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Research on algorithms has drastically increased in recent years. Various sub-disciplines of computer science
investigate algorithms according to different objectives and standards. This plurality of the field has led to
various methodological advances that have not yet been transferred to neighboring sub-disciplines. The central
roadblock for a better knowledge exchange is the lack of a common methodological framework integrating the
perspectives of these sub-disciplines. It is the objective of this article to develop such a research framework for
algorithm engineering. Our framework builds on three areas discussed in the philosophy of science: ontology,
epistemology and methodology. The framework helps us to identify and discuss various validity concerns
relevant for any contribution on algorithms in various areas of computer science.
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1 Introduction
The design, analysis, and evaluation of algorithms have been a major concern of computer science
since its founding days. Algorithms constitute a specific class of technological rules [Bunge 1967].
An algorithm is a sequence of computational steps that transforms some input into some output
[Cormen et al. 2009]. The number of steps, the effort they require, and the time they take have to be
finite [Aho et al. 1974]. Research on algorithms builds on foundationals work by Dijkstra [1968] and
Knuth [1974]. The corresponding subdiscipline of computer science is called algorithmics, of which
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algorithm engineering [Sanders 2009] is a branch that embraces both theoretical and empirical
contributions, thus, striving for a symbiosis [Mitzenmacher 2015; Ullman 2015].

Various efforts have been made to build an inventory of algorithms. Important works include
books by Knuth [1968, 1969, 1973], textbooks by Aho et al. [1974]; Cormen et al. [2009]; Harel and
Feldman [2004]; Sedgewick and Flajolet [2013], and review books by Ferragina [2023]; Lange [2020].
Black et al. [2020] lists more than 300 algorithms covering areas such as automata, combinatorics,
cryptography, memory management, geometry, graphs, numerical computation, parallel processing,
quantum computation, searching, sorting, trees, and verification methods. This list is far from
complete though. Today, researching algorithms is not only the focus of algorithmics and algorithm
engineering, but also of various other sub-disciplines of computer science and neighboring research
fields. For 2024 only, Google Scholar lists more than 62,000 research papers with the term algorithm
in the title, highlighting the importance and the richness of research on algorithms.

We observe that a review of the theory and practice of algorithm engineering is missing. Much of
methodological innovations are developed within specific conference series such as Very Large
Databases (VLDB), Neural Information Processing Systems (NeurIPS), European Symposium on
Algorithms (ESA), or Visualization (VIS). Innovations are partly fostered internally without being
transferred to or adapted by neighboring communities. Is this pluralism an indication that there is
no consensus in the field of computer science? Kuhn [1962] calls such a consensus normal science
to signify the incremental work in an established paradigm, and interprets it as a sign of maturity
of a field. However, the requirements, e.g., for evaluating algorithmic contributions differ quite
considerably across the above-mentioned conferences: papers published at VIS put more emphasis
on user studies, papers published at VLDB focus on performance evaluation and formal correctness.
While there are good reasons for these differences, the question is whether a common scientific
framework can integrate different requirements, such that it might help other sub-disciplines of
computer science to adopt methodological advances.

Against this background, we aim at explicating diverse perspectives on researching algorithms
by the help of an integrated theoretical framework. To that end, we take foundational concepts
discussed in the philosophy of science as a starting point. Our goal is to develop a theoretical
framework along three dimensions: ontology, epistemology, and methodology. In essence, ontology
is concerned with “what is”. For algorithm engineering, this means we need to clarify what the
phenomena are that we consider. Epistemology deals with the nature of knowledge about a specific
phenomenon: “what can we know about algorithms”. Methodology refers to the study of method:
“how can we systematically enhance our knowledge” of specific algorithms. With our framework,
we aim at providing an answer to these questions and facilitate learning across different domains of
computer science. In this way, our framework might eventually strengthen the cumulative tradition
[Keen 1980] in computer science.

We proceed as follows. Section 2 presents the ontological perspective of our framework. Section 3
describes its epistemological perspective. Section 4 discusses the methodological perspective.
Section 5 distills recommendations for algorithm engineering. Section 6 concludes our article.

