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Extracting structured data from
unstructured breast imaging
reports with transformer-based
models

Mikel Carrilero-Mardones'™, Jorge Pérez-Martin',
Francisco Javier Diez' and Iigo Bermejo Delgado’

'Department of Artificial Intelligence, Universidad Nacional de Educacion a Distancia (UNED), Madrid,
Spain, ?Data Science Institute, Hasselt University, Hasselt, Belgium

Background and objective: Structured clinical data is essential for research and
informed decision-making, yet medical reports are frequently stored as
unstructured free text. This study compared the performance of BERT-based
and generative language models in converting unstructured breast imaging
reports into structured, tabular data suitable for clinical and
research applications.

Methods: A dataset of 286 anonymised breast imaging reports in Spanish was
translated into English and used to evaluate five transformer-based models
pre-trained in medical data: BlueBERT, BioBERT, BioMedBERT, BioGPT and
ClinicalT5. Two natural language processing approaches were explored:
classification of 19 categorical variables (e.g. diagnostic technique, report
type, family history, BI-RADS category, tumour shape and margin) and
extractive question answering of four entities (patient age, patient history,
parenchymal distortion or asymmetries, and tumour size). Multiple
fine-tuning strategies and input configurations were tested for each model|,
and performance was evaluated using accuracy and macro F1 scores.

Results: BioGPT demonstrated the best performance in classification tasks,
achieving an overall accuracy of 96.10% and a macro F1 score of 90.30%.
This was significantly better than BERT-based models (p = 0.012 for accuracy
and p = 0.017 for F1), particularly in underrepresented categories such as
tumour descriptors. In extractive question answering tasks, BioGPT achieved
an average accuracy of 93.24%, which is slightly lower than that of
BioMedBERT and ClinicalT5, but not significantly so. Notably, BioGPT could
perform classification and extractive question answering simultaneously,
which is a capability unavailable in BERT-like models.

Conclusions: Generative models, particularly BioGPT, offer a robust and
scalable approach to automating the extraction of structured information
from unstructured breast imaging reports. Their superior performance,
combined with their ability to handle multiple tasks concurrently, highlights
their potential to reduce the manual effort required for clinical data curation
and to enable the efficient integration of imaging data into research and
clinical workflows.
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1 Introduction

Breast cancer is the most common cancer in women, with an
estimated 2.3 million cases worldwide in 2022 [1]. The 5-year
survival rate is 90% overall; it rises to 99% if the cancer is
detected at an early stage,' but falls to 86% if it has spread to
regional lymph nodes and to 29% if it has spread further. Early
detection is therefore of paramount importance.

Several techniques are used to diagnose breast cancer,
mammography being the most effective screening method.
However, its sensitivity decreases in fibroglandular breasts. In
these cases, ultrasound can complement mammography by
detecting nodules that may have been missed or by providing
more detail about a suspicious area identified on the mammogram.

Clear and consistent reporting of imaging findings is essential
for accurate diagnosis, effective communication among healthcare
providers and optimal patient care [2]. To this end, the American
College of Radiology proposed the Breast Imaging Reporting and
Data System (BI-RADS) in 1993, ensuring consistent terminology,
assessment and follow-up recommendations. The 5th and most
recent edition of BI-RADS, published in 2013, introduced
support for ultrasound and magnetic resonance imaging (MRI)
reporting [3]. Although standardisation facilitates storing data in
a structured way that could allow its use for research, most data
in hospitals is only stored in free-text medical reports.
Furthermore, despite there have been many attempts to
standardise and structure these reports, adoption has failed due
to concerns about workflow and productivity [4]. For research
purposes and more efficient clinical settings, it is important to
clean and structure the data, which is a time-consuming task
that is often not affordable and may not even be feasible for
large datasets.

To help with this task, natural language processing (NLP) has
gained popularity in recent years, with the aim of predicting
patient outcomes, augmenting hospital triage systems and
generating diagnostic models for early disease detection [5].
Reichenpfader et al. [6] conducted a comprehensive review of
(LLM)
information from radiology reports. They identified only 34

large language model approaches for extracting
studies up to August 2023, of which just two focused on breast
imaging. Similarly, Saha et al. [7] conducted a scoping review
on the application of NLP in breast cancer radiology reports,
cataloguing 44 studies published between 1997 and 2022.
However, the rapid advancement of LLM architectures means
that more capable models are now available. Notably, Lee et al.
(2025) analysed 69 studies that employed LLMs for radiology
report structuring and reported that prompt engineering

significantly improved model accuracy across modalities [8].

*https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-
cancer-diagnosis/breast-cancer-survival-rates.html, retrieved on 20/07/

2025
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Since  Bidirectional =~ Encoder  Representations  from
Transformers (BERT) were proposed in 2019 [9], achieving
state-of-the-art results in a range of NLP tasks, most natural
language problems have been solved using this or similar
architectures. However, due to the technical nature of medical
language, direct application of these models usually produces
unsatisfactory results [10]. For this reason, BERT models have
been adapted to medical corpora by pre-training them on
domain-specific data, thereby improving their performance.
Some of these models are BlueBERT [11], BioBERT [10] and
BioMedBERT [12].

Prior work in structuring breast cancer reports using NLP
includes Kuling et al. [13], who trained a BERT model to
segment the reports into sections such as “title,” “patient
history,” “prior imaging reference,” etc. They then extracted
modality/procedure, previous cancer, purpose of examination,
menopausal status, density and background parenchymal
enhancement from these sections using a classifier consisting of
a BERT-based encoder followed by a dense neural network
classifier. Their model outperformed both classic BERT and
BioClinical BERT [14] in both segmentation and classification.
In their recent work, Reichenpfader et al. [15] applied
BERT-like models that had been further pre-trained with frame
semantics in order to extract structured information from
German mammography reports. This approach achieved high
Fl-scores, thereby demonstrating its feasibility. They used a
German-language model [medBERT.de [16]], which was initially
pre-trained on around 4.7 million medical documents. They
then further pre-trained the model using masked language
modelling on a corpus of 219,029 radiology reports. The model
was then fine-tuned for two tasks: extractive question answering
using 210 manually annotated mammography reports and
named entity recognition based on a frame semantics schema.
To achieve this, the reports were annotated with 14 distinct
clinical fact types, each consisting of an “anchor” (the core
clinical concept) and associated “modifiers” (additional details
such as location, severity or timing). This resulted in a total of
40 entity types (14 anchor types and 26 modifier types).

