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 a b s t r a c t

In the current Artificial Intelligence era, the integration of the Industry 4.0 paradigm in real-world settings 
requires robust and scientific methods and tools. Two concrete aims are the exploitation of large datasets and 
the guarantee of a proper level of explainability, demanded by critical systems and applications. Focusing on the 
predictive maintenance problem, this work leverages causality analysis to elicit knowledge about system failure 
processes. The result is a model expressed according to a newly introduced formalism: the Predictive Fault Trees. 
This model is enriched by causal relationships inferred from dependability-related event logs. The proposed 
approach considers both fault-error-failure chains between system components and the impact of environmental 
variables (e.g., temperature, pressure) on the health status of the components. A proof of concept shows the 
effectiveness of the methodology, leveraging an event-based simulator.

1.  Introduction

In the past decades, the adoption of Artificial Intelligence (AI) in 
industry has brought about significant changes in processes. AI has en-
abled the optimisation of production and control processes, and it is sig-
nificantly contributing to Predictive Maintenance (PdM) spreading. The 
integration of AI into PdM strategies offers a more effective and flexible 
approach to the management of industrial equipment, early identify-
ing operational inefficiencies and reducing downtime and maintenance 
expenses [1]. The availability of a significant amount of public data is 
limited because fault events occur occasionally, and they could require 
years and years of systems’ operation [2]. In addition, sensors and mon-
itoring systems can sometimes record inaccurate or incomplete data due 
to malfunction or noisy environments. Low-quality data can affect the 
accuracy of a Data-Driven (DD) predictive model. Model-Based (MB) ap-
proaches — where mathematical and physical models of equipment can 
be defined starting from explicit knowledge — traditionally guarantee 
a more explainable level of the analysis [3]. However, these methods 
suffer from a lack of flexibility in adapting the results of the modelling 
activities to the reality, captured by data.

The main objective of this paper is to provide a formalism for the 
integration of MB and DD approaches in PdM  supported by a toolchain 
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for the automatic refinement of top-down models via causality-based 
DD techniques. The methodology assumes the presence of a system log, 
where both discrete component failure events and continuous variable 
time series are captured. The model inference approach is based on the 
discovery of cause-effect relations among system events and environ-
mental conditions. The formal foundation of the proposed approach is 
based on the work of Kleinberg [4] tailored to the PdM context.

The original contributions of this paper are:
• the introduction of the Predictive Fault Tree (PdFT) formalism, ex-
tending the classical Fault Trees (FTs), widespread MB formalism for 
reliability analysis, able to integrate DD approach, for the definition 
of system model;

• the extension of existing cause-effect discovery methodologies with 
Process Mining (PM) concepts in the dependability context;

• the prototyping of a tool, named Causality AnaLYsis for Prediction of 
System Operation (CALYPSO), supporting the automatic completion 
of PdFT models from data.
A preliminary version of the PdFT formalism has been published in 

[5]. In this paper, an enhancement of  formalism and its integration 
into a data-fed improvement approach is presented. The performance of 
the proposed methodology is evaluated on a synthetic dataset build-up 
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List of Acronyms

Abbreviation Description
AI Artificial Intelligence
ARM Association Rule Mining
BDMP Boolean Logic Driven Markov Processes
BN Bayesian Network
CALYPSO Causality AnaLYsis for Prediction of System 

Operation
CI Critical Infrastructures
CM Confusion Matrix
CNC Computerized Numerical Control
DBN Dynamic Bayesian Network
DD Data-Driven
DFT Dynamic Fault Tree
DRL Deep Reinforcement Learning
DSE Dependability Simulation Engine
DSS Decision Support System
DT Decision Tree
FMECA Failure Mode, Effects, and Criticality Analysis
FN False Negative
FP False Positive
FT Fault Tree
FTA Fault Tree Analysis
ISM Interpretive Structural Modeling
IoT Internet of Things
KNN K-Nearest Neighbor
LLM Large Language Model
LSTM Long-Short Term Memory
MB Model-Based
ML Machine Learning
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
PM Process Mining
PN Petri Net
PTL Probabilistic Temporal Logic
PdFT Predictive Fault Tree
PdM Predictive Maintenance
PoC Proof of Concept
RCA Root Cause Analysis
RF Random Forest
RUL Remaining Useful Life
SHyFTA Stochastic Hybrid Fault Tree Automaton
SM State Machine
SWRL Semantic Web Rule Language
TN True Negative
TP True Positive

through a Python-based simulator, described in [6] and extended in this 
[7]. This choice provides a ground truth for comparing the results ob-
tained with the expected one. CALYPSO tool, also, provides a prototype 
for the inference approach [8].

The rest of the paper is structured as follows: Section 2 describes 
related scientific work. Section 3 recalls some background information, 
specifically related to FTs, causality analysis and PM concepts. Section 4 
introduces the PdFT formalism while Section 5 describes the core ap-
proach of the paper, i.e., the causality-based method for PdFT model in-
ference. Section 6 demonstrates the approach and the related toolchain 
on an example. Section 7 discuss the possible impact of the proposed 
work in both academia and industrial settings, highlighting limitations 
and strengths. Section 8 ends the paper, drawing future research lines.

2.  Related work

The main objective of the proposed work is to define a methodology 
for providing insights from DD techniques and leverage them in MB 
approach, assessing PdM tasks in critical systems.

2.1.  Hybrid approaches

Scientific community addresses in hybrid MB and DD approaches as 
a key to improve reliability understanding and engineering capabilities 
in large and complex systems [9]. Despite being a very promising field 
of research, there are few works in the literature providing these hybrid 
strategies [10]. The definition of a combined approach requires a 
well-structured architecture in which all the parties can interact. Luo et. 
al, address this challenge framing the hybrid approach in a Digital Twin 
architecture for Remaining Useful Life (RUL) estimation [11]. This 
provides a playground for the combination of physical model-based, 
statistical and data-driven approaches,  designed for the Computerized 
Numerical Control (CNC) machine tool  outperforming the state of 
the art. Also in [12], a Decision Support System (DSS) for the design 
of a risk model is proposed. The system relies on the physics-based 
model  for feature extraction, and DD approach providing the failure 
mode. Arena et al. [13], proposes a Decision Tree (DT)-based approach 
defining a DSS to improve the correct maintenance policy of a gear-
box for roasting oilseeds. The results obtained confirmed a potential 
cost saving in maintenance actions compared to corrective maintenance.

In Wang et al. [14], Long-Short Term Memorys (LSTMs) are used in 
the domain of industrial robots PdM. The methodology relies on the 
prediction of machine running states, on the basis of historical data 
and knowledge of the actual state. K-Nearest Neighbors (KNNs)/LSTMs 
are combined with Knowledge Graphs for modelling the domain  and 
comparing the output of the DD approach.  Cao et al. [15], propose 
a methodology based on  on ontology-based formalism  combining re-
sults obtained from Semantic Web Rule Language (SWRL) and from the 
rules described by experts, for the prediction of failure occurrences. A 
causal aggregation loss is, instead, designed to separate the non-causal 
and causal factors in [16]. Five cross-machine vibrational fault diagnosis 
cases and three cross-environment acoustical anomaly detection cases 
were adopted in the experimental phase to evaluate the performance.

2.2.  Model-based and data-driven aspects in system dependability

FT is a formalism for system failure analysis, based on a deduc-
tive approach and a graphical representation that improves usability 
and expressiveness. FTs are an industrial standard with impact on pre-
dictive maintenance [17,18]. Their success comes from object-oriented 
modelling, integration of domain knowledge, and accessibility to non-
experts

In Gao et al. [19], Dynamic Fault Tree (DFT) is applied to 
Communication-Based Train Control using SimFIA for safety and relia-
bility analysis. In Mandelli et al. [20], FT is integrated with sensor data, 
modelling component states. Ruijters’ Fault Maintenance Tree [21] adds 
maintenance policies, inspections, and cost modelling, but focuses on 
maintenance policy evaluation rather than predictive modelling. Our 
work extends FTs Internet of Things (IoT) integration, introducing a 
dual-view component status propagation based on causal inference. 
Bayesian Networks (BNs) model causal structures without temporal data 
[4], relying on assumptions such as Markov condition, faithfulness, and 
causal sufficiency [4,22]. The PdFT formalism bridges FT and BN, sep-
arating structure from inference while retaining conditional probability 
evaluation. BNs  [23,24], have been exteded by Dynamic Bayesian Net-
works (DBNs). However, the latter lacks flexibility [25].

Boolean Logic Driven Markov Processes (BDMP) integrates FT with 
Markov Chains for component interdependence [26]. Stochastic Hybrid 
Fault Tree Automaton (SHyFTA) combines DFT with Stochastic Hybrid 
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Automata to model multi-state systems under dynamic conditions [27]. 
Unlike BDMP and SHyFTA, PdFT models both component interactions 
and internal health, replaces gates with logical predicates, using Prob-
abilistic Temporal Logic (PTL) for greater expressiveness. It also incor-
porates IoT sensors to link external behaviour to system states.

2.3.  Process mining and causality analysis in system dependability

PM is an emerging field with impact in industry, enhancing analytics 
in control systems [28]. It discovers real processes by extracting models 
from data, often translated into Petri Nets (PNs) or State Machines (SMs) 
[29,30]. In Ruschel et al. [31], PM supports BN definition by extract-
ing process models from data and integrating domain knowledge.  in 
[32], an unsupervised method combines Association Rule Mining (ARM) 
and Large Language Model (LLM) to analyse textual maintenance data. 
While ARM extracts correlations [33], our methodology, built on Sup-
pes and Kleinberg theories [4,34], leverages a probabilistic definition of 
causality.

Nadim et al. [35] integrate interpretable Machine Learning (ML) and 
PM by using DTs to detect sensor patterns and construct causal PNs, re-
ducing reliance on expert knowledge. Their follow-up [36] uses Deep 
Reinforcement Learning (DRL) for supervisory control, combining sim-
ulation, causality analysis, and reinforcement learning to adapt poli-
cies from process data. However, these methods rely mainly on DD ap-
proaches, with domain knowledge added only in validation. Moreover, 
also in this cases, DTs rules capture correlations [33,37].

In [38], authors combine PM and DD approaches for Digital Twins. 
Offline, a process model is extracted and used to train a classifier that 
is used in the online phase. Van Houdt et al. [39,40] extend Suppes’ 
and Kleinberg’s causality theory to PM, quantifying causality between 
process activities. Our methodology adapts this framework to Critical In-
frastructuress (CIs), PdM, and IoT, translating discovered relations into 
PdFT to better integrate domain knowledge.

2.4.  Dependability related model completion

Chiacchio et al. propose the SHyFTA formalism [41], extending DFT 
with Hybrid Basic Events that couple physical process evolution with 
stochastic failure behaviour. Results highlight SHyFTA’s ability to de-
liver accurate, dynamic dependability assessments for complex systems.

Arena et al. [42] extend the framework with a “Maintenance Box” to 
simulate corrective, preventive, and condition-based policies. Applied 
to a steam turbine benchmark, preventive strategies achieved higher 
availability and lower failure frequency over the mission time.

3.  Background

This section provides some useful basic notions, allowing a deep un-
derstanding of the contribution of the paper. Causality theory represents 
a fundamental point for understanding the relationships between events, 
which can be effectively modelled using PTL. This connection is further 
exploited in Kleinberg’s work, which introduces a metric for evaluating 
the causal significance between causes and effects [4]. She, according to 
Suppes’ Theory [34], extended the notion of prima facie causes with the 
concept of PTL statement, providing a probabilistic definition of causal 
relations.

Let us introduce some notations: 𝑎 and 𝑓 be two generic events, as-
suming that 𝑎 is a possible cause for an effect 𝑓 ; 𝐗 = {𝑥1,… , 𝑥𝑛} be the 
set of all the other possible causes for 𝑓 ; 𝑟, 𝑠, 𝑟′, 𝑠′ generic points in time; 
𝛿 a generic upper bound of time unit and 𝑝 a probability. Eq. 1 expresses 
the temporal condition requiring that the cause must occur before the 
effect.

𝑎 ⇝≥1,≤𝛿
≥𝑝 𝑓 (1)

Considering an infinite elapsed times 𝛿 = ∞, we have that:
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Definition 1. Given 𝑎 and 𝑓 two events, 𝑎 is prima facie cause of 𝑓 if 
there is a probability 𝑝 such that:

1. 𝐹≤∞
>0 𝑎

2. 𝑎 ⇝≥1,≤∞
≥𝑝 𝑓

3. 𝐹≤∞
<𝑝 𝑓

In other words, Kleinberg stated that to be prima facie for an effect 
𝑓 , (1)  the probability of 𝑎 has to be different from zero; (2) 𝑎 has a 
no null probability to occur before 𝑓 (time priority condition); (3) the 
marginal probability of 𝑓 has to be lower than the conditional one (i.e., 
𝑝). Kleinberg reported this definition for identifying prima facie causes 
of an effect, and she proposed a metric for measuring the causal signifi-
cance. To establish the significance of a possible cause, the impact of the 
other prima facie causes must be considered. She also discarded “factors 
that are independent or negatively correlated with 𝑓 or which never co-occur 
with 𝑎 and ¬𝑎”. The significance of a cause 𝑎 for an effect 𝑓 , considering 
the influence of another cause 𝑥, is quantified by the Eq. (2). 

𝜀𝑥(𝑎, 𝑓 ) = 𝐏(𝑓 |𝑎 ∧ 𝑥) − 𝐏(𝑓 |¬𝑎 ∧ 𝑥) (2)

Then, the Eq. (3) computes, on average, how much 𝑎 increase the 
probability of 𝑓 considering the impact of all the possible other causes 
𝐗 = {𝑥1,… , 𝑥𝑛}, as reported in the Eq. (3)

𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) =
∑

𝑥∈𝐗 𝐏(𝑓 |𝑎 ∧ 𝑥) − 𝐏(𝑓 |¬𝑎 ∧ 𝑥)
| 𝐗 − 𝑎|

(3)

3.1.  Addendum to Kleinberg’s work

Let us define the concept of non-exclusive causes as in Eq. (2)

Definition 2. Let 𝑎 and 𝑥 be two prima facie causes for 𝑓 , Defination 1 
implies that:

• 𝑎 ⇝≥𝑟,≤𝑠 𝑓
• 𝑥 ⇝≥𝑟′ ,≤𝑠′ 𝑓

They are non-excluding causes for the effect 𝑓 if [𝑟, 𝑠] ∩ [𝑟′, 𝑠′] ≠ ∅ and 𝑓
occurs in that intersection. 

As Kleinberg stated, omitting the subscripts for ease “𝑎 ∧ 𝑥 refers to 𝑎 and 
𝑥 being true such that 𝑓 could be caused in appropriate intervals”. However, 
there are two cases in which this theory needs further explanation. The 
first case happens when for all 𝑥 prima facie cause of 𝑓 , 𝑎 ∧ 𝑥 = ∅; in 
other words, 𝑎 — prima facie cause of 𝑓 — has not any non-excluding 
causes among the other prima facie causes of 𝑓 . This is the case when all 
the other possible prima facie causes of 𝑓 always occur in time windows 
not intersecting any of the ones associated with the occurrence of 𝑎 (see 
Eq. (4) as a refinement of Eq. (3)).

𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) = 𝐏(𝑓 |𝑎) − 𝐏(𝑓 |¬𝑎) (4)

The second case occurs when there is at least one 𝑥 — prima facie
cause of 𝑓 — such that 𝑎 ∧ 𝑥 ≠ ∅ but ¬𝑎 ∧ 𝑥 = ∅. In this case, Eq. 2 leads 
to an undetermined situation (see Eq. (5)).