2 Ontology of Algorithm Engineering
Ontology is the study that is concerned with the structure of the real world [Bunge 1977; Wand and
Weber 1990]. An ontological theory of engineering clarifies the structure of real-world phenomena
that relate to engineering. In general, engineering is defined as the practice of organizing the
design, construction, and operation of any artifact that transforms the world around us for meeting
a recognized need [Rogers 1983; Vincenti 1990]. Staples [2014] emphasizes that engineering deals
with artifacts (algorithms in our context), that artifacts are meant to meet specific requirements,
and that engineering builds on theories explaining why specific artifacts meet certain requirements.
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In turn, algorithm engineering has been defined as a discipline that focuses on the design, analysis,
implementation, tuning, debugging, and experimental evaluation of algorithms [Demetrescu et al.
2004; Sanders 2009]. The salient feature of this definition is the term discipline. It indicates that the
design of algorithms is not the end of algorithm engineering, but the phenomenon that is studied.
This means that its end is the generation of scientific knowledge about algorithms. While an
algorithm design is an ontological entity in the realm of algorithm engineering practice, mind that
knowledge about it is already an epistemological entity in the realm of the algorithm engineering
discipline. Also note that algorithms are often parts of larger techniques and systems [Munzner
2014]. These are more coarse granular entities, studied in disciplines such as information systems
engineering [Castro et al. 2002; Sage 1992] and design science [Peffers et al. 2007; Wieringa 2014].

The ontological perspective of algorithm engineering refers to the entities associated with the
practice of engineering algorithms. Here, we build upon the ontological model of Staples [2014].
This model identifies ontological entities in a precise and explicit way according to principles
generally accepted in computer science [Aho et al. 1974] and operations research [Landry et al.
1983]. These ontological entities have specific relationships with each other.

(1) The first ontological entity is a real-world problem, which resides in a specific problem context
and which hints at an algorithm as part of an envisioned solution.

(2) This real-world problem is in an abstraction relationship to an algorithmic task. This task con-
ceptualizes the real-world problem and captures its essential assumptions and requirements.

(3) Algorithmic tasks are in a satisfaction relationship with algorithm designs. A design addresses
the algorithmic task and incorporates design principles and design decisions. It can be
characterized in terms of the performance guarantees it provides, e. g. derived from algorithm
analysis.

(4) An algorithm design can be instantiated as one or many algorithm implementations. An
implementation reflects implementation decisions and materializes the design. The execution
of the algorithm implementation on data from the real-world problem generates results. The
implementation provides a specific output to the given real-world problem, as well as an
indication of the algorithm’s empirical performance.

 Algorithmic Task


Task assumptions
Goal

 Algorithm Design


Design Principles
Design Decisions

 Algorithm Implementation

Implementation Decisions

 Real-World Problem


Problem Context

Envisioned Solution

Abstracts

Satisfies

Instantiates

Fig. 1. A framework for algorithm en-
gineering: The ontological perspective.

Figure 1 provides an overview of our ontological framework.
We discuss its four ontological entities in turn. For illustration
proposes, we use examples from different areas of computer
science including, among others, sorting, shortest-path iden-
tification, and natural language processing.

2.1 Real-World Problem
The motivation for engineering algorithms can be found in
real-world problems. Real-world problems are concrete, they
are associated with dynamic situations and complex systems.
They are often underspecified and their boundaries are fuzzy
so that Meyer et al. [2015] rather speak of a problem domain.
Ackoff [1979] emphasizes this aspect by referring to real-world
problems as messes. Real-world problems range from manage-
rial problems to technical problems.

Example 2.1. The textbook “The Art of Computer Program-
ming Volume 3: Sorting and Searching” by Knuth [1973]
describes several technical real-world problems that motivate
the definition and analysis of sorting algorithms. “If several files have been sorted into the same
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order, it is possible to find all of the matching entries in one sequential pass through them, without
backing up.”

Example 2.2. The textbook “Tools for Thinking: Modelling in Management Science” by Pidd [2003,
p.62] describes several real-world problems, among others, a supermarket chain. This “[…] super-
market chain must constantly have a full product offering on its shelves, must provide good customer
service, must attract customers, must maintain low stocks and must make a profit. As people strive to
achieve these aims, this throws up a continuing stream of issues through time. Examples might be the
extent to which EPOS [Electronic Point of Sale] systems should be installed and used.”

To solve a particular real-world problem, we can use an existing or a new algorithm design. This,
however, requires to first translate the real-world problem into an algorithmic task.

