributable
to biological sex, the covariate ‘Sex’ was included as fixed
effect in allmodels.Toaccount for thedependencyofmeasures
from the samepatients andwell plates, thevariables ‘PatientID’
and ‘Plate’ were included as random effects in all models. In
model [2], the same CTG repeat length was used at both time-
points, as the CTG-repeat size was not re-estimated after the
primary trial endpoint. In models [2] and [3], the variable
‘Timepoint’ (before/after the trial) was included as a fixed
effect to account for possible temporal changes that occurred
during the trial. All models were generated using the ‘lmer’
function of the lme4 package with default settings.31 P-values
associated with the variables of interest (bold in the formulae)

were generated with the lmerTest package and multiple
testing corrected based on the Benjamini & Hochberg proced-
ure using the R base ‘p.adjust’ function with method=‘fdr’.34
Additionally, for all associations studied with models [2] and
[3], Pearson correlations were calculated between the variable
of interest and the protein group using the R base ‘p.cor’ func-
tion with use= ‘pairwise.complete.obs’ and method=
‘pearson’. Fits with convergence problems were automatically
removed. As a measure of statistical robustness, the number of
reported significant associationwith theCTG-repeat [2] and the
6MWT [3] are also reported after randomization of these two
measures across the patients. Due to the unequal distribution
of samples across well plates with respect to study timepoint,
models [4] and [5] were additionally implemented without
the random plate effect as a supplemental analysis to assess
the potential confounding influence of plate-specific variation
on treatment effects.

Protein group ∼ Sex+ Timepoint + CTG Repeat

+ (1|PatientID)+ (1|Plate) 2[ ]

Protein group ∼ Sex+ Timepoint + Outcome

+ (1|PatientID)+ (1|Plate) 3[ ]

Protein group ∼ Sex+ Timepoint ∗ CBT group

+ (1|PatientID)+ (1|Plate) 4[ ]

Protein group ∼ Sex+ Timepoint ∗ GET group

+ (1|PatientID)+ (1|Plate) 5[ ]

For the external validation study (Canadian cohort, n=
56), three linear models were fit to study the association
of physical outcome measures (6MWT, grip strength left
and right hand) with the ELISA-based ITIH3 levels [6].
Furthermore, for each MS-based identified protein group
a linear model was fit to study the association with the
CTG repeat [7] and 6MWT score [8]. All models included
the covariate ‘Sex’ to account for possible differences
attributable to biological sex. Plots were generated to illus-
trate the associations between log2 ITIH3 (and other candi-
date biomarkers) and the clinical scores. Additionally, for
the associations between the variables of interest and the
protein groups in models [7] and [8], Pearson correlations
were calculated using the R base ‘p.cor’ function with
use= ‘pairwise.complete.obs’ and method= ‘pearson’.
Although adjusted p-values (Benjamini Hochberg proced-
ure) for the results from models 7 and 8 were calculated,
the validation analysis reported in this study focuses on
the nominal p-values of the already multiple testing cor-
rected top hits from the OPTIMISTIC study-based results.

ITIH3
mg

ml
(log2) ∼ Sex+ Outcome 6[ ]
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Protein group ∼ Sex+ CTG repeat 7[ ]
Protein group ∼ Sex+ Outcome 8[ ]

To externally validate the statistical model hits, we com-
pared the FDR-adjusted significant protein group associa-
tions with the CTG repeat length and 6MWT from the
OPTIMISTIC cohort [2,3] with the nominally significant
associations observed in the external Canadian validation
cohort [7,8]. However, direct comparison of protein
groups between the OPTIMISTIC and Canadian cohorts
was not feasible due to slight differences in their protein
compositions. To address this, all protein groups were
decomposed into individual proteins. Next, a non-
redundant list of overlapping significant proteins was gener-
ated. For each protein, the most significantly associated
protein group in the OPTIMISTIC cohort was identified.
An optimal matching protein group from the Canadian
cohort was then selected based on maximal overlap in con-
stituent proteins. In cases where multiple external protein
groups exhibited the same degree of overlap with a given
OPTIMISTIC protein group, the group with the fewest
total proteins was selected. If redundancy persisted, the
most statistically significant external protein group was
chosen. Finally, only matches with Pearson correlations in
the same direction were retained.

For the externally validated protein groups we subse-
quently investigated the potential confounding role of
BMI using the OPTIMISTIC baseline data. During data
screening, two height values exceeding 10 meters were
removed, as they were likely errors caused by incorrect
centimeter notation. For each validated protein group com-
plete cases with BMI and CTG-repeat or 6MWT were
selected. A mediator model was then generated for BMI
with either the CTG-repeat [9] or the 6MWT [10] as pre-
dictor. Next, total effect models were generated for each
protein group with either CTG-repeat and BMI [11] or
6MWT and BMI [12] as predictors. The mediate function
of the mediation package was then used to assess the pro-
portion of the total effect that is mediated by BMI with
the settings boot= ‘T’ and sims= ‘1000’.35

BMI ∼ CTG repeat 9[ ]

BMI ∼ 6MWT 10[ ]

Protein group ∼ CTG repeat + BMI 11[ ]

Protein group ∼ 6MWT + BMI 12[ ]

For the models [2, 3, 4, 5], Volcano plots were gener-
ated, where for models [2, 3] additional colour coding
was used to illustrate if the results were also nominally sig-
nificant in the respective models [7, 8]. For models [2, 3],

example plots of the strongest associations that were also
externally validated were generated. To visualize the pos-
sible impact of CTG repeat interruptions (repeat variants)
on the protein group-CTG repeat associations, the identified
top immunoglobulin and complement-associated protein
groups identified in model [2] were visualized with the
color-coding reflecting whether a repeat interruption was
present. For the models [4, 5] example plots were generated
for the significant results (adjusted p < 0.05).

For the most promising biomarkers, differences in
expression (healthy vs DM1) plots were generated based
on the unfiltered combined Canadian (n= 56) and
German samples (13 DM1 patients, 10 healthy controls).
Significance labels were added using the ‘stat_compare_-
means function (method= “t.test”, paired= “F”) of the
ggpubr package.36

Bootstrap enhanced multivariate elastic-net regression. To
identify a minimum subset of protein groups linked with
both the disease pathology and the clinical phenotype, a
multivariate Elastic-Net regression framework has been
implemented. First, the 47 protein groups that were signifi-
cantly associated with both the CTG-repeat expansion and
the 6MWT, as determined by the statistical analyses of
the OPTIMISTIC cohort, were selected as candidate predic-
tors. To validate the results of this statistical framework, the
47 protein groups were reduced to 42 protein groups that
were also unambiguously identified in the Canadian
cohort. Model training was exclusively done using the
OPTIMISTIC (baseline) dataset. The results were internally
validated using the 10-month data (internal testing) and
externally validated with the completely independent
Canadian cohort.

