Reliability Engineering and System Safety 271 (2026) 112242

Contents lists available at ScienceDirect i
& SYSTEM
SAFETY"
Reliability Engineering and System Safety
(
journal homepage: www.elsevier.com/locate/ress —
Inferring failure processes via causality analysis: from event logs to
predictive fault trees
Roberta De Fazio (2 %", Benoit Depaire {2 ®, Stefano Marrone {22, Laura Verde (22
2 Dipartimento di Matematica e Fisica, Univ. della Campania-Luigi Vanvitelli, Italy
b Faculty of Business Economics, University of Hasselt, Belgium
ARTICLE INFO ABSTRACT
PACS: In the current Artificial Intelligence era, the integration of the Industry 4.0 paradigm in real-world settings
0000 requires robust and scientific methods and tools. Two concrete aims are the exploitation of large datasets and
1111 the guarantee of a proper level of explainability, demanded by critical systems and applications. Focusing on the
2000 MSC: predictive maintenance problem, this work leverages causality analysis to elicit knowledge about system failure
0000 processes. The result is a model expressed according to a newly introduced formalism: the Predictive Fault Trees.
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variables (e.g., temperature, pressure) on the health status of the components. A proof of concept shows the
effectiveness of the methodology, leveraging an event-based simulator.

1. Introduction

In the past decades, the adoption of Artificial Intelligence (AI) in
industry has brought about significant changes in processes. Al has en-
abled the optimisation of production and control processes, and it is sig-
nificantly contributing to Predictive Maintenance (PdM) spreading. The
integration of Al into PdM strategies offers a more effective and flexible
approach to the management of industrial equipment, early identify-
ing operational inefficiencies and reducing downtime and maintenance
expenses [1]. The availability of a significant amount of public data is
limited because fault events occur occasionally, and they could require
years and years of systems’ operation [2]. In addition, sensors and mon-
itoring systems can sometimes record inaccurate or incomplete data due
to malfunction or noisy environments. Low-quality data can affect the
accuracy of a Data-Driven (DD) predictive model. Model-Based (MB) ap-
proaches — where mathematical and physical models of equipment can
be defined starting from explicit knowledge — traditionally guarantee
a more explainable level of the analysis [3]. However, these methods
suffer from a lack of flexibility in adapting the results of the modelling
activities to the reality, captured by data.

The main objective of this paper is to provide a formalism for the
integration of MB and DD approaches in PAM supported by a toolchain
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for the automatic refinement of top-down models via causality-based
DD techniques. The methodology assumes the presence of a system log,
where both discrete component failure events and continuous variable
time series are captured. The model inference approach is based on the
discovery of cause-effect relations among system events and environ-
mental conditions. The formal foundation of the proposed approach is
based on the work of Kleinberg [4] tailored to the PdM context.
The original contributions of this paper are:

e the introduction of the Predictive Fault Tree (PdFT) formalism, ex-
tending the classical Fault Trees (FTs), widespread MB formalism for
reliability analysis, able to integrate DD approach, for the definition
of system model;

¢ the extension of existing cause-effect discovery methodologies with

Process Mining (PM) concepts in the dependability context;

the prototyping of a tool, named Causality AnaLYsis for Prediction of

System Operation (CALYPSO), supporting the automatic completion

of PAFT models from data.

A preliminary version of the PAFT formalism has been published in
[5]. In this paper, an enhancement of formalism and its integration
into a data-fed improvement approach is presented. The performance of
the proposed methodology is evaluated on a synthetic dataset build-up
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List of Acronyms

Abbreviation Description

Al Artificial Intelligence

ARM Association Rule Mining

BDMP Boolean Logic Driven Markov Processes

BN Bayesian Network

CALYPSO Causality AnaLYsis for Prediction of System
Operation

CI Critical Infrastructures

CM Confusion Matrix

CNC Computerized Numerical Control

DBN Dynamic Bayesian Network

DD Data-Driven

DFT Dynamic Fault Tree

DRL Deep Reinforcement Learning

DSE Dependability Simulation Engine

DSS Decision Support System

DT Decision Tree

FMECA Failure Mode, Effects, and Criticality Analysis

FN False Negative

FP False Positive

FT Fault Tree

FTA Fault Tree Analysis

ISM Interpretive Structural Modeling

IoT Internet of Things

KNN K-Nearest Neighbor

LLM Large Language Model

LSTM Long-Short Term Memory

MB Model-Based

ML Machine Learning

MTBF Mean Time Between Failures

MTTF Mean Time to Failure

PM Process Mining

PN Petri Net

PTL Probabilistic Temporal Logic

PAFT Predictive Fault Tree

PdM Predictive Maintenance

PoC Proof of Concept

RCA Root Cause Analysis

RF Random Forest

RUL Remaining Useful Life

SHyFTA Stochastic Hybrid Fault Tree Automaton

SM State Machine

SWRL Semantic Web Rule Language

N True Negative

TP True Positive

through a Python-based simulator, described in [6] and extended in this
[7]. This choice provides a ground truth for comparing the results ob-
tained with the expected one. CALYPSO tool, also, provides a prototype
for the inference approach [8].

The rest of the paper is structured as follows: Section 2 describes
related scientific work. Section 3 recalls some background information,
specifically related to FTs, causality analysis and PM concepts. Section 4
introduces the PAFT formalism while Section 5 describes the core ap-
proach of the paper, i.e., the causality-based method for PAFT model in-
ference. Section 6 demonstrates the approach and the related toolchain
on an example. Section 7 discuss the possible impact of the proposed
work in both academia and industrial settings, highlighting limitations
and strengths. Section 8 ends the paper, drawing future research lines.
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2. Related work

The main objective of the proposed work is to define a methodology
for providing insights from DD techniques and leverage them in MB
approach, assessing PAdM tasks in critical systems.

2.1. Hybrid approaches

Scientific community addresses in hybrid MB and DD approaches as
a key to improve reliability understanding and engineering capabilities
in large and complex systems [9]. Despite being a very promising field
of research, there are few works in the literature providing these hybrid
strategies [10]. The definition of a combined approach requires a
well-structured architecture in which all the parties can interact. Luo et.
al, address this challenge framing the hybrid approach in a Digital Twin
architecture for Remaining Useful Life (RUL) estimation [11]. This
provides a playground for the combination of physical model-based,
statistical and data-driven approaches, designed for the Computerized
Numerical Control (CNC) machine tool outperforming the state of
the art. Also in [12], a Decision Support System (DSS) for the design
of a risk model is proposed. The system relies on the physics-based
model for feature extraction, and DD approach providing the failure
mode. Arena et al. [13], proposes a Decision Tree (DT)-based approach
defining a DSS to improve the correct maintenance policy of a gear-
box for roasting oilseeds. The results obtained confirmed a potential
cost saving in maintenance actions compared to corrective maintenance.

In Wang et al. [14], Long-Short Term Memorys (LSTMs) are used in
the domain of industrial robots PAM. The methodology relies on the
prediction of machine running states, on the basis of historical data
and knowledge of the actual state. K-Nearest Neighbors (KNNs)/LSTMs
are combined with Knowledge Graphs for modelling the domain and
comparing the output of the DD approach. Cao et al. [15], propose
a methodology based on on ontology-based formalism combining re-
sults obtained from Semantic Web Rule Language (SWRL) and from the
rules described by experts, for the prediction of failure occurrences. A
causal aggregation loss is, instead, designed to separate the non-causal
and causal factors in [16]. Five cross-machine vibrational fault diagnosis
cases and three cross-environment acoustical anomaly detection cases
were adopted in the experimental phase to evaluate the performance.

2.2. Model-based and data-driven aspects in system dependability

FT is a formalism for system failure analysis, based on a deduc-
tive approach and a graphical representation that improves usability
and expressiveness. FTs are an industrial standard with impact on pre-
dictive maintenance [17,18]. Their success comes from object-oriented
modelling, integration of domain knowledge, and accessibility to non-
experts

In Gao et al.[19], Dynamic Fault Tree (DFT) is applied to
Communication-Based Train Control using SimFIA for safety and relia-
bility analysis. In Mandelli et al. [20], FT is integrated with sensor data,
modelling component states. Ruijters’ Fault Maintenance Tree [21] adds
maintenance policies, inspections, and cost modelling, but focuses on
maintenance policy evaluation rather than predictive modelling. Our
work extends FTs Internet of Things (IoT) integration, introducing a
dual-view component status propagation based on causal inference.
Bayesian Networks (BNs) model causal structures without temporal data
[4], relying on assumptions such as Markov condition, faithfulness, and
causal sufficiency [4,22]. The PAFT formalism bridges FT and BN, sep-
arating structure from inference while retaining conditional probability
evaluation. BNs [23,24], have been exteded by Dynamic Bayesian Net-
works (DBNs). However, the latter lacks flexibility [25].

Boolean Logic Driven Markov Processes (BDMP) integrates FT with
Markov Chains for component interdependence [26]. Stochastic Hybrid
Fault Tree Automaton (SHyFTA) combines DFT with Stochastic Hybrid
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Automata to model multi-state systems under dynamic conditions [27].
Unlike BDMP and SHyFTA, PAFT models both component interactions
and internal health, replaces gates with logical predicates, using Prob-
abilistic Temporal Logic (PTL) for greater expressiveness. It also incor-
porates IoT sensors to link external behaviour to system states.

2.3. Process mining and causality analysis in system dependability

Fitness 93% - F1-score 74.3%
Improvement 5.02%-15.6%

Precision 85.38-89.76%
Improvement 1.40%-2.41%

Precision 85.38- 89.76%
Error: 0.012%

Performance
Validation 72.8%
Similarity Rate 0.65
Fitness 98.66%
Accuracy 90.9%
Accuracy 83%
Accuracy 75.4-91.6%
Error ratio 6.27%

PM is an emerging field with impact in industry, enhancing analytics
in control systems [28]. It discovers real processes by extracting models
from data, often translated into Petri Nets (PNs) or State Machines (SMs)
[29,30]. In Ruschel et al.[31], PM supports BN definition by extract-
ing process models from data and integrating domain knowledge. in
[32], an unsupervised method combines Association Rule Mining (ARM)
and Large Language Model (LLM) to analyse textual maintenance data.
While ARM extracts correlations [33], our methodology, built on Sup-
pes and Kleinberg theories [4,34], leverages a probabilistic definition of
causality.

Nadim et al. [35] integrate interpretable Machine Learning (ML) and
PM by using DTs to detect sensor patterns and construct causal PNs, re-
ducing reliance on expert knowledge. Their follow-up [36] uses Deep
Reinforcement Learning (DRL) for supervisory control, combining sim-
ulation, causality analysis, and reinforcement learning to adapt poli-
cies from process data. However, these methods rely mainly on DD ap-
proaches, with domain knowledge added only in validation. Moreover,
also in this cases, DTs rules capture correlations [33,37].

In [38], authors combine PM and DD approaches for Digital Twins.
Offline, a process model is extracted and used to train a classifier that
is used in the online phase. Van Houdt et al. [39,40] extend Suppes’
and Kleinberg’s causality theory to PM, quantifying causality between
process activities. Our methodology adapts this framework to Critical In-
frastructuress (CIs), PdM, and IoT, translating discovered relations into
PdFT to better integrate domain knowledge.