2.2 Algorithmic Task
Many real-world problems are deeply intertwined with the specifics of a problem domain. Modeling
and analysis is required for structuring these problems, and various methods of management
science and requirements engineering support such analysis [De Gea et al. 2012; Pidd 2003]. The
result of problem-structuring is an abstraction of the original real-world problem. Also the original
messiness is resolved towards a precise formulation of what we call an algorithmic task. Algorithmic
tasks are also called algorithmic problems, computational problems, or just problems [Aho et al. 1974].
Algorithmic tasks abstract from specific real-world problems, they represent classes of problems
[Aken 2004]. The more abstract an algorithmic task is formulated, the broader is the extension of
real-world problems it subsumes. Over time, various algorithmic tasks have become standard tasks
that are covered in textbooks, while new ones are continuously identified.

Example 2.3. Knuth [1973] describes several classical algorithmic tasks in his textbooks, among
others sorting. He defines sorting as a specific task that considers as input a list of 𝑛 records and
an ordering relation < over the keys of these 𝑛 records. The goal of sorting is then to determine a
permutation of the records that is consistent with the ordering relation [Knuth 1973, p. 5].

The example highlights that algorithmic tasks explicate assumptions regarding the input and the
processing of the input. The goal for the algorithmic tasks specifies what the algorithm is meant
to achieve in terms of output and performance. Also the supermarket chain might formulate its
replenishment problem as an algorithmic task. Given the assumption that the input is a weighted
graph without negative edges representing shops as vertices and roads as edges, the goal could be
to find the shortest path in the graph covering all vertices in a minimum amount of processing time.
Often, algorithmic tasks can be reformulated with different assumptions. Stronger assumptions can
make tasks more specific. Also new algorithmic tasks are continuously introduced.

Example 2.4. Black et al. [2020] defines the task of finding the shortest path as the “problem of
finding the shortest path in a graph from one vertex to another. Shortest may be least number of edges,
least total weight, etc.” There is not just one algorithmic task for the shortest-path problem. Deo
and Pang [1984] describe a classification of shortest-path tasks, distinguishing usual path length
and generalized path length with altogether 12 different variants.

Example 2.5. Bevilacqua et al. [2021] review contributions on word sense disambiguation. In
essence, word-sense disambiguation algorithms map a word to its most likely sense in the context
of a sentence or text [Navigli 2009]. Bevilacqua et al. [2021] point to related algorithmic tasks
that have been defined in recent research. For instance, the word-in-context task requires as
input two contexts to provide a prediction whether the same target words are used with the same
meaning.
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It is desirable that tasks are fully specified. In such a case, all required information can be provided
as input and an algorithm determines the output fully automatically [Sedlmair et al. 2012]. Sorting
belongs to this category of tasks. Tasks can also be fuzzy in the sense that required input cannot
be provided at the required level of precision. In this case, interactive techniques can be designed
that integrate algorithmic components in such a way that a user can complement the output with
background knowledge [Meyer et al. 2015]. Such fuzzy tasks are often addressed by research on
computer visualization and natural language processing. For instance, word sense disambiguation
is a fuzzy task since the semantics of natural language can hardly be fully specified. Ultimately, a
key challenge is to specify the algorithmic task in such a way that an algorithm design is feasible.

2.3 Algorithm Design
Algorithm designs relate to algorithmic tasks. If appropriately developed, a design is in a satisfaction
relationship with a task. While the algorithmic task essentially describes what is to be done and in
which context (often by means of an input/output specification), the algorithm design specifies
how it works, that is, how to obtain the desired output. The act of designing considers the task’s
assumptions and yields a design specification that meets the goal of the task [Wieringa 2014]. The
algorithm design implies that certain performance guarantees hold.

Designing is guided by knowledge [Staples 2014] on why algorithm designs meet specific goals.
Design principles inform the design of novel algorithms. In essence, a design principle describes
a solution strategy [Gregor et al. 2020]. Specific solution strategies such as divide-and-conquer,
dynamic programming, backtracking, or local search [Aho et al. 1974; Harel and Feldman 2004;
Kleinberg and Tardos 2006] are available as a starting point for designing new algorithms.

