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Background and objective: Structured clinical data is essential for research and 

informed decision-making, yet medical reports are frequently stored as 

unstructured free text. This study compared the performance of BERT-based 

and generative language models in converting unstructured breast imaging 

reports into structured, tabular data suitable for clinical and 

research applications.

Methods: A dataset of 286 anonymised breast imaging reports in Spanish was 

translated into English and used to evaluate five transformer-based models 

pre-trained in medical data: BlueBERT, BioBERT, BioMedBERT, BioGPT and 

ClinicalT5. Two natural language processing approaches were explored: 

classification of 19 categorical variables (e.g. diagnostic technique, report 

type, family history, BI-RADS category, tumour shape and margin) and 

extractive question answering of four entities (patient age, patient history, 

parenchymal distortion or asymmetries, and tumour size). Multiple 

fine-tuning strategies and input configurations were tested for each model, 

and performance was evaluated using accuracy and macro F1 scores.

Results: BioGPT demonstrated the best performance in classification tasks, 

achieving an overall accuracy of 96.10% and a macro F1 score of 90.30%. 

This was significantly better than BERT-based models (p = 0.012 for accuracy 

and p = 0.017 for F1), particularly in underrepresented categories such as 

tumour descriptors. In extractive question answering tasks, BioGPT achieved 

an average accuracy of 93.24%, which is slightly lower than that of 

BioMedBERT and ClinicalT5, but not significantly so. Notably, BioGPT could 

perform classification and extractive question answering simultaneously, 

which is a capability unavailable in BERT-like models.

Conclusions: Generative models, particularly BioGPT, offer a robust and 

scalable approach to automating the extraction of structured information 

from unstructured breast imaging reports. Their superior performance, 

combined with their ability to handle multiple tasks concurrently, highlights 

their potential to reduce the manual effort required for clinical data curation 

and to enable the efficient integration of imaging data into research and 

clinical workflows.
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1 Introduction

Breast cancer is the most common cancer in women, with an 

estimated 2.3 million cases worldwide in 2022 [1]. The 5-year 

survival rate is 90% overall; it rises to 99% if the cancer is 

detected at an early stage,1 but falls to 86% if it has spread to 

regional lymph nodes and to 29% if it has spread further. Early 

detection is therefore of paramount importance.

Several techniques are used to diagnose breast cancer, 

mammography being the most effective screening method. 

However, its sensitivity decreases in fibroglandular breasts. In 

these cases, ultrasound can complement mammography by 

detecting nodules that may have been missed or by providing 

more detail about a suspicious area identified on the mammogram.

Clear and consistent reporting of imaging findings is essential 

for accurate diagnosis, effective communication among healthcare 

providers and optimal patient care [2]. To this end, the American 

College of Radiology proposed the Breast Imaging Reporting and 

Data System (BI-RADS) in 1993, ensuring consistent terminology, 

assessment and follow-up recommendations. The 5th and most 

recent edition of BI-RADS, published in 2013, introduced 

support for ultrasound and magnetic resonance imaging (MRI) 

reporting [3]. Although standardisation facilitates storing data in 

a structured way that could allow its use for research, most data 

in hospitals is only stored in free-text medical reports. 

Furthermore, despite there have been many attempts to 

standardise and structure these reports, adoption has failed due 

to concerns about work8ow and productivity [4]. For research 

purposes and more efficient clinical settings, it is important to 

clean and structure the data, which is a time-consuming task 

that is often not affordable and may not even be feasible for 

large datasets.

To help with this task, natural language processing (NLP) has 

gained popularity in recent years, with the aim of predicting 

patient outcomes, augmenting hospital triage systems and 

generating diagnostic models for early disease detection [5]. 

Reichenpfader et al. [6] conducted a comprehensive review of 

large language model (LLM) approaches for extracting 

information from radiology reports. They identified only 34 

studies up to August 2023, of which just two focused on breast 

imaging. Similarly, Saha et al. [7] conducted a scoping review 

on the application of NLP in breast cancer radiology reports, 

cataloguing 44 studies published between 1997 and 2022. 

However, the rapid advancement of LLM architectures means 

that more capable models are now available. Notably, Lee et al. 

(2025) analysed 69 studies that employed LLMs for radiology 

report structuring and reported that prompt engineering 

significantly improved model accuracy across modalities [8].

Since Bidirectional Encoder Representations from 

Transformers (BERT) were proposed in 2019 [9], achieving 

state-of-the-art results in a range of NLP tasks, most natural 

language problems have been solved using this or similar 

architectures. However, due to the technical nature of medical 

language, direct application of these models usually produces 

unsatisfactory results [10]. For this reason, BERT models have 

been adapted to medical corpora by pre-training them on 

domain-specific data, thereby improving their performance. 

Some of these models are BlueBERT [11], BioBERT [10] and 

BioMedBERT [12].

Prior work in structuring breast cancer reports using NLP 

includes Kuling et al. [13], who trained a BERT model to 

segment the reports into sections such as “title,” “patient 

history,” “prior imaging reference,” etc. They then extracted 

modality/procedure, previous cancer, purpose of examination, 

menopausal status, density and background parenchymal 

enhancement from these sections using a classifier consisting of 

a BERT-based encoder followed by a dense neural network 

classifier. Their model outperformed both classic BERT and 

BioClinical BERT [14] in both segmentation and classification. 

In their recent work, Reichenpfader et al. [15] applied 

BERT-like models that had been further pre-trained with frame 

semantics in order to extract structured information from 

German mammography reports. This approach achieved high 

F1-scores, thereby demonstrating its feasibility. They used a 

German-language model [medBERT.de [16]], which was initially 

pre-trained on around 4.7 million medical documents. They 

then further pre-trained the model using masked language 

modelling on a corpus of 219,029 radiology reports. The model 

was then fine-tuned for two tasks: extractive question answering 

using 210 manually annotated mammography reports and 

named entity recognition based on a frame semantics schema. 

To achieve this, the reports were annotated with 14 distinct 

clinical fact types, each consisting of an “anchor” (the core 

clinical concept) and associated “modifiers” (additional details 

such as location, severity or timing). This resulted in a total of 

40 entity types (14 anchor types and 26 modifier types).

More recently, generative LLMs have gained popularity, 

especially since the advent of ChatGPT [17], due to their 

versatility in different tasks without fine-tuning. As explained 

for BERT-like models, some of these generative models have 

been adapted for biomedical data, such as BioGPT [18] and 

ClinicalT5 [19]. BioGPT is a GPT-2 further pre-trained on 15 

million PubMed abstracts and has achieved state-of-the-art 

results on PubMedQA [20] and better document classification 

results on the HoC corpus [21] than BioBERT and 

BioMedBERT. ClinicalT5 is a sequence-to-sequence model 

further pre-trained on 2 million clinical notes from the 

MIMIC-III [22] dataset, with initial weights from the 

SciFive-PubMed-PMC [23] model.