More recently, generative LLMs have gained popularity,
especially since the advent of ChatGPT [17], due to their
versatility in different tasks without fine-tuning. As explained
for BERT-like models, some of these generative models have
been adapted for biomedical data, such as BioGPT [18] and
ClinicalT5 [19]. BioGPT is a GPT-2 further pre-trained on 15
million PubMed abstracts and has achieved state-of-the-art
results on PubMedQA [20] and better document classification
HoC than BioBERT and

BioMedBERT. ClinicalT5 is a sequence-to-sequence model

results on the corpus [21]
further pre-trained on 2 million clinical notes from the
MIMIC-III  [22] dataset, with
SciFive-PubMed-PMC [23] model.

For example, Choi et al. [24] used ChatGPT 3.5 with prompts
designed to extract clinical information from surgical pathology

initial weights from the

and ultrasound breast cancer reports, with time- and cost-
efficient results compared to manual annotation. Sanli et al. [25]
also used ChatGPT-40 to assign BI-RADS malignancy categories
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to MRI reports, concluding that ChatGPT can interpret
unstructured breast MRI reports. Miaojiao et al. [26] conducted
a similar study using breast ultrasound images. In one of their
they provided ChatGPT with BI-RADS
descriptions of nodules to classify their malignancy, achieving
an accuracy of 80.63%. Liu et al. [27] Used knowledge-driven
prompts and Qwen-7b-Chat [28] to BI-RADS
categories from MRI reports. They demonstrated that with

experiments,

extract

knowledge-based reports they significantly improved the
information extraction performance for most categories, but
obtained worse results in some of them.

In another instance, Hussain et al. [29] translated Spanish
reports into English using Google Translate and compared
classical methods (TF-IDF with a classifier), BERT and BioGPT
for the task of extracting the BI-RADS malignancy estimate
from the reports. BioGPT gave the best results, followed by
BERT. However, the comparison might have been unfair, since
it included a model further pre-trained on medical data
(BioGPT) against one only pre-trained on generic data (BERT).

Our study aims to identify the most effective method of
converting free-text breast imaging reports into structured data.
Structured data is easier to process for research purposes and can
be particularly valuable in clinical settings. For example, it enables
the efficient search for patients with specific characteristics and
facilitates comparisons between patients with similar findings.

This study makes several novel contributions to the processing
of breast imaging reports. Firstly, we compare domain-specific
BERT models and medical generative models in classification and
extractive question answering tasks. Secondly, we explore various
input configurations for each model type. Thirdly, to the best of
our knowledge, we are the first to extract ultrasound detailed
BI-RADS tumour descriptors, such as shape and margin, directly
from free-text reports. We evaluate these models using both
cross-validation and testing experiments across 19 classification

tasks and four extractive question answering tasks.

2 Methods

In this study, we have extracted relevant information from
reports using two approaches: classification and extractive question
answering. We used classification for entities with a discrete
number of possible values or categories, such as the diagnostic
technique (e.g, mammography, ultrasound, or both). However,
some data could not be categorised; for example, numerical values
(e.g, age or size) and free text (e.g, medical history). In these
cases, we used extractive question answering, which directly returns
the part of the report containing the answer. We begin this section
by analysing the various models employed in this study, given that
the data preprocessing step is dependent on the type of model.

2.1 Models

We compared three main different approaches to modelling.
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As a baseline, we initially adopted Bag-of-Words (BoW)-based
models, which are limited to classification. These models represent
each report using a TF-IDF (Term Frequency-Inverse Document
Frequency) vector, which captures the relative frequency of
words in the document, weighted by their importance across the
entire dataset. We then used a deep neural network with a
hidden layer of size 64 and GELU activation function [30] and
entity-specific dense layers (i.e., one for diagnostic technique,
another for report type, etc.) with softmax activations.

The second approach consisted of BERT-like models. We used
the following models further pre-trained on medical data:
BioBERT [10], BioMedBERT [12] and BlueBERT [11]. We
fine-tuned each model for classification and extractive question
answering tasks separately. For classification, we replaced the
final layer of the further pre-trained BERT model with a
classification head specific to the new task. This head’s input is
the pooled [CLS] token, the hidden representation of the special
[CLS] token that BERT automatically inserts at the start of every
input sequence. During training, BERT learns to encode the
overall meaning of the entire input sequence into the [CLS]
token. Consequently, its final hidden state captures global
contextual information from the entire input. Since BERT was
originally trained with this token acting as the input for
classification during pre-training (e.g., predicting the next
sentence), it has become standard practice to use the [CLS]
token representation for subsequent classification tasks. We tried
two different architectures for the classification head: one with
entity-specific output layers (like in the BoW model) and one
with a single output layer of size 63 (the sum of the cardinality
of all entities) with a softmax activation function. It is worth
noting that the former architecture allows for the classification
of all entities at once, whilst the latter architecture allows for
one single output at a time. The latter architecture allows for
the inclusion of context information in the model input. For
example, when extracting “diagnostic technique,” we can append
“Additional information: biopsy reports, simple cysts and
analysis of lymph or axillary nodes are only seen on ultrasound”
to the input. For this approach, it is necessary to specify in the
input what entity the model should focus on. More details are
given in Section 2.2.2. We fine-tuned the BERT-like models by
freezing the pre-trained layers for the first five epochs and
unfreezing them for the final four to eight epochs.

The core architecture of the BERT models remains consistent
for both extractive question answering and classification tasks,
with only the task-specific output layers differing. In the case of
question answering, a single question is posed for each clinical
report. For example, the question could be “Does the patient’s
age appear in the following breast medical report?” The model is
fine-tuned to predict the start and end positions of the answer
within its context. To achieve this, the task-specific head operates
on the hidden states of all the tokens in the input sequence. Two
parallel token-level classifiers are applied: one for predicting the
start token and one for the end token of the answer. This
structure also allows information to be added to the reports.

In the third and final approach, we explored the use of
generative models such as BioGPT [18] and ClinicalT5 [19].
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These models can be fine-tuned to perform both tasks—extractive
question answering and classification—simultaneously. BioGPT is
a decoder model trained to generate the next token based on the
prior tokens, while ClinicalT5 is an encoder-decoder model. For
BioGPT we tried two different fine-tuning methods:

o A two-stage fine-tuning procedure: first, we fine-tuned the
models to generate the next word in the report, allowing
them to learn the structure and semantics of the language.
Second, we fine-tuned the models to generate the next word
in the response, focusing specifically on the final classification
or extractive question answering task.

o A one-stage fine-tuning procedure: we skipped the first stage
and directly fine-tuned the model to produce the answer.
This was the fine-tuning method used in ClinicalT5, since
this model does not accept the two-stage fine-tuning procedure.