Since the Elastic-Net framework necessitates a complete
dataset, 10 imputed OPTIMISTIC protein group datasets
were generated using Multiple Imputation Using Chained
Equations (MICE).37,38 For the data imputation, the whole
protein group dataset, spanning both timepoints, was used
to allow for the most accurate results. Protein groups
missing in more than 20% of the samples were excluded.
For the remaining protein groups(n= 239), each missing
value was imputed based on the 100 protein groups with
the highest associated absolute Pearson correlation, with
50 iterations per dataset.

The multivariate variable selection algorithm was then
implemented on the imputed baseline datasets from the
OPTIMISTIC study (model training) for cases with no
missing CTG-repeat of 6MWT information (n= 231). Given
the large distribution differences of the dependent variables
(CTG-repeat, 6MWT) between theOPTIMISTIC and external
validation study, as well as the multivariate Gaussian frame-
work of the Elastic-Net regression, the dependent variables
were scaled using the ‘boxcox’ function of the R MASS
package with automatically derived optimal lambda values.39

Next, for each imputed dataset, 5000 bootstrap distributions
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were generated using the ‘boot’ function of the package boot.40
Subsequently, for each bootstrap distribution, the ‘cv.glmnet’
functionof the glmnet package, using the parameters type.mea-
sure= “mse”, family= “mgaussian”, alpha= 0.5, nfolds= 10,
standardize=TRUE and standardize.response=TRUE, was
implemented.41Coefficientswere selected based on the “lamb-
da.1se” setting, allowing for a minimum number of predictors
that still performwithinone standarderror of themodelwith the
best performance. For each imputed dataset, it was calculated
how frequently a protein group has been selected across the
5000 bootstrap distributions, which is referred to as Variable
Inclusion Probability (VIP).9,42,43 Finally, the VIPs across all
imputed datasets were averaged, yielding a single average
VIP for each protein group. A set of candidate predictors
could then be obtained by selecting all protein groups that
have a certain number of average VIPs.

The predictive power of a combined set of protein groups
was systematically assessed using different average VIP
thresholds (90%, 80%, 70% and 60%). For this, a regular
multivariate linear regression framework was fitted on the
unimputedOPTIMISTICbaseline data,where the dependent
variables (CTG-repeat and 6MWT) were predicted based on
the combined set of protein groups (baseline model). The
baseline model was then used to predict the baseline
values, the 10 month OPTIMISTIC values (unseen, internal
validation), and the values from the Canadian cohort
(unseen, external validation). In line with the variable selec-
tion algorithm, for all three datasets (OPTIMISTIC baseline
and 10 months, external validation) the dependent variables
were independently scaled using the ‘boxcox’ function of the
R MASS package with automatically derived optimal
lambda values and subsequently together with the independ-
ent variables (candidate protein groups) z-score transformed
using the R-base ‘scale’ function with the default parameters
center=True and scale=True.39 (Adjusted) R-squared
values of the baseline model are reported, as well as the
Root Mean Square Error (RMSE) values for the predictions
of the OPTIMISTIC baseline, OPTIMISTIC 10-month and
Canadian cohorts. For the predictions of the OPTIMISTIC
10-month and Canadian cohort values using the baseline
model, out-of-sample R-squared values are also reported,
which were calculated based on:

R2 = 1 − sum squared regression (SSRes)
total sum of squares (SSTot)

with

SSRes =
∑

(yi − ŷ)2 and

SSTot =
∑

(yi − �y)2 where

yi = observed testing data,

ŷ = predicted with baseline model,

�y = mean of observed testing data 13[ ]
For the most optimal VIP value (60%), the coefficients

and p-values of the associated multivariate OPTIMISTIC

baseline model are reported (n= 209). To assess linear
model assumptions, univariate multiple regression models
were generated to individually predict CTG-repeat (n=
210) and 6MWT (n= 212) scores based on the identified
protein group set using the OPTIMISTIC baseline data.
Linear model assumptions (Global Stat, Skewness,
Kurtosis, Link Function, Heteroscedasticity) of these two
models were checked using the gvlma package.44 If assump-
tions were not met, influential datapoints were identified
through visual inspection of Cook’s distances.

Results

Patient cohorts characteristics and comparisons
This study focused on the identification of protein biomar-
kers in serum samples of DM1 patients. For this purpose,
bottom-up mass-spectrometry (MS)-based proteomic pro-
files of more than 400 serum samples of the OPTIMISTIC
study cohort were generated. The OPTIMISTIC samples
were derived from two study timepoints, at the start of the
trial (n= 235) and the primary trial endpoint after 10
months (n= 202). OPTIMISTIC was not only the largest
clinical trial in DM1 to date but also characterised by rich
phenotype profiling of all patients. In addition to measuring
the CTG-repeat expansion in blood, which we use as a proxy
for both disease severity and pathology in this study, 25 dif-
ferent clinical outcome measures were used. We grouped all
outcome measures into 6 disease domains which, including
the abbreviations used in this study and the corresponding
full names, are summarized in Table 1. We refer the reader
for to earlier publications for more details on how the clinical
measurements were obtained and specific scoring ranges,
including the calculation of interference scores such as
those for the Stroop Colour-Word Test.8,9

To externally validate the study findings, serum-based
MS-based proteomic profiles were also generated for 56
Canadian DM1 patients, 13 German DM1 patients and 10
German healthy controls in an independent laboratory
(Table 2). For all 69 DM1 patients, information on the
CTG-repeat was present, and for the 56 DM1 patients
from the Canadian cohort, also information on the six-
minute walk test (6MWT) and grip strength of both hands
was available.