For example, Choi et al. [24] used ChatGPT 3.5 with prompts 

designed to extract clinical information from surgical pathology 

and ultrasound breast cancer reports, with time- and cost- 

efficient results compared to manual annotation. Sanli et al. [25] 

also used ChatGPT-4o to assign BI-RADS malignancy categories 

1https://www.cancer.org/cancer/breast-cancer/understanding-a-breast- 

cancer-diagnosis/breast-cancer-survival-rates.html, retrieved on 20/07/ 

2025
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to MRI reports, concluding that ChatGPT can interpret 

unstructured breast MRI reports. Miaojiao et al. [26] conducted 

a similar study using breast ultrasound images. In one of their 

experiments, they provided ChatGPT with BI-RADS 

descriptions of nodules to classify their malignancy, achieving 

an accuracy of 80:63%. Liu et al. [27] Used knowledge-driven 

prompts and Qwen-7b-Chat [28] to extract BI-RADS 

categories from MRI reports. They demonstrated that with 

knowledge-based reports they significantly improved the 

information extraction performance for most categories, but 

obtained worse results in some of them.

In another instance, Hussain et al. [29] translated Spanish 

reports into English using Google Translate and compared 

classical methods (TF-IDF with a classifier), BERT and BioGPT 

for the task of extracting the BI-RADS malignancy estimate 

from the reports. BioGPT gave the best results, followed by 

BERT. However, the comparison might have been unfair, since 

it included a model further pre-trained on medical data 

(BioGPT) against one only pre-trained on generic data (BERT).

Our study aims to identify the most effective method of 

converting free-text breast imaging reports into structured data. 

Structured data is easier to process for research purposes and can 

be particularly valuable in clinical settings. For example, it enables 

the efficient search for patients with specific characteristics and 

facilitates comparisons between patients with similar findings.

This study makes several novel contributions to the processing 

of breast imaging reports. Firstly, we compare domain-specific 

BERT models and medical generative models in classification and 

extractive question answering tasks. Secondly, we explore various 

input configurations for each model type. Thirdly, to the best of 

our knowledge, we are the first to extract ultrasound detailed 

BI-RADS tumour descriptors, such as shape and margin, directly 

from free-text reports. We evaluate these models using both 

cross-validation and testing experiments across 19 classification 

tasks and four extractive question answering tasks.

2 Methods

In this study, we have extracted relevant information from 

reports using two approaches: classification and extractive question 

answering. We used classification for entities with a discrete 

number of possible values or categories, such as the diagnostic 

technique (e.g., mammography, ultrasound, or both). However, 

some data could not be categorised; for example, numerical values 

(e.g., age or size) and free text (e.g., medical history). In these 

cases, we used extractive question answering, which directly returns 

the part of the report containing the answer. We begin this section 

by analysing the various models employed in this study, given that 

the data preprocessing step is dependent on the type of model.

2.1 Models

We compared three main different approaches to modelling.

As a baseline, we initially adopted Bag-of-Words (BoW)-based 

models, which are limited to classification. These models represent 

each report using a TF-IDF (Term Frequency-Inverse Document 

Frequency) vector, which captures the relative frequency of 

words in the document, weighted by their importance across the 

entire dataset. We then used a deep neural network with a 

hidden layer of size 64 and GELU activation function [30] and 

entity-specific dense layers (i.e., one for diagnostic technique, 

another for report type, etc.) with softmax activations.

The second approach consisted of BERT-like models. We used 

the following models further pre-trained on medical data: 

BioBERT [10], BioMedBERT [12] and BlueBERT [11]. We 

fine-tuned each model for classification and extractive question 

answering tasks separately. For classification, we replaced the 

final layer of the further pre-trained BERT model with a 

classification head specific to the new task. This head’s input is 

the pooled [CLS] token, the hidden representation of the special 

[CLS] token that BERT automatically inserts at the start of every 

input sequence. During training, BERT learns to encode the 

overall meaning of the entire input sequence into the [CLS] 

token. Consequently, its final hidden state captures global 

contextual information from the entire input. Since BERT was 

originally trained with this token acting as the input for 

classification during pre-training (e.g., predicting the next 

sentence), it has become standard practice to use the [CLS] 

token representation for subsequent classification tasks. We tried 

two different architectures for the classification head: one with 

entity-specific output layers (like in the BoW model) and one 

with a single output layer of size 63 (the sum of the cardinality 

of all entities) with a softmax activation function. It is worth 

noting that the former architecture allows for the classification 

of all entities at once, whilst the latter architecture allows for 

one single output at a time. The latter architecture allows for 

the inclusion of context information in the model input. For 

example, when extracting “diagnostic technique,” we can append 

“Additional information: biopsy reports, simple cysts and 

analysis of lymph or axillary nodes are only seen on ultrasound” 

to the input. For this approach, it is necessary to specify in the 

input what entity the model should focus on. More details are 

given in Section 2.2.2. We fine-tuned the BERT-like models by 

freezing the pre-trained layers for the first five epochs and 

unfreezing them for the final four to eight epochs.

The core architecture of the BERT models remains consistent 

for both extractive question answering and classification tasks, 

with only the task-specific output layers differing. In the case of 

question answering, a single question is posed for each clinical 

report. For example, the question could be “Does the patient’s 

age appear in the following breast medical report?” The model is 

fine-tuned to predict the start and end positions of the answer 

within its context. To achieve this, the task-specific head operates 

on the hidden states of all the tokens in the input sequence. Two 

parallel token-level classifiers are applied: one for predicting the 

start token and one for the end token of the answer. This 

structure also allows information to be added to the reports.

In the third and final approach, we explored the use of 

generative models such as BioGPT [18] and ClinicalT5 [19]. 
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These models can be fine-tuned to perform both tasks—extractive 

question answering and classification—simultaneously. BioGPT is 

a decoder model trained to generate the next token based on the 

prior tokens, while ClinicalT5 is an encoder-decoder model. For 

BioGPT we tried two different fine-tuning methods: 

• A two-stage fine-tuning procedure: first, we fine-tuned the 

models to generate the next word in the report, allowing 

them to learn the structure and semantics of the language. 

Second, we fine-tuned the models to generate the next word 

in the response, focusing specifically on the final classification 

or extractive question answering task.