Example 2.6. AVehicle Routing Problem (VRP) relates to the identification of the optimal route
from one or several depots to several geographically scattered customers subject to constraints.
Laporte [1992] discusses exact algorithms and heuristics to solve the VRP. He identifies three
solution strategies—direct tree search, dynamic programming, and integer linear programming—
and discusses various designs for each solution strategy. He also identifies solution strategies for
heuristic algorithms such as the nearest neighbor, insertion, and tour improvement procedure.

A design decision is a decision that has the potential to change the behavior and performance of
the design. Some design decisions are explicit, others are implicit. In fact, every design is built on
numerous implicit design decisions. For instance, when the algorithm is specified using Pascal-like
pseudo code, this implies the assumption that the algorithm is likely to be implemented using
a procedural programming language. This also entails assumptions about the machine executing
the programming code [Sanders 2009]. From a scientific perspective, mainly the explicit decisions
are of interest as they have been made intentionally and can be expected to have the highest
impact on the design. Such a design decision may involve using a particular design principle
(e.g., divide-and-conquer), paradigm (e.g., supervised learning or deep learning), or representation
(e.g., word embeddings). Parameterization is an explicit design decision, as it delegates the actual
decision to the end-user. A (hyper-)parameter is provided to control the actual behavior and
performance.

Example 2.7. In their article “Attention is all you need,” Vaswani et al. [2017] introduce the
Transformer architecture. They explicitly discuss various design choices. Among others, they
explain that building soley on the Attention mechanism is enough for the parallelization within
training examples. They also discuss that the use of Attention may lead to “reduced effective
resolution,” which they counter by using Multi-Head Attention. Later in the article, they devote an
entire section (Why Self-Attention) to demonstrate the impact of their design choices.
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Design decisions and the usage of design principles have implications for performance. Algorithm
analysis can clarify these implications and associate algorithm designs with performance guarantees
[Sanders 2009; Sedgewick and Flajolet 2013]. Such guarantees can be formulated as theorems.

Example 2.8. Knuth [1973] provides an overview of sorting algorithms that use different solution
strategies. The family of merge sort algorithms follows the design principle of divide-and-conquer.
Its solution strategy is to decompose a problem into a hierarchy of partial problems in order to
achieve an 𝒪(𝑛 log 𝑛) run-time performance.

2.4 Algorithm Implementation
According to Colburn [2004], the ultimate goal of computer science is that programs can be efficiently
implemented on physical systems. An algorithm design can be in an instantiation relationship with
several algorithm implementations. The implementation program closes the circle: it can be used as
a concrete solution to address the original real-world problem by executing it with concrete input
data on a specific computer.

In practice, implementation rarely involves an exact instantiation [Lukyanenko and Parsons 2020].
Instead, it is shaped by concrete implementation decisions made to achieve specific goals based on a
given rationale. For example, the choice of programming language affects whether an algorithm can
be directly translated into code. At runtime, performance is further influenced by the execution en-
vironment, including hardware, memory hierarchy [Sanders 2004], caching strategies [Karedla et al.
1994], and compiler optimizations for parallel processing [Wolfe 1996]. Even under controlled condi-
tions, differing implementation choices can result in performance variations by orders of magnitude.

Example 2.9. Implementation decisions may have a drastic impact on algorithm performance, as
evidenced by a study of Kriegel et al. [2017]. The authors compare different implementations of
the same algorithm designs. In their analysis of the reasons behind performance differences, they
describe that certain implementations turned out be highly optimized. When re-implementing a
k-means algorithm for a comparative evaluation, they “chose the features with only eight dimensions
[…] since k-means is known to work better in low dimensionality and we do not want to bias the
analysis toward performance on high-dimensional datasets.”

Executing an algorithm on real-world data yields two types of results: the actual output and
insights into its performance. For instance, a web search algorithm returns a list of websites relevant
to a query. Performance can be assessed along two dimensions: efficiency (e.g., runtime and memory
usage) and effectiveness (i.e., output quality relative to the problem). Suitable performance metrics
vary by context. For web search, for instance, common measures include precision, recall, and
F1-score [Baeza-Yates et al. 1999]. Whether performance is deemed sufficient depends on the
predefined goals of the task, e.g., outperforming a baseline like Google Search on specific metrics.