At both time points, the sex distribution was roughly
balanced, and the age distributions were comparable.
Based on the minimum, maximum and median values, the
CTG-repeat length was also comparable between the two
cohorts (Table 2). However, the distributions of the
OPTIMISTIC CTG-repeat scores resembled a slightly-right
skewed normal distribution. In contrast, the distribution of
the Canadian cohort-based CTG-repeat scores was more
uniform with a right skew (SFigure 1, panels A, B, C).
Similar to the CTG-repeat, the minimum, maximum and
median values of the 6MWT scores were also roughly
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comparable between the OPTIMISTIC and Canadian
cohorts (Table 2). The 6MWT scores of the OPTIMISTIC
cohort resemble a slightly right-skewed normal distribution,
whereas the 6MWT scores of the Canadian cohort showed a
more uniform distribution (SFigure 2, panels A, B, C).

Quality control
Since not all peptides could be uniquelymatchedwith a protein,
protein groups are reported instead. This group includes all pos-
sible protein matches that are equally likely to be present in the
samples. After all filtering steps, a total of 259 protein groups
were identified in both the OPTIMISTIC and Canadian

cohorts. For the 189 paired OPTIMISTIC samples (from the
samepatient, at two timepoints), thePearson correlationwas cal-
culated for each protein group between the baseline and the
matched 10-month expression. This was compared to the
average protein group correlation between the baseline and all
other 10-month samples. The average correlation of samples
from the same patient was 0.97, whereas the average correlation
acrossall unrelatedsamplecombinationswas0.94(SFigure3A).
For 143 out of the 189 patients, the correlation of the baseline
sample was higher with its matched 10-month sample than
with any other 10-month sample in the dataset. From this, we
conclude that there were no systematic sample mix-ups.
However, we cannot rule out the possibility of an occasional

Table 2. Overview of patient cohorts, proteomic datasets and implemented analyses.

Internal data / OPTIMISTIC study External data / Validation of study findings

Cohort

characteristics

Baseline data;

Start of the trial.

10-Month data;

Primary trial endpoint.

Canadian DM1

patients.

German

DM1

patients.

German

healthy

controls.**

Number of patients 235 202 56 13 10

Sex (f/m) 106 / 129 94 / 108 35 / 21 4 / 9 6 / 4

Age (years, min/

max; median)

19 / 73; 46 20 / 73; 47 29 / 77; 50 5 / 41; 18 1 / 53; 12

CTG repeat (min/

max; median)

57 / 1372; 473* 57 / 1372; 473* 63 / 1532; 572 100 / 2500;

670

-

6MWT score

(meters, min/max;

median)

50 / 750; 397 50 / 750; 413 126 / 682; 417 - -

Available

proteomics data

Untargeted MS-based proteomic profiling;

DIA-NN based protein quantification;

Implemented at the VIB-UGent Center for Medical

Biotechnology, VIB, Ghent, Belgium.

Untargeted MS-based proteomic profiling;

DIA-NN based protein quantification;

Implemented at the Radboud Technology Center for Mass

Spectrometry, Radboudumc, the Netherlands.

- ELISA based ITIH3

quantification;

Implemented in Germany.

-

Data exploration Analysis of peptide and protein group data;

Implementation of Principal Component Analysis

(PCA).

Analysis of protein group

data.

-

Regression analysis Linear Mixed Effect Models to study protein

group-phenotype associations.

Linear Models to validate

protein group-phenotype

associations.

-

Mediation analysis to

study the role of BMI on

protein expression.

- - -

Machine Learning Elastic-Net based

protein group selection

and subsequent linear

model fit.

Internal validation of

the OPTIMISTIC

baseline linear model.

External validation of the

OPTIMISTIC baseline linear

model.

-

T-test - For the top protein biomarker candidates, the expression

of the 69 DM1 samples were compared to the 10 healthy

controls.

*CTG repeat in OPTIMISTIC 10-month cohort based on baseline assessment.

**Clinically unaffected family members and unrelated individuals from the German DM1 patients.

van As et al. 9



sample mix-up in our study. Mean-variance protein intensity
plots of the OPTIMISTIC samples and the external validation
samples demonstrated adequate data normalization and the
expectedpatternofslightlyhighervariation in low-abundantpro-
teins (SFigure 3, panels C, D).

The CTG-repeat length is the strongest driver of
variance in protein abundance
Principal component analysis (PCA) was applied to identify
which clinical variables are important drivers of differences in
serum peptide and protein abundance within the OPTIMISTIC
cohort. For the protein data, the first principal component
(PC1) was most strongly associated with the CTG-repeat
length, indicating that differences in CTG-repeat sizes can
explain up to 20% of differences in the blood proteome in
DM1 patients (Figure 1, panels A, B, C). Interestingly, PC2
was most strongly linked to the 6MWT (Figure 1, panels A,
E). The association of PC5 with biological sex was an expected
finding, as the blood proteome is known to differ between men
and women (Figure 1, panels A, D).45 The PCA implemented
on the peptide-level data revealed a surprising association
between PC1 and the plate measured in the mass spectrometer
(SFigure 4, Panel A, E). Further analysis suggests that this is
likely due to an uneven distribution of study timepoints across
the well plates, with baseline samples primarily located on
plates 1–3 and 10-month samples predominantly on plates 4

and 5 (SFigure 3, panel B). Consequently, to correct for this
imbalance, the plate effect was included as a random effect in
the statistical analyses of the OPTIMISTIC data. Phenotype
PC associations were generally weaker for the peptide data;
however, the CTG-repeat was also a driver of variance here
(associated with PC4 and PC5, SFigure 4, panels A, B, C).
The association of biological sex with a PC was weaker for the
peptide data as well, although a clear separation along PC8
and PC9was found (SFigure 4, panel D). Given better interpret-
ability and robustness, we continued with the analysis of the
protein group-level data.