• A one-stage fine-tuning procedure: we skipped the first stage 

and directly fine-tuned the model to produce the answer. 

This was the fine-tuning method used in ClinicalT5, since 

this model does not accept the two-stage fine-tuning procedure.

More information on the model fine-tuning parameters can be 

found in Appendix 1.

2.2 Data preparation

In collaboration with two hospitals in Madrid (HM 

Montepríncipe and HM Vélazquez), we obtained 286 breast 

imaging reports in Spanish corresponding to 250 patients. 

Hospital technicians only extracted written medical reports and 

all personally identifiable information (names, identification 

numbers, and dates) was removed before extraction, with ethical 

approval from HM Hospitals. The authors received the 

information already anonymized and could not be re-identified 

by them, as they did not have access to the hospital database.

2.2.1 Data cleaning and labelling

Before analysing the data, we divided them into 216 for 

cross-validation and 70 for testing (approximately 75% of the 

total samples for fine-tuning and 25% for testing), avoiding 

introducing reports from the same patient in both datasets. Test 

data was exclusively used for estimating the performance of the 

final models.

Reports could refer to ultrasound, mammography (2D, 

tomosynthesis and both) or both. There were biopsy reports, 

nodal staging ultrasound reports and more general reports, such 

as screening or 6-month follow-up over a nodule. The reports 

followed different structures. Some could be divided into sections 

on diagnostic tools, reason for consultation, results and 

conclusions, sometimes clearly distinguished by headings. Other 

reports had the same structure repeated twice, once for 

mammography and once for ultrasound. However, some of them 

would have no apparent structure or order and would mix 

different parts in the same sentence, making it difficult to divide 

the task into segmentation and classification, as in Kuling et al. [13].

The reports were automatically pre-processed according to a 

set of predefined text-cleaning rules, which are described below:

• We created a dictionary of common abbreviations in the field 

to replace the acronyms with their meaning.

• We removed line breaks, replacing them by a period if the first 

letter of the word was in uppercase and a space if not (reports 

often had line breaks in the middle of a sentence).

• We removed punctuation and space errors (double spaces, 

spaces after punctuations, etc.).

• We converted sentences that were completely uppercase 

to lowercase.

• We standardised the different ways of writing BI-RADS 

(BIRADS, birads, bi-rads, etc.) and made some letters 

uppercase, such as the mammography density (A, B, C, D) or 

the category in BI-RADS 4 (A, B, C).

• We translated the reports into English to take advantage of the 

more robust pre-trained models available in this language. For 

translation of the de-identified reports we used the DeepL API 

Pro service (DeepL SE, Cologne, Germany). The service is 

GDPR-compliant, operates under European data-protection 

regulations and guarantees that submitted texts are not stored 

or used for model-training.

To label the reports, we first created a rule-based model using 

regular expressions to extract some of the characteristics: age of 

the patient, diagnostic technique, type of report, family history, 

other type of history (previous cancer, biopsy, etc.), having a 

prosthesis and the final BI-RADS classification. However, these 

data could only be extracted in the semi-structured reports and 

it was necessary to supervise, correct and complete some of the 

results manually. This automated step served to alleviate the 

manual workload by generating the initial tabular dataset. In a 

second round, an expert with 4 years of experience in breast 

cancer research manually annotated the data. We distinguished 

between mammographic findings and ultrasound findings:

• Mammography: breast density, benign calcifications, suspicious 

calcifications, lymph nodes, parenchymal distortion or 

asymmetries, and nodules.

• Ultrasound: breast density, simple cysts, duct ectasia, benign 

lymph nodes, suspicious lymph nodes and tumours, as well 

as the BI-RADS descriptors and characteristics mainly used 

by the radiologists for the tumours: shape, margin, 

echogenicity, size, if known and stability.

Table 1 shows the 19 categorical variables with their categories and 

Table 2 shows the four extractive question answering variables 

with some examples. The imaging modality in which these 

variables could be found was added to both tables. 

Mammography density, ultrasound density, shape, margin and 

echogenicity have the “unknown” label to avoid hallucinations. 

Since some of the reports do not give these characteristics, 

fine-tuning only the reports that would result in the model 

giving one of these outputs for new reports, even if the report 

does not contain this information. In the extractive question- 

answering task, we assigned the label “not present” to categories 

that did not appear in the report, and the models were given 

this output if they did not find a match.

2.2.2 Data preprocessing
Data preprocessing was tailored to each model. For the BoW 

model, the goal was to focus on the most informative words in 
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each report. To achieve this, we first converted all words to 

lowercase and removed punctuation. Stop words, i.e., articles 

and prepositions, were also removed, as they do not contribute 

meaningfully to classification in a BoW representation, which 

ignores word order and syntax. Next, we applied stemming to 

reduce words to their root form. We then generated a 

vocabulary of all the words in the dataset, discarding words that 

appear only once. Finally, each report was converted to the 

TF-IDF vector representation. The targets or classification 

outputs were encoded as one-hot vectors so that the model 

could be trained with a softmax activation function.

For BERT-like and generative models, we did not modify the 

reports apart from the initial cleaning. Each model uses its own 

tokeniser to convert the input report into a sequence of embeddings, 

i.e., dense vector representations that capture the meaning and 

context of words. For the model architectures that allow 

adding information to the input (see Subsection 2.1), we followed the 

next structure:

• Question: For example, “Question: what diagnostic technique 

was used in the following breast medical report?”

• Context: For example, “Additional information: biopsy reports, 

simple cysts and analysis of lymph or axillary nodes are only 

seen on ultrasound. On the other hand, if the ACR density is 

given or parenchymal distortions are analysed, the technique 

will be a mammogram. Tomosynthesis is a type of 

mammography. The report may include an ultrasound 

examination, a mammography examination or both.”

• The report.

For the generative models, we added two extra elements to the input. 

• Possible answers: explain whether this is a classification or an 

extractive question answering task and specify the set of valid 

answers to the question, e.g., “Answer: answer with one of 

the following options: ‘only ultrasound study,’ ‘only 

mammography study’ or ‘mammography and ultrasound.”’

• Answer: The correct answer to the question, provided during 

training. At inference time, only the prefix “Answer:” was 

included, prompting the model to generate the output.

The size of the input vector in the BERT-like models was set to its 

maximum of 512, with padding added if the report tokenisation was 

shorter. However, some of the reports exceeded this limit when 

context was added. To address this issue, we tried three different 

techniques: 

• No context: keep only the question and the report to 

avoid truncation.

• Truncate: Add context and simply truncate the report at the 

maximum length, risking loss of essential information.