𝜀𝑥(𝑎, 𝑓 ) = 𝐏(𝑓 |𝑎 ∧ 𝑥) − 𝐏(𝑓 |¬𝑎 ∧ 𝑥) = 𝐏(𝑓 |𝑎 ∧ 𝑥) − 𝐏(𝑓 |∅) (5)

where 𝐏(𝑓 |∅) it is mathematically not defined. Hence, Defination 3 
refines the definition of non-excluding causes reported in Eq. (2), mitigat-
ing the problem induced by Kleinberg’s discussion about “factors that 
are independent or negatively correlated”.

Definition 3. Let 𝑎, 𝑥 be two prima facie causes for the effect 𝑓 , 𝑎 and 
𝑓 are defined non-concordant causes if and only if ¬𝑎 ∧ 𝑥 ≠ ∅

In the rest of this paper, two causes 𝑥 and 𝑎 are required to be non-
excluding and non-concordant to compute the Eq. (2).

4.  Predictive fault trees

The idea under the definition of PdFT is to combine FTs-based for-
malism with some aspects involving causality analysis. The proposed 
formalism is responsible for modelling complex and dynamic behaviour, 
providing a double view of the system — inside the components and 
outside within their interaction — and analysing the maintenance ac-
tions and their impact. With respect to a previous work [5], here a new 
version of PdFT is introduced.

4.1.  PdFT formalism

From a theoretical point of view, a PdFT model is represented by a 
tuple: < ,,  , 𝜇 >:

•  = {𝑐1, 𝑐2,… , 𝑐𝑛}, a set of components, describing the system;
• , a set of the dynamics, which model external processes — such as 
environmental changes, variable conditions, and systematic or ran-
dom external events — influencing the behaviour of the components;

•  , a set of events, which model the relationships between compo-
nents;

• the evaluation function 𝜇 that computes the global state of the system 
given the values measured by dynamics and propagated throughout 
the events.

One of the main innovation in PdFT is the introduction of the dynam-
ics. More formally, a dynamic is a real function over time 𝑑 ∈  | 𝑑 ∶
ℝ ⟶ ℝ. The set of all the possible values assumed by all the dynamics 
is  =

⋃

𝑑∈ 𝑑 where 𝑑 = 𝑑(ℝ) ⊆ ℝ. The dynamic conditions, instead, 
are boolean predicates defined on the values recorded by the dynamics 
function: each condition models how a component reacts to those val-
ues. The relationship between components and dynamics is described by 
the functional 𝜃 ∶  × → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}ℝ. It assigns to the couple (𝑐, 𝑑) a 
function 𝑐,𝑑 ∶ 𝑑 ⊆ ℝ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. The latter models the behaviour 
of the component 𝑐 concerning the value measured by the dynamic 𝑑: 
𝑐,𝑑 is a boolean expression computed on 𝑦, the value recorded by 𝑑 at a 
certain point in time 𝑡 (i.e., 𝑦 = 𝑑(𝑡)). If the recorded value 𝑦 satisfies the 
expression, 𝑐,𝑑 (𝑦) returns 𝑡𝑟𝑢𝑒 otherwise it returns 𝑓𝑎𝑙𝑠𝑒. In the present 
work, only a fixed group of boolean expressions are considered, as in 
Eq. (6): the ones based on the definition of a threshold. This threshold, 
𝜃𝑇 (𝑐, 𝑑) ∈ ℝ is a real number, fixed for each couple (𝑐, 𝑑), and expresses 
the upper bound for the normal functioning of the component 𝑐 under 
the condition recorded by the dynamic 𝑑.
𝑐,𝑑 (𝑦) = 𝑦 ≥ 𝜃𝑇 (𝑐, 𝑑) (6)

The PdFT provides an external view of the components’ relationships 
and the interaction between them and the external environment, intro-
ducing new elements: let 𝑃 𝐼 =

⋃

𝑐𝑖∈ 𝑃
𝐼
𝑖  be the union of all the input 

ports and 𝑃𝑂 =
⋃

𝑐𝑖∈ 𝑝𝑖 the union of all the output ports, where 𝑃 𝐼
𝑖  is the 

set of input ports for the component 𝑐𝑖 and 𝑝𝑖 its single output port. The lat-
ter describes how a component propagates inner changes to the outside, 
while the former is involved in the representation of how a component 
reacts to external changes.

The connections between the components are modelled by a set of
events  ⊆ 𝑃𝑂 × 𝑃 𝐼  which relate the output port of a component to the 
input port of another.  For the sake of clarity, let us introduce the running 
example in Fig. 1a.1 Let 𝐶0 be the top component, the train, and let 𝐶1 be 
the main engine, while 𝐶2 is the spare engine, they are all depicted using 
squared boxes. Each component holds a single output port, depicted as 
little squared boxes on the top of the component, connected to input 
ports by arrows, representing the events. The dynamic 𝑓 (𝑡) represents 
the temperature sensor. It is depicted with an elliptical shape. The inner 
behaviour of the components is hidden at this level, since this layer 
contributes to a top-down view of the system.

1 For a detailed description of the running example, refer to A.
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Running Example
Considering the example depicted in Fig. 1a:

•  = {𝐶0, 𝐶1, 𝐶2}
•  = {𝑑(𝑇 ) = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒}
• 𝑑 = (24, 71)

The system is based on three components and one dynamic. The 
dynamic 𝑑 models how the temperature changes in time. The val-
ues assumed by this function range between the 24◦ and over 70◦. 
The temperature affects the behaviour of the two engines 𝐶1 and 
𝐶2, leading to a failure when it overcomes 70◦. Due to this, the 
functional 𝜃 is defined as follows:

• 𝜃𝑇 (𝐶1, 𝑑) = 𝜃𝑇 (𝐶2, 𝑑) = 70
• 𝜃(𝐶1, 𝑑) = 𝐶1 ,𝑑 (𝑦) = 𝑦 ≥ 𝜃𝑇 (𝐶1, 𝑑)
• 𝜃(𝐶2, 𝑑) = 𝐶2 ,𝑑 (𝑦) = 𝑦 ≥ 𝜃𝑇 (𝐶2, 𝑑)

The port sets are:

• 𝑃𝑂 = {𝑝0, 𝑝1, 𝑝2}
• 𝑃 𝐼 = {𝑝0,1, 𝑝0,2, 𝑝2,1}

This inter-component view is completed by an inner definition of the 
behaviour of each component, which is provided with the introduction 
of some notions. Each component 𝑐𝑖 ∈  is a tuple < 𝑆 𝑖, 𝜋𝑖, 𝑇 𝑖, 𝑝𝑖, 𝑃 𝐼

𝑖 >:

• a finite set of states, 𝑆𝑖;
• a state priority function assigning a priority to each state of 
the component, 𝜋𝑖 ∶ 𝑆𝑖 → ℕ2, which is represented by a natural 
number where 𝑚𝑎𝑥(𝑆𝑖) ∶= 𝑠𝑗 ∈ 𝑆𝑖 such that ∀𝑠𝑘 ∈ 𝑆 𝑖, 𝑠𝑘 ≠ 𝑠𝑗 ⟹

𝜋𝑖(𝑠𝑘) ≤ 𝜋𝑖(𝑠𝑗 ) is defined critical state for the component 𝑐𝑖 (i.e. the 
state with the highest priority);

• a set of oriented transitions 𝑇 𝑖 ⊆ 𝑆 𝑖 × 𝑆𝑖 as a relation over the Carte-
sian product of components’ states, where 𝑡 = (𝑠𝑘,max(𝑆 𝑖)) is defined 
critical transition, for all 𝑠𝑘 ∈ 𝑆 𝑖;

• 𝑝𝑖 is the output port of the component, that is a variable, whose val-
ues range in the set () ∶= {True, False,Neutral}. The port assumes 
the Neutral value if the inner behaviour of the component does not 
impact outside. The True value, instead, is assumed when it switches 
to the critical state. On the contrary, the False value is acquired by 
the output port when the component switches from the critical state 
to another one with lower priority;

• 𝑃 𝐼
𝑖  is the set of input ports (which could also be empty), whose 
values range in ( ) ∶= {True, False,Neutral}, relying on the value 
assumed by the output port of the connected components.

The intra-component view, modelled on the proposed running ex-
ample is depicted in Fig. 1b. The states are represented by circles, while 
transitions are represented by arrows. It is possible to distinguish the 
transitions by the events because the former links two states, while the 
latter links two ports. 

The inner condition of a component, due to a transition from one 
state to another, can impact the behaviour of other components. Before 
explaining this concept in detail, let us consider:

• ℙ(𝑃 𝐼
𝑖 ∪), the set of the boolean predicates over both the dynamic 

values and input port values;
• 𝑇 =

⋃

𝑐𝑖∈ 𝑇
𝑖, the set of all the possible transitions;

• 𝑆 =
⋃

𝑐𝑖∈ 𝑆
𝑖, the set of all the possible states.

Each component’s transition is also characterised by the following 
functions:

2 where 𝜋 ∶  × 𝑆 → ℕ and for all 𝑐𝑖 ∈ , 𝜋(𝑐𝑖, 𝑠𝑗 ) = 𝜋𝑖(𝑠𝑗 ).

• trigger: 𝜏 ∶  × 𝑇 ⟶ ℙ(𝑃 𝐼 ∪) associate to each transition a 
boolean predicate defined over ports as well as dynamics values;

• action: 𝛼 ∶ 𝑃𝑂 × 𝑇 → (𝑃𝑂), representing the value assigned to the 
output port of a component when the transition is fired.

Each transition models an inner behaviour of the component, which 
reacts to some external  internal degradation. These definitions can also 
be adopted for modelling the “intermediate” behaviour of the compo-
nent that gradually moves from normal operating conditions to an un-
healthy state.  Let us introduce some properties of a transition, which 
will enhance the definition of impacting transitions:

• given 𝑡 ∈ 𝑇  a transition on a component 𝑐 ∈ , it is defined impact-
ing if 𝛼(𝑝𝑐 , 𝑡) ≠ Neutral. If this property is not held, the transition is 
defined dormant for the component 𝑐;

• given 𝑡 = (𝑠𝑖, 𝑠𝑗 ) ∈ 𝑇 , the inverse of 𝑡 is a transition such that the states 
involved are the same of 𝑡 but the direction is the opposite: ̄𝑡 = (𝑠𝑗 , 𝑠𝑖).

Summing up, from the previously introduced definitions, it is possible 
to state that: the only two kinds of transitions, in a component 𝑐𝑖 ∈ 
that could propagate their state outside are the critical ones and their 
inverse.3 If 𝑡 is an impacting transition, moving the component 𝑐 in the 
state with the highest priority, then the 𝛼 function turns value True; while 
the same function, computed on its ̄𝑡 inverse, will turn the value False4. 
The function 𝛼 assigns to the impacting transitions, a value of False or 
True according to the direction of the arc that connects the initial state 
to the final state.5

The function, described in Eq. (7), evaluates the predicate value.

𝜇 ∶ ℙ(𝑃 𝐼
𝑖 ∪)𝐶×𝑇 ×

𝑛
∏

𝑖=1
𝑉 (𝑃 𝐼 ) ×

∏

𝑑∈
𝑉𝑑 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (7)

The evaluation function works on the set of the trigger functions (i.e., 
ℙ(𝑃 𝐼

𝑖 ∪)𝐶×𝑇 ) and on all the value sets of the component’s output ports 
(i.e., 𝑉 (𝑃𝑂)) as well as on the value sets of the dynamics (i.e., 𝑉𝑑). Its 
implementation relies on the substitution of each port with its current 
value (at 𝑇  time) and of each dynamic with its value (at 𝑇  time, also). 
Eq. (8) represents such a mechanism.
𝜇(𝜏(𝑐𝑖, 𝑡), 𝑝̄, 𝑑) = 𝜏(𝑐𝑖, 𝑡)|

|

|

|

|

𝑑=𝑑(𝑇 ) ∀𝑑∈𝑑, 
𝑝𝑖,𝑗=𝛽(𝑝𝑖,𝑗 ) ∀𝑝𝑖,𝑗∈𝑝̄

(8)

where 𝑝𝑖 is the sequence of all the input ports and 𝑑 is the sequence of 
all the system dynamics. 𝑑(𝑇 ) is the value of the dynamic 𝑑 at the time 
𝑇 , and 𝛽(𝑝𝑖,𝑗 ) is the (boolean) value of 𝑝𝑖,𝑗 .

One of the possible scenarios described by the formalism has been 
depicted in Fig. 2, which puts together the inter and intra component 
views to model a specific behaviour of the system. In this case, the main 
engine 𝐶1 is in the down state, due to natural degradation, which trig-
gered two events, propagating the effects on component 𝐶2 and 𝐶0. 𝐶2
moved from its “dormant” condition to the up state, to ensure the conti-
nuity of the service provided. 𝐶0 moved to “failing” state, which means 
that the train is still able to function, but it needs some maintenance ac-
tion to avoid failures. The complete scenario, described using the PdFT 
formalism, is reported in Appendix B.4.

5.  The model inference methodology

PdFT models can be built according a-priori knowledge as domain 
experts’ knowledge, the structure of the systems, requirement specifica-
tion documents. Some details could be hidden or unpredictable since, as 

3 More formally: 𝑡 = (𝑠𝑘,max(𝑆 𝑖)) and 𝑡 = (𝑚𝑎𝑥(𝑆 𝑖), 𝑠𝑘) for all 𝑠𝑘 ∈ 𝑆 𝑖 ⧵
{𝑚𝑎𝑥(𝑆 𝑖)}.
4 More formally: If 𝑡 = (𝑠𝑘,max(𝑆 𝑖)) is an impacting transition for a component 

𝑐, i.e. 𝛼(𝑝𝑐 , 𝑡) ≠ Neutral then 𝛼(𝑝𝑐 , 𝑡) = True and 𝛼(𝑝𝑐 , 𝑡) = False
5 Some clarification about the meaning of these values are provided in Ap-

pendix B.2
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Fig. 1. Graphical representation of PdFT model.

Running Example
The state sets are:

• 𝑆0 = {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔}
• 𝑆1 = {𝑢𝑝, 𝑑𝑜𝑤𝑛}.
• 𝑆2 = {𝑢𝑝, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛} The following table repre-
sents the value assumed by the priority function. 
 Component  State

 up  failing  down  standby
𝐶0  0  1  2  —
𝐶1  0  —  1  —
𝐶2  1  —  2  0

So, given the definition of the priority function, the critical states, 
for each component are:

• 𝑚𝑎𝑥(𝑆0) = 𝑚𝑎𝑥(𝑆1) = 𝑚𝑎𝑥(𝑆2) = 𝑑𝑜𝑤𝑛
The transition sets:

• 𝑇 𝐶0 = {(𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑑𝑜𝑤𝑛, 𝑢𝑝), (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔), (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑢𝑝),
(𝑑𝑜𝑤𝑛, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔), (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑑𝑜𝑤𝑛)}

• 𝑇 𝐶1 = {(𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑑𝑜𝑤𝑛, 𝑢𝑝)}
• 𝑇 𝐶2 = {(𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑑𝑜𝑤𝑛, 𝑢𝑝), (𝑢𝑝, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦), (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝),

(𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦), (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛)} and the critical transitions 
are:

• (𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑑𝑜𝑤𝑛) for 𝐶0
• (𝑢𝑝, 𝑑𝑜𝑤𝑛) for 𝐶1
• (𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛) for 𝐶2

an example, some conditions can depend on the environment the system 
operates.