Failure Mode, Effects, and Criticality Analysis (FMECA) + Decision Tree

Symbolic Al + ontologies

SHyFTA
Interpretive Structural Modeling (ISM) + BN

SHyFTA
SHyFTA: DFT + Stochastic Hybrid Automata

PM + causality analysis

LSTM, KNN, domain graphs
Physics-based + Random Forest (RF)
Physical degradation model + DD
PM + BN + mathematical models

Fault Maintenance Tree
PM + DT

BDMP
ARM + LLM

Models
DFT

BN

PM + ML
PM + DRL
BN

FT + ML

2.4. Dependability related model completion

Chiacchio et al. propose the SHyFTA formalism [41], extending DFT
with Hybrid Basic Events that couple physical process evolution with
stochastic failure behaviour. Results highlight SHyFTA’s ability to de-
liver accurate, dynamic dependability assessments for complex systems.

Arena et al. [42] extend the framework with a “Maintenance Box” to
simulate corrective, preventive, and condition-based policies. Applied
to a steam turbine benchmark, preventive strategies achieved higher
availability and lower failure frequency over the mission time.

Diagnostic and Prognostic assessments and Health status

Machine state
System availability and Maintenance costs

Process Model and Anomaly Detection
System reliability

Root Cause Analysis (RCA)

Process model
Latency Time and Repair Time

Failure time and constraint

System reliability

Rules for decision-making
RUL

Main Goal

Reliability analysis
Maintenance Policy
System dependability
Risk Factors

Control policy
Probability of failure
Maintenance policy
Risk Factors

System reliability

3. Background

This section provides some useful basic notions, allowing a deep un-
derstanding of the contribution of the paper. Causality theory represents
a fundamental point for understanding the relationships between events,
which can be effectively modelled using PTL. This connection is further
exploited in Kleinberg’s work, which introduces a metric for evaluating
the causal significance between causes and effects [4]. She, according to
Suppes’ Theory [34], extended the notion of prima facie causes with the
concept of PTL statement, providing a probabilistic definition of causal
relations.

Let us introduce some notations: a and f be two generic events, as-
suming that « is a possible cause for an effect f; X = {x,,...,x,} be the
set of all the other possible causes for f; r, s, r’, s’ generic points in time;
& a generic upper bound of time unit and p a probability. Eq. 1 expresses
the temporal condition requiring that the cause must occur before the
effect.

Steam turbine (Industrial system)

2020 CNC machine tool (Mechanics)

Industrial robots (Automotive)
2020 Goods transportation (Railway)

2022 Turbomachinery

Domain
2023 Road Traffic Fines Management (Business Processes)

2020 Communication-Based Train Control (Railway)
2023 Kraft pulp mill (Industrial Systems)

2018 Pneumatic compressor (Railway)

2003 BUSBAR (Elettrica system)
Data-driven Approaches

[43]
[32]

2024 Circulating Water Pumps (Industrial Systems)

2024 Water Distribution (Industrial Systems)
2023 Paper and pulp mill (Industrial Systems)

2016 Track circuit (Railway)

Hybrid Approaches
2016 Decanting Unit (Chemical process plant)

2020 Vessel feed pump (Industrial system)

2024 Facility Management (Industrial)
2018 CNC (Automotive)

2022 Gearbox (roasting oilseeds)
2022 Semiconductor (Manufacturing)

2024 Accidents (Railway)

2023
2021

Year
Model-based Approaches

a w)i’sé f (€8]

Ref.
[19]
[21]
[26]
[38]
[39]
[35]
[36]
[44]
[20]
[14]
[12]
[13]
[15]
[42]
[11]
[45]
[41]
[31]
[27]

Literature review of PdM approaches.

Table 1

Considering an infinite elapsed times § = co, we have that:
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Definition 1. Given a and f two events, a is prima facie cause of f if
there is a probability p such that:

<oo
1. F la

>1,<c0
2. a ~5p f

3. Ffp"" f

In other words, Kleinberg stated that to be prima facie for an effect
f, (1) the probability of a has to be different from zero; (2) a has a
no null probability to occur before f (time priority condition); (3) the
marginal probability of f has to be lower than the conditional one (i.e.,
p). Kleinberg reported this definition for identifying prima facie causes
of an effect, and she proposed a metric for measuring the causal signifi-
cance. To establish the significance of a possible cause, the impact of the
other prima facie causes must be considered. She also discarded “factors
that are independent or negatively correlated with f or which never co-occur
with a and —a”. The significance of a cause a for an effect f, considering
the influence of another cause x, is quantified by the Eq. (2).

ex(a, ) =P(flanx) -P(fl~aAx) (2)

Then, the Eq. (3) computes, on average, how much a increase the
probability of f considering the impact of all the possible other causes
X = {x},...,x,}, as reported in the Eq. (3)

Y ex P(fla A x) = P(f]-a A x)
| X —al

Eagla, ) = 3)

3.1. Addendum to Kleinberg’s work

Let us define the concept of non-exclusive causes as in Eq. (2)

Definition 2. Let a and x be two prima facie causes for f, Defination 1
implies that:

o g WSS f

o x w2l <! f
They are non-excluding causes for the effect f if [r,s]N[r,s'] # @ and f
occurs in that intersection.

As Kleinberg stated, omitting the subscripts for ease “a A x refers to a and
x being true such that f could be caused in appropriate intervals”. However,
there are two cases in which this theory needs further explanation. The
first case happens when for all x prima facie cause of f, aAx=@; in
other words, a — prima facie cause of f — has not any non-excluding
causes among the other prima facie causes of f. This is the case when all
the other possible prima facie causes of f always occur in time windows
not intersecting any of the ones associated with the occurrence of a (see
Eq. (4) as a refinement of Eq. (3)).

Eqg(a. f) =P(fla) - P(f|-a) (€]

The second case occurs when there is at least one x — prima facie
cause of f — such that a A x # @ but —a A x = . In this case, Eq. 2 leads
to an undetermined situation (see Eq. (5)).

ex(a, ) =P(flanx) = P(flma A x) =P(fla A x) - P(f]¥) )

where P(f|0) it is mathematically not defined. Hence, Defination 3
refines the definition of non-excluding causes reported in Eq. (2), mitigat-
ing the problem induced by Kleinberg’s discussion about “factors that
are independent or negatively correlated”.

Definition 3. Let a, x be two prima facie causes for the effect f, a and
f are defined non-concordant causes if and only if —a A x # @

In the rest of this paper, two causes x and a are required to be non-
excluding and non-concordant to compute the Eq. (2).

Reliability Engineering and System Safety 271 (2026) 112242
4. Predictive fault trees

The idea under the definition of PAFT is to combine FTs-based for-
malism with some aspects involving causality analysis. The proposed
formalism is responsible for modelling complex and dynamic behaviour,
providing a double view of the system — inside the components and
outside within their interaction — and analysing the maintenance ac-
tions and their impact. With respect to a previous work [5], here a new
version of PAFT is introduced.

4.1. PAFT formalism

From a theoretical point of view, a PAFT model is represented by a
tuple: < C,D, &, u >:

e C={c,cy,....¢,}, a set of components, describing the system;

e D, a set of the dynamics, which model external processes — such as
environmental changes, variable conditions, and systematic or ran-
dom external events — influencing the behaviour of the components;

e &, a set of events, which model the relationships between compo-
nents;

o the evaluation function y that computes the global state of the system
given the values measured by dynamics and propagated throughout
the events.

One of the main innovation in PAFT is the introduction of the dynam-
ics. More formally, a dynamic is a real function over time d € D | d :
R — R. The set of all the possible values assumed by all the dynamics
is V = Jep V4 where V,; = d(R) C R. The dynamic conditions, instead,
are boolean predicates defined on the values recorded by the dynamics
function: each condition models how a component reacts to those val-
ues. The relationship between components and dynamics is described by
the functional @ : C x D — {true, false}®. It assigns to the couple (c,d) a
function 7., : V; € R — {true, false}. The latter models the behaviour
of the component ¢ concerning the value measured by the dynamic d:
F. 4 is a boolean expression computed on y, the value recorded by d at a
certain point in time ¢ (i.e., y = d(¢)). If the recorded value y satisfies the
expression, F.4(y) returns frue otherwise it returns false. In the present
work, only a fixed group of boolean expressions are considered, as in
Eq. (6): the ones based on the definition of a threshold. This threshold,
0r(c,d) € R is a real number, fixed for each couple (c, d), and expresses
the upper bound for the normal functioning of the component ¢ under
the condition recorded by the dynamic d.

Feay) =y 20p(c.d) (6)

The PAFT provides an external view of the components’ relationships
and the interaction between them and the external environment, intro-
ducing new elements: let P/ = cec P! be the union of all the input
ports and P° = J, ¢ p; the union of all the output ports, where P is the
set of input ports for the component ¢; and p; its single output port. The lat-
ter describes how a component propagates inner changes to the outside,
while the former is involved in the representation of how a component
reacts to external changes.

The connections between the components are modelled by a set of
events £ C P9 x P! which relate the output port of a component to the
input port of another. For the sake of clarity, let us introduce the running
example in Fig. 1a.! Let C; be the top component, the train, and let C; be
the main engine, while C, is the spare engine, they are all depicted using
squared boxes. Each component holds a single output port, depicted as
little squared boxes on the top of the component, connected to input
ports by arrows, representing the events. The dynamic f(¢) represents
the temperature sensor. It is depicted with an elliptical shape. The inner
behaviour of the components is hidden at this level, since this layer
contributes to a top-down view of the system.

1 For a detailed description of the running example, refer to A.
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Running Example
Considering the example depicted in Fig. 1a:

e C={GC),C, G}
e D = {d(T) = temperature}
oV, =(24,71)

The system is based on three components and one dynamic. The
dynamic d models how the temperature changes in time. The val-
ues assumed by this function range between the 24° and over 70°.
The temperature affects the behaviour of the two engines C, and
C,, leading to a failure when it overcomes 70°. Due to this, the
functional 6 is defined as follows:

® 0r(Cy,d) =0,(Cy,d) =70
¢ 0(C.d)=Fc,a») =y 2 0r(C.d)
* 0(Cy,d) = Fcz,d(y) =y 2> 07(C,,d)

The port sets are:

e PO = {Po,Pl,Pz}
o P! ={po1.P02: P21}

This inter-component view is completed by an inner definition of the
behaviour of each component, which is provided with the introduction
of some notions. Each component ¢; € C is a tuple < S', 7/, T', p;, P,,’ >:

e a finite set of states, .S’;

e a state priority function assigning a priority to each state of
the component, 7' : S’ — N2, which is represented by a natural
number where max(S’) :=s; € S’ such that Vs, € §',5, #5;, =
7'(sy) < #'(s;) is defined critical state for the component ¢; (i.e. the
state with the highest priority);

a set of oriented transitions T’ C .S’ x S’ as a relation over the Carte-
sian product of components’ states, where t = (s;, max(S")) is defined
critical transition, for all s, € .S';

p; is the output port of the component, that is a variable, whose val-
ues range in the set V(P?) := {True, False, Neutral}. The port assumes
the Neutral value if the inner behaviour of the component does not
impact outside. The True value, instead, is assumed when it switches
to the critical state. On the contrary, the False value is acquired by
the output port when the component switches from the critical state
to another one with lower priority;

Pl.’ is the set of input ports (which could also be empty), whose
values range in V(P!) := {True, False, Neutral}, relying on the value
assumed by the output port of the connected components.

The intra-component view, modelled on the proposed running ex-
ample is depicted in Fig. 1b. The states are represented by circles, while
transitions are represented by arrows. It is possible to distinguish the
transitions by the events because the former links two states, while the
latter links two ports.

The inner condition of a component, due to a transition from one
state to another, can impact the behaviour of other components. Before
explaining this concept in detail, let us consider:

. [P’(Pif U D), the set of the boolean predicates over both the dynamic
values and input port values;

e T=.cc T', the set of all the possible transitions;

e S= c:_ <c S', the set of all the possible states.