• Mixed: include the context in reports where it does not exceed the 

maximum token limit and leave the remaining reports unchanged.

• Two-stage: fine-tune the initial epochs with the context included 

and the final epochs without it. This approach allows the model to 

benefit from the extra data early in fine-tuning, while ensuring 

that all reports are used in full toward the end.

For the generative models, no truncation was necessary due to less 

restrictive input criteria. The questions and context used to extract 

each variable can be found in the code uploaded to GitHub: 

https://github.com/mikel403/Structuring-Unstructured-Breast- 

Reports/tree/main.

Figure 1 shows a 8ow chart of the data preparation pipeline, 

from the data acquisition to the specific configuration for each 

model.

TABLE 2 Examples of extractive question answering.

Variable Modality Example of extracted value

Age – 56

History – History of percutaneous excision by 

means of Vacuum-Assisted Biopsy 

excision of papilloma of the left breast in 

2021

Parenchymal 

distortion

Mammography The breast parenchyma shows areas of 

architectural distortion in the right 

upper outer quadrant breast adjacent to 

the coil

Size Ultrasound (Only if 

nodule)

13 � 7 � 12 mm

TABLE 1 Categorical variables used in our study for structured breast 
imaging reporting.

Variable Modality Possible values

Diagnostic 

technique

– Mammography; ultrasound; 

mammography and ultrasound

Report type – Biopsy; nodal staging ultrasound; 

normal control or revision

Family history – First degree; second degree; no 

family history

Prosthesis – Yes; no

BI-RADS – BI-RADS 0; BI-RADS 1; BI-RADS 2; 

BI-RADS 3; BI-RADS 4A; BI-RADS 

4B; BI-RADS 4C; BI-RADS 5

Mammography 

density

Mammography ACR A; ACR B; ACR C; ACR D; 

unknown

Benign 

calcifications

Mammography Yes; no

Lymph nodes Mammography Yes; no

Ultrasound 

density

Ultrasound Heterogeneous fibroglandular; 

fibroglandular and fat; 

homogeneous fibroglandular; 

homogeneous fatty; unknown

Benign lymph 

nodes

Ultrasound Yes; no

Suspicious lymph 

nodes

Ultrasound Yes; no

Simple cysts Ultrasound Yes; no

Duct ectasia Ultrasound Yes; no

Nodules 

(Ultrasound)

Ultrasound Yes; no

Shape Ultrasound (Only if 

nodule)

Oval; round; irregular; lobulated; 

unknown

Margin Ultrasound (Only if 

nodule)

Circumscribed; not circumscribed; 

spiculated; indefined; unknown

Echogenicity Ultrasound (Only if 

nodule)

Hypoechoic; heterogeneous; 

complex and cystic; unknown

Known Ultrasound (Only if 

nodule)

Yes; no

Stable Ultrasound (Only if 

nodule and known)

Yes; grown; shrink
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2.3 Experiments

We fine-tuned the models using 216 reports and tested them 

on the remaining 70. To guide ablation studies, we performed 

10-fold cross-validation on the fine-tuning set.

First, we compared two variants of the BioMedBERT model: one 

with multiple output layers (one per entity) and another with a single 

output layer, as explained in Section 2.1. For the latter, we studied 

different ways of dealing with the maximum input length when 

providing context in the input, as explained in Section 2.2.2.

Next, we compared the two fine-tuning approaches for the 

BioGPT model explained in Section 2.1 and also studied the 

effect of the context for the one-stage fine-tuning method.

We then compared the performance of the models selected by 

the ablation studies with that of the BoW model on the 

classification tasks. Finally, we compared the generative and 

BERT-like models on the extractive question answering tasks.

For the classification experiments, we evaluated model 

performance using both accuracy and the F1 score. As some of the 

target entities were multi-class rather than binary—such as BI-RADS 

FIGURE 1 

Data preparation pipeline. The main data configuration used in the test experiment after the ablation studies is highlighted in green.
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—we computed the macro F1 score, which ponders all classes equally 

by taking the unweighted mean of the F1 scores across all classes. This 

ensures an equal weight for both frequent and infrequent classes. As 

this is a single-label classification task, accuracy and micro-F1 are 

equivalent. Therefore, we are reporting micro and macro F1 results.

For many non-binary classification tasks involving descriptors 

such as shape, margin and echogenicity, we introduced an 

“unknown” class to account for cases where no descriptor was 

provided. While this prevents the model from “hallucinating,” it also 

in8ates the accuracy figure due to the large number of “unknown” 

predictions. In such scenarios, the macro F1 score is particularly 

valuable as it provides insight into the model’s performance on the 

minority classes, i.e., the meaningful descriptor categories, rather 

than being dominated by the majority “unknown” class.

For the extractive question answering task, the outputs were 

evaluated by the same expert that did the labelling. They manually 

revised the errors made by the models to determine whether they 

were genuine errors or minor modifications, such as starting or 

ending a phrase one word earlier or later, or differences in stop 

words. If the model provided only part of the output and omitted 

important information, a score of 0.5 was given. For example, if 

the expected output was “post-treatment changes in left breast. 

Asymmetric density in outer quadrants of the right breast, stable” 

and the output given by the model was “post-treatment changes in 

left breast.” This was the best method to assess whether the 

generative models hallucinated. To enhance transparency and 

reproducibility, we also report the established metric 

BERTScore [31], which compares the contextual embeddings of the 

reference and predicted outputs. Unlike exact match metrics, 

BERTScore accommodates lexical variation while still evaluating 

whether essential information has been conveyed correctly.

Finally, since it cannot be assumed that the distribution of score 

differences follows a Gaussian distribution, statistical significance 

was assessed using the paired Wilcoxon signed-rank test. The unit 

of analysis was determined by the level at which each metric is 

defined. In the classification task, although accuracy is available at 

the instance level, it only takes three discrete values (0, 0.5 and 1), 

making it unsuitable for the Wilcoxon test. Moreover, F1 is only 

defined at an aggregated level. For these reasons, comparisons 

between models were performed at the category level, using one 

paired score per category across the 19 variables. In contrast, 

BERTScore provides a continuous value for each individual report– 

question pair in the extractive QA task. Consequently, comparisons 

were carried out at the example level, which offers a more 

appropriate and statistically robust basis for inferential testing. Four 

variables were defined in this task, but we did not apply a Wilcoxon 

test at the variable level because the sample size (n ¼ 4) was too small.