More information on the model fine-tuning parameters can be
found in Appendix 1.
2.2 Data preparation

in Madrid (HM
Monteprincipe and HM Vélazquez), we obtained 286 breast

In collaboration with two hospitals

imaging reports in Spanish corresponding to 250 patients.
Hospital technicians only extracted written medical reports and
all personally identifiable information (names, identification
numbers, and dates) was removed before extraction, with ethical
from HM Hospitals. The authors
information already anonymized and could not be re-identified

approval received the

by them, as they did not have access to the hospital database.

2.2.1 Data cleaning and labelling

Before analysing the data, we divided them into 216 for
cross-validation and 70 for testing (approximately 75% of the
total samples for fine-tuning and 25% for testing), avoiding
introducing reports from the same patient in both datasets. Test
data was exclusively used for estimating the performance of the
final models.

Reports could refer to ultrasound, mammography (2D,
tomosynthesis and both) or both. There were biopsy reports,
nodal staging ultrasound reports and more general reports, such
as screening or 6-month follow-up over a nodule. The reports
followed different structures. Some could be divided into sections
on diagnostic tools, reason for consultation, results and
conclusions, sometimes clearly distinguished by headings. Other
reports had the same structure repeated twice, once for
mammography and once for ultrasound. However, some of them
would have no apparent structure or order and would mix
different parts in the same sentence, making it difficult to divide
the task into segmentation and classification, as in Kuling et al. [13].

The reports were automatically pre-processed according to a

set of predefined text-cleaning rules, which are described below:

o We created a dictionary of common abbreviations in the field
to replace the acronyms with their meaning.
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o We removed line breaks, replacing them by a period if the first
letter of the word was in uppercase and a space if not (reports
often had line breaks in the middle of a sentence).

o We removed punctuation and space errors (double spaces,
spaces after punctuations, etc.).

o We converted sentences that were completely uppercase
to lowercase.

« We standardised the different ways of writing BI-RADS
(BIRADS, birads, bi-rads, etc.)
uppercase, such as the mammography density (A, B, C, D) or
the category in BI-RADS 4 (A, B, C).

o We translated the reports into English to take advantage of the

and made some letters

more robust pre-trained models available in this language. For
translation of the de-identified reports we used the DeepL API
Pro service (DeepL SE, Cologne, Germany). The service is
GDPR-compliant, operates under European data-protection
regulations and guarantees that submitted texts are not stored
or used for model-training.

To label the reports, we first created a rule-based model using
regular expressions to extract some of the characteristics: age of
the patient, diagnostic technique, type of report, family history,
other type of history (previous cancer, biopsy, etc.), having a
prosthesis and the final BI-RADS classification. However, these
data could only be extracted in the semi-structured reports and
it was necessary to supervise, correct and complete some of the
results manually. This automated step served to alleviate the
manual workload by generating the initial tabular dataset. In a
second round, an expert with 4 years of experience in breast
cancer research manually annotated the data. We distinguished
between mammographic findings and ultrasound findings:

o Mammography: breast density, benign calcifications, suspicious

calcifications, lymph nodes, parenchymal distortion or
asymmetries, and nodules.

o Ultrasound: breast density, simple cysts, duct ectasia, benign
lymph nodes, suspicious lymph nodes and tumours, as well
as the BI-RADS descriptors and characteristics mainly used
by the

echogenicity, size, if known and stability.

radiologists for the tumours: shape, margin,

Table 1 shows the 19 categorical variables with their categories and
Table 2 shows the four extractive question answering variables
with some examples. The imaging modality in which these
could be added to both tables.
Mammography density, ultrasound density, shape, margin and

variables found was
echogenicity have the “unknown” label to avoid hallucinations.
Since some of the reports do not give these characteristics,
fine-tuning only the reports that would result in the model
giving one of these outputs for new reports, even if the report
does not contain this information. In the extractive question-
answering task, we assigned the label “not present” to categories
that did not appear in the report, and the models were given
this output if they did not find a match.

2.2.2 Data preprocessing

Data preprocessing was tailored to each model. For the BoW
model, the goal was to focus on the most informative words in
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TABLE 1 Categorical variables used in our study for structured breast
imaging reporting.

’ Modality Possible values

Diagnostic Mammography; ultrasound;
technique mammography and ultrasound
Report type - Biopsy; nodal staging ultrasound;
normal control or revision
Family history - First degree; second degree; no
family history
Prosthesis - Yes; no
BI-RADS - BI-RADS 0; BI-RADS 1; BI-RADS 2;
BI-RADS 3; BI-RADS 4A; BI-RADS
4B; BI-RADS 4C; BI-RADS 5
Mammography Mammography ACR A; ACR B; ACR C; ACR D;
density unknown
Benign Mammography Yes; no
calcifications
Lymph nodes Mammography Yes; no
Ultrasound Ultrasound Heterogeneous fibroglandular;
density fibroglandular and fat;
homogeneous fibroglandular;
homogeneous fatty; unknown
Benign lymph Ultrasound Yes; no
nodes
Suspicious lymph | Ultrasound Yes; no
nodes
Simple cysts Ultrasound Yes; no
Duct ectasia Ultrasound Yes; no
Nodules Ultrasound Yes; no
(Ultrasound)
Shape Ultrasound (Only if Oval; round; irregular; lobulated;
nodule) unknown
Margin Ultrasound (Only if | Circumscribed; not circumscribed;
nodule) spiculated; indefined; unknown
Echogenicity Ultrasound (Only if Hypoechoic; heterogeneous;
nodule) complex and cystic; unknown
Known Ultrasound (Only if Yes; no
nodule)
Stable Ultrasound (Only if | Yes; grown; shrink

nodule and known)

TABLE 2 Examples of extractive question answering.

Variable Modality Example of extracted value

Age - 56

History - History of percutaneous excision by
means of Vacuum-Assisted Biopsy
excision of papilloma of the left breast in
2021

Parenchymal Mammography The breast parenchyma shows areas of

distortion architectural distortion in the right
upper outer quadrant breast adjacent to
the coil

Size Ultrasound (Only if | 13 X 7 x 12mm

nodule)

each report. To achieve this, we first converted all words to
lowercase and removed punctuation. Stop words, i.e., articles
and prepositions, were also removed, as they do not contribute
meaningfully to classification in a BoW representation, which
ignores word order and syntax. Next, we applied stemming to
reduce words to their root form. We then generated a
vocabulary of all the words in the dataset, discarding words that
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appear only once. Finally, each report was converted to the
TF-IDF vector representation. The targets or classification
outputs were encoded as one-hot vectors so that the model
could be trained with a softmax activation function.