Each component’s transition is also characterised by the following
functions:

2 where 7 : (xS » Nand forall ¢; € C, 7(c;, 5;) = 7(s)).
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e trigger: 7 : CxT — P(P! UD) associate to each transition a
boolean predicate defined over ports as well as dynamics values;

e action: a : PO x T — V(P?), representing the value assigned to the
output port of a component when the transition is fired.

Each transition models an inner behaviour of the component, which
reacts to some external internal degradation. These definitions can also
be adopted for modelling the “intermediate” behaviour of the compo-
nent that gradually moves from normal operating conditions to an un-
healthy state. Let us introduce some properties of a transition, which
will enhance the definition of impacting transitions:

e given ¢t € T a transition on a component ¢ € C, it is defined impact-
ing if a(p,,1) # Neutral. If this property is not held, the transition is
defined dormant for the component c;

e givent =(s;,s;) € T, the inverse of t is a transition such that the states
involved are the same of ¢ but the direction is the opposite: 7 = (s;, s,).

Summing up, from the previously introduced definitions, it is possible
to state that: the only two kinds of transitions, in a component ¢; € C
that could propagate their state outside are the critical ones and their
inverse.® If ¢ is an impacting transition, moving the component ¢ in the
state with the highest priority, then the « function turns value True; while
the same function, computed on its 7 inverse, will turn the value False®.
The function « assigns to the impacting transitions, a value of False or
True according to the direction of the arc that connects the initial state
to the final state.®
The function, described in Eq. (7), evaluates the predicate value.

n
u: P(PLuDYT x HV(P’ )X H V, - {true, false} )
i=1 deD
The evaluation function works on the set of the trigger functions (i.e.,
[P’(Pil U D)“*T) and on all the value sets of the component’s output ports
(i.e., V(P9)) as well as on the value sets of the dynamics (i.e., V). Its
implementation relies on the substitution of each port with its current
value (at T time) and of each dynamic with its value (at T time, also).
Eq. (8) represents such a mechanism.

(e, 1), B, d) = T D) y_ger vaed, (8
pij=Pp; ;) Vp; j€P

where p; is the sequence of all the input ports and d is the sequence of
all the system dynamics. d(T) is the value of the dynamic d at the time
T, and f(p; ;) is the (boolean) value of p; ;.

One of the possible scenarios described by the formalism has been
depicted in Fig. 2, which puts together the inter and intra component
views to model a specific behaviour of the system. In this case, the main
engine C, is in the down state, due to natural degradation, which trig-
gered two events, propagating the effects on component C, and C,. C,
moved from its “dormant” condition to the up state, to ensure the conti-
nuity of the service provided. C, moved to “failing” state, which means
that the train is still able to function, but it needs some maintenance ac-
tion to avoid failures. The complete scenario, described using the PAFT
formalism, is reported in Appendix B.4.

5. The model inference methodology

PdFT models can be built according a-priori knowledge as domain
experts’ knowledge, the structure of the systems, requirement specifica-
tion documents. Some details could be hidden or unpredictable since, as

3 More formally: = (s;,max(S")) and 7= (max(S'),s,) for all s, €'\
{max(S")}.

4 More formally: If ¢ = (s, max(S")) is an impacting transition for a component
c, i.e. a(p,,1) # Neutral then a(p,,t) = True and a(p,, ) = False

5 Some clarification about the meaning of these values are provided in Ap-
pendix B.2
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Fig. 1. Graphical representation of PAFT model.

Running Example
The state sets are:

o SO = {up,down, failing}
o S = {up,down}.

o S2 = {up, standby, down)} The following table repre-
sents the value assumed by the priority function.
Component State
up failing down standby
G, 0 1 2 —
C 0 — 1 —
o 1 — 2 0

So, given the definition of the priority function, the critical states,
for each component are:

o max(SY) = max(S') = max(S?) = down
The transition sets:

o TC = {(up, down), (down, up), (up, failing), (failing, up),
(down, failing),(failing,down)}

o TC1 = {(up, down), (down, up)}

o TS = {(up, down), (down, up), (up, stand by), (stand by, up),
(down, standby), (standby, down)} and the critical transitions
are:

o (up,down),(f ailing, down) for C,

o (up,down) for C,

e (up,down), (standby, down) for C,

an example, some conditions can depend on the environment the system
operates.

The methodology here introduced leverages causality analysis and
Kleinberg’s causality metrics, defined in the PM context, to infer a PAFT
model from data, making it more adherent to the system’s real behaviour
and operating conditions. The approach proposed is inspired by the
work of Van Houdt et al., in which they provided an analysis tool that
allows the estimation of the potential causes of a given effect in PM
context [39]. An overall description of the workflow is shown in Fig. 3.

The figure highlights three steps.

As the model discovery is based on PM concepts, it is worthy to
be clear on the meaning of a “process instance” in the context of this
work. Hence, due to the centrality of the presence of a CaseID in PM

»J[1

Fig. 2. A possible scenario for the running example.

approaches, some issues could be present in real-world cases: multiple
definitions of CaselIDs for the same process, particularly when consid-
ered in an unconventional context like PAM [46]; coarse-grained Ca-
selDs, when data does not separate between different process instances
in a clear way [47]. To avoid ambiguities, here a process instance is
defined as the set of events that starts from the normal operating func-
tioning of the system, proceeds through a fault-error-failure series of
events, continues with maintenance action performance, and ends with
the system recovery.

5.1. Problem formalisation

This methodology step aims to adapt such a setting to the causal-
ity analysis approach. Considering the presence of an IoT sensing net-
work able to monitor the system under the study, two are types of data
are acquired: time-series records, where continuous system and envi-
ronmental variables are captured, and event logs, storing meaningful
(discrete) events, e.g., that are composed of the loss of communications,
errors, hw/sw faults, etc. In this context, the notions of hypotheses and
effects are introduced. The observed effects encompass all possible com-



R. De Fazio et al.

J U S 5§ EEESEEESEEEEEEEEEEEEE

STEP 1
Problem Formalisation

Modelling -

Define
effect

Reliability Engineering and System Safety 271 (2026) 112242

STEP 3.1
Structure PdFT element

Vf@E Ac

Structure Inference

2PdFT, Events set
Prima Facie Filter |:> Input ports sets
D causes = €avg & Significant Thresholds
Causes Action Function

1 flownf1243| 1
ez fownf1248| 1 E>

e | up 1450 1

FiIteringY Ap _|#r|¥e

Composed Hypotheses Inference

Significant
causes

PdFT element
CH

 Predicates
« Trigger function
« Action function

:
.
ez
:
:
r

For clarifying the concepts of occurrences and related functions,
an excerpt of the dataset, associated with the running example
introduced in Section 4, is provided in the Appendix A, Table A.10.
Each occurrence is represented by a row in the dataset. Consider-
ing for example the occurrences number 1737 and number 1761,

@7 (1737)=27/04/2021-17:45:00; ¢;(1761)=27/04/2021-

D |er |V [vc
d [1245ho6q 1 (dy, > 20)[1245] 1
- Jsthor] 1 a2, 051251 1 Filtering _. Prima Facie Filter
Time-Series z, 239 :070 1 a1, soofu2ss| 1 Hypotheseé::> causes ™ Eavg & maximum
Fig. 3. Methodology workflow.
<<abstract>> :
Hypothesis S U— Running Example
{v,n}
<<abstract>>
Atomic Hypothesis the functions assign:
o @pr(1737) = sensor; @g(1761) = C,
o @ (1737) =27.25944; @),(1761) = stand by
L]
Transition Theta Composed 0.
Hypothesis Hypothesis Hypothesis 18:30:00
* o113 =1; @ (1761) =1

Fig. 4. Hypotheses definition metamodel.

ponents’ transitions, while the hypotheses represent events that can be
either atomic or composed. Atomic hypotheses are further classified
into Transition Hypotheses and Theta Hypotheses: Transition Hypothe-
ses denote state changes within a component, whereas Theta Hypotheses
represent the recording of a value that exceeds a threshold defined by
the dynamic on a component. Composed Hypotheses are formulated, con-
sidering all the possible combinations among Atomic Hypotheses using
“AND” and “OR” operators.

Fig. 4 depicts the hypothesis definition metamodel, which is for-
malised by the following definitions.

Definition 4. Let C be the set of the components and T the set of
the transitions, where T¢ C T is the subset of transitions involving a
component ¢ € C, the components’ transition set is:

Ac={(c,t) | ceC,teT)

The components’ transition set is composed of couples (c, r) that define
the transition # observed on the component c.

Definition 5. Let D be the set of the dynamics and |, . 4¢p 07 (c, d) be
the set of the thresholds that connect value recorded by dynamics and
components, a Theta Hypotheses set is:

Ap=1{dv)|deD,ve|orc.d) eV}

ceC

The set of Theta Hypotheses is composed of couples (d, v) where d is a
dynamic and v is one of its recorded values, that has been associated
with a threshold on a component c.

Definition 6. Let A, be the Transition Hypotheses set and A, be
the Theta Hypotheses set, the Composed Hypotheses set is defined by
hypotheses a = a; * - = a; are expression defined by logical operators
computed on both Transition and Theta Hypotheses.

The Composed Hypotheses are obtained by combining Transition and
Theta Hypotheses by means of logical operators.® According to these def-
initions, the set of hypotheses is H = A U A, where the subset of atomic
hypothesesis A = Ap, U A, and the set of the effect is A .. The goal is to
determine whether the causes of a component transition arise from tran-
sitions in other components or from dynamic variable values. To sup-
port this analysis, a preliminary preprocessing step performs a twofold
transformation: component states in the event logs are converted into
transitions, while continuous time-series variables are discretised into
event-like representations. The set @ = {0y, ...,0,} defines possible sys-
tem occurrences (i.e. records of the dataset). Each occurrence o € @ is a
tuple 0 = (@ g(0), 9, (0), P7(0), @1 (0)) where:

® @r : O - CuUD which assigns to each occurrence the component/-
dynamic involved

* @) : O — SUV which assigns to each occurrence the state/value
recorded

* ¢ : O —> R which assigns to each occurrence the timestamp in
which it has been performed

* @c; : O - N which assigns to each occurrence the CaseID

Definition 7. A Transition Hypothesis a = (c,7) where t = (s;, ;) is ob-
served on a component ¢ in a process instance N € ¢;(0), if there are
two consecutive occurrences, involving the component ¢, where the first
records the state s; and the subsequent one records the state s;, with no
other occurrence involving the same component in between.”

6 For a more formal definition, it is possible to refer to Defination 14 in the
Appendix C
7 Refers to C Defination 15
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Running Example

To better clarify these concepts, an example is illustrated here,
referring to the complete dataset shown in Table A.10 in the Ap-
pendix A. The sets of the Atomic Hypothesis are:

e A ={(C,,standby_down), (C,,down_standby),

(Cp,up_failing), (Cy,failing up),

(Cp,up_down), (Cy,down_failing),

(C,,up_down)}
o Ap = {(sensor,70)}

Considering the Transition Hypothesis a; = (C,, standby_down) it
is observed in the CaseID number 1, 10 since:

¢ The occurrences 1001 and 6021 record the state “standby” for C,;
the occurrences 1739 and 6791 record the state “down” for C,;
o There is no other occurrence involving C, in between.

It is possible to define two new occurrences belonging to O,:

* (a1, 97 (1739), o1 (1739)) =

((C,, standby_down), 27/04/2021 17:50:00, 1)
* (a1, pp(6791), [ (6791)) =

((C,, standby_down), 29/06/2021 07:34:30, 10)

Considering the Theta Hypothesis a = (d,70) is observed in the
CaseID number 10 since:

e The occurrence 6789 records a value ¢@,,(6789) = 70.00023
such that Fe,.d(@n(6789)) = (9, (6789) > 70) = true and also
T’C2$d((pM(6789)) = (@ (6789) > 70) = true.