3 Results

3.1 Ablation studies and cross-validation 
results

Table 3 presents the results of the comparison between different 

configurations of BioMedBERT (described in Section 2.1) in the 

cross-validation experiment. The models with a single output 

layer achieved better accuracy than the model with multiple, 

entity-specific output layers. There were no statistically significant 

differences in the performance across different approaches to 

appending the context to our model. However, since truncation 

gave slightly better results, we used that approach in the test 

experiment with BERT-like models. We repeated the experiment 

with BioBERT, reaching the same conclusions.

Table 4 shows the results for classification with the two different 

fine-tuning methods for BioGPT and the effect of providing the 

context (explained in Section 2.2.2) for the cross-validation 

experiment. Since the one-stage method with context obtained 

slightly better results, we used this setup for the test experiment.

Tables 5, 6 show a comparison of the selected Transformer-based 

models with the BoW model in the cross-validation classification 

experiment. Tables 7, 8 present the results of the extractive 

question answering experiment. BioGPT achieved the highest 

mean performance across both tasks and multiple evaluation 

metrics. Since BioMedBERT was the second best option, we tested 

the null hypothesis that BioMedBERT performed equally well or 

better than BioGPT. No statistically significant differences were 

found, with p-values of 0:95 (accuracy) and 0:81 (macro F1) for 

the classification task and 0:98 for the BERTScore F1 in the 

extractive question answering task.

3.2 Main results

Table 9 shows the comparison between the accuracy of the BoW, 

BERT-like and generative models on the test data. BioBERT, 

BioMedBERT and BioGPT outperformed the other models, the 

latter having a slightly better overall accuracy. Table 10, shows the 

macro F1 scores, which exhibit the same patterns but with wider 

performance differences across entities, especially in the BI-RADS 

tumour descriptors. As in the cross-validation experiment, we 

tested the null hypothesis that BioMedBERT performed equally 

well or better than BioGPT. However, with p-values of 0:012 for 

accuracy and 0:017 for macro F1, we can reject this hypothesis 

and conclude that BioGPT’s performance is statistically superior 

across the 19 variables in the test experiment. Supplementary 

Material to this article show the confusion matrices for the 

BioGPT model’s outputs for each entity in the classification task.

Regarding extractive question answering, Table 11 shows that 

BioMedBERT achieved the best overall accuracy, assessed by the 

expert, by a narrow margin over ClinicalT5 and BioGPT, even if 

each of the models was best in a different entity.

Table 12 shows the BERTScore results, which are similar: 

BioMedBERT obtained best BERTScore F1 by a narrow margin, 

having better precision, but worse recall than BioGPT, but the 

difference was not significant (p ¼ 0:34).

4 Discussion

We have compared the latest BERT and generative models 

further pre-trained on medical data to extract relevant 
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information from breast imaging (mammography and ultrasound) 

reports. In addition, we have assessed the performance of these 

models using different architectures, fine-tuning strategies and 

approaches to provide context.

We have demonstrated that these models can achieve high 

accuracy on such tasks, highlighting their potential as tools for 

extracting valuable information from electronic health records, 

both for research purposes and for use in efficient 

clinical work8ows.

We experimented with different structures within the 

BERT-like and generative models in the cross-validation 

experiment. For BioGPT, there was no significant difference 

across architectures. However, for the BERT-like models, the 

architecture that adds questions and context to reports and 

extracts one answer per report outperformed the structure with 

multiple output layers achieving a mean accuracy of 94.77% vs. 

83.70%. Although adding multiple output layers to the 

network’s head is the most common approach for multiple 

classifications, this can make the task difficult for BERT-like 

models when faced with a large number of classification tasks, 

as was the case in this study. Since BERT-like models are 

pre-trained as language models, they benefit from additional 

context provided in natural language. When a question is added 

(e.g., “Is the patient’s age mentioned in the report?”), the model 

focuses on a specific aspect of the input, enabling it to better 

associate the question with the appropriate output neuron. By 

contrast, a model with multiple heads processes all tasks 

simultaneously without explicit task context, which can hinder 

learning, particularly when tasks are not fully independent. 

Interestingly, a BoW model using TF-IDF features as input and 

multiple output layers, achieved a mean accuracy of 87.03%, 

outperforming the BERT-based multi-output head model. To 

investigate this further, we conducted an additional experiment 

in which we put the classification network of the BoW model as 

the head of the frozen BioMedBERT model. We then trained it 

on top of the frozen BioMedBERT. This setup achieved an 

accuracy of 80.26%, suggesting that the classification network 

TABLE 3 Ablation study in the cross-validation experiment: classification accuracy for BioMedBERT with different architectures and approaches to 
handling maximum input size when providing context.

Entity (number of cases) Multiple output layers No context Two-stage Hybrid Truncate

Diagnostic technique (212) 93.40 97.64 98.11 97.64 97.17

Report type (212) 97.17 97.17 96.23 97.17 97.65

Family history (186) 92.47 98.92 98.92 98.92 97.85

Prosthesis (186) 98.92 99.46 99.46 99.46 99.46

BI-RADS (186) 77.42 96.77 94.09 95.70 95.70

MMG density (186) 80.11 96.77 97.31 97.31 98.39

Benign calcifications (186) 82.80 98.39 97.85 96.77 98.39

Lymph nodes on MMG (186) 92.47 98.39 98.92 97.85 97.31

US density (186) 72.58 94.09 91.40 93.01 94.62

Benign lymph nodes on US (186) 91.94 95.70 94.62 94.62 96.26

Suspicious lymph nodes on US (186) 95.70 97.85 98.39 96.77 97.85

Simple cysts (186) 84.95 97.85 97.85 97.85 97.31

Duct ectasia (186) 90.86 100.00 100.00 100.00 100.00

Nodules on US (186) 84.95 93.01 94.62 94.62 93.01

Shape (82) 59.76 89.02 89.02 89.02 91.46

Margin (82) 73.17 84.15 80.49 84.15 86.59

Echogenicity (82) 69.51 93.90 91.46 93.90 92.68

Known (82) 70.73 75.61 81.71 84.15 82.93

Stable (43) 81.40 81.40 83.72 83.72 86.05

Mean 83.70 94.00 93.90 94.35 94.77

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 4 Ablation study in the cross-validation experiment: classification 
accuracy of BioGPT using two training strategies, with and 
without context.