The methodology here introduced leverages causality analysis and 
Kleinberg’s causality metrics, defined in the PM context, to infer a PdFT 
model from data, making it more adherent to the system’s real behaviour 
and operating conditions. The approach proposed is inspired by the 
work of Van Houdt et al., in which they provided an analysis tool that 
allows the estimation of the potential causes of a given effect in PM 
context [39]. An overall description of the workflow is shown in Fig. 3.

The figure highlights three steps. 
As the model discovery is based on PM concepts, it is worthy to 

be clear on the meaning of a “process instance” in the context of this 
work. Hence, due to the centrality of the presence of a CaseID in PM 

Fig. 2. A possible scenario for the running example.

approaches, some issues could be present in real-world cases: multiple 
definitions of CaseIDs for the same process, particularly when consid-
ered in an unconventional context like PdM [46]; coarse-grained Ca-
seIDs, when data does not separate between different process instances 
in a clear way [47]. To avoid ambiguities, here a process instance is 
defined as the set of events that starts from the normal operating func-
tioning of the system, proceeds through a fault-error-failure series of 
events, continues with maintenance action performance, and ends with 
the system recovery.

5.1.  Problem formalisation

This methodology step aims to adapt such a setting to the causal-
ity analysis approach. Considering the presence of an IoT sensing net-
work able to monitor the system under the study, two are types of data 
are acquired: time-series records, where continuous system and envi-
ronmental variables are captured, and event logs, storing meaningful 
(discrete) events, e.g., that are composed of the loss of communications, 
errors, hw/sw faults, etc. In this context, the notions of hypotheses and 
effects are introduced. The observed effects encompass all possible com-
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Fig. 3. Methodology workflow.

Fig. 4. Hypotheses definition metamodel.

ponents’ transitions, while the hypotheses represent events that can be 
either atomic or composed. Atomic hypotheses are further classified 
into Transition Hypotheses and Theta Hypotheses: Transition Hypothe-
ses denote state changes within a component, whereas Theta Hypotheses
represent the recording of a value that exceeds a threshold defined by 
the dynamic on a component. Composed Hypotheses are formulated, con-
sidering all the possible combinations among Atomic Hypotheses using 
“AND” and “OR” operators.

Fig. 4 depicts the hypothesis definition metamodel, which is for-
malised by the following definitions.
Definition 4.  Let  be the set of the components and 𝑇  the set of 
the transitions, where 𝑇 𝑐 ⊆ 𝑇  is the subset of transitions involving a 
component 𝑐 ∈ 𝐶, the components’ transition set is:

 = {(𝑐, 𝑡) | 𝑐 ∈ , 𝑡 ∈ 𝑇 𝑐}

The components’ transition set is composed of couples (𝑐, 𝑡) that define 
the transition 𝑡 observed on the component 𝑐.
Definition 5.  Let  be the set of the dynamics and ⋃𝑐∈,𝑑∈ 𝜃𝑇 (𝑐, 𝑑) be 
the set of the thresholds that connect value recorded by dynamics and 
components, a Theta Hypotheses set is:
 = {(𝑑, 𝑣) | 𝑑 ∈ , 𝑣 ∈

⋃

𝑐∈
𝜃𝑇 (𝑐, 𝑑) ∈ 𝑑}

The set of Theta Hypotheses is composed of couples (𝑑, 𝑣) where 𝑑 is a 
dynamic and 𝑣 is one of its recorded values, that has been associated 
with a threshold on a component 𝑐.
Definition 6.  Let  be the Transition Hypotheses set and  be 
the Theta Hypotheses set, the Composed Hypotheses set is defined by 
hypotheses 𝑎 = 𝑎𝑖1 ∗ ⋯ ∗ 𝑎𝑖𝑗  are expression defined by logical operators 
computed on both Transition and Theta Hypotheses. 

Running Example
For clarifying the concepts of occurrences and related functions, 
an excerpt of the dataset, associated with the running example 
introduced in Section 4, is provided in the Appendix A, Table A.10.
Each occurrence is represented by a row in the dataset. Consider-
ing for example the occurrences number 1737 and number 1761, 
the functions assign:

• 𝜑𝑅(1737) = 𝑠𝑒𝑛𝑠𝑜𝑟; 𝜑𝑅(1761) = 𝐶2
• 𝜑𝑀 (1737) = 27.25944; 𝜑𝑀 (1761) = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦
• 𝜑 (1737)=27/04/2021-17:45:00; 𝜑 (1761)=27/04/2021-
18:30:00

• 𝜑𝐶𝐼 (1737) = 1; 𝜑𝐶𝐼 (1761) = 1

The Composed Hypotheses are obtained by combining Transition and 
Theta Hypotheses by means of logical operators.6 According to these def-
initions, the set of hypotheses is  =  ∪ ̄, where the subset of atomic 
hypotheses is  =  ∪ , and the set of the effect is  . The goal is to 
determine whether the causes of a component transition arise from tran-
sitions in other components or from dynamic variable values. To sup-
port this analysis, a preliminary preprocessing step performs a twofold 
transformation: component states in the event logs are converted into 
transitions, while continuous time-series variables are discretised into 
event-like representations. The set  = {𝑜1,… , 𝑜𝑙} defines possible sys-
tem occurrences (i.e. records of the dataset). Each occurrence 𝑜 ∈  is a 
tuple 𝑜 = (𝜑𝑅(𝑜), 𝜑𝑀 (𝑜), 𝜑𝑇 (𝑜), 𝜑𝐶𝐼 (𝑜)) where:

• 𝜑𝑅 ∶  →  ∪ which assigns to each occurrence the component/-
dynamic involved

• 𝜑𝑀 ∶  →  ∪  which assigns to each occurrence the state/value 
recorded

• 𝜑 ∶  → ℝ which assigns to each occurrence the timestamp in 
which it has been performed

• 𝜑𝐶𝐼 ∶  → ℕ which assigns to each occurrence the CaseID

Definition 7.  A Transition Hypothesis 𝑎 = (𝑐, 𝑡) where 𝑡 = (𝑠𝑖, 𝑠𝑗 ) is ob-
served on a component 𝑐 in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if there are 
two consecutive occurrences, involving the component 𝑐, where the first 
records the state 𝑠𝑖 and the subsequent one records the state 𝑠𝑗 , with no 
other occurrence involving the same component in between.7

6 For a more formal definition, it is possible to refer to Defination 14 in the 
Appendix C
7 Refers to C Defination 15
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Running Example
To better clarify these concepts, an example is illustrated here, 
referring to the complete dataset shown in Table A.10 in the Ap-
pendix A. The sets of the Atomic Hypothesis are:

•  = {(𝐶2, 𝚜𝚝𝚊𝚗𝚍𝚋𝚢_𝚍𝚘𝚠𝚗), (𝐶2, 𝚍𝚘𝚠𝚗_𝚜𝚝𝚊𝚗𝚍𝚋𝚢),

(𝐶0, 𝚞𝚙_𝚏𝚊𝚒𝚕𝚒𝚗𝚐), (𝐶0, 𝚏𝚊𝚒𝚕𝚒𝚗𝚐_𝚞𝚙),

(𝐶0, 𝚞𝚙_𝚍𝚘𝚠𝚗), (𝐶0, 𝚍𝚘𝚠𝚗_𝚏𝚊𝚒𝚕𝚒𝚗𝚐),

(𝐶1, 𝚞𝚙_𝚍𝚘𝚠𝚗)}
•  = {(𝚜𝚎𝚗𝚜𝚘𝚛, 70)}

Considering the Transition Hypothesis 𝑎1 = (𝐶2, standby_down) it 
is observed in the CaseID number 1, 10 since:

• The occurrences 1001 and 6021 record the state “standby” for 𝐶2; 
the occurrences 1739 and 6791 record the state “down” for 𝐶2;

• There is no other occurrence involving 𝐶2 in between.

It is possible to define two new occurrences belonging to ̄ :

• (𝑎1, 𝜑𝑇 (1739), 𝜑𝐶𝐼 (1739)) =
((𝐶2, standby_down),27/04/2021 17:50:00, 1)

• (𝑎1, 𝜑𝑇 (6791), 𝜑𝐶𝐼 (6791)) =
((𝐶2, standby_down),29/06/2021 07:34:30, 10)

Considering the Theta Hypothesis 𝑎̄ = (𝑑, 70) is observed in the 
CaseID number 10 since:

• The occurrence 6789 records a value 𝜑𝑀 (6789) = 70.00023
such that 𝐶1 ,𝑑 (𝜑𝑀 (6789)) = (𝜑𝑀 (6789) > 70) = 𝑡𝑟𝑢𝑒 and also 
𝐶2 ,𝑑 (𝜑𝑀 (6789)) = (𝜑𝑀 (6789) > 70) = 𝑡𝑟𝑢𝑒.

It is possible to define a new occurrence belonging to ̄:

• (𝑎̄, 𝜑𝑇 (6789), 𝜑𝐶𝐼 (6789)) =
(

(𝚜𝚎𝚗𝚜𝚘𝚛, 70),

𝟸𝟿∕𝟶𝟼∕𝟸𝟶𝟸𝟷 𝟶𝟽 ∶ 𝟹𝟺 ∶ 𝟶𝟶, 10
)

Definition 8.  A Theta Hypothesis 𝑎 = (𝑑, 𝜃𝑇 (𝑐, 𝑑)) triggered by a dy-
namic 𝑑 on a component 𝑐 is observed in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), 
if there is at least one occurrence 𝑜 ∈ , which involves the dynamic 𝑑
and the value recorded satisfied the expression 𝑐,𝑑

8. 

From this point onward, the set of occurrences considered is the union 
̄ ∪ ̄, respectively representing the occurrences of Transition and 
Theta Hypotheses. For simplicity,  is redefined as  ∶= ̄ ∪ ̄, with 
the function 𝜑𝑇  and 𝜑𝐶𝐼  adjusted to this new set. Additionally, a new 
function is introduced 𝜑 ∶  → , assigning the corresponding hy-
pothesis to each occurrence.

Finally, the definition of Composed Hypothesis is introduced.

Definition 9.  A composed hypothesis 𝑎 = 𝑎𝑖1 ∧⋯ ∧ 𝑎𝑖𝑗 ∈ ̄ is observed 
in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if all the atomic hypotheses 𝑎𝑖𝑘  are 
observed in the same process instance and its observation 𝑜̄ is associated 
with the occurrence of the last atomic hypothesis observed.9

Definition 10.  A composed hypothesis 𝑎 = 𝑎𝑖1 ∨⋯ ∨ 𝑎𝑖𝑗 ∈ ̄ is ob-
served in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if at least one atomic hy-
pothesis 𝑎𝑖𝑘  is observed in that process instance and its observation 𝑜̄ is 
associated with the occurrence of the first atomic hypothesis observed.10

8 Refers to Appendix C Defination 16
9 Refers to Defination 17
10 Refers to Defination 18

Running Example
Let 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛), 𝑎2 = (𝐶1, 𝑢𝑝_𝑑𝑜𝑤𝑛) be two Atomic Hy-
potheses and 𝑎3 = 𝑎1_𝐴𝑁𝐷_𝑎2 ∈ ̄ a Composed Hypothesis. Con-
sidering the occurrences reported in Table A.10, the Composed 
Hypothesis 𝑎 is observed in CaseID 10 since:

• ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10) ∈  and
((𝐶1, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10) ∈ 

The occurrence associated with the composed hypothesis is the 
last one performed:

• ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10)

Considering another Composed Hypothesis 𝑎3 = 𝑎1_𝑂𝑅_𝑎2 ∈ ̄, is 
observed in both CaseID 1 and 10 since:

• ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),27/04/2021 17:50:00, 1) ∈ 
• ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10) ∈  and

((𝐶1, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10) ∈ 

The occurrence associated with the Composed Hypothesis, in both 
cases, is the first one performed:

• ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),27/04/2021 17:50:00, 1)
• ((𝐶1, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10)

5.2.  Inference model discovery

The Inference Model Discovery step is performed in a two-step ap-
proach: Structure Inference and Composed Hypothesis Inference. Moreover, 
it is an iterative approach, since each possible transition in the system’s 
components is considered an effect. For each given effect, the significant 
causes are selected by computing Kleinberg’s metrics on all the possible 
events occurring in the system. Only once all the significant causes of 
a transition have been discovered, all the possible Composed Hypoth-
esis are formulated, in terms of boolean predicates, and tested again 
with Kleinberg’s metric. To avoid the explosion in the state space, the 
Composed Hypothesis Inference step relies on the results of the previous 
step for reducing the hypothesis that constitutes a possible Composed 
Hypothesis for each considered effect.

5.2.1.  Structure inference
As already remarked, this step aims to discover the interactions be-

tween components and the impacts of values recorded by the dynamics. 
Considering all the Atomic Hypotheses defined by the set , the pro-
posed approach evaluates whether they can cause states’ transition in 
other components. Algorithm 1 implements the Structure Inference step, 
iteratively repeating the procedure for each considered effect (line 1).

Algorithm 1 Structure inference algorithm.
Require: , ,
1: for each 𝑓 ∈  do
2:  𝑃𝐹 (𝑓 ) ← TPFC(𝑓,) ⊳ Testing Prima Facie Causes using 
Algorithm 5

3:  for each 𝑎 ∈ 𝑃𝐹 (𝑓 ) do
4:  𝜀𝑎 ← 𝜀𝑎𝑣𝑔(𝑓, 𝑎) ⊳ Computing Epsilons applying Eq. (2)
5:  Filtering Significant Causes 𝑆𝐶(𝑓 ) applying p-value algorithm
6: return ⋃𝑓∈

𝑆𝐶(𝑓 )

For the sake of clarity, a description of each step of the algorithm is 
following provided.
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Running Example
Referring to the dataset in Table A.10, it is possible to state that:

• 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛) verifies the Definition 11 for 𝑓1 =
(𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛)

since there are two occurrences, associated respectively to 𝑎 and 
𝑓 such that:

• 𝑜𝑎1 = ((𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛),29/06/2021 07:34:30, 10)
• 𝑜𝑓1 = ((𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛),29/06/2021 07:34:31, 10)

that belongs to the same process instance: 𝜑𝐶𝐼 (𝑜𝑎1 ) = 𝜑𝐶𝐼 (𝑜𝑓1 ) =
10 and hold the time property:

• 𝑚𝑎𝑥({ (𝑜)|𝑜 ∈  ∧ 𝜑𝐶𝐼 (𝑜) = 10}) = 29/06/2021 10:20:31
• 𝑚𝑖𝑛({ (𝑜)|𝑜 ∈  ∧ 𝜑𝐶𝐼 (𝑜) = 10}) = 22/06/2021 16:40:00
• 𝛿 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛 = 582000𝑠
• Δ = 𝜑 (𝑜𝑎1 ) − 𝜑 (𝑜𝑓1 ) = 1 ⟹ 0 < Δ ≤ 582000

This implies 𝜑𝐶𝐼 (𝑜𝑎1 ∈ (𝑓1, 𝑎1), but two more considerations are 
due:

• the value of 𝛿 can be arbitrarily chosen and in this case has been 
set to 10𝑠;

• the hypothesis 𝑎1 can hold Definition 11 for other effects, for ex-
ample, 𝑓2 = (𝐶0, 𝑢𝑝_𝑓𝑎𝑖𝑙𝑖𝑛𝑔), since in the process instance num-
ber 1 two occurrences hold the definition and thus implies that 
1 ∈ (𝑓2, 𝑎1).