Example 2.10. Devlin et al. [2014] present a new neural network joint model for machine transla-
tion. Their core idea is to determine a source context window, i.e., the number of words from the
source language that are relevant to find the correct word of the target language. To evaluate the
performance, the authors conduct extensive experiments on Arabic-English and Chinese-English
datasets. They show that their approach is superior in comparison to existing baselines both in
terms of effectiveness and efficiency. For quantifying efficiency, they use the metrics lookups/second
and seconds/word. They quantifyefficiency using the BLEU score, an established measure of the
similarity between machine-translated text and a reference translation.

3 Epistemology of Algorithm Engineering
The previous elaborations emphasize that the practice of algorithm engineering is concerned with
finding an algorithm implementation for a given real-world problem. The science of engineering
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World 3

World 3

 Algorithmic Task


Task assumptions
Goal

 

 Algorithm Design


Design Principles
Design Decisions

 Algorithm Implementation

Implementation Decisions

 Real-World Problem


Problem Context

Envisioned Solution

Abstracts

Satisfies

Instantiates

 Body of Knowledge


Knowledge of Tasks
Knowledge about Tasks
Knowledge of Design
Knowledge about Design

 Results


Output
Performance

Executes

Informs

World 2

World 2

World 2

World 1

World 1

Fig. 2. A framework for algorithm engineering: the epistemological perspective.

takes a more abstract view. It is not about solving individual problems, but about “general knowledge,
linking an intervention or artifact with a desired output or performance in a certain field of application”
[Aken 2004]. Thus, algorithm engineering aims to expand the body of knowledge on algorithm
design. The epistemological perspective of our framework addresses questions of what we can know
about an algorithm. We use Popper’s three worlds as a conceptual model to clarify the relationship
between knowledge and algorithms. Note that we are not the first ones to build on Popper’s model.
It has been used by Naur [1985] and Staples [2014]. We describe that the body of knowledge contains
knowledge of and about tasks as well as knowledge of and about designs.

3.1 Popper’s Three Worlds
The body of knowledge of algorithm engineering relates to different spheres that Popper [1979]
describes in his epistemological model of three worlds. In essence, he distinguishes World 1 of
physical entities, World 2 of subjective mental states, and World 3 of objective knowledge. World 1,
often referred to as the real world, is assumed to exist independently from an observer and to
behave in a regular way. The goal of science is to formulate objective, empirical knowledge in
World 3 that refers to World 1. Such scientific knowledge is created by humans, whose individual
mental states define World 2, mediating between the other two worlds.

Figure 2 extends our ontological perspective on algorithm engineering and shows how it relates
to Popper’s three worlds. Our discussion builds on arguments by Naur [1985] and Staples [2014].
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First, both real-world problems and algorithm implementations are entities that exist in the
physical world independently from an observer; they belong to World 1. Second, the three actions
abstract, design, and implement build on human cognition and mental models. For this reason, they
reside in World 2. Third, the algorithmic tasks, algorithm design, and the body of knowledge are
part of World 3 as these are meant to be objectively described. Regarding the body of knowledge,
we distinguish between knowledge related to tasks and knowledge related to designs. For both
types we further differentiate between knowledge of and knowledge about. In the context of
tasks, knowledge of relates to what is a specific task, while knowledge about relates to what are
properties we know about these tasks. In a similar way, knowledge of design relates to what is a
specific algorithm design, while knowledge about relates to what are properties we know about this
algorithm design.

Popper’s three world view unveils an important implication for algorithm engineering that is
easily overlooked: Any scientific knowledge resides in World 3. The same observation applies
to algorithm engineering and its body of knowledge. Mind that our understanding of a specific
real-world problem or a specific algorithm implementation is ontologically different: both reside
in World 1. World 1 is what matters from a practical perspective, whereas World 3 is what we
are interested in from a scientific perspective. In other words, from a practical perspective we
are interested in real-world problems and algorithm implementations, whereas from a scientific
perspective we focus on knowledge of and about algorithmic tasks and designs. We now discuss in
turn what knowledge of and about tasks as well as knowledge of and about algorithmic designs
can be formulated.