Entity (number of cases) No 
context

One- 
stage

Two- 
stage

Diagnostic technique (212) 97.17 98.11 98.11

Report type (212) 97.64 96.70 96.23

Family history (186) 98.39 98.39 98.92

Prosthesis (186) 99.46 99.46 99.46

BI-RADS (186) 98.39 97.85 98.39

MMG density (186) 96.77 97.31 97.85

Benign calcifications (186) 98.39 97.31 99.46

Lymph nodes in MMG (186) 96.24 96.77 96.77

US density (186) 96.74 95.65 95.11

Benign lymph nodes in US (186) 95.16 96.24 94.08

Suspicious lymph nodes in US (186) 98.92 97.31 96.24

Simple cysts (186) 97.85 97.85 98.92

Duct ectasia (186) 99.46 98.92 98.92

Nodules in US (186) 98.39 94.62 93.55

Shape (82) 90.24 87.80 91.46

Margin (82) 87.80 91.46 85.37

Echogenicity (82) 92.68 91.46 93.90

Known (82) 75.61 82.93 79.27

Stable (43) 88.37 90.70 90.70

Mean 94.93 95.10 94.88

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.
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TABLE 5 Classification accuracy in the cross-validation experiment.

Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Diagnostic technique (212) 94.81 98.58 96.70 97.64 97.17 98.11

Report type (212) 96.23 95.28 95.28 97.17 95.28 96.70

Family history (186) 95.16 98.39 94.09 98.92 93.01 98.39

Prosthesis (186) 98.92 99.46 98.92 99.46 99.46 99.46

BI-RADS (186) 81.18 95.16 73.12 95.70 75.81 97.85

MMG density (186) 84.41 97.31 90.86 97.31 96.24 97.31

Benign calcifications (186) 77.42 98.39 90.32 96.77 97.31 97.31

Lymph nodes in MMG (186) 96.24 98.39 96.24 97.85 93.55 96.77

US density (186) 84.95 94.09 81.18 93.01 79.35 95.65

Benign lymph nodes in US (186) 91.94 94.62 93.01 94.62 91.40 96.24

Suspicious lymph nodes in US (186) 96.24 97.31 95.70 96.77 95.16 97.31

Simple cysts (186) 87.63 98.39 93.55 97.85 97.31 97.85

Ductal ectasia (186) 96.24 99.46 100.00 100.00 98.39 98.92

Nodules in US (186) 89.78 91.94 88.71 94.62 90.32 94.62

Shape (82) 65.85 89.02 74.39 89.02 90.24 87.80

Margin (82) 79.27 84.15 84.15 84.15 84.15 91.46

Echogenicity (82) 73.17 89.02 89.02 93.90 91.46 91.46

Known (82) 78.05 85.37 70.73 84.15 78.05 82.93

Stable (43) 86.05 86.05 79.55 83.72 79.07 90.70

Mean 87.03 94.23 86.09 94.77 90.67 95.10

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 6 Macro F1 score for classification in the cross-validation experiment.

Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Diagnostic technique (212) 62.97 66.06 47.00 64.88 64.88 65.67

Report type (212) 78.21 70.56 69.70 90.19 62.09 82.06

Family history (186) 79.90 91.41 47.67 92.54 84.21 90.77

Prosthesis (186) 94.16 97.23 94.16 97.23 997.23 97.23

BI-RADS (186) 47.49 66.63 23.54 74.86 82.70 93.41

MMG density (186) 82.56 93.62 44.23 98.73 96.33 97.30

Benign calcifications (186) 77.29 98.38 89.75 98.38 97.31 97.30

Lymph nodes in MMG (186) 60.15 88.04 49.04 80.07 48.33 74.17

US density (186) 81.44 82.47 43.06 91.32 77.80 92.27

Benign lymph nodes in US (186) 86.02 90.79 88.92 93.31 87.02 93.63

Suspicious lymph nodes in US (186) 86.02 90.02 40.34 92.28 85.81 89.28

Simple cysts (186) 87.47 98.38 92.95 97.29 97.30 97.83

Duct ectasia (186) 84.99 98.24 96.37 100.00 94.72 96.58

Nodules in US (186) 89.65 91.83 86.18 92.92 90.23 94.58

Shape (82) 34.94 53.24 29.71 55.40 66.13 61.20

Margin (82) 42.75 43.02 28.35 44.65 48.51 73.33

Echogenicity (82) 29.49 36.92 25.97 51.15 50.78 57.08

Known (82) 77.93 85.29 70.57 82.89 77.72 82.92

Stable (43) 40.29 40.29 59.02 40.29 29.44 53.80

Mean 69.67 78.02 59.02 80.97 75.71 83.70

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 7 Expert-assessed extractive question answering score in the cross-validation experiment.

Entity (number of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Age (212) 99.53 99.53 99.53 99.53 99.53

History (186) 95.16 94.62 95.43 89.78 95.70

Parenchymal distortion (186) 95.16 95.16 95.16 96.77 96.77

Size (82) 87.80 86.59 91.46 89.02 92.68

Mean 94.41 93.98 95.67 93.78 96.17

Bold values indicate the highest score across the compared models.
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favoured the explicit TF-IDF features over the frozen 

BioMedBERT representations. Only when adding the questions 

and a single output layer was BioMedBERT able to outperform 

the BoW model.

The generative BioGPT model outperformed all other models 

in the classification task (p ¼ 0:012), achieving slightly lower 

scores in the extractive question-answering task, though not 

significantly so. Furthermore, BioGPT was fine-tuned to perform 

both tasks simultaneously, whereas BERT-like models could not. 

The F1 results show a greater difference between this model and 

the others, meaning that BioGPT also performed better when 

classifying minority groups. Finally, when examining the 

BI-RADS descriptors, BioGPT demonstrated a superior grasp of 

the categories and the various terms associated with them. We 

also fine-tuned this model to extract tumour localisation, which 

would not be possible with BERT-like models, as it is often 

divided into different parts of the sentence. In the test 

experiment, BioGPT achieved an accuracy of 94.00%; the errors 

occurred when the tumour location was not fully specified. We 

also fine-tuned this model for symptomatic extraction. The 

model obtained an accuracy of 99.22% when considering 

non-symptomatic cases as a separate class (meaning there was 

no hallucination problem) and 3.5 out of 4 when considering 

only symptomatic cases. The model made a partial error: it 

predicted a palpable nodule, but did not indicate that it 

was painful.

We added an “unknown” label to mammography and 

ultrasound density, as well as to shape, margin and echogenicity. 

Using this label alongside the BioGPT model, we achieved 

macro F1 scores of 100, 98:77, 89:93, 90:58 and 73:81. When 

only reports with a BI-RADS label for these variables are 

considered, i.e., excluding the “unknown” label, the macro F1 

TABLE 8 BERTScore F1 and recall for extractive question answering in the cross-validation experiment.