For BERT-like and generative models, we did not modify the
reports apart from the initial cleaning. Each model uses its own
tokeniser to convert the input report into a sequence of embeddings,
ie, dense vector representations that capture the meaning and
that allow
adding information to the input (see Subsection 2.1), we followed the

context of words. For the model architectures

next structure:

o Question: For example, “Question: what diagnostic technique
was used in the following breast medical report?”

o Context: For example, “Additional information: biopsy reports,
simple cysts and analysis of lymph or axillary nodes are only
seen on ultrasound. On the other hand, if the ACR density is
given or parenchymal distortions are analysed, the technique
will  be a type of
mammography. The include an ultrasound

a mammogram. Tomosynthesis is
report may

examination, a mammography examination or both.”
o The report.

For the generative models, we added two extra elements to the input.

« Possible answers: explain whether this is a classification or an
extractive question answering task and specify the set of valid
answers to the question, e.g., “Answer: answer with one of
the following options: ‘only ultrasound study, ‘only
mammography study’ or ‘mammography and ultrasound.”

o Answer: The correct answer to the question, provided during
training. At inference time, only the prefix “Answer:” was

included, prompting the model to generate the output.

The size of the input vector in the BERT-like models was set to its
maximum of 512, with padding added if the report tokenisation was
shorter. However, some of the reports exceeded this limit when
context was added. To address this issue, we tried three different
techniques:

No context: keep only the question and the report to
avoid truncation.

o Truncate: Add context and simply truncate the report at the
maximum length, risking loss of essential information.

o Mixed: include the context in reports where it does not exceed the
maximum token limit and leave the remaining reports unchanged.

« Two-stage: fine-tune the initial epochs with the context included
and the final epochs without it. This approach allows the model to
benefit from the extra data early in fine-tuning, while ensuring
that all reports are used in full toward the end.

For the generative models, no truncation was necessary due to less
restrictive input criteria. The questions and context used to extract
each variable can be found in the code uploaded to GitHub:
https://github.com/mikel403/Structuring-Unstructured-Breast-
Reports/tree/main.

Figure 1 shows a flow chart of the data preparation pipeline,
from the data acquisition to the specific configuration for each
model.

frontiersin.org



Carrilero-Mardones et al.

10.3389/fdgth.2025.1718330

Raw reports
collection

286 breast imaging

Labelling with

reports in Spanish a rule-based model
De-
dentificatio
4 report elimination,
216 for cross- Empty or copied
validation reports :

Data cleaning

Dataset split >  Data study (punctuation,

spacing, etc.)

Expert manual labelling

We only label biopsy
and nodal staging

ultrasound reports in
diagnostic technique,
age and report type

Remaining 186 reports in cross-
validation and 64 in testing

Label the remaining 3
Exctractive question
answering variables

Label the remaining

70 for 17 categories
testing A
Translation into english
with DeepL Api Pro
Data preprocessing for each model

Multi- (‘Single output ) Generative
BoW model classification BERT-like models

BERT models

J

Y

\4
Tokenization

A 4

) Tokenization
Convert to TF-

e Question +
Remove stop- Question + context context +.report
words + report +Possible
punctuation, etc. S E——— answers

| —

Tokenization

IDF

Max-length: 512

l

A A 4

Truncation

Eliminate context

Mixed: only add
context to reports

not exceeding the
length

Two-stage: add
context at the
beginning of the
training with
truncation and the
reports with no
context at the end

FIGURE 1

Data preparation pipeline. The main data configuration used in the test experiment after the ablation studies is highlighted in green.

2.3 Experiments

We fine-tuned the models using 216 reports and tested them
on the remaining 70. To guide ablation studies, we performed
10-fold cross-validation on the fine-tuning set.

First, we compared two variants of the BioMedBERT model: one
with multiple output layers (one per entity) and another with a single
output layer, as explained in Section 2.1. For the latter, we studied
different ways of dealing with the maximum input length when
providing context in the input, as explained in Section 2.2.2.
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Next, we compared the two fine-tuning approaches for the
BioGPT model explained in Section 2.1 and also studied the
effect of the context for the one-stage fine-tuning method.

We then compared the performance of the models selected by
the ablation studies with that of the BoW model on the
classification tasks. Finally, we compared the generative and
BERT-like models on the extractive question answering tasks.

For the classification experiments, we evaluated model
performance using both accuracy and the F1 score. As some of the

target entities were multi-class rather than binary—such as BI-RADS
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—we computed the macro F1 score, which ponders all classes equally
by taking the unweighted mean of the F1 scores across all classes. This
ensures an equal weight for both frequent and infrequent classes. As
this is a single-label classification task, accuracy and micro-F1 are
equivalent. Therefore, we are reporting micro and macro F1 results.

For many non-binary classification tasks involving descriptors
such as shape, margin and echogenicity, we introduced an
“unknown” class to account for cases where no descriptor was
provided. While this prevents the model from “hallucinating,” it also
inflates the accuracy figure due to the large number of “unknown”
predictions. In such scenarios, the macro F1 score is particularly
valuable as it provides insight into the model’s performance on the
minority classes, ie., the meaningful descriptor categories, rather
than being dominated by the majority “unknown” class.

For the extractive question answering task, the outputs were
evaluated by the same expert that did the labelling. They manually
revised the errors made by the models to determine whether they
were genuine errors or minor modifications, such as starting or
ending a phrase one word earlier or later, or differences in stop
words. If the model provided only part of the output and omitted
important information, a score of 0.5 was given. For example, if
the expected output was “post-treatment changes in left breast.
Asymmetric density in outer quadrants of the right breast, stable”
and the output given by the model was “post-treatment changes in
left breast.” This was the best method to assess whether the
generative models hallucinated. To enhance transparency and
reproducibility, ~we also report the established metric
BERTScore [31], which compares the contextual embeddings of the
reference and predicted outputs. Unlike exact match metrics,
BERTScore accommodates lexical variation while still evaluating
whether essential information has been conveyed correctly.

Finally, since it cannot be assumed that the distribution of score
differences follows a Gaussian distribution, statistical significance
was assessed using the paired Wilcoxon signed-rank test. The unit
of analysis was determined by the level at which each metric is
defined. In the classification task, although accuracy is available at
the instance level, it only takes three discrete values (0, 0.5 and 1),
making it unsuitable for the Wilcoxon test. Moreover, F1 is only
defined at an aggregated level. For these reasons, comparisons
between models were performed at the category level, using one
paired score per category across the 19 variables. In contrast,
BERTScore provides a continuous value for each individual report—
question pair in the extractive QA task. Consequently, comparisons
were carried out at the example level, which offers a more
appropriate and statistically robust basis for inferential testing. Four
variables were defined in this task, but we did not apply a Wilcoxon
test at the variable level because the sample size (n = 4) was too small.