3.2 Knowledge of Tasks
Real-world problems reside in World 1 and are often wicked problems [Rittel and Webber 1973]. This
wickedness implies that such problems are unique, having no definitive formulation, no explicit
stopping rule, no ultimate test of solution, and affording numerous alternative explanations. Their
wicked nature is the reason why algorithmic tasks are not connected with a problem via a simple
isomorphic mapping. According to Rittel and Webber [1973], they have to be tamed by constructing
an abstraction. We refer to the outcome of this abstraction process as knowledge of tasks. Knowledge
of tasks, therefore, captures what tasks exist and how they are structured. As pointed out earlier,
keep in mind that our notion of an algorithmic task is also referred to as algorithmic problem,
computational problem, or just problem in the literature [Aho et al. 1974]. These are tasks (residing
in World 3) and should, however, not be confused with our notion of a real-world problem (residing
in World 1). Our notion of algorithmic tasks and World 3 problems are semantically equivalent. To
avoid confusion, we will use the term (algorithmic) task throughout this article. For established
tasks, such as the traveling salesperson problem, we will, however, adopt the original term.

Depending on the context, tasks and their structure might be described mathematically, formally,
semi-formally, or also informally.

Example 3.1. The traveling salesperson problem can be described mathematically, modelled as an
optimization problem. Hromkovič [2013, p.104] defines it as follows:

— Input : a weighted complete graph (𝐺, 𝑐)where 𝐺 = (𝑉 , 𝐸) and 𝑐 ∶ 𝐸 ↦ ℕ. Let 𝑉 = {𝑣1, … , 𝑣𝑛}
for some 𝑛 ∈ ℕ − {0}.

— Constraints: For every input instance (𝐺, 𝑐), ℳ(𝐺, 𝑐) = {⟨𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑛 , 𝑣𝑖1⟩ | (𝑖1, 𝑖2, … , 𝑖𝑛 is a
permutation of (1, 2, … , 𝑛)}, i.e., the set of all Hamiltonian cycles of 𝐺.

— Costs: For every Hamiltonian cycle 𝐻 = ⟨𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑛 , 𝑣𝑖1⟩ ∈ ℳ(𝐺, 𝑐), the cost is induced by
the cost function 𝑐𝑜𝑠𝑡(⟨𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑛 , 𝑣𝑖1⟩, (𝐺, 𝑐)) = ∑𝑛

𝑗=1 𝑐({𝑣𝑖𝑗 , 𝑣𝑖(𝑗 mod 𝑛)+1)}).
— Goal: Minimum.
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Example 3.2. Van der Aalst [2011] formally introduces the task of process discovery in the
context of process mining. Informally, this task can be described as identifying a function that
constructs a process model from an event log (i.e., a set of execution sequences) such that the
model is representative for the behavior observed in the event log. Formally, he first clarifies the
notion of an event log: A simple event log 𝐿 is a multi-set of traces over a set of activities 𝒜, i.e.,
𝐿 ∈ ℬ(𝒜∗). Building on this definition, he then formally describes the process discovery task as
identifying a function 𝛾 that maps an event log 𝐿 ∈ ℬ(𝒜∗) onto a Petri net 𝑁 with a marking 𝑀,
i.e., 𝛾 (𝐿) = (𝑁 ,𝑀). It is important to note that such formal task descriptions often contain text. As
a result, the degree of formality can vary and the transition to fully informal task descriptions (see
example below) is often fluid.

Example 3.3. Russakovsky et al. [2015] list several image recognition tasks in relation to ImageNet.
They use an informal, textual description to specify the object detection task.The goal of an algorithm
addressing this task is to produce bounding boxes at the right position and scale for all instances of
a given object category. The effectiveness of algorithms is evaluated by recall (the share of correctly
detected target object instances) and precision (the share of spurious detections).

3.3 Knowledge about Tasks
Knowledge about tasks relates to insights about properties of specific algorithmic tasks. The analysis
of tasks can yield formal knowledge and empirical knowledge.

Formal knowledge has been established for a wide range of tasks. These tasks are often referred
to as computational problems. A key concern in the analysis of tasks is the question whether a
problem is tractable. An intractable problem can be solved in theory, but any algorithm in practice
would take too much time or space on inputs of non-trivial size [Hopcroft et al. 2000].