Entity (number of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

BERTScore F1

Age (212) 99.76 99.76 99.76 99.10 99.76

History (186) 95.76 95.64 96.28 91.48 95.98

Parenchymal distortion (186) 95.98 96.37 96.23 96.59 96.68

Size (82) 91.05 92.32 94.77 93.71 95.26

Mean 95.61 96.02 96.76 95.21 96.92

BERTScore Recall

Age (212) 99.82 99.82 99.82 99.39 99.82

History (186) 95.15 95.25 95.58 91.89 95.68

Parenchymal distortion (186) 95.00 95.47 95.21 96.56 95.93

Size (82) 90.84 92.56 94.66 93.26 94.63

Mean 95.20 95.78 96.32 95.28 96.52

Bold values indicate the highest score across the compared models.

TABLE 9 Main results: accuracy for classification in the test experiment.

Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Diagnostic technique (70) 92.86 98.10 95.71 100.00 97.14 100.00

Report type (70) 100.00 97.14 97.14 98.57 94.29 98.57

Family history (64) 93.75 98.41 96.88 96.88 92.19 96.88

Prosthesis (64) 100.00 100.00 100.00 100.00 100.00 100.00

BI-RADS (64) 79.69 96.88 71.88 96.88 92.19 98.44

MMG density (64) 92.19 96.88 90.63 100.00 93.75 100.00

Benign calcifications (64) 82.81 95.31 90.63 96.88 95.31 98.44

Lymph nodes in MMG (64) 95.31 95.31 95.31 96.88 98.44 98.44

US density (64) 79.69 93.75 89.06 98.44 90.63 98.44

Benign lymph nodes in US (64) 89.06 92.19 89.06 87.50 87.50 93.75

Suspicious lymph nodes in US (64) 96.88 98.44 98.44 98.44 98.44 98.44

Simple cysts (64) 79.69 98.44 95.31 98.44 93.75 100.00

Duct ectasia (64) 96.88 98.44 98.44 98.44 98.44 98.44

Nodules in US (64) 85.94 95.31 85.94 93.75 87.50 93.75

Shape (25) 56.00 84.00 72.00 72.00 88.00 88.00

Margin (25) 92.00 88.00 76.00 88.00 80.00 96.00

Echogenicity (25) 68.00 88.00 84.00 92.00 96.00 96.00

Known (25) 76.00 80.00 84.00 84.00 76.00 80.00

Stable (13) 92.31 84.62 69.23 84.62 76.92 92.31

Mean 86.79 93.67 88.40 93.77 91.39 96.10

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

Carrilero-Mardones et al.                                                                                                                                         10.3389/fdgth.2025.1718330

Frontiers in Digital Health 10 frontiersin.org



scores are 100, 99:33, 93:01, 88:89 and 66:67. For clarity and 

transparency, the confusion matrix for each variable is available 

in the Supplementary Material to help the reader better 

understand the outputs of the model.

We compared the inference times of BioGPT and 

BioMedBERT using a representative report from the test set and 

a single NVIDIA V100 GPU with 16 GB of HBM2 memory. 

BioGPT took 9.57 s to carry out both classification and 

extractive question answering in a single forward pass. By 

contrast, BioMedBERT took approximately 1.57 s per task, 

totalling 3.14 s for both. Although the latter is faster in terms of 

raw inference time, the fact that BioGPT can perform both tasks 

TABLE 10 Main results: macro F1 score for classification in the test experiment.

Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Diagnostic technique (70) 90.09 98.10 94.29 100.00 97.54 100.00

Report type (70) 100.00 93.92 92.81 96.71 51.62 96.71

Family history (64) 67.93 74.75 71.16 72.58 87.67 69.95

Prosthesis (64) 100.00 100.00 100.00 100.00 100.00 100.00

BI-RADS (64) 51.26 83.72 42.58 83.72 94.03 95.02

MMG density (64) 91.57 96.34 90.62 100.00 94.15 100.00

Benign calcifications (64) 82.81 95.28 90.48 96.86 95.30 98.43

Lymph nodes in MMG (64) 48.80 48.80 48.80 74.19 89.59 89.59

US density (64) 78.33 89.48 86.00 98.77 90.40 98.77

Benign lymph nodes in US (64) 76.26 78.60 73.57 67.92 74.14 83.96

Suspicious lymph nodes in US (64) 74.19 82.93 82.93 82.93 82.93 82.93

Simple cysts (64) 79.44 98.43 95.28 98.43 93.74 100.00

Duct ectasia (64) 74.19 92.44 92.44 92.44 92.44 92.44

Nodules in US (64) 85.65 95.17 85.65 93.52 86.87 93.44

Shape (25) 36.78 64.02 53.33 56.86 92.00 89.93

Margin (25) 64.58 62.31 40.37 63.31 42.87 90.58

Echogenicity (25) 36.36 69.35 44.51 71.50 73.81 73.81

Known (25) 75.96 80.00 83.97 83.97 75.96 80.00

Stable (13) 81.16 45.83 40.91 45.83 43.48 81.16

Mean 73.44 81.55 74.20 83.13 82.02 90.35

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 11 Main results: expert-assessed extractive question answering score in the test set.

Entity (number of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

Age (64) 100.00 97.14 100.00 100.00 100.00

History (64) 93.75 93.75 95.31 87.50 94.53

Parenchymal distortion (64) 95.31 87.50 96.09 94.53 98.44

Size (25) 72.00 32.00 84.00 92.00 80.00

Mean 90.27 77.60 93.85 93.51 93.24

Bold values indicate the highest score across the compared models.

TABLE 12 Main results: BERTScore F1 and recall for extractive question answering in the test experiment.

Entity (number of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT

BERTScore F1

Age (64) 100.00 98.53 100.00 100.00 100.00

History (64) 94.26 93.86 95.20 89.62 94.74

Parenchymal distortion (64) 94.72 89.00 95.65 94.24 94.15

Size (25) 88.08 63.73 95.17 96.03 94.82

Mean 94.27 86.28 96.51 95.63 95.91

BERTScore Recall

Age (64) 100.00 98.16 100.00 100.00 100.00

History (64) 92.94 91.58 93.95 89.93 94.93

Parenchymal distortion (64) 94.12 87.37 94.66 93.69 94.41

Size (25) 89.77 62.07 93.51 95.65 94.78

Mean 94.21 84.80 95.53 95.19 95.98

Bold values indicate the highest score across the compared models.
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simultaneously offers advantages in terms of deployment 

simplicity, reduced system complexity and potentially improved 

consistency of outputs. In real-world clinical settings, the 

importance of these trade-offs depends on the context. In 

latency-sensitive applications, such as interactive hospital 

systems where quick responses are essential, smaller, faster 

models like BioMedBERT may be more suitable, particularly if 

their performance is comparable. However, in batch processing 

or retrospective analysis scenarios, where large volumes of data 

can be processed without real-time constraints, multitask models 

like BioGPT may be more efficient and convenient.