Serum protein associations with CTG-repeat length
confirm hypogammaglobulinemia in DM1
Out of the 259 protein groups discovered in the
OPTIMISTIC serum samples, 161 were significantly asso-
ciated with CTG-repeat length (FDR< 0.05; Figure 2, panel
A). This finding is in line with the results from the PCA.
The validity of this result is further supported by the
finding that no significant associations remained after ran-
domization of the CTG-repeat length values. Twelve of
the identified candidate protein biomarkers were matched
with protein groups that were also significantly associated
with CTG-repeat length in the external Canadian validation
cohort (p < 0.05; Figure 2, panel A; Table 3). Among these
validated findings, the absolute strongest correlations with

Figure 1. Drivers of protein variance in OPTIMISTIC serum samples. Results from PCA on a filtered subset of the OPTIMISTIC

protein samples with complete observations. For the first ten principal components (PCs), a mixed-effect model was fitted with various

phenotype measures as predictors and PatientID as a random effect (model 1). (A) Heatmap of the marginal R-squared values for each

of the phenotype measures (rows) and the first 10 PCs (columns). (B) Scree plot showing the proportion of variance explained by the

first 10 PCs. (C) Plot of sample scores on PC1 and PC2 coloured by CTG repeat length. (D) Plot of sample scores on PC4 and PC5

coloured by biological sex. (E) Plot of sample scores on PC2 and PC3 coloured by distance on the 6MWT. Grey dots reflect missing

phenotype information. Abbreviations: See Table 1 for outcome measures; GET Graded Exercise Therapy.
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the CTG repeat were observed for immunoglobulin heavy
constant gamma chains IGHG1, IGHG3 and IGHG4
(Table 3, Figures 2B and 2C). All of the significant and vali-
dated immunoglobulin-related protein groups were nega-
tively associated with the CTG-repeat length, confirming
hypogammaglobulinemia in DM1. Furthermore, based on
the complete external validation dataset, the four immuno-
globulin biomarkers with the strongest negative Pearson
Rho value show a consistent trend of lower expression in
DM1 patients compared to healthy controls (SFigure 5,
panels A-D). In addition to the negative association
between the CTG-repeat length and extent of the hypogam-
maglobulinemia, it is interesting to note that the CTG-repeat
length was also positively associated with several protein
groups of the complement system (C3, CFI, CFH, Table 3).
Given the milder clinical phenotype in DM1 patients with
an interruption of the CTG-repeat, we expected milder
protein group-CTG repeat associations in these patients.
However, similar associations with both immunoglobulins
and complement factors were found for patients with a
CTG repeat interruption (SFigure 6, panels A-F).

Increased abundance of complement factors in DM1
patients with reduced functional capacity
When studying the associations of protein groups with indi-
vidual clinical outcome measures, a surprising pattern
emerged. In line with the PCA findings, the majority of
FDR corrected significant associations were linked to mea-
sures of functional capacity (6MWT, DM1ActivC,
Actometry based activity; Table 4). Yet virtually no other
associations were found with disease domains such as
fatigue, social functioning, cognitive function, disease
impact or apathy. The most significant associations were
found for the 6MWT score (n= 70; Table 4; Figure 3,
panel A), encompassing most of the hits found
with DM1ActivC (45 out of 61), MeanENMO (29 out of
36) and M5ENMO (28 out of 32). The validity of the
6MWT associations was further supported by the finding
that only one significant association remained after random-
izing the 6MWT scores.

Out of the 70 protein groups associated with the 6MWT,
18 were matched with protein groups that were also

Figure 2. Protein group associations with CTG-repeat length. For each identified protein group (PG) in the OPTIMISTIC serum

samples, a mixed effect model (model 2) was fitted with the CTG-repeat as predictor, the covariates sex and study timepoint as fixed

and PatientID and well plate as random effects. (A) Volcano plot showing the significance (-log10 of nominal p-values, y-axis) and the

effect size of the CTG-repeat (per 100 CTG repeats, x-axis) for the protein groups. Protein groups for which the CTG-repeat was

significant (FDR< 0.05) are visualized in black, proteins that were also significant (p < 0.05) in the Canadian validation dataset are

visualized in red. (B-C) Scatter plots of the abundance of the protein group IGHG1/IGHG3/IGHG4 and the protein IGHG3 (y-axis)

plotted against the CTG-repeat in the OPTIMISTIC and external Canadian validation cohort, respectively. (D-E) Scatter plots of the

abundance of the complement protein C3 (y-axis) plotted against the CTG-repeat in the OPTIMISTIC and external Canadian validation

cohort, respectively. In Panels B and D, red dots represent samples taken at baseline, and blue dots represent samples taken 10 months

after the start of the trial. Rho indicates Pearson’s correlation coefficient.
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significant in the external Canadian validation cohort (Table 3,
Figure 3, panel A). Interestingly, the majority of these 18 vali-
dated hits were also significantly associated with DM1ActivC
(n= 17, excluding LBP), MeanENMO (n= 17, excluding
LBP) and M5ENMO (n= 15, excluding LBP, SERPINA3
and HPT;HPR) in the OPTIMISTIC cohort. Among these,
the two protein groups that show the strongest absolute correl-
ation with the 6MWT are complement C3 and complement
factor I, which exhibit an increase in abundance in patients
with reduced functional capacity (Table 3; Figure 3, panels
B-E). This increase is also observed for all other validated
complement components or factors (Table 3). The abundance
of the top biomarker candidates (complement C3 and C5,
complement factor I) also showed a trend of higher expression
in DM1 patients compared to healthy controls (SFigure 5,
panels E-G).

In the OPTIMISTIC cohort, one of the significant find-
ings with the 6MWT was ITIH3 (inter-alpha-trypsin inhibi-
tor heavy chain 3), which has previously been linked to
complement modulation and disease severity in
Myasthenia Gravis (FDR< 0.001; Figure 4, panel A).46

While this negative association with the 6MWT could
neither be validated in the MS- nor ELISA-based protein
quantification of the external Canadian cohort (resp. p=
0.4, p= 0.21, Figure 4, panels B, C), external significant
negative associations were found for the ELISA-based
protein quantification and grip strength of both the left
and right hand (both p < 0.001; Figure 4, panels D, E).
Interestingly, ITIH3 showed a significant weak positive
association with the CTG-repeat size in the OPTIMISTIC
cohort (FDR= 0.014), which was, however, not validated
in the MS-based protein quantification of the Canadian
cohort (p= 0.58) (Figure 4, panel F). Based on the complete
external validation cohort, no difference in ITIH3 expres-
sion was found between DM1 patients and healthy controls
(SFigure 5, panel H).

Given the pro-inflammatory state associated with a high
BMI, we examined whether BMI mediated the relationship
between the validated protein biomarkers and either
CTG-repeat length or 6MWT performance (STable 1).47

BMI did not substantially mediate any CTG-repeat asso-
ciated protein groups. However, for 5 of the 18 protein
groups linked to 6MWT (including complement markers
such as C3 and CFI), BMI accounted for a considerable pro-
portion of the total effect, ranging from 32% to 43%,
depending on the protein group.