Testing Prima Facie Causes

In order to compute the prima facie causes, according to Definition 1, 
provided by Suppes theory, some concepts are introduced.
Definition 11. A hypothesis 𝑎 ∈ , fits the prima facie first condition 
for an effect 𝑓 ∈  if and only if there is at least one process instance 
—i.e. CaseID— in which they both occur and 𝑎 occurs before 𝑓 .11
The set of the CaseIDs that holds these two properties is defined (𝑓, 𝑎).

Since from the first condition, 𝑎 is a prima facie cause for 𝑓 , this 
implies that there exist at least two occurrences respectively associated 
with 𝑎 and 𝑓 in the same process instance. The elapsed time between the 
two events, then, is at maximum the elapsed time of the entire process 
instance.
𝑇𝑃𝐹𝐶 ∶  × → () function assigns to each effect the set of all the 
hypotheses that verify the property of prima facie causes to each selected 
effect. 

Computing Epsilon

Kleinberg’s metric, described in Eq. (2), can be computed introduc-
ing the concept of non-exclusive causes and non-concordant causes, as 
respectively defined in Defination 2 and Defination 3. In the PM context, 
Defination 2, 3 are related to the properties held by a specific process 
instance, as illustrated by Defination 12.
Definition 12. Let 𝑎 ∈ 𝑃𝐹 (𝑓 ), and 𝑥 ∈ 𝑃𝐹 (𝑓 ) with 𝑥 ≠ 𝑎, they are non-
excluding for 𝑓 and non-concordant if and only if:

• exists at least one process instance in which both the causes 𝑎, 𝑥 and 
the effect 𝑓 occur.

• exists at least one process instance in which 𝑥 occurs and 𝑎 not.

11 For a formal definition and property proofs, refer to Appendix C Defination 
19.

Let 𝑎,𝑓  be the set of the 𝑥 that holds these properties.12

For all 𝑎 ∈ 𝑃𝐹 (𝑓 ) and for all 𝑥 ∈ 𝑎,𝑓  it is possible to compute the 
metric defined in Eq. (2). In the proposed context 𝐏(𝑓 |𝑎 ∧ 𝑥) is given by 
the process instances in which 𝑓, 𝑎, 𝑥 occur over the process instances 
in which 𝑥 and 𝑎 occur. 𝐏(𝑓 |¬𝑎 ∧ 𝑥) is given by the process instances in 
which 𝑓 and 𝑥 occur but 𝑎 does not, over those in which 𝑥 occurs and 𝑎
does not. A complete discussion of this formula in the proposed context 
and the proof of the well-posed definition is provided by Eq. (C.4) in the 
Appendix C. 

Filtering Significant Causes

After computing the epsilon values, multiple causes 𝑎 ∈  are as-
signed to a single effect 𝑓 ∈  . A one-sample t-test is applied to identify 
the causes 𝑎 that are statistically significant. The t-test evaluates the null 
hypothesis13 that the true population 𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) equals 0, which means 
that “𝑎 is not a cause for the effect 𝑓”. If this null hypothesis is true, 
any 𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) computed for a given sample being different from 0 is a 
mere sampling artifact. The t-test computes a p-value which expresses 
the probability of observing a sample 𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) equal or greater to 0 un-
der the assumption that the null hypothesis is true [48]. If this p-value 
(probability) is less than a considered threshold (in such case 0.05), the 
observed 𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) is considered to be such unlikely to occur under the 
null hypothesis that the null hypothesis is rejected or 𝑎 is considered a 
statistically significant cause for 𝑓 .

In the details, assuming the null hypothesis  all the prima facie causes 
of 𝑓 are considered. For each of those causes, if the p-value, computed on 
all the 𝜀𝑥(𝑎, 𝑓 ) with 𝑥 ∈ 𝑎,𝑓 , is lower than threshold, the null hypothesis 
is rejected, and 𝑎 considered a significant cause for the effect 𝑓 . A formal 
definition of the algorithm for filtering significant causes is provided in 
the Appendix D by Algorithm 6.

5.2.2.  Composed hypothesis inference
Once the significant causes are discovered for each effect, the focus 

is shifted to the internal behaviours of the component involved, dis-
covering the predicates that fire its output ports. These predicates are 
represented in the metamodel of Fig. 4 by the Composed Hypothesis con-
cept (named C-Hypothesis). Algorithm 2 proposes a way to compute the 
C-Hypotheses, implementing the Composed Hypothesis Inference step in 
Fig. 3. More in detail, this algorithm is constituted by three main parts.

Algorithm 2 C-Hypothesis inference algorithm.
Require: ̄  , 

⋃

𝑓∈
𝑆𝐶(𝑓 )

1: for each 𝑓 ∈  do
2:  ⊳ filtering the composed hypothesis set
3:  𝐶𝐻(𝑓 ) = {𝑎1 ∗ ⋯ ∗ 𝑎𝐼(𝑓 )14 ∈ ̄ with 𝑎𝑖 ∈ 𝑆𝐶(𝑓 ) and ∗∈

{𝐴𝑁𝐷,𝑂𝑅}}
4:  𝑃𝐹 (𝑓 ) ← TPFC(𝑓, 𝐶𝐻(𝑓 )) ⊳ Testing Prima Facie Causes using 
Algorithm 5

5:  for each 𝑎 ∈ 𝑃𝐹 (𝑓 ) do
6:  𝜀𝑎 ← 𝜀𝑎𝑣𝑔(𝑓, 𝑎) ⊳ computing epsilons applying Eq. 2
7:  𝑃𝑟(𝑓 ) ← max

𝑎∈𝑃𝐹 (𝑓 )
𝜀𝑎

8: return ⋃𝑓∈
𝑃𝑟(𝑓 )

Filtering the composed Hypothesis set

The Algorithm 2 requires as input the set of the Composed Hypothe-
ses ̄, the set of the effects  and for each 𝑓 ∈  , the significant causes
set 𝑆𝐶(𝑓 ), obtained from the previous step. For each effect 𝑓 ∈  (line 

12 A more formal definition is presented in Appendix C, Def 22.
13 The null hypothesis (often denoted as 𝐻0) is a statement used in statistics 
that proposes the absence of effects, differences, or relationships between vari-
ables in a study. It serves as a baseline or default position for hypothesis testing.
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Fig. 5. Flowcharts for the construction of Transition, Prima Facie, and Theta Hypotheses sets.

1), ̄ is filtered, considering only the Composed Hypotheses that involve 
all the significant causes of 𝑓 (line 2). The 𝐶𝐻 set contains the Composed 
Hypotheses to test with Kleinberg’s metric. It is built by combining all 
the significant causes with the logical operators (line 3). 

Testing Prima Facie and Computing Epsilon

The computation of the prima facie causes and epsilon average val-
ues recalls the same procedure explained in Structure Inference step. In 
this case, the function 𝑇𝑃𝐹𝐶 requires as input the effect 𝑓 and the Com-
posed Hypotheses 𝐶𝐻(𝑓 ) ⊆ ̄, returning the subset of them that hold 
prima facie property (line 4). After that, for each prima facie cause, the 
epsilon value is computed (lines 5-6).
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Running Example
Considering the two hypotheses 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛) and 𝑎2 =
(𝐶1, 𝑢𝑝_𝑑𝑜𝑤𝑛), they verify the Defination 11 for 𝑓1 = (𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛), 
but more in general they both hold the property to be a prima facie 
causes for 𝑓1:

• {𝑎1, 𝑎2} ⊆ 𝑃𝐹 (𝑓1)

Moreover, they also hold the property described by Definition 12:

• 10 ∈ (𝑓1, 𝑎1) and 10 ∈ (𝑓1, 𝑎2) ⟹ (𝑓1, 𝑎1) ∩(𝑓1, 𝑎2) ≠ ∅
• 1 ∈ 𝜑𝐶𝐼 (𝑎1 ) but 1 ∉ 𝜑𝐶𝐼 (𝑎2 ) ⟹ 𝜑𝐶𝐼 (𝑎1 ) ⧵ 𝜑𝐶𝐼 (𝑎2 ) ≠ ∅.

So it is possible to state that 𝑎1 and 𝑎2 are confounding and not 
concordant causes for 𝑓1 and

• 𝑎1 ∈ 𝑎2

Maximum Calculation
Finally, the Composed Hypothesis with the highest epsilon value is se-
lected (line 7) for each effect. This choice is due to the semantic mean-
ing assumed by the composed hypothesis in the PdFT formalism. PdFT’s 
Triggers are functions assigning to each transition on each component 
one and only one predicate. 

5.3.  PdFT generation

The last step of the methodology, depicted in Fig. 3, is responsible 
for generating the proper PdFT elements from the results obtained in 
the Inference Model Discovery step.  The translation involves both the 
Structure Inference and the Composed Hypothesis Inference steps.

5.3.1.  Structure to PdFT
For each 𝑓 ∈  , a set of significant causes 𝑆𝐶(𝑓 ) ⊆  ∪ ob-

tained from the previous step, is considered. 
Transition Hypotheses

Let the effect 𝑓 = (𝑐𝑖, 𝑡𝑖) be a transition involving the component 𝑐𝑖 and 
𝑎 = (𝑐𝑗 , 𝑡𝑗 ) the discovered significant cause involving the component 𝑐𝑗 . 
From the discovered relation between the effect and the hypothesis 
some PdFT’s elements can be constructed. The component 𝑐𝑖 is refined 
by adding an input port 𝑝𝑖,𝑗 ∈ 𝑃 𝐼

𝑐𝑖
⊆ 𝑃 𝐼 , modelling the connection with 

𝑐𝑗 . An event is generated, starting from the output port of the com-
ponent 𝑐𝑗 ∈ . Finally, the relation between 𝑎 and the effect 𝑓 deter-
mines the generation of the action function 𝛼 of the 𝑡𝑗 transition on 
the 𝑐𝑗 component. Hence, 𝑡𝑗 becomes an impacting transition for 𝑐𝑗 and 
𝛼(𝑝𝑗 , 𝑡𝑗 ) ≠ 𝑁𝑒𝑢𝑡𝑟𝑎𝑙. 

Theta Hypothesis. Let 𝑎 = (𝑑𝑗 , 𝑣𝑗 ) be the discovered cause and 𝑓 the ef-
fect, involving the dynamic 𝑑𝑗 , this means that the latter records a value 
𝑣𝑗 influencing the component 𝑐𝑖. Hence, a predicate based on the 𝑐𝑖 ,𝑑𝑗
function is discovered, implying the discovery of the 𝜃𝑇 (𝑐𝑖, 𝑑𝑗 ) threshold.

A possible implementation of this procedure is provided in the Ap-
pendix D, reported in Algorithm 7.

5.3.2.  Composed hypothesis to PdFT
A similar approach is performed on the results of the Composed Hy-

pothesis Inference step. At this step, for each effect 𝑓 = (𝑐𝑖, 𝑡𝑖), the Com-
posed Hypothesis 𝑃𝑟(𝑓 ) is a boolean predicate composed of Atomic Hy-
potheses connected by means of logical operators. If 𝑎𝑗 = (𝑐𝑗 , 𝑡𝑗 ) ∈ 
involves a component, the predicate, associated to 𝑓 , is updated with 
the input port 𝑝𝑖,𝑗 that connects 𝑐𝑖 with 𝑐𝑗 . The input port value de-
pends on those assigned to 𝑝𝑗 from the function 𝛼(𝑝𝑗 , 𝑡𝑗 ). Otherwise, if 
𝑎𝑗 = (𝑑𝑗 , 𝑣𝑗 ) ∈  involves a sensor, the predicate, associated to 𝑓 , is 
updated with the expression of the function 𝑐𝑖 ,𝑑𝑗 . In the PdFT model, 

Running Example
Let consider the hypothesis 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛) and the effect 
𝑓1 = (𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛), given that:

• 𝐶2 ∈ 
• 𝑡 = (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛) ∈ 𝑇 𝑐2

• 𝑝2 is the output port of the component 𝐶2

the relationship 𝑎1 ∈ 𝑆𝐶(𝑓1) is translated into:

• the definition of the input port for the component 𝐶0 that connects 
the component with 𝐶2: 𝑝0,2

• the definition of the value to assign to the transition 𝑡 =
(𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛) that is an impacting transition for the component 
𝐶2, since it reflects some event outside: 𝛼(𝐶2, 𝑡) = 1

• the definition of the event that connects the output port 𝑝2 with 
the input 𝑝0,2: 𝑒 = (𝑝2, 𝑝0,2)

Running Example
Let consider the effect 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛), and the hypothe-
sis 𝑎̃2 = (𝑠𝑒𝑛𝑠𝑜𝑟, 70), according to the results of the previous step, 
given that:

• 𝑑 = 𝑠𝑒𝑛𝑠𝑜𝑟 ∈  with 70 ∈ 𝑑

the relationship 𝑎2 ∈ 𝑆𝐶(𝑎1) is translated into:

• the definition of the threshold value for the parameter monitored 
by 𝑑 on the component 𝐶2: 𝜃𝑇 (𝐶2, 𝑑) = 70

the predicate is a boolean expression that triggers a transition when the 
value of the expression is true. While the function 𝑎𝑙𝑝ℎ𝑎 assigns to the 
impacting transitions, a value of True or False according to the direction 
of the arc that connects the initial state to the final state. This allows 
modelling a direction rather than assigning a boolean meaning. For this 
reason, if the value of the function 𝛼(𝑝𝑗 , 𝑠𝑗 ) is False, this does not mean 
that the condition is not satisfied, but this means that the condition is 
satisfied in the opposite direction. The hypothesis is translated into the 
predicate according to the function 𝛾 in Eq. 9.

𝛾(𝑝𝑗,𝑖) ∶=

{

𝑝𝑗,𝑖 ⟺ 𝛼(𝑝𝑖, 𝑡) = 𝑇 𝑟𝑢𝑒
¬𝑝𝑗,𝑖 ⟺ 𝛼(𝑝𝑖, 𝑡) = 𝐹𝑎𝑙𝑠𝑒

(9)

A possible implementation of this procedure is provided in the Ap-
pendix D, reported in Algorithm 8.

6.  Proof of concept

This chapter is devoted to demonstrating the effectiveness of the pro-
posed approach using a concrete example. A CALYPSO tool, implement-
ing the methodology, is available at GitHub repository [8].

6.1.  Simulator

Another supporting tool is Dependability Simulation Engine (DSE), 
which implements a simulator for the proposed example [6]. The ex-
tension of DSE for the CALYPSO tool is available at GitHub repository 
[7]. Overall, the DSE provides a structured and extensible framework 
for simulating and evaluating the dependability of complex systems, in-
corporating both model-based and data-driven approaches.