3 Results

3.1 Ablation studies and cross-validation
results

Table 3 presents the results of the comparison between different
configurations of BioMedBERT (described in Section 2.1) in the
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cross-validation experiment. The models with a single output
layer achieved better accuracy than the model with multiple,
entity-specific output layers. There were no statistically significant
differences in the performance across different approaches to
appending the context to our model. However, since truncation
gave slightly better results, we used that approach in the test
experiment with BERT-like models. We repeated the experiment
with BioBERT, reaching the same conclusions.

Table 4 shows the results for classification with the two different
fine-tuning methods for BioGPT and the effect of providing the
context (explained in Section 2.2.2) for the cross-validation
experiment. Since the one-stage method with context obtained
slightly better results, we used this setup for the test experiment.

Tables 5, 6 show a comparison of the selected Transformer-based
models with the BoW model in the cross-validation classification
experiment. Tables 7, 8 present the results of the extractive
question answering experiment. BioGPT achieved the highest
mean performance across both tasks and multiple evaluation
metrics. Since BioMedBERT was the second best option, we tested
the null hypothesis that BioMedBERT performed equally well or
better than BioGPT. No statistically significant differences were
found, with p-values of 0.95 (accuracy) and 0.81 (macro F1) for
the classification task and 0.98 for the BERTScore F1 in the
extractive question answering task.

3.2 Main results

Table 9 shows the comparison between the accuracy of the BoWw,
BERT-like and generative models on the test data. BioBERT,
BioMedBERT and BioGPT outperformed the other models, the
latter having a slightly better overall accuracy. Table 10, shows the
macro F1 scores, which exhibit the same patterns but with wider
performance differences across entities, especially in the BI-RADS
tumour descriptors. As in the cross-validation experiment, we
tested the null hypothesis that BioMedBERT performed equally
well or better than BioGPT. However, with p-values of 0.012 for
accuracy and 0.017 for macro F1, we can reject this hypothesis
and conclude that BioGPT’s performance is statistically superior
across the 19 variables in the test experiment. Supplementary
Material to this article show the confusion matrices for the
BioGPT model’s outputs for each entity in the classification task.

Regarding extractive question answering, Table 11 shows that
BioMedBERT achieved the best overall accuracy, assessed by the
expert, by a narrow margin over ClinicalT5 and BioGPT, even if
each of the models was best in a different entity.

Table 12 shows the BERTScore results, which are similar:
BioMedBERT obtained best BERTScore F1 by a narrow margin,
having better precision, but worse recall than BioGPT, but the
difference was not significant (p = 0.34).

4 Discussion

We have compared the latest BERT and generative models

further pre-trained on medical data to extract relevant
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TABLE 3 Ablation study in the cross-validation experiment: classification accuracy for BioMedBERT with different architectures and approaches to

handling maximum input size when providing context.

Entity (humber of cases) Multiple output layers No context Two-stage Hybrid Truncate
Diagnostic technique (212) 93.40 97.64 98.11 97.64 97.17
Report type (212) 97.17 97.17 96.23 97.17 97.65
Family history (186) 92.47 98.92 98.92 98.92 97.85
Prosthesis (186) 98.92 99.46 99.46 99.46 99.46
BI-RADS (186) 77.42 96.77 94.09 95.70 95.70
MMG density (186) 80.11 96.77 97.31 97.31 98.39
Benign calcifications (186) 82.80 98.39 97.85 96.77 98.39
Lymph nodes on MMG (186) 92.47 98.39 98.92 97.85 97.31
US density (186) 72.58 94.09 91.40 93.01 94.62
Benign lymph nodes on US (186) 91.94 95.70 94.62 94.62 96.26
Suspicious lymph nodes on US (186) 95.70 97.85 98.39 96.77 97.85
Simple cysts (186) 84.95 97.85 97.85 97.85 97.31
Duct ectasia (186) 90.86 100.00 100.00 100.00 100.00
Nodules on US (186) 84.95 93.01 94.62 94.62 93.01
Shape (82) 59.76 89.02 89.02 89.02 91.46
Margin (82) 73.17 84.15 80.49 84.15 86.59
Echogenicity (82) 69.51 93.90 91.46 93.90 92.68
Known (82) 70.73 75.61 81.71 84.15 82.93
Stable (43) 81.40 81.40 83.72 83.72 86.05
Mean 83.70 94.00 93.90 94.35 94.77

US and MMG are abbreviations for ultrasound and mammography.
Bold values indicate the highest score across the compared models.

TABLE 4 Ablation study in the cross-validation experiment: classification
accuracy of BioGPT using two training strategies, with and
without context.

Two-
stage

One-
stage

Entity (humber of cases) No

context

Diagnostic technique (212) 97.17 98.11 98.11
Report type (212) 97.64 96.70 96.23
Family history (186) 98.39 98.39 98.92
Prosthesis (186) 99.46 99.46 99.46
BI-RADS (186) 98.39 97.85 98.39
MMG density (186) 96.77 97.31 97.85
Benign calcifications (186) 98.39 97.31 99.46
Lymph nodes in MMG (186) 96.24 96.77 96.77
US density (186) 96.74 95.65 95.11
Benign lymph nodes in US (186) 95.16 96.24 94.08
Suspicious lymph nodes in US (186) 98.92 97.31 96.24
Simple cysts (186) 97.85 97.85 98.92
Duct ectasia (186) 99.46 98.92 98.92
Nodules in US (186) 98.39 94.62 93.55
Shape (82) 90.24 87.80 91.46
Margin (82) 87.80 91.46 85.37
Echogenicity (82) 92.68 91.46 93.90
Known (82) 75.61 82.93 79.27
Stable (43) 88.37 90.70 90.70
Mean 94.93 95.10 94.88

US and MMG are abbreviations for ultrasound and mammography.
Bold values indicate the highest score across the compared models.

information from breast imaging (mammography and ultrasound)
reports. In addition, we have assessed the performance of these
models using different architectures, fine-tuning strategies and
approaches to provide context.