No effect of cognitive behavioural therapy or graded
exercise on the serum blood proteome
Given the significant clinical effects of Cognitive Behavioural
Therapy (CBT) on the ability to perform daily tasks and to par-
ticipate in social activities in the OPTIMISTIC clinical trial, we
investigated whether these benefits also translated to significant
changes in the serumproteome ofDM1patients.However, onlyT
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Table 4. Numbers of significant protein group associations with clinical outcome measures.

Functional Capacity p-value < 0.05 FDR< 0.05

Cognitive function,

Depression, Illness Coping p-value < 0.05 FDR< 0.05

6MWT 100 70 SES28 51 0

DM1ActivC 106 61 IMQ 26 0

MeanENMO 73 36 SCWTi 25 0

M5ENMO 63 32 ICQ 21 0

CISActivity 40 0 TMT 15 0

L5ENMO 8 0 BDIFs 9 0

Fatigue Disease Impact, Severity and Pain

FDSS 22 2 MDHI 70 23

JFCS 21 0 INQoL 50 1

CISFatigue 17 0 McGillPain 22 1

Social Functioning, Behaviour and

Impact on Caregivers Apathy

SSLN 34 2 AES-C 31 0

CSI 23 0 AES-I 8 0

SSLI 23 0

ASBQ 18 0

SSLD 8 0

Figure 3. Protein group associations with the 6MWT score. For each identified protein group in the OPTIMISTIC serum samples, a

mixed effect model (model 3) was fitted with the 6MWTas predictor, the covariates sex and study timepoint as fixed and PatientID and

well plate as random effects. (A) Volcano plot showing the significance (-log10 of nominal p-values (y-axis) and the effect size of the

6MWT for the protein groups (x-axis). Protein groups for which the 6MWTwas significant (FDR< 0.05) are visualized in black, proteins

that were also significant (p < 0.05) in the Canadian validation dataset are visualized in red. (B-E) Scatter plots of the abundance of

Complement C3 (Panels B and C) and Complement factor I (CFI, Panels D and E) (y-axis) against the 6MWT score in metres (x-axis) in

the OPTIMISTIC cohort (Panels B and D) and the external Canadian validation cohort (Panels C and E). In Panels B and D, red dots

represent samples taken at baseline, and blue dots represent samples taken 10 months after the start of the trial. Rho indicates

Pearson’s correlation coefficient.
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eight significant changes between theCBT and standard-of-care
groupwere identified (VitaminD-binding protein, Complement
C5 and C9, Ceruloplasmin, Immunoglobulin heavy constant
gamma 3 and mu, Inter-alpha-trypsin inhibitor heavy chain
H4, Carboxypeptidase B2; SFigure 7, panels A-I). Upon
closer inspection, none showed a convincing link with the

CBT intervention, and most were associated with changes in
the standard-of-care group over the 10-month study period.
Since a subgroup of patients in the intervention group also com-
pleted a graded exercise program (GET), we also investigated
whether proteome changes could be linked to this intervention.
Yet only two proteins were significantly linked to GET

Figure 4. ITIH3 associations with markers of physical performance and CTG-repeat length. Association of the MS-quantified relative

abundance levels of ITIH3 abundance with the 6MWT scores for the OPTIMISTIC samples (Panel A, colour coded by study visit) and

external Canadian validation cohort (Panel B). Association of the ELISA-based quantification of the absolute ITIH3 abundance (mg/ml,

log-scale) with the 6MWT scores (Panel C) and grip strength measures (left (Panel D) and right (Panel E) hand) in the external Canadian

validation cohort samples. Association of the MS-quantified ITIH3 relative abundance levels with the CTG-repeat length in the

OPTIMISTIC (red) and external Canadian validation (blue) cohorts (Panel F). Rho indicates Pearson’s correlation coefficient.

Table 5. Statistical performance estimates of multivariate predictions.

Outcome VIP (%) Number of Predictors Train RSQ Train a. RSQ Train RMSE Test RSQ Test RMSE Val RSQ Val RMSE

CTG 90 5 0.2382 0.2213 0.872 0.1887 0.9003 0.0972 0.9274

80 10 0.318 0.2858 0.8195 0.2544 0.8632 −0.0287 0.9863

70 12 0.348 0.3083 0.7932 0.2734 0.8416 0.1566 0.8779

60 13 0.3588 0.3162 0.79 0.2903 0.8318 0.1734 0.8692

50 18 0.3718 0.3126 0.782 0.2645 0.8513 0.2072 0.8512

6MWT 90 5 0.205 0.1873 0.8932 0.2179 0.883 0.1476 0.981

80 10 0.3225 0.2905 0.8237 0.2861 0.8499 0.1719 0.9469

70 12 0.3201 0.2786 0.8178 0.2588 0.8362 0.2629 0.9165

60 13 0.3208 0.2757 0.8176 0.2561 0.8377 0.2565 0.9205

50 18 0.3392 0.2769 0.8067 0.2759 0.8305 0.3264 0.8761

*VIP=Variable Inclusion Probability.

**Train=OPTIMISTIC baseline dataset; Test=OPTIMISTIC 10 M dataset; Val=Validation dataset.

***RSQ=R-squared; a. RSQ=Adjusted R-squared; RMSE=Root Mean Square Error.
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(Cadherin-5, Fibronectin; SFigure 8, panel A). Upon closer
inspection, these proteins did not show convincing differences
between the study groups either (SFigure 8, panels B-C). Since
samples were not evenly distributed across well plates for
study timepoint (SFigure 3, panel B), the random effect asso-
ciated with the ‘well plate’ variable may have confounded this
finding. However, applying the same statistical frameworks
without the random plate effect did not yield additional findings
for either CBT or GET.

Combined set of proteins associated with both
CTG-repeat length and 6MWT score
We subsequently tested whether a set of protein groups
would show stronger associations than individual biomar-
kers. Since the ideal set of biomarkers is strongly associated
with both the disease pathology (disease relevant) and the
clinical phenotype (clinically relevant), a machine learning
based algorithm (bootstrap enhanced Elastic-Net regres-
sion) was implemented to find a minimum subset of pro-
teins that together optimally explain the variance of both
the CTG-repeat length (disease pathology) and 6MWT
scores (clinical phenotype). As a starting point, we consid-
ered 47 protein groups that were significantly associated
with both the CTG-repeat length (model 2) and the
6MWT score (model 3). We subsequently selected the 42
protein groups that were also unambiguously identified in
the external Canadian validation dataset. In an effort to har-
monize the distributional differences for the CTG-repeat
length and 6MWT scores between the OPTIMISTIC and
external Canadian validation dataset, these two dependent
variables were box-cox transformed to more closely

resemble a normal distribution, and subsequently standar-
dized (SFigure 1, panels D-F; SFigure 2, panels D-F). For
each of the 42 protein groups, a Variable Inclusion
Probability (VIP) score was generated based on how fre-
quently the protein group was selected as a predictor for
both CTG-repeat and 6MWT score across 50,000 statistical
model fits (10 imputed datasets * 5000 bootstrap distribu-
tions). These VIP scores were purely based on the
OPTIMISTIC baseline dataset, and their predictive value
was subsequently evaluated on the OPTIMISTIC 10M
(internal validation, test set) and the external Canadian val-
idation cohort (external validation set) samples (Table 5).