It is possible to define a new occurrence belonging to Op:

(@, p7(6789), 9 (6789)) = ((sensor, 70),
29/06/2021 07 : 34 : 00, 10)

Definition 8. A Theta Hypothesis a = (d, 0;(c, d)) triggered by a dy-
namic d on a component c is observed in a process instance N € ¢ ;(0),
if there is at least one occurrence o € @, which involves the dynamic d
and the value recorded satisfied the expression F, ;5.

From this point onward, the set of occurrences considered is the union
O U Op, respectively representing the occurrences of Transition and
Theta Hypotheses. For simplicity, O is redefined as © := O, U Op, with
the function ¢; and ¢.; adjusted to this new set. Additionally, a new
function is introduced ¢ 4 : © — A, assigning the corresponding hy-
pothesis to each occurrence.

Finally, the definition of Composed Hypothesis is introduced.

Definition 9. A composed hypothesisa=a; A Ag;, € A is observed
in a process instance N € ¢¢;(0), if all the atomic hypotheses a; are
observed in the same process instance and its observation 4 is associated
with the occurrence of the last atomic hypothesis observed.®

Definition 10. A composed hypothesis a =a; V- Va; € A is ob-
served in a process instance N € ¢;(0), if at least one atomic hy-
pothesis a; is observed in that process instance and its observation o is
associated with the occurrence of the first atomic hypothesis observed.©

8 Refers to Appendix C Defination 16
9 Refers to Defination 17
10 Refers to Defination 18

Running Example

Let a; = (C,, standby_down), a, = (C,,up_down) be two Atomic Hy-
potheses and a; = a;_AN D_a, € A a Composed Hypothesis. Con-
sidering the occurrences reported in Table A.10, the Composed
Hypothesis a is observed in CaselID 10 since:

((C,, standby_down), 29/06/2021 07:34:30, 10) € O and
((Cy, standby_down), 29/06/2021 07:34:30,10) € O

The occurrence associated with the composed hypothesis is the
last one performed:

((C,, standby_down), 29/06/2021 07:34:30, 10)

Considering another Composed Hypothesis a; = a; OR_a, € A, is
observed in both CaseID 1 and 10 since:

((C,, standby_down), 27/04/2021 17:50:00,1) € O
((C,, standby_down),29/06/2021 07:34:30, 10) € © and
((Cy, standby_down), 29/06/2021 07:34:30,10) € O

The occurrence associated with the Composed Hypothesis, in both
cases, is the first one performed:

((Cy, standby_down), 27 /04/2021 17:50:00, 1)
e ((Cy, standby_down), 29/06/2021 07:34:30, 10)

5.2. Inference model discovery

The Inference Model Discovery step is performed in a two-step ap-
proach: Structure Inference and Composed Hypothesis Inference. Moreover,
it is an iterative approach, since each possible transition in the system’s
components is considered an effect. For each given effect, the significant
causes are selected by computing Kleinberg’s metrics on all the possible
events occurring in the system. Only once all the significant causes of
a transition have been discovered, all the possible Composed Hypoth-
esis are formulated, in terms of boolean predicates, and tested again
with Kleinberg’s metric. To avoid the explosion in the state space, the
Composed Hypothesis Inference step relies on the results of the previous
step for reducing the hypothesis that constitutes a possible Composed
Hypothesis for each considered effect.

5.2.1. Structure inference

As already remarked, this step aims to discover the interactions be-
tween components and the impacts of values recorded by the dynamics.
Considering all the Atomic Hypotheses defined by the set A, the pro-
posed approach evaluates whether they can cause states’ transition in
other components. Algorithm 1 implements the Structure Inference step,
iteratively repeating the procedure for each considered effect (line 1).

Algorithm 1 Structure inference algorithm.

Require: A, O,

1: for each f € A, do

2. PF(f) « TPFC(f, A)
Algorithm 5

3: for each a € PF(f) do

4: I <—£m,g(f,a)

5:

6:

> Testing Prima Facie Causes using

> Computing Epsilons applying Eq. (2)
Filtering Significant Causes SC(f) applying p-value algorithm
return UfeAC SC(f)

For the sake of clarity, a description of each step of the algorithm is
following provided.
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Running Example
Referring to the dataset in Table A.10, it is possible to state that:

e a; = (C,, standby_down) verifies the Definition 11 for f, =
(Cy,up_down)

since there are two occurrences, associated respectively to a and
f such that:

* 0, = ((Cy, standby_down), 29/06/2021 07:34:30, 10)
* o5 = ((Cy,up_down), 29/06/2021 07:34:31, 10)

that belongs to the same process instance: ¢c;(0,,) = @cr(of,) =
10 and hold the time property:

o max({T (0)|o € O A pc1(0) = 10}) = 29/06/2021 10:20:31
o min({T (0)|o € O A pc;(0) = 10}) = 22/06/2021 16:40:00
® & = max — min = 582000s

e A= qu(oa]) - (pT(ofl) =1 = 0 < A <582000

This implies ¢ (0,, € W(f,a,), but two more considerations are
due:

o the value of § can be arbitrarily chosen and in this case has been
set to 10s;

o the hypothesis a; can hold Definition 11 for other effects, for ex-
ample, f, = (Cy,up_failing), since in the process instance num-
ber 1 two occurrences hold the definition and thus implies that
1€ W(fy.a)).

Testing Prima Facie Causes

In order to compute the prima facie causes, according to Definition 1,
provided by Suppes theory, some concepts are introduced.

Definition 11. A hypothesis a € H, fits the prima facie first condition
for an effect f € A if and only if there is at least one process instance
—i.e. CaseID— in which they both occur and a occurs before f.!!

The set of the CaselIDs that holds these two properties is defined W(f, a).

Since from the first condition, a is a prima facie cause for f, this
implies that there exist at least two occurrences respectively associated
with a and f in the same process instance. The elapsed time between the
two events, then, is at maximum the elapsed time of the entire process
instance.

TPFC : A; x H — P(H) function assigns to each effect the set of all the
hypotheses that verify the property of prima facie causes to each selected
effect.

Computing Epsilon

Kleinberg’s metric, described in Eq. (2), can be computed introduc-
ing the concept of non-exclusive causes and non-concordant causes, as
respectively defined in Defination 2 and Defination 3. In the PM context,
Defination 2, 3 are related to the properties held by a specific process
instance, as illustrated by Defination 12.

Definition 12. Leta € PF(f), and x € PF(f) with x # a, they are non-
excluding for f and non-concordant if and only if:

e exists at least one process instance in which both the causes a, x and
the effect f occur.
o exists at least one process instance in which x occurs and a not.

11 For a formal definition and property proofs, refer to Appendix C Defination
19.
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Let £, ; be the set of the x that holds these properties.!?

For all a € PF(f) and for all x € L, ; it is possible to compute the
metric defined in Eq. (2). In the proposed context P(f|a A x) is given by
the process instances in which f,a, x occur over the process instances
in which x and a occur. P(f|-a A x) is given by the process instances in
which f and x occur but a does not, over those in which x occurs and a
does not. A complete discussion of this formula in the proposed context
and the proof of the well-posed definition is provided by Eq. (C.4) in the
Appendix C.

Filtering Significant Causes

After computing the epsilon values, multiple causes a € A are as-
signed to a single effect f € A.. A one-sample t-test is applied to identify
the causes a that are statistically significant. The t-test evaluates the null
hypothesis'® that the true population £40(a, f) equals 0, which means
that “a is not a cause for the effect f”. If this null hypothesis is true,
any &,,,(a, f) computed for a given sample being different from 0 is a
mere sampling artifact. The t-test computes a p-value which expresses
the probability of observing a sample ¢,,,(a, f) equal or greater to 0 un-
der the assumption that the null hypothesis is true [48]. If this p-value
(probability) is less than a considered threshold (in such case 0.05), the
observed ¢,,,(a, f) is considered to be such unlikely to occur under the
null hypothesis that the null hypothesis is rejected or a is considered a
statistically significant cause for f.

In the details, assuming the null hypothesis all the prima facie causes
of f are considered. For each of those causes, if the p-value, computed on
all the e, (a, /) with x € L, ;, is lower than threshold, the null hypothesis
is rejected, and a considered a significant cause for the effect f. A formal
definition of the algorithm for filtering significant causes is provided in
the Appendix D by Algorithm 6.

5.2.2. Composed hypothesis inference

Once the significant causes are discovered for each effect, the focus
is shifted to the internal behaviours of the component involved, dis-
covering the predicates that fire its output ports. These predicates are
represented in the metamodel of Fig. 4 by the Composed Hypothesis con-
cept (named C-Hypothesis). Algorithm 2 proposes a way to compute the
C-Hypotheses, implementing the Composed Hypothesis Inference step in
Fig. 3. More in detail, this algorithm is constituted by three main parts.

Algorithm 2 C-Hypothesis inference algorithm.
Require: A A, UfeAC SC(f)
1: for each f € A, do
2: > filtering the composed hypothesis set
3 CH(f)={ay * - * ay;'* € Awith g; € SC(f) and *€
{AND,OR}}
4 PF(f) <« TPFC(f,CH(f))
Algorithm 5

> Testing Prima Facie Causes using

5: for each a € PF(f) do
6: €4 < Eqpe(f,a) > computing epsilons applying Eq. 2
7: P 2

rf) = aerg?-")((f) fa

8: return UfeAC Pr(f)

Filtering the composed Hypothesis set

The Algorithm 2 requires as input the set of the Composed Hypothe-
ses A, the set of the effects A and for each f € A, the significant causes
set SC(f), obtained from the previous step. For each effect / € A, (line

12° A more formal definition is presented in Appendix C, Def 22.

13 The null hypothesis (often denoted as H,) is a statement used in statistics
that proposes the absence of effects, differences, or relationships between vari-
ables in a study. It serves as a baseline or default position for hypothesis testing.
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(a) Transition Hypotheses set

1), A is filtered, considering only the Composed Hypotheses that involve
all the significant causes of f (line 2). The CH set contains the Composed
Hypotheses to test with Kleinberg’s metric. It is built by combining all
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Hypotheses: H
Effect: f
Occurrences: O

Pick a hypothesis

Op i refined adding the new
instance o

Are there other
0in O4?

Are there other
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(b) Theta Hypotheses set

construction.

ainH

A

Find the process instances
> involving a: wcr(0,)

i

select a process instance
N in ¢cr(0,)

is there an
occurrence of
fin N?

The occurence of a
preceeds that of f

P(a) >0 A
P(fla) > P(f)

Yes

Add a the hypothesis in the
prima facie set of f

PF(f) U{a}

Are there
other
hypotheses?

(c) Prima Facie set construction.

Fig. 5. Flowcharts for the construction of Transition, Prima Facie, and Theta Hypotheses sets.

The computation of the prima facie causes and epsilon average val-
ues recalls the same procedure explained in Structure Inference step. In
this case, the function T P FC requires as input the effect f and the Com-

the significant causes with the logical operators (line 3).
Testing Prima Facie and Computing Epsilon

10

posed Hypotheses CH(f) C A, returning the subset of them that hold
prima facie property (line 4). After that, for each prima facie cause, the
epsilon value is computed (lines 5-6).
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Running Example

Considering the two hypotheses a; = (C,, standby_down) and a, =
(C,,up_down), they verify the Defination 11 for f| = (C,, up_down),
but more in general they both hold the property to be a prima facie
causes for f;:

{aj,ap} € PF(f))
Moreover, they also hold the property described by Definition 12:

e 10 € W(fy,a)) and 10 € W(f},a) = W(f1,a) N W(fy,a,) # 8
1€ @i (Oy) but 1 € ¢ci(Oy,) = 0c1(Og) \ 0ci(O,) # 0.