We have demonstrated that these models can achieve high
accuracy on such tasks, highlighting their potential as tools for
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extracting valuable information from electronic health records,
both for
clinical workflows.

research purposes and for wuse in efficient

We experimented with different structures within the
BERT-like and generative models in the cross-validation
experiment. For BioGPT, there was no significant difference
across architectures. However, for the BERT-like models, the
architecture that adds questions and context to reports and
extracts one answer per report outperformed the structure with
multiple output layers achieving a mean accuracy of 94.77% vs.
83.70%. Although adding multiple output layers to the
network’s head is the most common approach for multiple
classifications, this can make the task difficult for BERT-like
models when faced with a large number of classification tasks,
as was the case in this study. Since BERT-like models are
pre-trained as language models, they benefit from additional
context provided in natural language. When a question is added
(e.g., “Is the patient’s age mentioned in the report?”), the model
focuses on a specific aspect of the input, enabling it to better
associate the question with the appropriate output neuron. By
contrast, a model with multiple heads processes all tasks
simultaneously without explicit task context, which can hinder
learning, particularly when tasks are not fully independent.
Interestingly, a BoW model using TF-IDF features as input and
multiple output layers, achieved a mean accuracy of 87.03%,
outperforming the BERT-based multi-output head model. To
investigate this further, we conducted an additional experiment
in which we put the classification network of the BoW model as
the head of the frozen BioMedBERT model. We then trained it
on top of the frozen BioMedBERT. This setup achieved an
accuracy of 80.26%, suggesting that the classification network
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TABLE 5 Classification accuracy in the cross-validation experiment.
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Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
Diagnostic technique (212) 94.81 98.58 96.70 97.64 97.17 98.11
Report type (212) 96.23 95.28 95.28 97.17 95.28 96.70
Family history (186) 95.16 98.39 94.09 98.92 93.01 98.39
Prosthesis (186) 98.92 99.46 98.92 99.46 99.46 99.46
BI-RADS (186) 81.18 95.16 73.12 95.70 75.81 97.85
MMG density (186) 84.41 97.31 90.86 97.31 96.24 97.31
Benign calcifications (186) 77.42 98.39 90.32 96.77 97.31 97.31
Lymph nodes in MMG (186) 96.24 98.39 96.24 97.85 93.55 96.77
US density (186) 84.95 94.09 81.18 93.01 79.35 95.65
Benign lymph nodes in US (186) 91.94 94.62 93.01 94.62 91.40 96.24
Suspicious lymph nodes in US (186) 96.24 97.31 95.70 96.77 95.16 97.31
Simple cysts (186) 87.63 98.39 93.55 97.85 97.31 97.85
Ductal ectasia (186) 96.24 99.46 100.00 100.00 98.39 98.92
Nodules in US (186) 89.78 91.94 88.71 94.62 90.32 94.62
Shape (82) 65.85 89.02 74.39 89.02 90.24 87.80
Margin (82) 79.27 84.15 84.15 84.15 84.15 91.46
Echogenicity (82) 73.17 89.02 89.02 93.90 91.46 91.46
Known (82) 78.05 85.37 70.73 84.15 78.05 82.93
Stable (43) 86.05 86.05 79.55 83.72 79.07 90.70
Mean 87.03 94.23 86.09 94.77 90.67 95.10

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 6 Macro F1 score for classification in the cross-validation experiment.

BioBERT

BlueBERT

BioMedBERT

ClinicalT5

Entity (humber of cases)

Diagnostic technique (212) 62.97 66.06 47.00 64.88 64.88 65.67
Report type (212) 78.21 70.56 69.70 90.19 62.09 82.06
Family history (186) 79.90 91.41 47.67 92.54 84.21 90.77
Prosthesis (186) 94.16 97.23 94.16 97.23 997.23 97.23
BI-RADS (186) 47.49 66.63 23.54 74.86 82.70 93.41
MMG density (186) 82.56 93.62 44.23 98.73 96.33 97.30
Benign calcifications (186) 77.29 98.38 89.75 98.38 97.31 97.30
Lymph nodes in MMG (186) 60.15 88.04 49.04 80.07 48.33 74.17
US density (186) 81.44 82.47 43.06 91.32 77.80 92.27
Benign lymph nodes in US (186) 86.02 90.79 88.92 93.31 87.02 93.63
Suspicious lymph nodes in US (186) 86.02 90.02 40.34 92.28 85.81 89.28
Simple cysts (186) 87.47 98.38 92.95 97.29 97.30 97.83
Duct ectasia (186) 84.99 98.24 96.37 100.00 94.72 96.58
Nodules in US (186) 89.65 91.83 86.18 92.92 90.23 94.58
Shape (82) 34.94 53.24 29.71 55.40 66.13 61.20
Margin (82) 42.75 43.02 28.35 44.65 48.51 73.33
Echogenicity (82) 29.49 36.92 25.97 51.15 50.78 57.08
Known (82) 77.93 85.29 70.57 82.89 77.72 82.92
Stable (43) 40.29 40.29 59.02 40.29 29.44 53.80
Mean 69.67 78.02 59.02 80.97 75.71 83.70

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

TABLE 7 Expert-assessed extractive question answering score in the cross-validation experiment.

Entity (hnumber of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
Age (212) 99.53 99.53 99.53 99.53 99.53
History (186) 95.16 94.62 95.43 89.78 95.70
Parenchymal distortion (186) 95.16 95.16 95.16 96.77 96.77
Size (82) 87.80 86.59 91.46 89.02 92.68
Mean 94.41 93.98 95.67 93.78 96.17

Bold values indicate the highest score across the compared models.
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TABLE 8 BERTScore F1 and recall for extractive question answering in the cross-validation experiment.

Entity (number of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
BERTScore F1
Age (212) 99.76 99.76 99.76 99.10 99.76
History (186) 95.76 95.64 96.28 91.48 95.98
Parenchymal distortion (186) 95.98 96.37 96.23 96.59 96.68
Size (82) 91.05 92.32 94.77 93.71 95.26
Mean 95.61 96.02 96.76 95.21 96.92
BERTScore Recall
Age (212) 99.82 99.82 99.82 99.39 99.82
History (186) 95.15 95.25 95.58 91.89 95.68
Parenchymal distortion (186) 95.00 95.47 95.21 96.56 95.93
Size (82) 90.84 92.56 94.66 93.26 94.63
Mean 95.20 95.78 96.32 95.28 96.52

Bold values indicate the highest score across the compared models.