We observed that up to 32% (Adjusted R-squared in the
OPTIMISTIC training set) of the variance in CTG-repeat
length can be explained with a set of only 13 protein
groups (Table 5). When evaluating the performance of
these protein groups in the internal and external validation
data, we see a (slightly) lower amount of variance explained
(respective R-squared values of 29 and 17%). Interestingly,
the same set of 13 protein groups can also explain up to
28% of the variance in the 6MWT scores of the
OPTIMISTIC training set (Adjusted R-squared), while
also showing similar performance for the internal and exter-
nal validation data (both R-squared values are 26%). The 13
protein groups, together with the regression coefficient esti-
mates for both the CTG-repeat and 6MWT scores of the
OPTIMISTIC baseline model are summarized in Table 6.
Univariate prediction models of the CTG-repeat and
6MWT with these 13 protein groups satisfied all assump-
tions of linear regression as assessed by the R-package
gvlma after removal of one outlier sample identified
through visual inspection of Cook’s distances.44

Table 6. Coefficient estimates of multivariate OPTIMISTIC baseline CTG-repeat and 6MWT prediction.

Protein group ID

[Gene name] Protein name

CTG

estimate

CTG Std.

Error

CTG

p-value

6MWT

estimate

6MWT Std.

Error

6MWT

p-value

(Intercept) - −0.0496 0.0555 0.3727 0.006 0.0594 0.9197

IGFALS Insulin-like growth factor-binding

protein complex acid labile subunit

0.0366 0.0686 0.5947 0.2916 0.0734 0.0001

LGALS3BP Galectin-3-binding protein 0.1088 0.0653 0.0976 −0.2212 0.0699 0.0018

IGLV3-9;IGLV3-21 Immunoglobulin lambda variable 3-9;

3-21

−0.1393 0.0636 0.0296 0.0505 0.068 0.4592

IGHV3-49 Immunoglobulin heavy variable 3-49 −0.1886 0.0634 0.0033 0.1062 0.0679 0.1191

A2M Alpha-2-macroglobulin 0.1289 0.0632 0.0426 0.1349 0.0676 0.0474

ITIH3 Inter-alpha-trypsin inhibitor heavy chain

H3

−0.0696 0.0705 0.3244 −0.1732 0.0754 0.0227

CD14 Monocyte differentiation antigen CD14 0.1754 0.0668 0.0094 −0.1392 0.0715 0.0531

C3 Complement C3 0.0033 0.0854 0.9695 −0.1619 0.0914 0.0782

HPX Hemopexin 0.0707 0.0731 0.335 −0.0469 0.0783 0.5501

HP;HPR Haptoglobin; Haptoglobin-related

protein

0.0188 0.0661 0.7759 −0.1318 0.0707 0.0638

IGLV8-61 Immunoglobulin lambda variable 8-61 −0.0867 0.061 0.1569 −0.0219 0.0653 0.7371

ORM1 Alpha-1-acid glycoprotein 1 0.1297 0.0669 0.0541 0.0423 0.0717 0.5554

C4A;C4B Complement C4-A; C4-B 0.1681 0.0738 0.0239 0.0229 0.079 0.7721
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Discussion
This study identified and externally validated a large set of
candidate protein biomarkers in the serum of DM1 patients.
Low-invasive biomarkers to monitor the response to treat-
ments currently in development for DM1 are much needed,
as they may demonstrate a faster and more homogeneous
response compared to clinical outcome measures.48

The serum appeared to be a rich source of low-invasive
disease-relevant biomarkers. This is highlighted by the
finding that the strongest driver of variance in protein
group expression (PC1) was linked to the CTG-repeat
length, and that 161 out of the 259 protein groups were sig-
nificantly associated with the CTG-repeat in the
OPTIMISTIC cohort. Most importantly, twelve of these
significant associations were confirmed in an independent
set of 56 Canadian cohort samples measured in a different
laboratory on a different MS instrument. This much
smaller validated set of protein groups is most likely the
result of the substantially smaller cohort size, leading to a
much lower statistical power to detect and validate
weaker associations. The strongest association was found
with a protein group matched with IGHG1;IGHG3;
IGHG4, confirming the known hypogammaglobulinemia
in DM1. Although hypogammaglobulinemia in DM1 has
been known for a long time, its underlying mechanism
remains poorly understood. Serum comparisons of DM1
patients versus healthy controls have shown that the differ-
ences predominantly affect total IgG, IgG1, and IgG3, with
no differences observed for other immunoglobulins (IgA,
IgM, IgG2 and IgG4).15,17 Our results demonstrate that
hypogammaglobulinemia is worse in more severely
affected patients with longer CTG-repeats, a finding
which has been reported before but was not consistently
found in all studies.15,17,49 Rather than a deficient produc-
tion, hypogammaglobulinemia in DM1 appears to be
caused by a more rapid breakdown of immunoglobulins,
with one study also suggesting the possibility of extravascu-
lar redistribution due to increased capillary permeabil-
ity.17,50,51 While the exact mechanism of this
disease-relevant finding remains unknown, the confirmed
hypogammaglobulinemia strongly supports the validity of
the untargeted MS-based approach used in this study for
biomarker discovery.