So it is possible to state that a; and a, are confounding and not
concordant causes for f; and

e a €L,

Maximum Calculation
Finally, the Composed Hypothesis with the highest epsilon value is se-
lected (line 7) for each effect. This choice is due to the semantic mean-
ing assumed by the composed hypothesis in the PAFT formalism. PdFT’s
Triggers are functions assigning to each transition on each component
one and only one predicate.

5.3. PdFT generation

The last step of the methodology, depicted in Fig. 3, is responsible
for generating the proper PAFT elements from the results obtained in
the Inference Model Discovery step. The translation involves both the
Structure Inference and the Composed Hypothesis Inference steps.

5.3.1. Structure to PdFT

For each f € A, a set of significant causes SC(f) C AU Ay ob-
tained from the previous step, is considered.

Transition Hypotheses
Let the effect f = (¢;,t;) be a transition involving the component ¢; and
a = (c;,1;) the discovered significant cause involving the component c;.
From the discovered relation between the effect and the hypothesis
some PdFT’s elements can be constructed. The component ¢; is refined
by adding an input port p; ; € PCI, c P!, modelling the connection with
¢;- An event is generated, starting from the output port of the com-
ponent ¢; € C. Finally, the relation between a and the effect f deter-
mines the generation of the action function a of the ¢; transition on
the ¢; component. Hence, ¢; becomes an impacting transition for ¢; and
a(p;.t;) # Neutral.

Theta Hypothesis. Leta = (d ,0;7) be the discovered cause and f the ef-
fect, involving the dynamic d;, this means that the latter records a value
v; influencing the component ¢;. Hence, a predicate based on the Fe,a,
function is discovered, implying the discovery of the 6;(c;, d;) threshold.

A possible implementation of this procedure is provided in the Ap-
pendix D, reported in Algorithm 7.

5.3.2. Composed hypothesis to PAFT

A similar approach is performed on the results of the Composed Hy-
pothesis Inference step. At this step, for each effect f/ = (c;,1;), the Com-
posed Hypothesis Pr(f) is a boolean predicate composed of Atomic Hy-
potheses connected by means of logical operators. If a; = (c;.t;) € Ac
involves a component, the predicate, associated to f, is updated with
the input port p; ; that connects ¢; with ¢;. The input port value de-
pends on those assigned to p; from the function a(p;,?;). Otherwise, if
a; = (d;,v;) € Ap involves a sensor, the predicate, associated to f, is
updated with the expression of the function Fepa;- In the PAFT model,

11

Running Example
Let consider the hypothesis a; = (C,, standby_down) and the effect
f1 = (Cy,up_down), given that:

e C,eC
e t = (standby,down) € T2
® p, is the output port of the component C,

the relationship a; € SC(f)) is translated into:

the definition of the input port for the component C,, that connects

the component with C,: p; ,

o the definition of the value to assign to the transition =
(standby, down) that is an impacting transition for the component
C,, since it reflects some event outside: a(C,,7) =1

o the definition of the event that connects the output port p, with

the input py,: e = (p. py2)

Running Example

Let consider the effect a; = (C,, standby_down), and the hypothe-
sis @, = (sensor,70), according to the results of the previous step,
given that:

e d = sensor € Dwith70 € V,

the relationship g, € SC(a,) is translated into:

the definition of the threshold value for the parameter monitored
by d on the component C,: 6,(C,,d) =70

the predicate is a boolean expression that triggers a transition when the
value of the expression is true. While the function alpha assigns to the
impacting transitions, a value of True or False according to the direction
of the arc that connects the initial state to the final state. This allows
modelling a direction rather than assigning a boolean meaning. For this
reason, if the value of the function a(p;, s;) is False, this does not mean
that the condition is not satisfied, but this means that the condition is
satisfied in the opposite direction. The hypothesis is translated into the
predicate according to the function y in Eq. 9.

pji <= a(p;1)=True
7(17/_,’) = ’
-pj; <= a(p;,1) = False

)

A possible implementation of this procedure is provided in the Ap-
pendix D, reported in Algorithm 8.

6. Proof of concept

This chapter is devoted to demonstrating the effectiveness of the pro-
posed approach using a concrete example. A CALYPSO tool, implement-
ing the methodology, is available at GitHub repository [8].

6.1. Simulator

Another supporting tool is Dependability Simulation Engine (DSE),
which implements a simulator for the proposed example [6]. The ex-
tension of DSE for the CALYPSO tool is available at GitHub repository
[7]. Overall, the DSE provides a structured and extensible framework
for simulating and evaluating the dependability of complex systems, in-
corporating both model-based and data-driven approaches.

The choice of testing the methodology on a simulated scenario is mo-
tivated by several issues: (1) data availability: especially in the case of
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Running Example

Let consider the effect f| = (Cy,up_down) and the Composed
Hypothesis a, = (C,, standby_down)_AN D_(C,,up_down), accord-
ing to the results of the Composed Hypothesis Inference step:

e Pr(fi)=ay4
Given that

® a(Cy,up_down) =True => y(pyy) = poo
® a(Cy,up_down) =True => y(py;) = po,

the relationship Pr(f|) = a, is translated into:

o the definition of the trigger function: z(Cy.,up_down) = py; A py,

Running Example

Let consider the effect a; = (C,, standby_down) and the hypothe-
sis @, = (sensor,70.00023), according to the results of the Inference
step:

e Pr(a)) =d,
Given that

o 0,(Cy.d) =170
* Fepq =dx)>70

the relationship Pr(a,) = 4, is translated into:

o the definition of the trigger function: 7(C,, standby_down) = F¢, 4

e | |
@ | 52 | \MlP
SEIRS IS
e | |
85‘ ‘86‘ ‘M3}f

Fig. 6. System configurations (Reliability block diagram).

complex infrastructure, the proposed approach requires a huge amount
of data to be trained, which is usually not freely available [49]; (2) eval-
uation purposes: the possibility of defining the system architecture pro-
vides complete knowledge about the simulated process; in such a way, a
precise evaluation of the methodology can be achieved, comparing the
results with the ground truth.

The first activity of this Proof of Concept (PoC) is to define a sim-
ulation model in the DSE framework. The example, shown in Fig. 6, is
structured into ten components: six subcomponents, which are instances
of the Component class and do not have any “child” component; three
middle components, each of these considers two subcomponents. The fail-
ure of both subcomponents leads to a failure of the middle components;
one top component, connected to the three middle components. A failure
of at least one middle component leads to the break of the top component
provoking the entire system failure.

The hierarchical structure of the simulator implies that, when a fault
arises in the lower layers, it is propagated toward the top. The system is

12
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Table 2
Faults’ description within the system.
Component  Internal Other components Signals
X_TOP t> MTBF,p X_Cls down v X C2s down v X_C3s down —
X Cls t> MTBF,y, X_.C10 down A X_C11 down —
X_C2s t> MTBF .y, X_C20 down A X_C21 down —
X_C3s t> MTBFy, X_C30down A X_C31 down —
X_C10,X.C11 1> MTBF¢y — sigA > 70
X_C20,X.C21 1> MTBFq,y — sigB > 3.99
X_.C30,X.C31 t> MTBFeyy — 5igC > 85
Table 3
Excerpt of the dataset.
Element ID time:timestamp case:concept:name Message_description Value
sigB 129,384 462 — 4
sigC 129,387 463 — 27.26
X_C20 129,400 462 is down —_
X C21 129,400 462 is down —
X_C2s 129,401 462 is down —
X_top 129,402 462 is down —
sigA 129,410 463 — 10.93
sigC 129,430 463 — 27.29
sigA 129,500 463 — 10.96
sigC 129,530 463 — 27.32

also equipped with three sensors: sigA, sigB and sigC, which are instances
of the class Signal. Two components are assigned to each signal, with a
corresponding condition. Table 2 summarises all the possible faults that
could arise in the system.

Once the simulation model is defined, running DSE produces two
kinds of data:

¢ Time-series: the records produced by the sensors sigA, sigB and sigC.
The attributes acquired are the ID of the sensor, the timestamp in
seconds, the sensed value and the CaselD;

¢ Event logs: the messages sent by the components in case of state
changes. The acquired attributes are the ID of the component, the
timestamp in seconds, the state change and the CaselD.

Table 3 shows an excerpt of the dataset [8]. The simulated envi-
ronment reproduces 100 years of the system’s activity. Sensors’ data
is recorded every 90 minutes of simulated time, resulting in approxi-
mately 584,411 records of time-series data. Regarding the component
states, a total of 16 failure modes can be injected, as specified in Ta-
ble 2. The dataset is organised into process instances, each representing
a scenario generated through fault injection and subsequent recovery
actions. These fault chains are not deterministic; instead, they are sta-
tistically generated based on probability distributions for the Mean Time
Between Failures (MTBF) and sensors’ behaviours. In total, 425 process
instances were processed. The produced dataset comprises more than
one million rows and 5 columns.

6.2. Applying the methodology

The application of the method and the algorithms presented in Sec-
tion 5 to this example is here reported in the three subsections: problem
formalisation (Section 6.2.1), inference model discovery (Section 6.2.2),
and PAFT model generation (Section 6.2.3). As mentioned above, the
CALYPSO tool implements and automates the steps.

6.2.1. Problem formalisation

According to the content of Section 5.1, Table 4 maps the elements
of the causality formalisation, the features in the dataset and the PdFT
syntactic elements. Other parameters to consider are: the number of
the components (n = 9), the number of dynamics (z = 2), and the total
number of the rows (I = 1048576).

Starting from this, Algorithms 3 and 4 are applied.
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Fig. 7. Discovered structure of the PAFT model.

Table 4
Causality-PdFT elements mapping.

Causality Formalisation Feature in the Dataset PAFT Element

C={cy,....,c,} Element_ID(Component) Components C

S = Ueee S Messages_description States S

D={dy,....d.} Element_ID(Signals) Dynamics D

VY =Ugep Vu Value Dynamics values | J,.,, D(R)
O={o,...,0} Dataset rows —

P Element_ID cCuD

2% Message_description, Value SuV

@r time:timestamp —

@c case:concept:name —

6.2.2. Inference model discovery

The second step is the Inference Model Discovery, whose two stages
generate the model. Concerning the Structure Inference, Algorithm 1
is applied generating the results shown in Table 5. The table assigns to
each effect considered f, i.e. each possible transition observed on each
component, its discovered cause a, which could be either a transition on
another component or a value measured by a dynamic. To each cause-
effect couple is also assigned the computed metric measuring the causal
significance.

The second stage of this step — i.e., the Composed Hypothesis
Inference step — consists of the discovery of hypotheses to generate
PdFT’s trigger functions. Starting from all the significant causes repre-
sented in Table 5, Algorithm 2 is applied. Table 6 shows the results.
As in the previous step, in the table each effect f is associated with the
boolean predicate that enables the transition considered. Last column re-
ports the value of statistical significance computed with the Kleinberg’s
metric.

6.2.3. Model generation

This last step oversees the translation of the results into the PAFT
formalism. From the result shown in Table 5, the application of the Al-
gorithm 7 enables the Structure to PAFT stage. The PdFT structure is
then defined and graphically represented in Fig. 7.

13

The last phase is devoted to populating the model with the discov-
ered trigger functions, according to the Composed Hypothesis to PdFT
stage. The results obtained, enrich the model reported in Fig. 7. The
graphical representation of the whole PAFT model of the considered ex-
ample, is reported in Fig. 8. For the sake of clarity, the trigger function,
described on each considered effect, is reported in Table 7.