The choice of testing the methodology on a simulated scenario is mo-
tivated by several issues: (1) data availability: especially in the case of 
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Running Example
Let consider the effect 𝑓1 = (𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛) and the Composed 
Hypothesis 𝑎4 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛)_𝐴𝑁𝐷_(𝐶1, 𝑢𝑝_𝑑𝑜𝑤𝑛), accord-
ing to the results of the Composed Hypothesis Inference step:

• 𝑃𝑟(𝑓1) = 𝑎4

Given that

• 𝛼(𝐶2, 𝑢𝑝_𝑑𝑜𝑤𝑛) = 𝑇 𝑟𝑢𝑒 ⟹ 𝛾(𝑝0,2) = 𝑝0,2
• 𝛼(𝐶1, 𝑢𝑝_𝑑𝑜𝑤𝑛) = 𝑇 𝑟𝑢𝑒 ⟹ 𝛾(𝑝0,1) = 𝑝0,1

the relationship 𝑃𝑟(𝑓1) = 𝑎4 is translated into:

• the definition of the trigger function: 𝜏(𝐶0, 𝑢𝑝_𝑑𝑜𝑤𝑛) = 𝑝0,1 ∧ 𝑝0,2

Running Example
Let consider the effect 𝑎1 = (𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛) and the hypothe-
sis 𝑎̃2 = (𝑠𝑒𝑛𝑠𝑜𝑟, 70.00023), according to the results of the Inference
step:

• 𝑃𝑟(𝑎1) = 𝑎2

Given that

• 𝜃𝑇 (𝐶2, 𝑑) = 70
• 𝐶2 ,𝑑 = 𝑑(𝑥) > 70

the relationship 𝑃𝑟(𝑎1) = 𝑎2 is translated into:

• the definition of the trigger function: 𝜏(𝐶2, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦_𝑑𝑜𝑤𝑛) = 𝐶2 ,𝑑

Fig. 6. System configurations (Reliability block diagram).

complex infrastructure, the proposed approach requires a huge amount 
of data to be trained, which is usually not freely available [49]; (2) eval-
uation purposes: the possibility of defining the system architecture pro-
vides complete knowledge about the simulated process; in such a way, a 
precise evaluation of the methodology can be achieved, comparing the 
results with the ground truth.

The first activity of this Proof of Concept (PoC) is to define a sim-
ulation model in the DSE framework. The example, shown in Fig. 6, is 
structured into ten components: six subcomponents, which are instances 
of the Component class and do not have any “child” component; three 
middle components, each of these considers two subcomponents. The fail-
ure of both subcomponents leads to a failure of the middle components; 
one top component, connected to the three middle components. A failure 
of at least one middle component leads to the break of the top component
provoking the entire system failure.

The hierarchical structure of the simulator implies that, when a fault 
arises in the lower layers, it is propagated toward the top. The system is 

Table 2 
Faults’ description within the system.
 Component  Internal  Other components  Signals
 X_TOP 𝑡 > 𝑀𝑇𝐵𝐹𝑇𝑂𝑃  X_C1s down ∨ X_C2s down ∨ X_C3s down  —
 X_C1s 𝑡 > 𝑀𝑇𝐵𝐹𝐶𝑋𝑠  X_C10 down ∧ X_C11 down  —
 X_C2s 𝑡 > 𝑀𝑇𝐵𝐹𝐶𝑋𝑠  X_C20 down ∧ X_C21 down  —
 X_C3s 𝑡 > 𝑀𝑇𝐵𝐹𝐶𝑋𝑠  X_C30 down ∧ X_C31 down  —
 X_C10, X_C11 𝑡 > 𝑀𝑇𝐵𝐹𝐶1𝑋  — 𝑠𝑖𝑔𝐴 > 70
 X_C20, X_C21 𝑡 > 𝑀𝑇𝐵𝐹𝐶2𝑋  — 𝑠𝑖𝑔𝐵 > 3.99
 X_C30, X_C31 𝑡 > 𝑀𝑇𝐵𝐹𝐶3𝑋  — 𝑠𝑖𝑔𝐶 > 85

Table 3 
Excerpt of the dataset.
 Element_ID  time:timestamp  case:concept:name  Message_description  Value
 sigB  129,384  462  —  4
 sigC  129,387  463  —  27.26
 X_C20  129,400  462  is down  —
 X_C21  129,400  462  is down  —
 X_C2s  129,401  462  is down  —
 X_top  129,402  462  is down  —
 sigA  129,410  463  —  10.93
 sigC  129,430  463  —  27.29
 sigA  129,500  463  —  10.96
 sigC  129,530  463  —  27.32

also equipped with three sensors: sigA, sigB and sigC, which are instances 
of the class Signal. Two components are assigned to each signal, with a 
corresponding condition. Table 2 summarises all the possible faults that 
could arise in the system.

Once the simulation model is defined, running DSE produces two 
kinds of data:

• Time-series: the records produced by the sensors sigA, sigB and sigC. 
The attributes acquired are the ID of the sensor, the timestamp in 
seconds, the sensed value and the CaseID;

• Event logs: the messages sent by the components in case of state 
changes. The acquired attributes are the ID of the component, the 
timestamp in seconds, the state change and the CaseID.

Table 3 shows an excerpt of the dataset [8]. The simulated envi-
ronment reproduces 100 years of the system’s activity. Sensors’ data 
is recorded every 90 minutes of simulated time, resulting in approxi-
mately 584,411 records of time-series data. Regarding the component 
states, a total of 16 failure modes can be injected, as specified in Ta-
ble 2. The dataset is organised into process instances, each representing 
a scenario generated through fault injection and subsequent recovery 
actions. These fault chains are not deterministic; instead, they are sta-
tistically generated based on probability distributions for the Mean Time 
Between Failures (MTBF) and sensors’ behaviours. In total, 425 process 
instances were processed. The produced dataset comprises more than 
one million rows and 5 columns.

6.2.  Applying the methodology

The application of the method and the algorithms presented in Sec-
tion 5 to this example is here reported in the three subsections: problem 
formalisation (Section 6.2.1), inference model discovery (Section 6.2.2), 
and PdFT model generation (Section 6.2.3). As mentioned above, the 
CALYPSO tool implements and automates the steps.

6.2.1.  Problem formalisation
According to the content of Section 5.1, Table 4 maps the elements 

of the causality formalisation, the features in the dataset and the PdFT 
syntactic elements. Other parameters to consider are: the number of 
the components (𝑛 = 9), the number of dynamics (𝑧 = 2), and the total 
number of the rows (𝑙 = 1048576).

Starting from this, Algorithms 3 and 4 are applied.
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Fig. 7. Discovered structure of the PdFT model.

Table 4 
Causality-PdFT elements mapping.
 Causality Formalisation  Feature in the Dataset  PdFT Element
 = {𝑐0 ,… , 𝑐𝑛}  Element_ID(Component)  Components 
𝑆 =

⋃

𝑐∈ 𝑆
𝑐  Messages_description  States 

 = {𝑑0 ,… , 𝑑𝑧}  Element_ID(Signals)  Dynamics 
 =

⋃

𝑑∈ 𝑑  Value  Dynamics values ⋃𝑑∈ (ℝ)
 = {𝑜1 ,… , 𝑜𝑙}  Dataset rows  —
𝜑𝑅  Element_ID  ∪
𝜑𝑀  Message_description, Value  ∪ 
𝜑  time:timestamp  —
𝜑𝐶  case:concept:name  —

6.2.2.  Inference model discovery
The second step is the Inference Model Discovery, whose two stages 

generate the model. Concerning the Structure Inference, Algorithm 1 
is applied generating the results shown in Table 5. The table assigns to 
each effect considered 𝑓 , i.e. each possible transition observed on each 
component, its discovered cause 𝑎, which could be either a transition on 
another component or a value measured by a dynamic. To each cause-
effect couple is also assigned the computed metric measuring the causal 
significance. 

The second stage of this step — i.e., the Composed Hypothesis 
Inference step — consists of the discovery of hypotheses to generate 
PdFT’s trigger functions. Starting from all the significant causes repre-
sented in Table 5, Algorithm 2 is applied. Table 6 shows the results. 
As in the previous step, in the table each effect 𝑓 is associated with the 
boolean predicate that enables the transition considered. Last column re-
ports the value of statistical significance computed with the Kleinberg’s 
metric.

6.2.3.  Model generation
This last step oversees the translation of the results into the PdFT 

formalism. From the result shown in Table 5, the application of the Al-
gorithm 7 enables the Structure to PdFT stage. The PdFT structure is 
then defined and graphically represented in Fig. 7.

The last phase is devoted to populating the model with the discov-
ered trigger functions, according to the Composed Hypothesis to PdFT 
stage. The results  obtained, enrich the model reported in Fig. 7. The 
graphical representation of the whole PdFT model of the considered ex-
ample, is reported in Fig. 8. For the sake of clarity, the trigger function, 
described on each considered effect, is reported in Table 7.

6.3.  Evaluation

This subsection is devoted to the evaluation of the methodology pro-
posed from two different points of view: the trustworthiness of the in-
ference process and robustness to data noise.

6.3.1.  Inference trustworthiness
Here, the term trustworthiness means the degree of adherence of the 

inferred model to reality and, hence, the ability to infer the right rela-
tionship between the causes and effects. As already remarked, the pro-
posed example is based on simulated data, also to let a more straightfor-
ward evaluation of the trustworthiness. In this setting, cause-effect rela-
tionships can be derived, as well as the logical rules that enable the tran-
sitions. The validation of the model inference is based on widespread ML 
metrics.

Definition 13. A possible cause 𝑥 ∈  is:

• True Positive (TP) for an effect 𝑓 if it is a real cause for 𝑓 and it is 
labelled as a significant causes 𝑥 ∈ 𝑆𝐶(𝑓 ) for 𝑓 ;

• False Positive (FP) for an effect 𝑓 if it is not a real cause for 𝑓 but it 
is labelled as a significant causes 𝑥 ∈ 𝑆𝐶(𝑓 ) for 𝑓 ;

• True Negative (TN) for an effect 𝑓 if it is not a real cause for 𝑓 and 
it is not labelled as a significant causes 𝑥 ∉ 𝑆𝐶(𝑓 ) for 𝑓 ;

• False Negative (FN) for an effect 𝑓 if it is a real cause for 𝑓 but it is
not labelled as a significant causes 𝑥 ∉ 𝑆𝐶(𝑓 ) for 𝑓 .

TNs are all the possible combinations of (fake) causes and/or pred-
icates that are not considered in the inferred model. Theoretically, this 
set can have a huge dimensionality. Even considering a finite number of 
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Table 5 
Structure inference results.
𝑓 ∈  𝑎 ∈  𝜀𝑎𝑣𝑔 (𝑎, 𝑓 ) 𝑓 ∈  𝑎 ∈  𝜀𝑎𝑣𝑔 (𝑎, 𝑓 )

 (X_top,up_down)  (X_C1s,up_down)  1  (X_top,up_down)  (X_C2s,up_down)  1
 (X_top,up_down)  (X_C2s,up_down)  1  (X_C1s,up_down)  (X_C11,up_down)  1
 (X_C1s,up_down)  (X_C10,up_down)  1  (X_C2s,up_down)  (X_C20,up_down)  1
 (X_C3s,up_down)  (X_C31,up_down)  1  (X_C3s,up_down)  (X_C30,up_down)  1
 (X_C3s,up_down)  (sigC,85)  0.37  (X_C11,up_down)  (sigA,70)  0.74
 (X_C10,up_down)  (sigA,70)  0.76  (X_C21,up_down)  (sigB,3.99)  0.67
 (X_C20,up_down)  (sigB,3.99)  0.74  (X_C31,up_down)  (sigC,85)  0.76
 (X_C30,up_down)  (sigC,85)  0.77  (X_C1s,up_failing)  (X_C11,up_down)  0.2
 (X_C1s,up_failing)  (X_C10,up_down)  0.12  (X_C2s,up_failing)  (X_C21,up_down)  0.13
 (X_C2s,up_failing)  (X_C20,up_down)  0.20  (X_C3s,up_failing)  (X_C31,up_down)  0.27
 (X_C3s,up_failing)  (X_C30,up_down)  0.21  (X_top,down_up)  (X_C1s,down_up)  1
 (X_top,down_up)  (X_C2s,down_up)  1  (X_top,down_up)  (X_C3s,down_up)  1
 (X_C1s,down_up)  (X_C11,down_up)  0.33  (X_C1s,down_up)  (X_C10,down_up)  0.43
 (X_C2s,down_up)  (X_C21,down_up)  0.41  (X_C2s,down_up)  (X_C20,down_up)  0.35
 (X_C3s,down_up)  (X_C31,down_up)  0.32  (X_C3s,down_up)  (X_C30,down_up)  0.32
 (X_C1s,failing_up)  (X_C11,down_up)  0.27  (X_C1s,failing_up)  (X_C10,down_up)  0.21
 (X_C2s,failing_up)  (X_C21,down_up)  0.22  (X_C2s,failing_up)  (X_C20,down_up)  0.27
 (X_C3s,failing_up)  (X_C31,down_up)  0.38  (X_C3s,failing_up)  (X_C30,down_up)  0.33

Table 6 
Composed hypothesis inference results.
𝑓 ∈  𝑃𝑟(𝑓 ) 𝜀𝑎𝑣𝑔 (𝑎, 𝑓 )

(𝑋_𝑡𝑜𝑝, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑋_𝐶1𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝑂𝑅_(𝑋_𝐶2𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝑂𝑅_(𝑋_𝐶3𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛)  1
(𝑋_𝐶1𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑋_𝐶11, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝐴𝑁𝐷_(𝑋_𝐶10, 𝑢𝑝_𝑑𝑜𝑤𝑛)  1
(𝑋_𝐶2𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑋_𝐶20, 𝑢𝑝_𝑑𝑜𝑤𝑛)  0.73
(𝑋_𝐶3𝑠, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑋_𝐶31, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝐴𝑁𝐷_(𝑋_𝐶30, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝐴𝑁𝐷_(𝑠𝑖𝑔𝐶, > 85)  0.54
(𝑋_𝐶11, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐴, 70)  0.74
(𝑋_𝐶10, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐴, 70)  0.76
(𝑋_𝐶21, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐵, 3.99)  0.67
(𝑋_𝐶20, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐵, 3.99999)  0.74
(𝑋_𝐶31, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐶, 85)  0.76
(𝑋_𝐶30, 𝑢𝑝_𝑑𝑜𝑤𝑛) (𝑠𝑖𝑔𝐶, 85)  0.77
(𝑋_𝐶1𝑠, 𝑢𝑝_𝑓𝑎𝑖𝑙𝑖𝑛𝑔) (𝑋_𝐶11, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝑂𝑅_(𝑋_𝐶10, 𝑢𝑝_𝑑𝑜𝑤𝑛)  0.39
(𝑋_𝐶2𝑠, 𝑢𝑝_𝑓𝑎𝑖𝑙𝑖𝑛𝑔) (𝑋_𝐶21, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝑂𝑅_(𝑋_𝐶20, 𝑢𝑝_𝑑𝑜𝑤𝑛)  0.40
(𝑋_𝐶3𝑠, 𝑢𝑝_𝑓𝑎𝑖𝑙𝑖𝑛𝑔) (𝑋_𝐶31, 𝑢𝑝_𝑑𝑜𝑤𝑛)_𝑂𝑅_(𝑋_𝐶30, 𝑢𝑝_𝑑𝑜𝑤𝑛)  0.53
(𝑋_𝑡𝑜𝑝, 𝑑𝑜𝑤𝑛_𝑢𝑝) (𝑋_𝐶1𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶2𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶3𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝)  1
(𝑋_𝐶1𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝) (𝑋_𝐶11, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶10, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.61
(𝑋_𝐶2𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝) (𝑋_𝐶21, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶20, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.60
(𝑋_𝐶3𝑠, 𝑑𝑜𝑤𝑛_𝑢𝑝) (𝑋_𝐶31, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶30, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.48
(𝑋_𝐶1𝑠, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔_𝑢𝑝) (𝑋_𝐶11, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶10, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.39
(𝑋_𝐶2𝑠, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔_𝑢𝑝) (𝑋_𝐶21, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶20, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.40
(𝑋_𝐶3𝑠, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔_𝑢𝑝) (𝑋_𝐶31, 𝑑𝑜𝑤𝑛_𝑢𝑝)_𝑂𝑅_(𝑋_𝐶30, 𝑑𝑜𝑤𝑛_𝑢𝑝)  0.52

Fig. 8. PdFT inferred model.
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Fig. 9. Comparison of results: (a) Impact of significance threshold on performance metrics; (b) Computational costs across different dataset sizes.