A novel finding of our biomarker study is the elevation
of protein groups associated with several components of
the complement system in DM1 patients. Not only was
this elevation positively correlated with the CTG-repeat
length, but also with clinical scores reflecting reduced func-
tional capacity. Moreover, the top immunoglobulins and
complement components or factors both exhibited consist-
ent patterns of respective down- and up-regulation in
DM1 patients compared to healthy controls. While consist-
ent, these findings must be interpreted with caution, given
the small and heterogeneous cohort of the control group,

particularly regarding age. The implemented MS workflow
can only measure the abundance of complement proteins
but cannot distinguish between unactivated (intact) and
activated (cleaved) complement components. Complement
activation markers arise from proteolytic cleavage, but the
resulting peptides are indistinguishable from those of unac-
tivated proteins, since the trypsin enzyme used in sample
preparation cleaves at the same sites. Therefore, higher
levels of complement proteins do not necessarily indicate
increased complement activity but could also reflect
increased hepatic production or reduced consumption of
complement proteins. In addition to central complement
components (C3, C5), several important regulators of the
complement system, such as Complement Factor I and H,
show a similar increase in abundance. In case of comple-
ment activation, this would suggest a controlled form of
chronic inflammation. Complement activation is present
in many chronic conditions such as type 2 diabetes,
obesity and autoimmunity, all known comorbidities for
DM1.52,53

We can only speculate on the exact causes of the potential
complement activation in DM1. It may be due to a more
general pro-inflammatory status in DM1 patients.54,55 Future
research including a broader panel of immunological
markers, including leukocyte counts and CRP, could poten-
tially further distinguish between a general pro-inflammatory
response versus complement specific alterations. On the other
hand, increased serum levels of interleukin 6 (IL-6), a key
regulator of the acute phase response and hepatic complement
protein synthesis, have been previously shown to significantly
correlate with muscle weakness and functional capacity lim-
itations in DM1.56 Further supporting the association with
muscle pathology, the complement system is known to con-
tribute to both fibrotic tissue remodelling and muscle fibre
necrosis, and monitoring muscle fibrosis through serum peri-
ostin has recently been proposed as a novel stratification bio-
marker for DM1.57–59 Another notable finding was the
significant negative association between ITIH3 levels and
6MWT performance in the OPTIMISTIC cohort, which
was, however, only partially and indirectly validated by sig-
nificant negative ELISA-based correlations between ITIH3
and grip strength. ITIH3 has recently been identified as a
potential biomarker for disease activity in Myasthenia
Gravis (MG).46 Given the proposed role of ITIH3 in the
early stages of complement activation, it has been hypothe-
sized that elevated levels may be the result of an enhanced
negative feedback loop in response to dysregulated comple-
ment activation. Considering the broad biological functions
and disease associations of ITIHs, the authors further con-
cluded that it is not a disease-specific marker, but rather has
a potential use in already diagnosed patients to monitor
disease activity. Our study in DM1 patients supports this con-
clusion. Furthermore, in addition to MG, dysregulation of the
complement system has also been associated with other
neuromuscular disorders such as Facioscapulohumeral
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muscular dystrophy (FSHD), Amyotrophic Lateral Sclerosis
(ALS), and Duchenne Muscular Dystrophy (DMD).60–62

Even more so, modulators of the complement system are an
active field of study and may provide valuable disease-
modifying treatments within the broader neuromuscular
field.61,62

Given the independent associations of the complement
proteins with markers for functional capacity, one may
also hypothesize that these changes are not exclusively
disease associated. Also within the healthy populations,
clear associations are described between higher fitness
levels and decreased C3 levels in blood, as well as increased
C1q levels with reduced muscle strength.63 Our mediation
analysis indicated that BMI explained part of the associ-
ation between physical activity and complement levels
(including C3); however, the predominant effect was
driven by the direct link between 6MWT performance and
complement protein group expression. As a consequence,
the recently demonstrated positive clinical effects of exercise
in DM1 may also act as an independent disease modifier by
attenuating complement activation.64–66 Although some
patients in the OPTIMISTIC intervention group also partici-
pated in a graded exercise therapy (GET) program, this unex-
pectedly had no significant effect on the serum proteome.
This GET program was delivered to only a small number
of patients in a highly individualized manner and did not
yield clinical benefits beyond those achieved with cognitive
behavioural therapy (CBT) alone.8 We therefore hypothesize
that a more standardized training program in a larger cohort is
necessary to detect meaningful clinical improvement that is
linked to complement modulation.

Despite the large number of protein groups being asso-
ciated with markers of functional capacity, virtually no asso-
ciations were found with other important DM1
disease-relevant domains such as apathy, cognition, fatigue,
pain or social measures. While the blood-brain-barrier may
prevent the detection of specific disease-associated proteins
from the central nervous system (CNS) in serum, another
well-studied CNS-derived biomarker, Neurofilament Light
chain, is detectable in blood.67 More sensitive and targeted
detection methods quantifying absolute protein abundance
may be necessary to identify molecular biomarkers associated
with neurocognitive phenotypes. Considering the significant
improvements of the DM1-Activ-C and the 6MWT scores
in the OPTIMISTIC study, in combination with the abundant
number of significant associations between protein groups and
these outcome measures, it was surprising that no
CBT-induced effects were observed in the blood proteome.8

This was particularly surprising given that a very large
number of genes were associated with the average interven-
tion response in our previous transcriptomic study.14 A con-
founder in the proteomic study was the uneven distribution
of the OPTIMISTIC samples across the MS plates with
regard to the study time point. Since this MS plate effect
was regressed out, possible CBT-induced effects might have

also been masked. Yet, peptide-level quantification seemed
to suffer more from technical plate effects than protein-level
quantification, and a supplemental analysis without regressing
out the well plate effect did not reveal significant associations
either. On the other hand, the general lack of overlap in iden-
tified biomarkers between our transcriptomic and proteomic
study is likely the result of several biological and technical
reasons. On a biological level, many serum proteins are
either produced in the liver or secreted by various tissues
and organs, whereas blood-based RNA-seq mostly reflects
the leukocyte transcriptome. On a technical level, many of
the mRNA biomarkers code for low-abundant proteins like
cytokines, which are not detectable by our current
MS-based methods.