6.3. Evaluation

This subsection is devoted to the evaluation of the methodology pro-
posed from two different points of view: the trustworthiness of the in-
ference process and robustness to data noise.

6.3.1. Inference trustworthiness

Here, the term trustworthiness means the degree of adherence of the
inferred model to reality and, hence, the ability to infer the right rela-
tionship between the causes and effects. As already remarked, the pro-
posed example is based on simulated data, also to let a more straightfor-
ward evaluation of the trustworthiness. In this setting, cause-effect rela-
tionships can be derived, as well as the logical rules that enable the tran-
sitions. The validation of the model inference is based on widespread ML
metrics.

Definition 13. A possible cause x € A is:

e True Positive (TP) for an effect f if it is a real cause for f and it is
labelled as a significant causes x € SC(f) for f;

e False Positive (FP) for an effect f if it is not a real cause for f but it
is labelled as a significant causes x € SC(f) for f;

e True Negative (TN) for an effect f if it is not a real cause for f and
it is not labelled as a significant causes x & SC(f) for f;

e False Negative (FN) for an effect f if it is a real cause for f but it is
not labelled as a significant causes x ¢ SC(f) for f.

TNs are all the possible combinations of (fake) causes and/or pred-
icates that are not considered in the inferred model. Theoretically, this
set can have a huge dimensionality. Even considering a finite number of
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Table 5
Structure inference results.
[ E A a€eA Eagla, ) fEA aeA Eang(a f)
(X_top,up_down) (X_Cls,up_down) 1 (X_top,up_down) (X_C2s,up_down) 1
(X_top,up_down) (X_C2s,up_down) 1 (X_Cls,up_down) (X_C11,up_down) 1
(X_Cls,up_down) (X_C10,up_down) 1 (X_C2s,up_down) (X_C20,up_down) 1
(X_C3s,up_down) (X_C31,up_down) 1 (X_C3s,up_down) (X_C30,up_down) 1
(X_C3s,up_down) (sigC,85) 0.37 (X_C11,up_down) (sigA,70) 0.74
(X_C10,up_down) (sigA,70) 0.76 (X_C21,up_down) (sigB,3.99) 0.67
(X_C20,up_down) (sigB,3.99) 0.74 (X_C31,up_down) (sigC,85) 0.76
(X_C30,up_down) (sigC,85) 0.77 (X_C1s,up_failing) (X_C11,up_down) 0.2
(X_C1s,up_failing) (X_C10,up_down) 0.12 (X_C2s,up_failing) (X_C21,up_down) 0.13
(X_C2s,up_failing) (X_C20,up_down) 0.20 (X_C3s,up_failing) (X_C31,up_down) 0.27
(X_C3s,up_failing) (X_C30,up_down) 0.21 (X_top,down_up) (X_Cls,down_up) 1
(X_top,down_up) (X_C2s,down_up) 1 (X_top,down_up) (X_C3s,down_up) 1
(X_Cls,down_up) (X_C11,down_up) 0.33 (X_C1s,down_up) (X_C10,down_up) 0.43
(X_C2s,down_up) (X_C21,down_up) 0.41 (X_C2s,down_up) (X_C20,down_up) 0.35
(X_C3s,down_up) (X_C31,down_up) 0.32 (X_C3s,down_up) (X_C30,down_up) 0.32
(X_C1s,failing_up) (X_C11,down_up) 0.27 (X_C1s,failing_up) (X_C10,down_up) 0.21
(X_C2s,failing_up) (X_C21,down_up) 0.22 (X_C2s,failing_up) (X_C20,down_up) 0.27
(X_C3s,failing_up) (X_C31,down_up) 0.38 (X_C3s,failing_up) (X_C30,down_up) 0.33
Table 6
Composed hypothesis inference results.
fEA: Pr(f) Eavg(a, )
(X _top,up_down) (X_Cls,up_down) OR(X_C2s,up_down) OR_(X_C3s,up_down) 1
(X_Cls,up_down) (X_C11,up_down)_ AN D_(X_C10,up_down) 1
(X_C2s,up_down) (X_C20,up_down) 0.73
(X_C3s,up_down) (X_C31,up_down)_AN D_(X_C30,up_down)_ AN D_(sigC,> 85) 0.54
(X_C11,up_down) (sigA,70) 0.74
(X_C10,up_down) (sigA,70) 0.76
(X_C21,up_down) (sigB,3.99) 0.67
(X_C20,up_down) (sigB,3.99999) 0.74
(X_C31,up_down) (sigC,85) 0.76
(X_C30,up_down) (sigC,85) 0.77
(X_Cls,up_failing) (X_C11,up_down) OR(X_C10,up_down) 0.39
(X_C2s,up_failing) (X_C21,up_down)_ OR_(X_C20,up_down) 0.40
(X_C3s,up_failing) (X_C31,up_down)_ OR_(X_C30,up_down) 0.53
(X _top, down_up) (X_Cls,down_up) OR(X_C2s,down_up) OR_(X_C3s,down_up) 1
(X_Cls,down_up) (X_C11,down_up) OR_(X_C10,down_up) 0.61
(X_C2s,down_up) (X_C21,down_up)_ OR_(X_C20, down_up) 0.60
(X_C3s,down_up) (X_C31,down_up) OR_(X_C30, down_up) 0.48
(X_Cls, failing_up) (X_C11,down_up) OR (X _C10,down_up) 0.39
(X_C2s, failing_up) (X_C21,down_up)_ OR_(X_C20, down_up) 0.40
(X_C3s, failing_up) (X_C31,down_up) OR_(X_C30,down_up) 0.52
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Fig. 8. PdFT inferred model.
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Table 7

PdFT inferred predicates.
f=(ct) 7(c,1) f=(n 7(c,1)
(X_top,up_down)  py; V pos V pos (X_Cls,up_failing) p,,Vps
(X_Cls,up_down) p 4 Ap;s (X_C2s,up_failing)  p,4V p,;
(X_C2s,up_down) p,; (X_C3s,up_failing)  py5V pso
(X_C3s,up_down)  py5 A psg AsigC > 85 (X_top,down_up) =P ¥ TPoa V TPy
(X_C11,up_.down) sigA > 70 (X_Cls,down_up)  -p;,V-ps
(X_C10,up_down) sigA > 70 (X_C2s,down_up) =6V Py
(X_C21,up_down) sigB > 3.99999 (X_C3s,down_up) =35 Vs
(X_C20,up_down) sigB > 3.99999 (X_Cls,failing_up) -p; 4V -ps
(X_C31,up_.down) sigC > 85 (X_C2s,failing_up) =,V py;
(X_C30,up_down) sigC > 85 (X_C3s,failing_up) -5 Vpsg

hypotheses, the TNs is huge compared with the TPs, affecting the com-
putation of the classical accuracy metric, for this reason not taken into
account.

The results of the Rules Inference are validated by comparing obtained
predicates to the real ones using the function defined in Eq. (10).

(10)

y .= H=1 < p=Pr(f)
H(p, /)=0 <= p# Pr(f)

where Pr(f) is the true predicate of the effect f and p = Pr(f) is the
inferred rule. Hence, the function H assigns a score to each prediction.

15

Table 8

Metrics for methodology evaluation.
Recall ~ Precision  Rule Score  Time
0.97 0.97 0.90 38259 s

The rule-score metric is defined in Eq. (11).

e, Ho. f)

Rule Score =
[Acl

an

The metrics and the results on the example used in the PoC are shown
in Table 8.

The values obtained for the recall and precision, over the 90%, pro-
vide information about how the methodology classifies the hypotheses,
showing a promising result in terms of recognition of TPs. This means
that the methodology is able to discover the real causes in the proposed
PoC. Additionally, the rule score shows that the composed hypotheses
discovered match, in 90% of the cases, the real boolean condition that
triggers the transitions. Further experiments have been conducted to in-
vestigate the influence of the significant causes threshold adopted in
p-value test. Such a threshold is adopted to distinguish spurious causes
from significant ones: if the p-value, computed on a discovered cause,
is lower than the threshold, the null hypothesis is rejected, and it is
considered a significant cause for the effect. Fig. 9a reports the metric
scores obtained for different values of the significance threshold. It can
be observed that both Precision and Rule Score decrease as the signifi-
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Fig. 11. Metrics vs intraN L w.r.t. different inter N Ls.

cance level increases, due to the inclusion of additional causes that are
in fact spurious FPs. These experiments confirm the theoretical rationale
behind the significance level in the p-value test: while the filtering step
effectively separates spurious from significant causes, raising the thresh-
old leads to a higher number of FPs, which negatively affects Precision
and Rule Score. Conversely, Recall-being related to FNs—remains stable
across different thresholds.

Considering computational metrics, the time required to train the
model, with over 1 million records filtered in 18,500 activities, is around
six minutes. Fig. 9b illustrates that the execution time grows with the
dataset size, confirming the scalability trend of the proposed approach.
Nevertheless, the increase appears approximately linear, suggesting that
the method preserves computational efficiency even when applied to
larger inputs. This behaviour highlights the practical feasibility of the
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algorithm for real-world scenarios where datasets can vary significantly
in size. However, the computational costs could increase considering a
more complex architecture of the system. In such cases, the explosion
in the space of states can be mitigated by filtering the hypothesis sets,
considering domain knowledge, and reducing the number of possible
causes to test.

6.3.2. Robustness
Two injection mechanisms are considered:

e inter-process noise: a subset of process instances is impacted by
noise. The noise injection is measured by the inter-process noise level,
of the noisy processes over the total number of processes;
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¢ intra-process noise: considering a process instance, the subset of the
lines that are affected by noise. The noise injection is measured by
the intra-process noise level as the of noisy events injected in the
process instances over the total number of events.®

Briefly, the couple (inter N L, intraN L) characterises the experiments;
the noisy couple (20,30) means that the 20% of the total number of
the process instances has been modified. Every time a single process in-
stance has been randomly selected, the 30% of the total events belonging
to that process instance has been added.

15 Injecting the noise in a process is meant in this work as “adding” some lines
that are not previously present.
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The noisy occurrence is a new row belonging to the same process
instance — i.e., same CaseID — recording an activity randomly cho-
sen among all the possible ones performed by the system. Moreover,
the timestamps associated with the new rows are again randomly cho-
sen within the timeframe associated with the selected process instance.
All the attributes needed to perform the methodology — i.e. CaselD,
timestamp and activity — have been randomly selected but ensuring
coherence with the other occurrences belonging to the same process in-
stance. Table 9 shows an example of a noisy log, with the new rows in
blue, added to the original one proposed in Table 3.

Twenty-five different couples of noise percentages have been se-
lected and, for each of them, 80 datasets were randomly generated, for a
total of 2000 tests. The choice to repeat 80 times the test for each group
is due to the random selection of the noise to inject in the dataset. Fig. 10
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Table 9

Example of a noisy dataset.
Element ID time:timestamp case:concept:name Message_description Value
sigB 129,384 462 — 4
X_C10 129387 462 is up —
sigC 129,387 463 — 27.26
X_C3s 129389 462 is down —
X_C20 129,400 462 is down —
X C21 129,400 462 is down —
sigB 129401 462 — 3.79
X C2s 129,401 462 is down —
X_top 129,402 462 is down —
sigA 129,410 463 — 10.93
sigC 129,410 463 — 27.29
sigA 129,500 463 — 10.96
sigC 129,530 463 — 27.32

depicts the overall behaviour of the metrics, according to the percentage
of noise added to the data, and considering the average values for each
group. The dotted lines in the graphs represent the values assumed by
the corresponding metric in the case of the original dataset, i.e., the one
without noise, whose values are reported in Table 8. This view enables
a quick and intuitive evaluation of the distances between the values
achieved by the metrics on a noisy dataset — the high of the bars —
and the reference value achieved by the metrics on the real dataset.