Fig. 10. Metric overall evaluation.

Table 7 
PdFT inferred predicates.
𝑓 = (𝑐, 𝑡) 𝜏(𝑐, 𝑡) 𝑓 = (𝑐, 𝑡) 𝜏(𝑐, 𝑡)

 (X_top,up_down) 𝑝0,1 ∨ 𝑝0,2 ∨ 𝑝0,3  (X_C1s,up_failing) 𝑝1,4 ∨ 𝑝1,5
 (X_C1s,up_down) 𝑝1,4 ∧ 𝑝1,5  (X_C2s,up_failing) 𝑝2,6 ∨ 𝑝2,7
 (X_C2s,up_down) 𝑝2,7  (X_C3s,up_failing) 𝑝3,8 ∨ 𝑝3,9
 (X_C3s,up_down) 𝑝3,8 ∧ 𝑝3,9 ∧ 𝑠𝑖𝑔𝐶 > 85  (X_top,down_up) ¬𝑝0,1 ∨ ¬𝑝0,2 ∨ ¬𝑝0,3
 (X_C11,up_down) 𝑠𝑖𝑔𝐴 > 70  (X_C1s,down_up) ¬𝑝1,4 ∨ ¬𝑝1,5
 (X_C10,up_down) 𝑠𝑖𝑔𝐴 > 70  (X_C2s,down_up) ¬𝑝2,6 ∨ ¬𝑝2,7
 (X_C21,up_down) 𝑠𝑖𝑔𝐵 > 3.99999  (X_C3s,down_up) ¬𝑝3,8 ∨ ¬𝑝3,9
 (X_C20,up_down) 𝑠𝑖𝑔𝐵 > 3.99999  (X_C1s,failing_up) ¬𝑝1,4 ∨ ¬𝑝1,5
 (X_C31,up_down) 𝑠𝑖𝑔𝐶 > 85  (X_C2s,failing_up) ¬𝑝2,6 ∨ ¬𝑝2,7
 (X_C30,up_down) 𝑠𝑖𝑔𝐶 > 85  (X_C3s,failing_up) ¬𝑝3,8 ∨ ¬𝑝3,9

hypotheses, the TNs is huge compared with the TPs, affecting the com-
putation of the classical accuracy metric, for this reason not taken into 
account.

The results of the Rules Inference are validated by comparing obtained 
predicates to the real ones using the function defined in Eq. (10).

 ∶=

{

(𝑝, 𝑓 ) = 1 ⟺ 𝑝 = 𝑃𝑟(𝑓 )
(𝑝, 𝑓 ) = 0 ⟺ 𝑝 ≠ 𝑃𝑟(𝑓 )

(10)

where 𝑃𝑟(𝑓 ) is the true predicate of the effect 𝑓 and 𝑝 = 𝑃𝑟(𝑓 ) is the 
inferred rule. Hence, the function  assigns a score to each prediction. 

Table 8 
Metrics for methodology evaluation.
 Recall  Precision  Rule Score  Time
0.97 0.97 0.90 382.59 s

The rule-score metric is defined in Eq. (11).

𝑅𝑢𝑙𝑒 𝑆𝑐𝑜𝑟𝑒 =

∑

𝑓∈
(𝑝, 𝑓 )

| |
(11)

The metrics and the results on the example used in the PoC are shown 
in Table 8.

The values obtained for the recall and precision, over the 90%, pro-
vide information about how the methodology classifies the hypotheses, 
showing a promising result in terms of recognition of TPs. This means 
that the methodology is able to discover the real causes in the proposed 
PoC. Additionally, the rule score shows that the composed hypotheses 
discovered match, in 90% of the cases, the real boolean condition that 
triggers the transitions. Further experiments have been conducted to in-
vestigate the influence of the significant causes threshold adopted in 
p-value test. Such a threshold is adopted to distinguish spurious causes 
from significant ones: if the p-value, computed on a discovered cause, 
is lower than the threshold, the null hypothesis is rejected, and it is 
considered a significant cause for the effect. Fig. 9a reports the metric 
scores obtained for different values of the significance threshold. It can 
be observed that both Precision and Rule Score decrease as the signifi-
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Fig. 11. Metrics vs 𝑖𝑛𝑡𝑟𝑎𝑁𝐿 w.r.t. different 𝑖𝑛𝑡𝑒𝑟𝑁𝐿s.

cance level increases, due to the inclusion of additional causes that are 
in fact spurious FPs. These experiments confirm the theoretical rationale 
behind the significance level in the p-value test: while the filtering step 
effectively separates spurious from significant causes, raising the thresh-
old leads to a higher number of FPs, which negatively affects Precision 
and Rule Score. Conversely, Recall–being related to FNs–remains stable 
across different thresholds.

Considering computational metrics, the time required to train the 
model, with over 1 million records filtered in 18,500 activities, is around 
six minutes. Fig. 9b illustrates that the execution time grows with the 
dataset size, confirming the scalability trend of the proposed approach. 
Nevertheless, the increase appears approximately linear, suggesting that 
the method preserves computational efficiency even when applied to 
larger inputs. This behaviour highlights the practical feasibility of the 

algorithm for real-world scenarios where datasets can vary significantly 
in size. However, the computational costs could increase considering a 
more complex architecture of the system. In such cases, the explosion 
in the space of states can be mitigated by filtering the hypothesis sets, 
considering domain knowledge, and reducing the number of possible 
causes to test.

6.3.2.  Robustness
Two injection mechanisms are considered:

• inter-process noise: a subset of process instances is impacted by 
noise. The noise injection is measured by the inter-process noise level, 
of the noisy processes over the total number of processes;
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Fig. 12. Metrics vs 𝑖𝑛𝑡𝑒𝑟𝑁𝐿 w.r.t. different 𝑖𝑛𝑡𝑟𝑎𝑁𝐿s.

• intra-process noise: considering a process instance, the subset of the 
lines that are affected by noise. The noise injection is measured by 
the intra-process noise level as the  of noisy events injected in the 
process instances over the total number of events.15

Briefly, the couple (𝑖𝑛𝑡𝑒𝑟𝑁𝐿, 𝑖𝑛𝑡𝑟𝑎𝑁𝐿) characterises the experiments; 
the noisy couple (20,30) means that the 20% of the total number of 
the process instances has been modified. Every time a single process in-
stance has been randomly selected, the 30% of the total events belonging 
to that process instance has been added.

15 Injecting the noise in a process is meant in this work as “adding” some lines 
that are not previously present.

The noisy occurrence is a new row belonging to the same process 
instance — i.e., same CaseID — recording an activity randomly cho-
sen among all the possible ones performed by the system. Moreover, 
the timestamps associated with the new rows are again randomly cho-
sen within the timeframe associated with the selected process instance. 
All the attributes needed to perform the methodology — i.e. CaseID, 
timestamp and activity — have been randomly selected but ensuring 
coherence with the other occurrences belonging to the same process in-
stance. Table 9 shows an example of a noisy log, with the new rows in 
blue, added to the original one proposed in Table 3.

Twenty-five different couples of noise percentages have been se-
lected and, for each of them, 80 datasets were randomly generated, for a 
total of 2000 tests. The choice to repeat 80 times the test for each group 
is due to the random selection of the noise to inject in the dataset. Fig. 10 
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Table 9 
Example of a noisy dataset.
 Element_ID  time:timestamp  case:concept:name  Message_description  Value
 sigB  129,384  462  —  4
 X_C10  129387  462  is up  —
 sigC  129,387  463  —  27.26
 X_C3s  129389  462  is down  —
 X_C20  129,400  462  is down  —
 X_C21  129,400  462  is down  —
 sigB  129401  462  —  3.79
 X_C2s  129,401  462  is down  —
 X_top  129,402  462  is down  —
 sigA  129,410  463  —  10.93
 sigC  129,410  463  —  27.29
 sigA  129,500  463  —  10.96
 sigC  129,530  463  —  27.32

depicts the overall behaviour of the metrics, according to the percentage 
of noise added to the data, and considering the average values for each 
group. The dotted lines in the graphs represent the values assumed by 
the corresponding metric in the case of the original dataset, i.e., the one 
without noise, whose values are reported in Table 8. This view enables 
a quick and intuitive evaluation of the distances between the values 
achieved by the metrics on a noisy dataset — the high of the bars — 
and the reference value achieved by the metrics on the real dataset.

From the plot, it is clear that the values of Precision are stable, this 
means that the methodology is conservative since the number of FPs is 
close to zero. Recall decreases rapidly as noise levels increase. This sug-
gests that the proposed approach is more likely to overlook a real cause 
than to incorrectly identify a non-real cause as significant. Finally, Rule 
Score is the metric most affected by the noise. This is reasonable, since 
the introduced metric can not consider how much inferred rules are 
different from real rules. The inference process can, indeed, determine 
correctly at least part of the real rule, but the Rule Score does not take 
it into account, considering the predicate completely wrong. However, 
in the overall evaluation, it is possible to state that the methodology 
is quite stable to the noise and robust enough since the metrics results 
range on average around 80 − 70%.

7.  Discussion

This section provides a discussion of the main results of this work, 
also highlighting current limitations. The first claimed point  the defi-
nition of a formalism, based on MB approaches, capable of integrating 
knowledge extracted from data. PdFT indeed, starts from FT baseline, 
inheriting the tree-based structure and the concept of events and logical 
conditions, but at the same time moves toward an object-oriented view. 
One of the main innovation is the “layered structure” with the inter-
component and intra-component view, conjugating the top-down view, 
focusing on  relations with a bottom-up strategy that enhances the study 
of the inner behaviour of each single component. This object-oriented 
framework suits the logic of industrial systems, helping domain experts 
grasp the model, even if they are not familiar with this formalism.

Domain experts, indeed, play a central role, since the model seeks 
to conjugate domain knowledge with data. In an ideal application in an 
industrial scenario, PdFT model template should be produced by experts 
based on the topology of the system. From the template, it is possible to 
formulate hypotheses to be tested with the CALYPSO tool, obtaining the 
refined version of PdFT that integrates knowledge extracted from data. 
CALYPSO is in charge of implementing a methodology for extracting 
causal relationships from an event log in the context of PM. PM has 
emerged as a suitable candidate for integration as a DD, based on several 
factors: its relevance to industrial contexts, the process model’s pivotal 
role in the analytical approach, and the format of data generated by 
industrial systems, specifically event logs. The proposed methodology 
has been evaluated on a proof of concept framed in CI context.

However, it is worth underlining some limitations. The metrics re-
ported in Figs. 12 and 11 evaluate the quality of the inference process; 
in other words, they measure the ability to correctly identify causal re-
lationships.  the computational cost of such an approach could explode 
according to a growth of state space, considering all the possible hy-
potheses that can be formulated in a real-world context. In this paper, a 
sensitivity analysis of execution times is done according to the variation 
of dataset size, while an analysis following the variation of the complex-
ity of the model has not been accomplished.  Both the above mentioned 
limitations can be mitigated by the support of expert knowledge to en-
sure higher performance and lower execution times.

8.  Conclusions

This paper presents a novel methodology for inferring failure pro-
cesses and generating PdFTs from event logs,  causality analysis to ex-
tract meaningful insights from real-world data. 

More formally, Φ ∶ 𝑆1 × 𝑆2 ×… × 𝑆𝑛 ⟶ ℕ where 𝑠̄ = (𝑠1,… , 𝑠𝑛) is 
the n-uple in which 𝑠𝑗 ∈ 𝑆𝑗 represents the state considered for the com-
ponent 𝑐𝑗 . So that Φ(𝑠̄) depends on the priority function 𝜋𝑗 (𝑠̄𝑗 ) computed 
on the actual state of the component and a minimal cost established by 
maintenance policies.

All these future work proposals can be framed into a single research 
effort, devoted to ease the representation and the automatic usage of 
expert knowledge. This would enable the overcoming of the limitations 
highlighted in Section 7.
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Appendix A.  Running example

This section introduces some details about the running example re-
ported in Section 4. The described scenario is composed of four ele-
ments: 

The main engine 𝐶1 is associated with a failure rate. It provides in-
formation on the average time after that 𝐶1 is going to break, i.e. MTBF. 
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Fig. A.13. Train system running example.

The failure rate quantifies the likelihood of having a failure due to the 
operating time. 𝐶2, instead, is a warm spare component. This kind of 
component is characterized by a “standby” state in which is not work-
ing, but ready to replace the main component. The failure rate 𝛼𝜆 is 
characterized by a dormancy factor, that is 𝛼 = 1 when 𝐶2 substitutes 
the main component 𝐶1 [50]. Fig. A.13 depicts a simple model of the 
system.

Summing up:

• The component 𝐶1 can assume two possible states: “up” and “down”. 
It switches from “up” to “down” due to internal degradation, ruled by 
the failure rate. It switches from “down” to “up” due to maintenance 
action according to the repair rate.

• The component 𝐶2 can assume three states, “up”, “standby” and 
“down”. It switches from “standby” to “up” if 𝐶1 is in “down” state, 
and it switches back again to “standby” when 𝐶1 is repaired. It 
switches from “up”/“standby” to “down” according to its failure rate 
and switches back according to its repair rate.

• The component 𝐶0 can assume three states, “up”, “failing” and 
“down”. It switches from “up” to “failing” when only one of two en-
gines is in the “down” state. In “failing” state 𝐶0 continues its normal 
functioning, but it is in a possibly risky condition. If also the other 
engine goes down, indeed, 𝐶0 switches from “failing” to “down”. It 
switches back to “failing” state only once one of the two engines is 
repaired, and back to “up” state when both engines are repaired.

However, the degradation of the component could also be affected by 
other factors. In this scenario, for example, if the environmental temper-
ature overcomes 70◦, both the engines break at the same time. This leads 
to an instantaneous system failure, since both the engines are down. 
Fig. A.14a shows some trends in the data recorded by the sensor com-
pared to the transition events on the components 𝐶1 and 𝐶2. Just focus-
ing on the first peak, depicted in Fig. A.14b, it is possible to draw some 
conclusions: every time the temperature recorded by the sensor (repre-
sented by the blue line) reaches 70◦ the monitoring centre records the 
transition of both 𝐶1 and 𝐶2 (represented by the dotted red line) from 
“up”/“standby” to “down” state.

Then, after a brief period of deadlock, which ends only when ex-
ternal resources operate to repair the components, they return to “up” 
standby” state and suddenly the temperature decreases until it reaches 
the normal range between 24◦ and 27◦. It is possible to state that, after 
7 days of intensive working, the temperature increases until it reaches 
a threshold, after that both the engines go down at the same time and 
this provokes the train’s system failure.

A.1.  Dataset

The table here reported stores an excerpt of the dataset associated 
with the example introduced in Section 4.

Appendix B.  PdFT

This section reports some details regarding the application of PdFT 
formalism to the running example introduced in Appendix B.