Given that the significant associations with both the
CTG-repeat and the 6MWT were individually relatively
weak, we hypothesized that the clinical utility of these candi-
date biomarkers could be improved by finding a minimum
combined subset of protein groups. Moreover, by combining
multiple proteins, random variation in individual expression
levels is more likely to average out, making the biomarker set
amore robust indicator of disease state than individual proteins.
The implemented bootstrap-enhanced Elastic-Net algorithm
has robustly led to the identification of 13 protein groups that
together can explain up to 32% and 28% of the variance of
the CTG-repeat and 6MWT, respectively, while also perform-
ing comparatively well on the internal validation data. It is
crucial to interpret the internal validation results with caution,
as true independence is not achieved because many measure-
ments originate from the same patients at different time
points. Yet, even for the external validation, up to 17% and
26% of the CTG-repeat and 6MWT variance, respectively,
were explained with our OPTIMISTIC baseline model.
Given the inherent variability in protein expression, as well
as for the CTG-repeat and 6MWT measurements, the amount
of variance explained is in line with the expectations and sup-
ports the use of a combined set of proteins over individual pro-
teins for therapeutic biomarker discovery. To establish their
utility in clinical trials, further research is needed on longitu-
dinal and potentially non-linear relationships between
changes in the blood proteome and clinical outcomes.
Additionally, future studies should examinehow these circulat-
ing protein-based biomarkers correspond to the expression of
biomarkers in other relevant tissues such as RNA-splicing
abnormalities in muscle, as integrating proteomic signals
with tissue-specific molecular readouts may provide deeper
mechanistic insight and strengthen their potential utility in
DM1 clinical research.

Conclusions
Our study extends the repertoire of lab-based biomarkers,
including mRNA biomarkers and protein biomarkers, for
potential use as surrogate endpoints in DM1 trials.14,67,68

We have performed careful internal and external validation
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to confirm the robustness of the identified protein biomar-
kers. Going beyond individual protein associations, we
demonstrated that a set of proteins is most likely to meet
the statistical criteria required for surrogate clinical trial
endpoints. Further longitudinal studies are needed to valid-
ate these findings, and methods that enable the absolute
quantification of selected proteins are essential to advance
their clinical utility.
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47. Gkrinia EMM and Belančić A. The mechanisms of chronic
inflammation in obesity and potential therapeutic strategies:
a narrative review. Curr Issues Mol Biol 2025; 47: 357.

48. Pascual-Gilabert M, Artero R and López-Castel A. The myo-
tonic dystrophy type 1 drug development pipeline: 2022
edition. Drug Discov Today 2023; 28: 103489.

49. Pan-Hammarström Q, Wen S, Ghanaat-Pour H, et al. Lack of
correlation between the reduction of serum immunoglobulin
concentration and the CTG repeat expansion in patients with
type 1 Dystrofia Myotonica. J Neuroimmunol 2003; 144:
100–104.

50. Wochner RD, Drews G, Strober W, et al. Accelerated break-
down of immunoglobulin G (IgG) in myotonic dystrophy: a
hereditary error of immunoglobulin catabolism. J Clin Invest
1966; 45: 321.

51. Suzumura A, Yamada H, Matsuoka Y, et al. Immunoglobulin
abnormalities in patients with myotonic dystrophy. Acta
Neurol Scand 1986; 74: 132–139.

52. Shim K, Begum R, Yang C, et al. Complement activation in
obesity, insulin resistance, and type 2 diabetes mellitus.
World J Diabetes 2020; 11: 1.

53. Thurman JM, Frazer-Abel A and Holers VM. The evolving
landscape for complement therapeutics in rheumatic
and autoimmune diseases. Arthritis Rheumatol 2017; 69:
2102–2113.

54. Nieuwenhuis S, Widomska J, Blom P, et al. Blood transcrip-
tome profiling links immunity to disease severity in myotonic
dystrophy type 1 (DM1). Int J Mol Sci 2022; 23: 3081.

55. Ozimski LL, Sabater-Arcis M, Bargiela A, et al. The hall-
marks of myotonic dystrophy type 1 muscle dysfunction.
Biol Rev 2021; 96: 716–730.

56. Conte TC, Duran-Bishop G, Orfi Z, et al. Clearance of
defective muscle stem cells by senolytics restores myogen-
esis in myotonic dystrophy type 1. Nat Commun 2023;
14: 4033.

van As et al. 21



57. Llorián-Salvador M, Byrne EM, Szczepan M, et al.
Complement activation contributes to subretinal fibrosis
through the induction of epithelial-to-mesenchymal transition
(EMT) in retinal pigment epithelial cells. J Neuroinflammation
2022; 19: 182.

58. Engel AG and Biesecker G. Complement activation in
muscle fiber necrosis: demonstration of the membrane
attack complex of complement in necrotic fibers. Ann
Neurol 1982; 12: 289–296.

59. Nguyen CDL, Jimenez-Moreno AC, Merker M, et al.
Periostin as a blood biomarker of muscle cell fibrosis, cardio-
myopathy and disease severity in myotonic dystrophy type 1.
J Neurol 2023; 270: 3138–3158.

60. Wong CJ, Wang L, Holers VM, et al. Elevated plasma com-
plement components in facioscapulohumeral dystrophy.Hum
Mol Genet 2022; 31: 1821–1829.

61. Dalakas MC, Alexopoulos H and Spaeth PJ. Complement in
neurological disorders and emerging complement-targeted
therapeutics. Nat Rev Neurol 2020; 16: 601–617.

62. Lee JD and Woodruff TM. The emerging role of complement
in neuromuscular disorders. Semin Immunopathol 2021; 43:
817–828.

63. Rothschild-Rodriguez D, Causer AJ, Brown FF, et al. The effects
of exercise on complement system proteins in humans: a
systematic scoping review. Exerc Immunol Rev 2022; 28:
1–35.

64. Girard-Côté L, Gallais B, Gagnon C, et al. Resistance training
in women with myotonic dystrophy type 1: a multisystemic
therapeutic avenue. Neuromuscul Disord 2024; 40: 38–51.

65. Di Leo V, Lawless C, Roussel MP, et al. Resistance exercise
training rescues mitochondrial dysfunction in skeletal muscle
of patients with myotonic dystrophy type 1. J Neuromuscul
Dis 2023; 10: 1111–1126.

66. Mikhail AI, Nagy PL, Manta K, et al. Aerobic exercise elicits
clinical adaptations in myotonic dystrophy type 1 patients
independently of pathophysiological changes. J Clin Invest
2022; 132: e156125.

67. Nicoletti TF, Rossi S, Vita MG, et al. Elevated serum
neurofilament light chain (NfL) as a potential biomarker of
neurological involvement in myotonic dystrophy type 1
(DM1). J Neurol 2022; 269: 5085–5092.

68. Heatwole CR, Miller J, Martens B, et al. Laboratory abnor-
malities in ambulatory patients with myotonic dystrophy
type 1. Arch Neurol 2006; 63: 1149–1153.

22 Journal of Neuromuscular Diseases