From the plot, it is clear that the values of Precision are stable, this
means that the methodology is conservative since the number of FPs is
close to zero. Recall decreases rapidly as noise levels increase. This sug-
gests that the proposed approach is more likely to overlook a real cause
than to incorrectly identify a non-real cause as significant. Finally, Rule
Score is the metric most affected by the noise. This is reasonable, since
the introduced metric can not consider how much inferred rules are
different from real rules. The inference process can, indeed, determine
correctly at least part of the real rule, but the Rule Score does not take
it into account, considering the predicate completely wrong. However,
in the overall evaluation, it is possible to state that the methodology
is quite stable to the noise and robust enough since the metrics results
range on average around 80 — 70%.

7. Discussion

This section provides a discussion of the main results of this work,
also highlighting current limitations. The first claimed point the defi-
nition of a formalism, based on MB approaches, capable of integrating
knowledge extracted from data. PAFT indeed, starts from FT baseline,
inheriting the tree-based structure and the concept of events and logical
conditions, but at the same time moves toward an object-oriented view.
One of the main innovation is the “layered structure” with the inter-
component and intra-component view, conjugating the top-down view,
focusing on relations with a bottom-up strategy that enhances the study
of the inner behaviour of each single component. This object-oriented
framework suits the logic of industrial systems, helping domain experts
grasp the model, even if they are not familiar with this formalism.

Domain experts, indeed, play a central role, since the model seeks
to conjugate domain knowledge with data. In an ideal application in an
industrial scenario, PAFT model template should be produced by experts
based on the topology of the system. From the template, it is possible to
formulate hypotheses to be tested with the CALYPSO tool, obtaining the
refined version of PAFT that integrates knowledge extracted from data.
CALYPSO is in charge of implementing a methodology for extracting
causal relationships from an event log in the context of PM. PM has
emerged as a suitable candidate for integration as a DD, based on several
factors: its relevance to industrial contexts, the process model’s pivotal
role in the analytical approach, and the format of data generated by
industrial systems, specifically event logs. The proposed methodology
has been evaluated on a proof of concept framed in CI context.
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However, it is worth underlining some limitations. The metrics re-
ported in Figs. 12 and 11 evaluate the quality of the inference process;
in other words, they measure the ability to correctly identify causal re-
lationships. the computational cost of such an approach could explode
according to a growth of state space, considering all the possible hy-
potheses that can be formulated in a real-world context. In this paper, a
sensitivity analysis of execution times is done according to the variation
of dataset size, while an analysis following the variation of the complex-
ity of the model has not been accomplished. Both the above mentioned
limitations can be mitigated by the support of expert knowledge to en-
sure higher performance and lower execution times.

8. Conclusions

This paper presents a novel methodology for inferring failure pro-
cesses and generating PAFTs from event logs, causality analysis to ex-
tract meaningful insights from real-world data.

More formally, ® : S! x §% x ... x S” — N where § = (5, ..., 5,) is
the n-uple in which s; € S/ represents the state considered for the com-
ponent ¢;. So that ®(5) depends on the priority function #/(5;) computed
on the actual state of the component and a minimal cost established by
maintenance policies.

All these future work proposals can be framed into a single research
effort, devoted to ease the representation and the automatic usage of
expert knowledge. This would enable the overcoming of the limitations
highlighted in Section 7.
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Appendix A. Running example

This section introduces some details about the running example re-
ported in Section 4. The described scenario is composed of four ele-
ments:

The main engine C, is associated with a failure rate. It provides in-
formation on the average time after that C, is going to break, i.e. MTBF.
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Fig. A.13. Train system running example.

The failure rate quantifies the likelihood of having a failure due to the
operating time. C,, instead, is a warm spare component. This kind of
component is characterized by a “standby” state in which is not work-
ing, but ready to replace the main component. The failure rate a4 is
characterized by a dormancy factor, that is « = 1 when C, substitutes
the main component C, [50]. Fig. A.13 depicts a simple model of the
system.
Summing up:

¢ The component C; can assume two possible states: “up” and “down”.
It switches from “up” to “down” due to internal degradation, ruled by
the failure rate. It switches from “down” to “up” due to maintenance
action according to the repair rate.

e The component C, can assume three states, “up”, “standby” and
“down”. It switches from “standby” to “up” if C; is in “down” state,
and it switches back again to “standby” when C, is repaired. It
switches from “up”/“standby” to “down” according to its failure rate
and switches back according to its repair rate.

e The component C, can assume three states, “up”, “failing” and
“down”. It switches from “up” to “failing” when only one of two en-
gines is in the “down” state. In “failing” state C,, continues its normal
functioning, but it is in a possibly risky condition. If also the other
engine goes down, indeed, C,, switches from “failing” to “down”. It
switches back to “failing” state only once one of the two engines is
repaired, and back to “up” state when both engines are repaired.

However, the degradation of the component could also be affected by
other factors. In this scenario, for example, if the environmental temper-
ature overcomes 70°, both the engines break at the same time. This leads
to an instantaneous system failure, since both the engines are down.
Fig. A.14a shows some trends in the data recorded by the sensor com-
pared to the transition events on the components C, and C,. Just focus-
ing on the first peak, depicted in Fig. A.14b, it is possible to draw some
conclusions: every time the temperature recorded by the sensor (repre-
sented by the blue line) reaches 70° the monitoring centre records the
transition of both C; and C, (represented by the dotted red line) from
“up”/“standby” to “down” state.

Then, after a brief period of deadlock, which ends only when ex-
ternal resources operate to repair the components, they return to “up”
standby” state and suddenly the temperature decreases until it reaches
the normal range between 24° and 27°. It is possible to state that, after
7 days of intensive working, the temperature increases until it reaches
a threshold, after that both the engines go down at the same time and
this provokes the train’s system failure.

A.1. Dataset

The table here reported stores an excerpt of the dataset associated
with the example introduced in Section 4.
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Appendix B. PdFT

This section reports some details regarding the application of PAFT
formalism to the running example introduced in Appendix B.

B.1. Trigger and action functions

In this version of the formalism, the only impacting transitions are
the critical ones and their inverse, this enables the definition of the «
function. For the sake of clarity, Table B.11 reports the value assigned by
the action and trigger functions to the element of the running example:

B.2. Impacting transitions

In the proposed framework, an Impacting Transition propagates the
internal behaviour of a component to the external environment, thus
influencing the overall system. This effect is regulated by the trigger and
action functions. In particular, when an impacting transition r moves
the component ¢ to its highest-priority state, the function « evaluates to
True; conversely, when computed on its inverse transition 7, « evaluates
to False. It is worth underlining the difference between the true (false)
and True (False) values, used in the definitions reported above. True and
False are the values returned by the a function: their meaning — as well
as the Neutral value — has to be intended not in the boolean sense, but
as simple labels. On the other hand, true and false are boolean values
used as the resulting set for the trigger functions, as an example. To
overcome this difference, a simple function, named f, is defined on the
ports set PO U P!, as in Eq B.1. It is worth reminding that the # function
is defined only for impacting transitions and, hence, it is not possible to
have a Neutral value of the ports. Future work will extend this function
also to the general case.

true <= p=True
Bp) =
false < p= False

(B.1)

B.3. Evaluation function

To better explain the logic of the Evaluation function, let us con-
sider, as a possible example: the predicate associated with the tran-
sition (down,up) on the component C,. According to Table B.11,
7(Cy, (down, up)) = (=py 1) A (=pg ). The following schema evaluates the
expression according to all the possible values assumed by the involved
variables. It is worth noticing that we assumed a fixed value for the
variable associated with the dynamic. This is without loss of general-
ity, since the predicate does not depend on the value of the dynamic:
whatever value it assumes, the function is not affected.

o 7(Cy, (down,up)) = (mpy 1) vV (Tpy2)
The evaluation function computes the value of the predicates as follows:

o u(t(Cy, (down,up)), (True, True), (24.007)) =
CPo) Y P02y mire, = Salse
ﬂ0:1=false

o u(7(Cy, (down,up)), (T'rue, False), (24.007)) =

(7po.1) vV (7o 2) = true

Po,1 =true,
po,1=/false
o u(t(Cy, (down,up)), (False, True), (24.007)) =

(7Po.1) vV (7P 2) = true

po,1=false,
po,1=true

o u(t(Cy, (down,up)), (False, False),(24.007)) =

(=po,1) vV (7o 2) = true

po,1=false,
po1=false

The predicate 7(C, (down, up)) can be associated with the following
truth Table B.12:
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Fig. A.14. Temperature analysis in two time periods.

Table A.10
Excerpt of the dataset for the running example.

Occurence_ID Element_ID time:timestamp Message_description Value CaselD
1000 C, 20/04/2021 09:45:00  up 1
1001 C, 20/04/2021 09:45:00  standby 1
1002 Cy 20/04/2021 09:45:00  up 1
1737 sensor 27/04/2021 17:45:00 27.25944 1
1738 sensor 27/04/2021 17:49:00 27.25971 1
1739 C, 27/04/2021 17:50:00  down 1
1740 [ 27/04/2021 17:50:01 failing 1
1741 sensor 27/04/2021 17:51:00 27.26789 1
1742 sensor 27/04/2021 17:53:00 27.24567 1
1761 C, 27/04/2021 18:30:00  standby 1
1762 Cy 27/04/2021 18:30:01 up 1
6020 C, 22/06/2021 16:40:00  up 10
6021 C, 22/06/2021 16:40:00 standby 10
6022 C, 22/06/2021 16:40:00  up 10
6788 sensor 29/06/2021 07:32:00 69.99088 10
6789 sensor 29/06/2021 07:34:00 70.00023 10
6790 C, 29/06/2021 07:34:30  down 10
6791 C, 29/06/2021 07:34:30 down 10
6792 Cy 29/06/2021 07:34:31 down 10
6793 sensor 29/06/2021 07:36:00 70.30001 10
6860 C, 29/06/2021 09:50:30 up 10
6861 C, 29/06/2021 09:50:31 failing 10
6862 C, 29/06/2021 10:20:30  standby 10
6863 Co 29/06/2021 10:20:31 up 10

B.4. A possible scenario

In the scenario depicted in Fig. 2, the main engine C, is in the down
state, due to natural degradation, which triggered two events, propagat-
ing the effects on components C, and C,,. Let us analyse it through PdFT
formalism using the notion of trigger, alpha and evaluation function intro-
duced in Section 4. 7, i.e. the trigger function, associates with each couple
component-transition, the boolean predicate that enables the transition.
C,, moving from "up" state to the highest priority "down" state, enables
an impacting transition which, according to Table B.11, is described by
the predicate z(C, (up, down)) = (T > MTBF) Vv (d(T) > 70°). The first
OR-clause is verified and thus implies turning the value of the predicate
into true value. The « function sets the value on the port p, to True, ac-
cording to Table B.11. In its turn, this enables two events: e; = (p;, p; )
and e; = (py.pg)-

Impact of C, on C,
One the value True is copied by the event ¢, on the input port p, ;, the
predicate 7(C,, (standby, up)) = p, ; is verified. This enables the transition
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in the component C, from "standby" state to "up" state, commissioning
the spare engine and avoiding the system failure. Moreover, since the
transition (standby, up) is not a critical transition for C, — it does not in-
volve the state with the highest priority—, it does not impact the overall
system in terms of fault propagation. The output port of C,, p, will be
set on Neutral value.