TABLE 9 Main results: accuracy for classification in the test experiment.
Entity (humber of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
Diagnostic technique (70) 92.86 98.10 95.71 100.00 97.14 100.00
Report type (70) 100.00 97.14 97.14 98.57 94.29 98.57
Family history (64) 93.75 98.41 96.88 96.88 92.19 96.88
Prosthesis (64) 100.00 100.00 100.00 100.00 100.00 100.00
BI-RADS (64) 79.69 96.88 71.88 96.88 92.19 98.44
MMG density (64) 92.19 96.88 90.63 100.00 93.75 100.00
Benign calcifications (64) 82.81 95.31 90.63 96.88 95.31 98.44
Lymph nodes in MMG (64) 95.31 95.31 95.31 96.88 98.44 98.44
US density (64) 79.69 93.75 89.06 98.44 90.63 98.44
Benign lymph nodes in US (64) 89.06 92.19 89.06 87.50 87.50 93.75
Suspicious lymph nodes in US (64) 96.88 98.44 98.44 98.44 98.44 98.44
Simple cysts (64) 79.69 98.44 95.31 98.44 93.75 100.00
Duct ectasia (64) 96.88 98.44 98.44 98.44 98.44 98.44
Nodules in US (64) 85.94 95.31 85.94 93.75 87.50 93.75
Shape (25) 56.00 84.00 72.00 72.00 88.00 88.00
Margin (25) 92.00 88.00 76.00 88.00 80.00 96.00
Echogenicity (25) 68.00 88.00 84.00 92.00 96.00 96.00
Known (25) 76.00 80.00 84.00 84.00 76.00 80.00
Stable (13) 92.31 84.62 69.23 84.62 76.92 92.31
Mean 86.79 93.67 88.40 93.77 91.39 96.10

US and MMG are abbreviations for ultrasound and mammography.

Bold values indicate the highest score across the compared models.

favoured the explicit TF-IDF features over the frozen divided into different parts of the sentence. In the test

BioMedBERT representations. Only when adding the questions
and a single output layer was BioMedBERT able to outperform
the BoW model.

The generative BioGPT model outperformed all other models
in the classification task (p = 0.012), achieving slightly lower
scores in the extractive question-answering task, though not
significantly so. Furthermore, BioGPT was fine-tuned to perform
both tasks simultaneously, whereas BERT-like models could not.
The F1 results show a greater difference between this model and
the others, meaning that BioGPT also performed better when
classifying minority groups. Finally, when examining the
BI-RADS descriptors, BioGPT demonstrated a superior grasp of
the categories and the various terms associated with them. We
also fine-tuned this model to extract tumour localisation, which
would not be possible with BERT-like models, as it is often
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experiment, BioGPT achieved an accuracy of 94.00%; the errors
occurred when the tumour location was not fully specified. We
also fine-tuned this model for symptomatic extraction. The
model obtained an accuracy of 99.22% when considering
non-symptomatic cases as a separate class (meaning there was
no hallucination problem) and 3.5 out of 4 when considering
only symptomatic cases. The model made a partial error: it
predicted a palpable nodule, but did not indicate that it
was painful.

We added an “unknown” label to mammography and
ultrasound density, as well as to shape, margin and echogenicity.
Using this label alongside the BioGPT model, we achieved
macro F1 scores of 100, 98.77, 89.93, 90.58 and 73.81. When
only reports with a BI-RADS label for these variables are
considered, i.e., excluding the “unknown” label, the macro F1
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TABLE 10 Main results: macro F1 score for classification in the test experiment.

10.3389/fdgth.2025.1718330

Entity (number of cases) BoW BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
Diagnostic technique (70) 90.09 98.10 94.29 100.00 97.54 100.00
Report type (70) 100.00 93.92 92.81 96.71 51.62 96.71
Family history (64) 67.93 74.75 71.16 72.58 87.67 69.95
Prosthesis (64) 100.00 100.00 100.00 100.00 100.00 100.00
BI-RADS (64) 51.26 83.72 42.58 83.72 94.03 95.02
MMG density (64) 91.57 96.34 90.62 100.00 94.15 100.00
Benign calcifications (64) 82.81 95.28 90.48 96.86 95.30 98.43
Lymph nodes in MMG (64) 48.80 48.80 48.80 74.19 89.59 89.59
US density (64) 78.33 89.48 86.00 98.77 90.40 98.77
Benign lymph nodes in US (64) 76.26 78.60 73.57 67.92 74.14 83.96
Suspicious lymph nodes in US (64) 74.19 82.93 82.93 82.93 82.93 82.93
Simple cysts (64) 79.44 98.43 95.28 98.43 93.74 100.00
Duct ectasia (64) 74.19 92.44 92.44 92.44 92.44 92.44
Nodules in US (64) 85.65 95.17 85.65 93.52 86.87 93.44
Shape (25) 36.78 64.02 53.33 56.86 92.00 89.93
Margin (25) 64.58 62.31 40.37 63.31 42.87 90.58
Echogenicity (25) 36.36 69.35 44.51 71.50 73.81 73.81
Known (25) 75.96 80.00 83.97 83.97 75.96 80.00
Stable (13) 81.16 45.83 40.91 45.83 43.48 81.16
Mean 73.44 81.55 74.20 83.13 82.02 90.35

US and MMG are abbreviations for ultrasound and mammography.
Bold values indicate the highest score across the compared models.

TABLE 11 Main results: expert-assessed extractive question answering score in the test set.

ClinicalT5

Entity (humber of cases)

BioBERT

BlueBERT

BioMedBERT

Age (64) 100.00 97.14 100.00 100.00 100.00
History (64) 93.75 93.75 95.31 87.50 94.53
Parenchymal distortion (64) 95.31 87.50 96.09 94.53 98.44
Size (25) 72.00 32.00 84.00 92.00 80.00
Mean 90.27 77.60 93.85 93.51 93.24

Bold values indicate the highest score across the compared models.

TABLE 12 Main results: BERTScore F1 and recall for extractive question answering in the test experiment.

Entity (humber of cases) BioBERT BlueBERT BioMedBERT ClinicalT5 BioGPT
BERTScore F1

Age (64) 100.00 98.53 100.00 100.00 100.00
History (64) 94.26 93.86 95.20 89.62 94.74
Parenchymal distortion (64) 94.72 89.00 95.65 94.24 94.15
Size (25) 88.08 63.73 95.17 96.03 94.82
Mean 94.27 86.28 96.51 95.63 95.91
BERTScore Recall

Age (64) 100.00 98.16 100.00 100.00 100.00
History (64) 92.94 91.58 93.95 89.93 94.93
Parenchymal distortion (64) 94.12 87.37 94.66 93.69 94.41
Size (25) 89.77 62.07 93.51 95.65 94.78
Mean 94.21 84.80 95.53 95.19 95.98

Bold values indicate the highest score across the compared models.

scores are 100, 99.33, 93.01, 88.89 and 66.67. For clarity and
transparency, the confusion matrix for each variable is available
in the Supplementary Material to help the reader better
understand the outputs of the model.

of BioGPT and
BioMedBERT using a representative report from the test set and

We compared the inference times
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a single NVIDIA V100 GPU with 16 GB of HBM2 memory.
BioGPT took 9.57s to carry out both classification and
extractive question answering in a single forward pass. By
contrast, BioMedBERT took approximately 1.57s per task,
totalling 3.14 s for both. Although the latter is faster in terms of
raw inference time, the fact that BioGPT can perform both tasks
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simultaneously offers advantages in terms of deployment
simplicity, reduced system complexity and potentially improved
consistency of outputs. In real-world clinical settings, the
importance of these trade-offs depends on the context. In
such as

latency-sensitive applications,

systems where quick responses are essential, smaller, faster

interactive hospital

models like BloMedBERT may be more suitable, particularly if
their performance is comparable. However, in batch processing
or retrospective analysis scenarios, where large volumes of data
can be processed without real-time constraints, multitask models
like BioGPT may be more efficient and convenient.