Previous studies have explored the use of BERT-like and 

generative models for extracting information from breast 

medical reports [13, 15, 24, 27, 29], demonstrating the 

effectiveness of these approaches. However, there are few 

comprehensive comparisons between generative and BERT-like 

models. The comparison made by Hussain et al. [29] involved 

only a single medically further pre-trained model (BioGPT) 

compared against a general-purpose one (BERT), which limits 

the scope of the evaluation. Finally, Reichenpfader et al. [15] 

further pre-trained a BERT model for NER and extractive 

question answering, with promising results. They compare their 

results with the open-source Llama 3.3 model, but do not 

further fine-tune a generative model specialized in medical tasks.

The main limitation of this study is that there were only 286 

reports and some of the classes were underrepresented. For 

instance, while the “mammography and ultrasound” and 

“ultrasound” techniques were balanced, there were only two 

“mammography” exams, both of which were included in the 

cross-validation experiment (in different folds). As can be seen 

from the macro F1 scores in Table 6, none of the models could 

correctly label these reports. There was also only one case of 

third-degree family history in the dataset and this was included 

in the test set. Only ClinicalT5 could correctly identify it. This 

is why the macro F1 score, in conjunction with accuracy, 

provides a clearer picture of the results. Furthermore, the 

confusion matrices of the test results have been added to the 

Supplementary Material. These also illustrate the overall balance 

of the data in our dataset. A larger dataset would have allowed 

us to demonstrate the differences and similarities between the 

models more effectively. Nevertheless, this dataset was sufficient 

for fine-tuning and achieving good results with BioBERT [10], 

BioMedBERT [12] and BioGPT [18], particularly the latter. 

Considering that we obtained multiple classifications or 

extractions from each report, the dataset comprised 5,399 items.

Another limitation is that we only obtained reports from two 

hospitals located in the same city, belonging to the same hospital 

group, HM. Therefore, the fine-tuned model could be useful for 

converting medical reports to tabular data in these hospitals; 

however, generalisability to other centres was not explored in 

this study. Additionally, a single expert annotated the reports 

and assessed the accuracy of the extractive question answering 

task. While this approach ensured consistency, it might have 

introduced annotation bias. Future work should therefore 

incorporate inter-rater agreement to strengthen the reliability of 

the evaluation. Furthermore, we explicitly distinguished between 

findings derived from mammography and those from 

ultrasound. Most reports included both modalities, sometimes 

clearly separating them and at other times mixing them within 

the same paragraph. While the differing descriptions across 

imaging modalities enabled clear labelling during annotation, 

there is a risk that models might learn incorrect associations 

and misattribute findings to the wrong modality. In future work, 

we plan to investigate this potential bias.

Lastly, we note that another limitation is that we did not 

compare our results with those of general-purpose state-of-the-art 

(SOTA) LLMs, such as GPT 4 or GPT 5. Although these 

models have demonstrated excellent performance in a variety of 

natural language processing tasks, we focused on evaluating 

domain-specific, open-access models that can be fine-tuned and 

deployed on local infrastructure to ensure compliance with data 

privacy requirements.

We compared BERT-like and generative models that had 

been further pre-trained on medical data in order to 

automatically convert breast medical reports into tabular data. 

Tabular data is easier to process for research purposes and can 

support clinical use by enabling efficient information retrieval 

and patient comparison. After determining the optimal 

architecture, fine-tuning strategy and input configuration for 

each model through cross-validation, we tested them on an 

additional 70 reports, achieving the best results with the 

generative BioGPT model. Fine-tuning BioGPT on our medical 

reports yielded accuracies of 96.10% for classification and 

93.24% for extractive question answering, establishing it as a 

promising tool for reducing the burden of labelling breast 

medical reports.

Future work will involve fine-tuning the generative model 

using more anonymised medical reports from a wider variety of 

hospitals. Due to the power of generative models, we could also 

analyse the artificial generation of breast medical reports using 

an online service such as ChatGPT version 5, as done by 

Reichenpfader et al. [15]. Importantly, these models would be 

used only for generating artificial data, not for processing real 

clinical reports, thereby ensuring that no sensitive information is 

shared. Previous studies have used earlier versions of ChatGPT 

to label medical data [24–26], demonstrating an adequate grasp 

of the task without the need for fine-tuning. This would be an 

effective way to utilise these powerful services without sharing 

sensitive information. We will also explore the use of these 

synthetic reports for benchmarking our domain-specific models 

against general-purpose LLMs in zero-shot or few-shot settings. 

This will help us to assess their practical utility in real-world 

clinical information extraction.

Although the improvement was not statistically significant, 

incorporating additional contextual information into the model 

inputs yielded slightly better results. A more thorough analysis 

of prompt design will be conducted to determine whether 

further enhancing the model’s contextualisation can improve its 

performance; for example, using knowledge-driven prompts 

[27]. Finally, with a larger dataset, we will study the 

effectiveness of BioGPT in labelling multiple tumours within a 

single medical report.
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Appendix

1 Model parameters

The following parameters were selected during the cross- 

validation experiment. All the models have a batch size of 16 

and a weight decay of 0.05.

The BoW-based neural network had an initial learning rate of 

0.005 with an exponential decay rate of 0:98 and 60 decay steps 

(1 per 5 epochs) and was trained for 150 epochs.

The BERT-like models were fine-tuned first in the last 

classification layers for 5 epochs with a learning rate of 0.01. 

Table A1 show the parameters for the rest of the models and 

the second phase of the BERT-like models.

TABLE A1 Model parameters.

Model Learning rate Epochs

BlueBERT class. 5 � 10�5 8

BlueBERT extr. 1 � 10�4 7

BioBERT class. 5 � 10�5 5

BioBERT extr. 5 � 10�5 6

BioMedBERT class. 5 � 10�5 8

BioMedBERT multi output 5 � 10�5 7

BioMedBERT two-stage 5 � 10�5 , 3 � 10�5 3, 5

BioMedBERT extr. 5 � 10�5 6

ClinicalT5 7 � 10�5 7

BioGPT 1 � 10�5 7

BioGPT two-stage 1 � 10�5 , 1 � 10�5 2, 7

Class. and extr. are abbreviations for classification and extractive.

Two-stage models have two learning rates and two epochs, one for each stage.
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