Impact of C, on C,

One the value True is copied by the event ¢, on the input port p ;,
however the predicate 7(Cy, (up, down)) = py | A py; is not verified, given
that p , has not been set to True. This ensures that the system is still able
to work; however, the main component turns in the "failing" state. In-
deed, the predicate 7(Cy, (up, failing)) = py; V py, is verified (note that
v conditions need just one clause true to be verified). Again, (up, failing)
is not a critical transition for C, so the output port p, is set to Neutral.
In this case, some warnings can be sent to maintainers for proceeding
with some actions, avoiding a complete system failure.

The formal description of the scenario is the following:
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Table B.11

Trigger and action function.
Component  Transition Output Port  Trigger Action
¢ eC teT* P° (C,T¢) a(PO,T¢)
C, (up, failing) Po 7(Cy, (up, failing)) = py; V po» a(py, (up, failing)) = Neutral
Cy (failing, down) Po 7(Cy, (failing, down)) = py; V py, a(py, (failing, down)) = True
Cy (up, down) Po 7(Cy, (up, down)) = py | A pys a(py, (up, down)) = True
Cy (down, failing) Po 7(Cy, (down, failing)) = (=py ) V (7py,) a(py, (down, failing)) = False
Cy (down, up) Do 7(Cy. (down, up)) = (_‘Po,l) A (_‘1’0,2) a(py, (down,up)) = False
Cy (failing, up) Po 7(Cy, (failing,up)) = (7py1) V (7py2) a(py, (failing,up)) = Neutral
C, (up, down) )2 7(Cy, (up,down)) = (T > MTBF) Vv (d(T) > 70°) a(py, (up, down)) = True
C, (down, up) 2 7(Cy, (down,up)) = (T > MTTR) a(p;, (down, up)) = False
C, (up, down) §23 7(C,, (up,down)) = (T > MTBF) Vv (d(T) > 70°) a(p,, (up, down)) = True
C, (down, up) Da 7(C,, (down,up)) = (T > MTTR) A py, a(p,, (down, up)) = False
G, (up, standby) Pa 7(C,, (up, standby)) = =p, | a(p,, (up, standby)) = Neutral
C, (standby,up) P 7(C,, (standby, up)) = p, a(p,, (standby, up)) = Neutral
C, (down, standby) Da 7(Cy, (down, standby)) = (=p, ;) A(T > MTTR) a(p,, (down, standby)) = False
C, (standby, down) J23 7(C,, (standby, down)) =T > MTBF v d(T) > 70 a(p,, (stand by, down)) = True
Table B.12 Definition 18.

Truth table defined by u function
on 7(C,, (down, up)) predicate.

Poa Do (o) V (7po2)
True True false
True False true
False True true
False False true

o 7(Cy,(up,down)) = (T > MTBF)V (d(T) > 70°) = true

e a(py, (up, down)) = True

* eg=(p1-p21) = pyy =True; e =(p,py) = po; = True
o 7(Cy, (standby,up)) = p, | = true

o a(p,,(standby,up)) = Neutral

o 7(Cy, (up, failing)) = py; V pyp = true

® a(py, (up, failing)) = Neutral

Appendix C. Definitions

This section contains additional material that provides formal defi-
nitions of concepts introduced in Section 5.

Definition 14. Let A be the Transition Hypotheses set and A, be the
Theta Hypotheses set, the Composed Hypotheses set is:

A={a=q; * wxa; |4 € AcUAp forallk € {1,...j}

and for all j € {2,...,| A U Ap|} with =€ {A,V}}
Definition 15. A Transition Hypothesis a = (c,f) where ¢ = (s;,s;) is
observed on a component ¢ in a process instance N € ¢;(0), if:
30,0 € O such that (¢c;(0) = @c;(0) = N) A (@r(0) = @r(6) = c)A
(@pr(0) = 5; A @p(0) = 5;) A (@r(0) < 7(0)

36 € O such that (¢;(6) = N) A (pr(0) < p(8) < 9r(8)) => (@r(8) # ¢)

Definition 16. A Theta Hypothesis a = (d, 6(c, d)) triggered by a dy-
namic d on a component c is observed in a process instance N € ¢;(0):

3 0 € O such that (¢¢;(0) = N) A (@g(0) = d) A (F.. 4(@p(0)) = true)

Definition 17. A composed hypothesis a=a; A A a;, € A is
observed in a process instance N € ¢ (0), if:

* 30;....0, € Osuch that (pc;(0;,) = N) A(p4(0,) = ;) Viy €
iy o))

e 0€E {oil,...oi/

} such that ¢7(6) > @7 (0;,) iy € {i} ... i;}
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A composed hypothesis a=a; V- Vva € A is
observed in a process instance N € ¢ ;(0), if:

e 36 € O such that (pc;(6) = N) A (@ 4(0) = a,.k)with i, € {iy...1;}
e if 36+ 6 € O such that (pc;(6) = N) A (@ 4(0) = ;) for some i €
{il"'ij} = @7(0) 2 ¢r(0)

Definition 19. A hypothesis a € H, fits the prima facie first condition
for an effect f € A if and only if: 3 n € ¢ ;(O) such that:

e 30,0 € O where (p¢c(0) = (@) =n) A(p00)=ane, (0 =f)
* 970 —@r(0)>0A@r(0)—@r(0)<é

This definition adapts Suppes’s theory within the PM paradigm. How-
ever, the second condition is directly claimed from the first one:

Given @cr(0) = @cr(0) =n = @7(0) —@r(0) <6

where 6§ < max({7(0)|o € O A @¢;(0) = n}) —min({T (0)|o € O A ¢¢;(0) = n})

(C1n

Moreover, Eq. 1 expresses the causal relation to discovering, introducing
the parameter §. It is possible to limit the value considered for the pa-
rameter, resulting in further filtering of the number of hypotheses that
hold the property in Eq. (19) and consequently reducing the computa-
tional costs.

Definition 20. For each a € H, the hypothesis probability of a is given
by the number of process instances in which this activity is performed,
divided by the total number of process instances:

_ [{n] 3o € O such that (¢ 4(0) = a A pc(0) = n)}| _ e (0|

locr (O - loc1(O)
(C.2)

P(a)

where O, = {0 € O | ¢ 4(0) = a}.

Definition 21. For each a € H, that holds the Definition 19 for an effect
f € A¢, the hypothesis-effect probability of f given the occurrence of
a, is given by the number of cases that holds prima facie first condition
property, divided by the total number of process instances in which a
occurs:

Panf) _ W .ol 19ciO] _ W, a)l
P(a) loc1O) 1ocrO)l  loci(O,)]

P(fla) = (C.3)

Definition 22. Leta € PF(f), and x € PF(f) with x # a, they are non-
excluding for f and non-concordant if and only if:

s W(f,a)nW(f,x)#0
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@ci1(0y) \ @ci1(0,) # g 16

Let £, ; be the set of the x that holds these properties.

Based on these considerations, Eq. (3) becomes Eq. (C.4).

Z W00l IWO\WS a0l

X€Las loc;OINeci O 1oci(O\eci (O,

Eaug(a’f) = IE | (C4)
a.f

Eq. C.4 is well-posed since:

if £, r= @, Eq. (4) guarantees that Eq. (C.4) can be simplified in
Wl leci©N\ecr©)

loc1©@) ~ lociONoc1 O] °

@c1(O) N ec(O) # 3 since W(f,a)NnW(f,x)# @ and W(f,a)n
W(f,x) C ocr(O,) Necr(O,) (see Defination 22);

@c1(0O)\ 9c1(0,) # 8 by definition (see Defination 22).

Appendix D. Algorithms

In this section, a formal description of the Algorithms implemented

by CALYPSO tool is provided:

Algorithm 3 implements the transition hypotheses set construction.
Algorithm 4 implements the theta hypotheses set construction.
Algorithm 5 implements prima facie set construction.

Algorithm 6 implements the filtering of significant causes'”.
Algorithm 7 implements the generation of PAFT structure from the
discovered cause-effect relations.

Algorithm 8 implements the construction of trigger function from the
discovered cause-effect relations.

Algorithm 3 O, set construction.

Require: O, A,

1:
2:
3:

4:
5:

6:
7:
8:

Oc <9
for each a = (¢, (s;, 5;)) € A do

O, :={0€ 0| pglo)=c}
foreach k € {1,...,|0, |-1} do
if (@0 = 5) A@p(041) = 5)) A@cr(0g) = 0cr(0441))
then > where o, is the k-st value in O set
0 < (a,97(0k41) @1 (0p41))
Oc < O U {0}
Return O,

Algorithm 4 9, set construction.

Require: O, 6((C x D))

1:
: for each 7, ; € 6((C x D)) do

2
3
4:
5
6

N

©°

Op < 8

a < (d,0r(c,d))
O, :={0€ 0| prlo)=d}
foreach k € {1,...,|0, |-1} do
if F, 4(pp(0y)) = true then 1> where o, is the k-st value in O
set
0 (a9 (0), pcr(0p))
Op < Op U {0}
Return O,

16
17

where "\" stands for the sets subtraction operator.

In a practical implementation of this algorithm, Line 7 could be supported

by external libraries (e.g., the stats.ttest_1isamp is from scipy Python li-
braryhttps://scipy.org/
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Algorithm 5 Prima facie causes of a given effect f.
Require: f, H, O, §
1: PF(f) < {0}
2: foreachain H \ {f} do
3: > Computing prima facie 1st condition according to the
Definition 19

4 conditionl « False

5 for each 0 in O, and 6 in O, where ¢¢;(0) = p¢;(6) do

6 if (97(0) — @7(0) > 0 A @7 (8) — @7 (0) < §) then

7: conditionl < True

8 break

9: > Computing prima facie 2nd condition
10: if conditionl then
11: p < P(a) > according to the Definition 20
12: condition2 < (p > 0)
13: > Computing prima facie 3rd condition
14: if (condition1 A condition2) then
15: P < P(S) > according to the Definition 20
16: p. < P(fla > according to the Definition 21
17: condition3 < (p. > p,,)
18: if (condition1 A condition2 A condition3) then
19: PF(f) < PF(f)U {a}

20: return PF(f)

Algorithm 6 Algorithm for filtering significant causes.

Require: f, PF(f), Usepr(s) Lass
1: SC(f) « {0}

2:ve(

3: for each a in PF(f) do

4 ea)=0

5: for each x in £, ; do

6: g(a) < e(a)U {e,(a, f)}
7 p_value(a) < ttest(e(a), v)
8 if p_value(a) < 0.05 then

9: SC(f) = SC(f)u {a}
10: return SC(f)

Algorithm 7 PdFT structure generation.

Require: A., SC :={(a,f)| f € Ac Aa € SC(f)}
1: Pl @, &0, aPOXT) < @

2: for each f € A, do > assuming that f = (¢;, ;) with ¢; € C
3: P;’ —f

4 for each a € SC(f) do

5 if a € A, then > assuming that a = (¢ 15) with ¢, €C
6: PE’i - PCII Uip;;}

7: E<EU(p;p; ;)

8 a(pj.t;) <0

9: a(PO X T) « (T X PO) U {a(p;.1;)}

10: else > assuming that a = d;,v;) with d; €D
11: Or(c;.d;) < v;

122 Pl<pPlup!
13: return P!, &, a(P° xT)
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Algorithm 8 PAFT trigger functions definition.

Require: A, , Pr:={Pr(f)=a; * ...

x agp | f € Ack

1: 7(CXT) <@

2: for each f € A, do

3:

4
5:
6:
7
8

> assuming that f = (¢;,7;) with ¢; € C
for each j € {1,...,I(f)} do
if a; € Ac then > assuming that a = (¢ 15) with ¢, €C
7(c; 1) < (e, 1) * V(P,',j)
else > assuming that a = (d;,v;) withd; € D
7(c;, 1) < t(c;, 1) * T’ci,d/

T(CXT) <« (CXT)U {1(c;;1)}

9: return 7(C X T)
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