Previous studies have explored the use of BERT-like and
generative models for extracting information from breast
[13, 15, 24, 27, 29], demonstrating the
effectiveness of these approaches. However, there are few

medical reports

comprehensive comparisons between generative and BERT-like
models. The comparison made by Hussain et al. [29] involved
only a single medically further pre-trained model (BioGPT)
compared against a general-purpose one (BERT), which limits
the scope of the evaluation. Finally, Reichenpfader et al. [15]
further pre-trained a BERT model for NER and extractive
question answering, with promising results. They compare their
results with the open-source Llama 3.3 model, but do not
further fine-tune a generative model specialized in medical tasks.

The main limitation of this study is that there were only 286
reports and some of the classes were underrepresented. For
instance, while the “mammography and ultrasound” and
“ultrasound” techniques were balanced, there were only two
“mammography” exams, both of which were included in the
cross-validation experiment (in different folds). As can be seen
from the macro F1 scores in Table 6, none of the models could
correctly label these reports. There was also only one case of
third-degree family history in the dataset and this was included
in the test set. Only ClinicalT5 could correctly identify it. This
is why the macro F1 score, in conjunction with accuracy,
provides a clearer picture of the results. Furthermore, the
confusion matrices of the test results have been added to the
Supplementary Material. These also illustrate the overall balance
of the data in our dataset. A larger dataset would have allowed
us to demonstrate the differences and similarities between the
models more effectively. Nevertheless, this dataset was sufficient
for fine-tuning and achieving good results with BioBERT [10],
BioMedBERT [12] and BioGPT [18], particularly the latter.
Considering that we obtained multiple classifications or
extractions from each report, the dataset comprised 5,399 items.

Another limitation is that we only obtained reports from two
hospitals located in the same city, belonging to the same hospital
group, HM. Therefore, the fine-tuned model could be useful for
converting medical reports to tabular data in these hospitals;
however, generalisability to other centres was not explored in
this study. Additionally, a single expert annotated the reports
and assessed the accuracy of the extractive question answering
task. While this approach ensured consistency, it might have
should therefore
incorporate inter-rater agreement to strengthen the reliability of

introduced annotation bias. Future work

the evaluation. Furthermore, we explicitly distinguished between
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those from

ultrasound. Most reports included both modalities, sometimes

findings derived from mammography and
clearly separating them and at other times mixing them within
the same paragraph. While the differing descriptions across
imaging modalities enabled clear labelling during annotation,
there is a risk that models might learn incorrect associations
and misattribute findings to the wrong modality. In future work,
we plan to investigate this potential bias.

Lastly, we note that another limitation is that we did not
compare our results with those of general-purpose state-of-the-art
(SOTA) LLMs, such as GPT 4 or GPT 5. Although these
models have demonstrated excellent performance in a variety of
natural language processing tasks, we focused on evaluating
domain-specific, open-access models that can be fine-tuned and
deployed on local infrastructure to ensure compliance with data
privacy requirements.

We compared BERT-like and generative models that had
data
automatically convert breast medical reports into tabular data.

been further pre-trained on medical in order to
Tabular data is easier to process for research purposes and can
support clinical use by enabling efficient information retrieval
and patient comparison. After determining the optimal
architecture, fine-tuning strategy and input configuration for
each model through cross-validation, we tested them on an
additional 70 reports, achieving the best results with the
generative BioGPT model. Fine-tuning BioGPT on our medical
reports yielded accuracies of 96.10% for classification and
93.24% for extractive question answering, establishing it as a
promising tool for reducing the burden of labelling breast
medical reports.

Future work will involve fine-tuning the generative model
using more anonymised medical reports from a wider variety of
hospitals. Due to the power of generative models, we could also
analyse the artificial generation of breast medical reports using
an online service such as ChatGPT version 5, as done by
Reichenpfader et al. [15]. Importantly, these models would be
used only for generating artificial data, not for processing real
clinical reports, thereby ensuring that no sensitive information is
shared. Previous studies have used earlier versions of ChatGPT
to label medical data [24-26], demonstrating an adequate grasp
of the task without the need for fine-tuning. This would be an
effective way to utilise these powerful services without sharing
sensitive information. We will also explore the use of these
synthetic reports for benchmarking our domain-specific models
against general-purpose LLMs in zero-shot or few-shot settings.
This will help us to assess their practical utility in real-world
clinical information extraction.

Although the improvement was not statistically significant,
incorporating additional contextual information into the model
inputs yielded slightly better results. A more thorough analysis
of prompt design will be conducted to determine whether
further enhancing the model’s contextualisation can improve its
performance; for example, using knowledge-driven prompts
[27].
effectiveness of BioGPT in labelling multiple tumours within a

Finally, with a larger dataset, we will study the

single medical report.
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Appendix
1 Model parameters
The following parameters were selected during the cross-

validation experiment. All the models have a batch size of 16
and a weight decay of 0.05.

TABLE A1 Model parameters.

Model Learning rate Epochs
BlueBERT class. 5x107° 8
BlueBERT extr. 1x107* 7
BioBERT class. 5x 107° 5
BioBERT extr. 5x 107° 6
BioMedBERT class. 5x 107° 8
BioMedBERT multi output 5x107° 7
BioMedBERT two-stage 5% 107%, 3 x107° 3,5
BioMedBERT extr. 5x 107 6
ClinicalT5 7 x 107° 7
BioGPT 1x10°° 7
BioGPT two-stage 1x107°,1x107° 2,7

Class. and extr. are abbreviations for classification and extractive.
Two-stage models have two learning rates and two epochs, one for each stage.
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The BoW-based neural network had an initial learning rate of
0.005 with an exponential decay rate of 0.98 and 60 decay steps
(1 per 5 epochs) and was trained for 150 epochs.

The BERT-like models were fine-tuned first in the last
classification layers for 5 epochs with a learning rate of 0.01.
Table Al show the parameters for the rest of the models and
the second phase of the BERT-like models.
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