B.1.  Trigger and action functions

In this version of the formalism, the only impacting transitions are 
the critical ones and their inverse, this enables the definition of the 𝛼
function. For the sake of clarity, Table B.11 reports the value assigned by 
the action and trigger functions to the element of the running example:

B.2.  Impacting transitions

In the proposed framework, an Impacting Transition propagates the 
internal behaviour of a component to the external environment, thus 
influencing the overall system. This effect is regulated by the trigger and 
action functions. In particular, when an impacting transition 𝑡 moves 
the component 𝑐 to its highest-priority state, the function 𝛼 evaluates to 
True; conversely, when computed on its inverse transition ̄𝑡, 𝛼 evaluates 
to False. It is worth underlining the difference between the true (false) 
and True (False) values, used in the definitions reported above. True and 
False are the values returned by the 𝛼 function: their meaning — as well 
as the Neutral value — has to be intended not in the boolean sense, but 
as simple labels. On the other hand, true and false are boolean values 
used as the resulting set for the trigger functions, as an example. To 
overcome this difference, a simple function, named 𝛽, is defined on the 
ports set 𝑃𝑂 ∪ 𝑃 𝐼 , as in Eq B.1. It is worth reminding that the 𝛽 function 
is defined only for impacting transitions and, hence, it is not possible to 
have a Neutral value of the ports. Future work will extend this function 
also to the general case.

𝛽(𝑝) ∶=

{

𝑡𝑟𝑢𝑒 ⟺ 𝑝 = 𝑇 𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒 ⟺ 𝑝 = 𝐹𝑎𝑙𝑠𝑒

(B.1)

B.3.  Evaluation function

To better explain the logic of the Evaluation function, let us con-
sider, as a possible example: the predicate associated with the tran-
sition (𝑑𝑜𝑤𝑛, 𝑢𝑝) on the component 𝐶0. According to Table B.11, 
𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = (¬𝑝0,1) ∧ (¬𝑝0,2). The following schema evaluates the 
expression according to all the possible values assumed by the involved 
variables. It is worth noticing that we assumed a fixed value for the 
variable associated with the dynamic. This is without loss of general-
ity, since the predicate does not depend on the value of the dynamic: 
whatever value it assumes, the function is not affected.

• 𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = (¬𝑝0,1) ∨ (¬𝑝0,2)

The evaluation function computes the value of the predicates as follows:

• 𝜇(𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)), (𝑇 𝑟𝑢𝑒, 𝑇 𝑟𝑢𝑒), (24.007)) =
(¬𝑝0,1) ∨ (¬𝑝0,2)|

|

|

|

|

𝑝0,1=𝑡𝑟𝑢𝑒,
𝑝0,1=𝑓𝑎𝑙𝑠𝑒

= 𝑓𝑎𝑙𝑠𝑒

• 𝜇(𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)), (𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒), (24.007)) =
(¬𝑝0,1) ∨ (¬𝑝0,2)|

|

|

|

|

𝑝0,1=𝑡𝑟𝑢𝑒,
𝑝0,1=𝑓𝑎𝑙𝑠𝑒

= 𝑡𝑟𝑢𝑒

• 𝜇(𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)), (𝐹𝑎𝑙𝑠𝑒, 𝑇 𝑟𝑢𝑒), (24.007)) =
(¬𝑝0,1) ∨ (¬𝑝0,2)|

|

|

|

|

𝑝0,1=𝑓𝑎𝑙𝑠𝑒,
𝑝0,1=𝑡𝑟𝑢𝑒

= 𝑡𝑟𝑢𝑒

• 𝜇(𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)), (𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒), (24.007)) =
(¬𝑝0,1) ∨ (¬𝑝0,2)|

|

|

|

|

𝑝0,1=𝑓𝑎𝑙𝑠𝑒,
𝑝0,1=𝑓𝑎𝑙𝑠𝑒

= 𝑡𝑟𝑢𝑒

The predicate 𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)) can be associated with the following 
truth Table B.12:
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Fig. A.14. Temperature analysis in two time periods.

Table A.10 
Excerpt of the dataset for the running example.
 Occurence_ID  Element_ID  time:timestamp  Message_description  Value  CaseID
 1000 𝐶1  20/04/2021 09:45:00  up  1
 1001 𝐶2  20/04/2021 09:45:00  standby  1
 1002 𝐶0  20/04/2021 09:45:00  up  1
 …  …  …  …  …  …
 1737  sensor  27/04/2021 17:45:00  27.25944  1
 1738  sensor  27/04/2021 17:49:00  27.25971  1
 1739 𝐶2  27/04/2021 17:50:00  down  1
 1740 𝐶0  27/04/2021 17:50:01  failing  1
 1741  sensor  27/04/2021 17:51:00  27.26789  1
 1742  sensor  27/04/2021 17:53:00  27.24567  1
 …  …  …  …  …  …
 1761 𝐶2  27/04/2021 18:30:00  standby  1
 1762 𝐶0  27/04/2021 18:30:01  up  1
 …  …  …  …  …  …
 6020 𝐶1  22/06/2021 16:40:00  up  10
 6021 𝐶2  22/06/2021 16:40:00  standby  10
 6022 𝐶0  22/06/2021 16:40:00  up  10
 …  …  …  …  …  …
 6788  sensor  29/06/2021 07:32:00  69.99088  10
 6789  sensor  29/06/2021 07:34:00  70.00023  10
 6790 𝐶1  29/06/2021 07:34:30  down  10
 6791 𝐶2  29/06/2021 07:34:30  down  10
 6792 𝐶0  29/06/2021 07:34:31  down  10
 6793  sensor  29/06/2021 07:36:00  70.30001  10
 …  …  …  …  …  …
 6860 𝐶1  29/06/2021 09:50:30  up  10
 6861 𝐶0  29/06/2021 09:50:31  failing  10
 6862 𝐶2  29/06/2021 10:20:30  standby  10
 6863 𝐶0  29/06/2021 10:20:31  up  10

B.4.  A possible scenario

In the scenario depicted in Fig. 2, the main engine 𝐶1 is in the down 
state, due to natural degradation, which triggered two events, propagat-
ing the effects on components 𝐶2 and 𝐶0. Let us analyse it through PdFT 
formalism using the notion of trigger, alpha and evaluation function intro-
duced in Section 4. 𝜏, i.e. the trigger function, associates with each couple 
component-transition, the boolean predicate that enables the transition. 
𝐶1, moving from "up" state to the highest priority "down" state, enables 
an impacting transition which, according to Table B.11, is described by 
the predicate 𝜏(𝐶1, (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = (𝑇 > 𝑀𝑇𝐵𝐹 ) ∨ (𝑑(𝑇 ) > 70◦). The first 
OR-clause is verified and thus implies turning the value of the predicate 
into true value. The 𝛼 function sets the value on the port 𝑝1 to True, ac-
cording to Table B.11. In its turn, this enables two events: 𝑒0 = (𝑝1, 𝑝2,1)
and 𝑒1 = (𝑝1, 𝑝0,1).
Impact of 𝐶1 on 𝐶2
One the value True is copied by the event 𝑒0 on the input port 𝑝2,1, the 
predicate 𝜏(𝐶2, (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝)) = 𝑝2,1 is verified. This enables the transition 

in the component 𝐶2 from "standby" state to "up" state, commissioning 
the spare engine and avoiding the system failure. Moreover, since the 
transition (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝) is not a critical transition for 𝐶2 — it does not in-
volve the state with the highest priority—, it does not impact the overall 
system in terms of fault propagation. The output port of 𝐶2, 𝑝2 will be 
set on Neutral value.
Impact of 𝐶1 on 𝐶0

One the value True is copied by the event 𝑒1 on the input port 𝑝0,1, 
however the predicate 𝜏(𝐶0, (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = 𝑝0,1 ∧ 𝑝0,1 is not verified, given 
that 𝑝0,2 has not been set to True. This ensures that the system is still able 
to work; however, the main component turns in the "failing" state. In-
deed, the predicate 𝜏(𝐶0, (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = 𝑝0,1 ∨ 𝑝0,2 is verified (note that 
∨ conditions need just one clause true to be verified). Again, (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)
is not a critical transition for 𝐶0 so the output port 𝑝0 is set to Neutral. 
In this case, some warnings can be sent to maintainers for proceeding 
with some actions, avoiding a complete system failure.

The formal description of the scenario is the following:
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Table B.11 
Trigger and action function.
 Component  Transition  Output Port  Trigger  Action
𝑐𝑖 ∈  𝑡 ∈ 𝑇 𝑐 𝑃𝑂

𝑐 𝜏(, 𝑇 𝑐 ) 𝛼(𝑃𝑂
𝑐 , 𝑇 𝑐 )

𝐶0 (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔) 𝑝0 𝜏(𝐶0 , (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = 𝑝0,1 ∨ 𝑝0,2 𝛼(𝑝0 , (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = Neutral
𝐶0 (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑑𝑜𝑤𝑛) 𝑝0 𝜏(𝐶0 , (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑑𝑜𝑤𝑛)) = 𝑝0,1 ∨ 𝑝0,2 𝛼(𝑝0 , (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑑𝑜𝑤𝑛)) = True
𝐶0 (𝑢𝑝, 𝑑𝑜𝑤𝑛) 𝑝0 𝜏(𝐶0 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = 𝑝0,1 ∧ 𝑝0,2 𝛼(𝑝0 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = True
𝐶0 (𝑑𝑜𝑤𝑛, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔) 𝑝0 𝜏(𝐶0 , (𝑑𝑜𝑤𝑛, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = (¬𝑝0,1) ∨ (¬𝑝0,2) 𝛼(𝑝0 , (𝑑𝑜𝑤𝑛, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = False
𝐶0 (𝑑𝑜𝑤𝑛, 𝑢𝑝) 𝑝0 𝜏(𝐶0 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = (¬𝑝0,1) ∧ (¬𝑝0,2) 𝛼(𝑝0 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = False
𝐶0 (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑢𝑝) 𝑝0 𝜏(𝐶0 , (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑢𝑝)) = (¬𝑝0,1) ∨ (¬𝑝0,2) 𝛼(𝑝0 , (𝑓𝑎𝑖𝑙𝑖𝑛𝑔, 𝑢𝑝)) = Neutral
𝐶1 (𝑢𝑝, 𝑑𝑜𝑤𝑛) 𝑝1 𝜏(𝐶1 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = (𝑇 > 𝑀𝑇𝐵𝐹 ) ∨ (𝑑(𝑇 ) > 70◦) 𝛼(𝑝1 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = True
𝐶1 (𝑑𝑜𝑤𝑛, 𝑢𝑝) 𝑝1 𝜏(𝐶1 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = (𝑇 > 𝑀𝑇𝑇𝑅) 𝛼(𝑝1 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = False
𝐶2 (𝑢𝑝, 𝑑𝑜𝑤𝑛) 𝑝2 𝜏(𝐶2 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = (𝑇 > 𝑀𝑇𝐵𝐹 ) ∨ (𝑑(𝑇 ) > 70◦) 𝛼(𝑝2 , (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = True
𝐶2 (𝑑𝑜𝑤𝑛, 𝑢𝑝) 𝑝2 𝜏(𝐶2 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = (𝑇 > 𝑀𝑇𝑇𝑅) ∧ 𝑝2,1 𝛼(𝑝2 , (𝑑𝑜𝑤𝑛, 𝑢𝑝)) = False
𝐶2 (𝑢𝑝, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦) 𝑝2 𝜏(𝐶2 , (𝑢𝑝, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)) = ¬𝑝2,1 𝛼(𝑝2 , (𝑢𝑝, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)) = Neutral
𝐶2 (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝) 𝑝2 𝜏(𝐶2 , (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝)) = 𝑝2,1 𝛼(𝑝2 , (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝)) = Neutral
𝐶2 (𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦) 𝑝2 𝜏(𝐶2 , (𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)) = (¬𝑝2,1) ∧ (𝑇 > 𝑀𝑇𝑇𝑅) 𝛼(𝑝2 , (𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)) = False
𝐶2 (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛) 𝑝2 𝜏(𝐶2 , (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛)) = 𝑇 > 𝑀𝑇𝐵𝐹 ∨ 𝑑(𝑇 ) > 70 𝛼(𝑝2 , (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑑𝑜𝑤𝑛))=True

Table B.12 
Truth table defined by 𝜇 function 
on 𝜏(𝐶0, (𝑑𝑜𝑤𝑛, 𝑢𝑝)) predicate.
𝑝0,1 𝑝0,2 (¬𝑝0,1) ∨ (¬𝑝0,2)

 True  True  false
 True  False  true
 False  True  true
 False  False  true

• 𝜏(𝐶1, (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = (𝑇 > 𝑀𝑇𝐵𝐹 ) ∨ (𝑑(𝑇 ) > 70◦) = 𝑡𝑟𝑢𝑒
• 𝛼(𝑝1, (𝑢𝑝, 𝑑𝑜𝑤𝑛)) = True
• 𝑒0 = (𝑝1, 𝑝2,1) ⟹ 𝑝2,1 = True ; 𝑒1 = (𝑝1, 𝑝0,1) ⟹ 𝑝0,1 = True
• 𝜏(𝐶2, (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝)) = 𝑝2,1 = 𝑡𝑟𝑢𝑒
• 𝛼(𝑝2, (𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑢𝑝)) = Neutral
• 𝜏(𝐶0, (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = 𝑝0,1 ∨ 𝑝0,2 = 𝑡𝑟𝑢𝑒
• 𝛼(𝑝0, (𝑢𝑝, 𝑓𝑎𝑖𝑙𝑖𝑛𝑔)) = Neutral

Appendix C.  Definitions

This section contains additional material that provides formal defi-
nitions of concepts introduced in Section 5.
Definition 14.  Let  be the Transition Hypotheses set and  be the 
Theta Hypotheses set, the Composed Hypotheses set is:
̄ = {𝑎 = 𝑎𝑖1 ∗ ⋯ ∗ 𝑎𝑖𝑗 | 𝑎𝑖𝑘 ∈  ∪ for all 𝑘 ∈ {1,… 𝑗}

 and for all 𝑗 ∈ {2,… , | ∪|} with ∗∈ {∧,∨}}

Definition 15.  A Transition Hypothesis 𝑎 = (𝑐, 𝑡) where 𝑡 = (𝑠𝑖, 𝑠𝑗 ) is 
observed on a component 𝑐 in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if:
∃ 𝑜, 𝑜̃ ∈  such that (𝜑𝐶𝐼 (𝑜) = 𝜑𝐶𝐼 (𝑜̃) = 𝑁) ∧ (𝜑𝑅(𝑜) = 𝜑𝑅(𝑜̃) = 𝑐)∧

(𝜑𝑀 (𝑜) = 𝑠𝑖 ∧ 𝜑𝑀 (𝑜̃) = 𝑠𝑗 ) ∧ (𝜑𝑇 (𝑜) < 𝜑𝑇 (𝑜̃))

∃ 𝑜̄ ∈  such that (𝜑𝐶𝐼 (𝑜̄) = 𝑁) ∧ (𝜑𝑇 (𝑜) < 𝜑𝑇 (𝑜̄) < 𝜑𝑇 (𝑜̃)) ⟹ (𝜑𝑅(𝑜̄) ≠ 𝑐)

Definition 16.  A Theta Hypothesis 𝑎 = (𝑑, 𝜃𝑇 (𝑐, 𝑑)) triggered by a dy-
namic 𝑑 on a component 𝑐 is observed in a process instance 𝑁 ∈ 𝜑𝐶𝐼 ():

∃ 𝑜 ∈  such that (𝜑𝐶𝐼 (𝑜) = 𝑁) ∧ (𝜑𝑅(𝑜) = 𝑑) ∧ (𝑐,𝑑 (𝜑𝑀 (𝑜)) = 𝑡𝑟𝑢𝑒)

Definition 17.  A composed hypothesis 𝑎 = 𝑎𝑖1 ∧⋯ ∧ 𝑎𝑖𝑗 ∈ ̄ is 
observed in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if:

• ∃ 𝑜𝑖1 ,… 𝑜𝑖𝑗 ∈  such that (𝜑𝐶𝐼 (𝑜𝑖𝑘 ) = 𝑁) ∧ (𝜑(𝑜𝑖𝑘 ) = 𝑎𝑖𝑘 ) ∀𝑖𝑘 ∈
{𝑖1 … 𝑖𝑗}

• 𝑜̄ ∈ {𝑜𝑖1 ,… 𝑜𝑖𝑗 } such that 𝜑𝑇 (𝑜̄) ≥ 𝜑𝑇 (𝑜𝑖𝑘 ) ∀𝑖𝑘 ∈ {𝑖1 … 𝑖𝑗}

Definition 18.  A composed hypothesis 𝑎 = 𝑎𝑖1 ∨⋯ ∨ 𝑎𝑖𝑗 ∈ ̄ is 
observed in a process instance 𝑁 ∈ 𝜑𝐶𝐼 (), if:

• ∃ 𝑜̄ ∈  such that (𝜑𝐶𝐼 (𝑜̄) = 𝑁) ∧ (𝜑(𝑜̄) = 𝑎𝑖𝑘 ) with 𝑖𝑘 ∈ {𝑖1 … 𝑖𝑗}
• if ∃ 𝑜̃ ≠ 𝑜̄ ∈  such that (𝜑𝐶𝐼 (𝑜̃) = 𝑁) ∧ (𝜑(𝑜̃) = 𝑎𝑖𝑠 ) for some 𝑖𝑠 ∈

{𝑖1 … 𝑖𝑗} ⟹ 𝜑𝑇 (𝑜̃) ≥ 𝜑𝑇 (𝑜̄)

Definition 19. A hypothesis 𝑎 ∈ , fits the prima facie first condition 
for an effect 𝑓 ∈  if and only if: ∃ 𝑛 ∈ 𝜑𝐶𝐼 () such that:

• ∃ 𝑜, 𝑜̃ ∈  where (𝜑𝐶𝐼 (𝑜) = 𝜑𝐶𝐼 (𝑜̃) = 𝑛) ∧ (𝜑(𝑜) = 𝑎 ∧ 𝜑(𝑜̃) = 𝑓 )
• 𝜑 (𝑜̃) − 𝜑 (𝑜) > 0 ∧ 𝜑 (𝑜̃) − 𝜑 (𝑜) < 𝛿

This definition adapts Suppes’s theory within the PM paradigm. How-
ever, the second condition is directly claimed from the first one:

𝐺𝑖𝑣𝑒𝑛 𝜑𝐶𝐼 (𝑜) = 𝜑𝐶𝐼 (𝑜̃) = 𝑛 ⟹ 𝜑 (𝑜̃) − 𝜑 (𝑜) < 𝛿

 where 𝛿 ≤ max({ (𝑜)|𝑜 ∈  ∧ 𝜑𝐶𝐼 (𝑜) = 𝑛}) − min({ (𝑜)|𝑜 ∈  ∧ 𝜑𝐶𝐼 (𝑜) = 𝑛})
(C.1)

Moreover, Eq. 1 expresses the causal relation to discovering, introducing 
the parameter 𝛿. It is possible to limit the value considered for the pa-
rameter, resulting in further filtering of the number of hypotheses that 
hold the property in Eq. (19) and consequently reducing the computa-
tional costs.
Definition 20. For each 𝑎 ∈ , the hypothesis probability of 𝑎 is given 
by the number of process instances in which this activity is performed, 
divided by the total number of process instances:

𝐏(𝑎) =
|{𝑛| ∃𝑜 ∈  such that (𝜑(𝑜) = 𝑎 ∧ 𝜑𝐶𝐼 (𝑜) = 𝑛)}|

|𝜑𝐶𝐼 ()|
=

|𝜑𝐶𝐼 (𝑎)|
|𝜑𝐶𝐼 ()|

(C.2)

where 𝑎 = {𝑜 ∈  | 𝜑(𝑜) = 𝑎}.

Definition 21. For each 𝑎 ∈ , that holds the Definition 19 for an effect 
𝑓 ∈  , the hypothesis-effect probability of 𝑓 given the occurrence of 
𝑎, is given by the number of cases that holds prima facie first condition 
property, divided by the total number of process instances in which 𝑎
occurs:

𝐏(𝑓 |𝑎) = 𝐏(𝑎 ∧ 𝑓 )
𝐏(𝑎)

=
|(𝑓, 𝑎)|
|𝜑𝐶𝐼 ()|

|𝜑𝐶𝐼 ()|
|𝜑𝐶𝐼 (𝑎)|

=
|(𝑓, 𝑎)|
|𝜑𝐶𝐼 (𝑎)|

(C.3)

Definition 22. Let 𝑎 ∈ 𝑃𝐹 (𝑓 ), and 𝑥 ∈ 𝑃𝐹 (𝑓 ) with 𝑥 ≠ 𝑎, they are non-
excluding for 𝑓 and non-concordant if and only if:

• (𝑓, 𝑎) ∩(𝑓, 𝑥) ≠ ∅
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• 𝜑𝐶𝐼 (𝑥) ⧵ 𝜑𝐶𝐼 (𝑎) ≠ ∅ 16

Let 𝑎,𝑓  be the set of the 𝑥 that holds these properties.
Based on these considerations, Eq. (3) becomes Eq. (C.4).

𝜀𝑎𝑣𝑔(𝑎, 𝑓 ) =

∑

𝑥∈𝑎,𝑓
|(𝑓,𝑎)∩(𝑓,𝑥)|

|𝜑𝐶𝐼 (𝑎)∩𝜑𝐶𝐼 (𝑥)|
− |(𝑓,𝑥)⧵(𝑓,𝑎)|

|𝜑𝐶𝐼 (𝑥)⧵𝜑𝐶𝐼 (𝑎)|

|𝑎,𝑓 |
(C.4)

Eq. C.4 is well-posed since:

• if 𝑎,𝑓 = ∅, Eq. (4) guarantees that Eq. (C.4) can be simplified in 
|(𝑓,𝑎)|
|𝜑𝐶𝐼 (𝑎)|

− |𝜑𝐶𝐼 (𝑓 )⧵𝜑𝐶𝐼 (𝑎)|
|𝜑𝐶𝐼 ()⧵𝜑𝐶𝐼 (𝑎)|

;
• 𝜑𝐶𝐼 (𝑎) ∩ 𝜑𝐶𝐼 (𝑥) ≠ ∅ since (𝑓, 𝑎) ∩(𝑓, 𝑥) ≠ ∅ and (𝑓, 𝑎) ∩

(𝑓, 𝑥) ⊆ 𝜑𝐶𝐼 (𝑎) ∩ 𝜑𝐶𝐼 (𝑥) (see Defination 22);
• 𝜑𝐶𝐼 (𝑥) ⧵ 𝜑𝐶𝐼 (𝑎) ≠ ∅ by definition (see Defination 22).

Appendix D.  Algorithms

In this section, a formal description of the Algorithms implemented 
by CALYPSO tool is provided:

• Algorithm 3 implements the transition hypotheses set construction.
• Algorithm 4 implements the theta hypotheses set construction.
• Algorithm 5 implements prima facie set construction.
• Algorithm 6 implements the filtering of significant causes17.
• Algorithm 7 implements the generation of PdFT structure from the 
discovered cause-effect relations.

• Algorithm 8 implements the construction of trigger function from the 
discovered cause-effect relations.

Algorithm 3 ̄ set construction.
Require: , 
1: ̄ ← ∅
2: for each 𝑎 = (𝑐, (𝑠𝑖, 𝑠𝑗 )) ∈  do
3:  𝑐 ∶= {𝑜 ∈  | 𝜑𝑅(𝑜) = 𝑐}
4:  for each 𝑘 ∈ {1,… , |𝑐 |−1} do
5:  if (𝜑𝑀 (𝑜𝑘) = 𝑠𝑖) ∧ (𝜑𝑀 (𝑜𝑘+1) = 𝑠𝑗 ) ∧ (𝜑𝐶𝐼 (𝑜𝑘) = 𝜑𝐶𝐼 (𝑜𝑘+1))
then ⊳ where 𝑜𝑘 is the k-st value in 𝑂̄ set 

6:  𝑜̄ ← (𝑎, 𝜑𝑇 (𝑜𝑘+1), 𝜑𝐶𝐼 (𝑜𝑘+1))
7:  ̄ ← ̄ ∪ {𝑜̄}
8: Return ̄

Algorithm 4 ̄ set construction.
Require: , 𝜃(( ×))
1: ̄ ← ∅
2: for each 𝑐,𝑑 ∈ 𝜃(( ×)) do
3:  𝑎 ← (𝑑, 𝜃𝑇 (𝑐, 𝑑))
4:  𝑑 ∶= {𝑜 ∈  | 𝜑𝑅(𝑜) = 𝑑}
5:  for each 𝑘 ∈ {1,… , |𝑑 |−1} do
6:  if 𝑐,𝑑 (𝜑𝑀 (𝑜𝑘)) = 𝑡𝑟𝑢𝑒 then ⊳ where 𝑜𝑘 is the k-st value in 𝑂̄
set 

7:  𝑜̄ ← (𝑎, 𝜑𝑇 (𝑜𝑘), 𝜑𝐶𝐼 (𝑜𝑘))
8:  ̄ ← ̄ ∪ {𝑜̄}
9: Return ̄

16 where "⧵" stands for the sets subtraction operator.
17 In a practical implementation of this algorithm, Line 7 could be supported 
by external libraries (e.g., the stats.ttest_1samp is from scipy Python li-
braryhttps://scipy.org/

Algorithm 5 Prima facie causes of a given effect 𝑓 .
Require: 𝑓 , , , 𝛿
1: 𝑃𝐹 (𝑓 ) ← {∅}
2: for each 𝑎 in  ⧵ {𝑓}  do
3:  ⊳ Computing prima facie 1st condition according to the 
Definition 19

4:  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 ← 𝐹𝑎𝑙𝑠𝑒
5:  for each 𝑜 in 𝑎 and 𝑜̃ in 𝑓  where 𝜑𝐶𝐼 (𝑜) = 𝜑𝐶𝐼 (𝑜̃)  do
6:  if (𝜑 (𝑜̃) − 𝜑 (𝑜) > 0 ∧ 𝜑 (𝑜̃) − 𝜑 (𝑜) < 𝛿) then
7:  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 ← 𝑇 𝑟𝑢𝑒
8:  break
9:  ⊳ Computing prima facie 2nd condition
10:  if condition1 then
11:  𝑝 ← 𝐏(𝑎) ⊳ according to the Definition 20
12:  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 ← (𝑝 > 0)
13:  ⊳ Computing prima facie 3rd condition
14:  if (condition1 ∧ condition2) then
15:  𝑝𝑚 ← 𝐏(𝑓 ) ⊳ according to the Definition 20
16:  𝑝𝑐 ← 𝐏(𝑓 | 𝑎) ⊳ according to the Definition 21
17:  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 ← (𝑝𝑐 > 𝑝𝑚)
18:  if (condition1 ∧ condition2 ∧ condition3) then
19:  𝑃𝐹 (𝑓 ) ← 𝑃𝐹 (𝑓 ) ∪ {𝑎}
20: return 𝑃𝐹 (𝑓 )

Algorithm 6 Algorithm for filtering significant causes.
Require: 𝑓 , 𝑃𝐹 (𝑓 ), ⋃𝑎∈𝑃𝐹 (𝑓 ) 𝑎,𝑓 ,
1: 𝑆𝐶(𝑓 ) ← {∅}
2: 𝜈 ← 0
3: for each 𝑎 in 𝑃𝐹 (𝑓 )  do
4:  𝜀(𝑎) = ∅
5:  for each 𝑥 in 𝑎,𝑓  do
6:  𝜀(𝑎) ← 𝜀(𝑎) ∪ {𝜀𝑥(𝑎, 𝑓 )}
7:  𝑝_𝑣𝑎𝑙𝑢𝑒(𝑎) ← 𝑡𝑡𝑒𝑠𝑡(𝜀(𝑎), 𝜈)
8:  if 𝑝_𝑣𝑎𝑙𝑢𝑒(𝑎) < 0.05 then
9:  𝑆𝐶(𝑓 ) → 𝑆𝐶(𝑓 ) ∪ {𝑎}
10: return 𝑆𝐶(𝑓 )

Algorithm 7 PdFT structure generation.
Require:  , 𝑆𝐶 ∶= {(𝑎, 𝑓 ) | 𝑓 ∈  ∧ 𝑎 ∈ 𝑆𝐶(𝑓 )}
1: 𝐼 ← ∅,  ← ∅, 𝛼(𝑂 × 𝑇 ) ← ∅
2: for each 𝑓 ∈  do ⊳ assuming that 𝑓 = (𝑐𝑖, 𝑡𝑖) with 𝑐𝑖 ∈ 
3:  𝑐𝑖

𝐼 ← ∅
4:  for each 𝑎 ∈ 𝑆𝐶(𝑓 ) do
5:  if 𝑎 ∈  then ⊳ assuming that 𝑎 = (𝑐𝑗 , 𝑡𝑗 ) with 𝑐𝑗 ∈ 
6:  𝐼

𝑐𝑖
← 𝐼

𝑐𝑖
∪ {𝑝𝑖,𝑗}

7:   ←  ∪ (𝑝𝑗 , 𝑝𝑖,𝑗 )
8:  𝛼(𝑝𝑗 , 𝑡𝑗 ) ← 𝑣̄
9:  𝛼(𝑂 × 𝑇 ) ← 𝛼(𝑇 × 𝑂) ∪ {𝛼(𝑝𝑗 , 𝑡𝑗 )}
10:  else ⊳ assuming that 𝑎 = (𝑑𝑗 , 𝑣𝑗 ) with 𝑑𝑗 ∈ 
11:  𝜃𝑇 (𝑐𝑖, 𝑑𝑗 ) ← 𝑣𝑗
12:  𝐼 ← 𝐼 ∪ 𝐼

𝑐𝑖

13: return 𝐼 ,  , 𝛼(𝑂 × 𝑇 )
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Algorithm 8 PdFT trigger functions definition.
Require:  , 𝑃𝑟 ∶= {𝑃𝑟(𝑓 ) = 𝑎1 ∗ … ∗ 𝑎(𝑓 ) | 𝑓 ∈ }
1: 𝜏( × 𝑇 ) ← ∅
2: for each 𝑓 ∈  do ⊳ assuming that 𝑓 = (𝑐𝑖, 𝑡𝑖) with 𝑐𝑖 ∈ 
3:  for each 𝑗 ∈ {1,… ,(𝑓 )} do
4:  if 𝑎𝑗 ∈  then ⊳ assuming that 𝑎 = (𝑐𝑗 , 𝑡𝑗 ) with 𝑐𝑗 ∈ 
5:  𝜏(𝑐𝑖, 𝑡) ← 𝜏(𝑐𝑖, 𝑡) ∗ 𝛾(𝑝𝑖,𝑗 )
6:  else ⊳ assuming that 𝑎 = (𝑑𝑗 , 𝑣𝑗 ) with 𝑑𝑗 ∈ 
7:  𝜏(𝑐𝑖, 𝑡) ← 𝜏(𝑐𝑖, 𝑡) ∗ 𝑐𝑖 ,𝑑𝑗

8:  𝜏( × 𝑇 ) ← 𝜏( × 𝑇 ) ∪ {𝜏(𝑐𝑖, 𝑡)}
9: return 𝜏( × 𝑇 )
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