Complexity classes have been identified for specific tasks. A hierarchy of these classes ranges
from non-deterministic with logarithmic memory spaceNL to exponential space EXPSPACE. Many
classical problems have been identified as members of the class that can be solved in polynomial
time on a non-deterministic Turing machine (NP) [Garey and Johnson 1979]. An important subclass
is the set of NP-complete problems; loosely speaking, its members are at least as difficult to solve
as any other problem in NP. A more fine-grained analysis allows to reason about fixed-parameter
tractable problems (FPT), which can be solved in time 𝑓 (𝑘) ⋅ |(𝑥, 𝑘)|𝑂(1) for some computable
function 𝑓, where 𝑘 is some parameter of the input [Cygan et al. 2015].

Empirical knowledge is of practical interest in particular for problems that have been identified
as intractable. Key to this knowledge is the identification of patterns in typical input data that can
be exploited for the design of algorithms. Improvements on many algorithmic tasks have been
inspired by the availability of benchmark datasets. These datasets are publicly shared datasets of
realistic input of a specific algorithmic task.

Example 3.4. A classical algorithmic task that is known to belong to the class of NP-complete
problems is the traveling salesperson problem (see Example 3.1). It assumes a list of cities and
distances between them. In its optimization version, the question is what is the shortest route that
visits all cities and returns to the origin? (Its decision version asks if such a route of a specified
length or less exists.) Formal knowledge on this task has been established among others by Pa-
padimitriou [1977], who proves that the Euclidean travelling salesperson problem is NP-complete.
Major breakthroughs on TSP have been inspired by the availability of realistic problem instances
and corresponding benchmark datasets [Sanders 2009], such as the 8th DIMACS Implementation
Challenge or the World TSP Tour. By help of these datasets, empirical knowledge about properties
of the input data could be established and exploited, for instance by considering power-law distri-
butions [Ouaarab et al. 2014]. In many domains of algorithm engineering, datasets such as those
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for TSP [Drori et al. 2020] are continuously extended to challenge improvements and innovation of
algorithms and knowledge about tasks.

Example 3.5. The understanding of algorithmic tasks in the field of image recognition is driven
by large-scale annotated image datasets such as ImageNet [Russakovsky et al. 2015]. ImageNet
contains several million images that have been manually annotated with names of objects. Research
on ImageNet has not only led to major advancements of algorithms for image recognition, but also
of techniques for systematically annotating a large amount of images using crowdsourcing.

3.4 Knowledge of Design
Knowledge of design refers to what an algorithm design is, how it works, and how it addresses
an algorithmic task. Such knowledge of design is prescriptive, as enables the implementation of
concrete algorithms by humans. Gregor and Hevner [2013] refer to it as Λ knowledge. The body of
knowledge that relates to design largely consists of a repertoire of established algorithm designs that
have demonstrated their efficiency and effectiveness in prior studies, i.e., where formal or empirical
knowledge indicates that an algorithm design meets the goals defined for the algorithmic task.
Established algorithm designs range from concrete designs that address specific tasks to general
procedures that are applicable for a wide range of tasks. Regardless of the scope, algorithm designs
may build on generic design principles, which describe general ideas for finding or constructing a
solution for a given algorithmic task. Among others, Harel and Feldman [2004] as well as Kleinberg
and Tardos [2006] describe several examples of such principles including divide-and-conquer. To
illustrate the broad range of algorithm designs, consider the following four examples.

Example 3.6. Grund et al. [2021] introduce an approach that identifies earlier versions of a
considered source code method in the file history. Its central artifact is a specifically designed
algorithm that addresses this specific task in the context of software engineering and source code
management.

Example 3.7. Gévay et al. [2021] introduce a novel distributed dataflow system called Mitos that
helps to efficiently coordinate the distributed execution of control flow in a user-friendly fashion.
The proposed system consists of several different components that are also separately introduced.
Some parts are presented at the algorithmic level, while others are discussed conceptually. As
for the scope, the system can be used for a range of analysis tasks that benefit from distributed
execution.

Example 3.8. Bentley [1980] introduces an approach that targets problems dealingwith collections
of objects in a multidimensional space. The author positions his approach as a generic algorithmic
design as it can be used to give best-known solutions to several problems including range searching,
closest pair, and nearest neighbor. For a more general setting, Bentley [1999] presents a set of
established and frequently used algorithm design techniques for solving algorithmic tasks in
practice.

Example 3.9. In a collection on design techniques, Ferragina [2023] selects algorithmic tasks
that admit “surprisingly elegant [design] solutions that can be described in a few lines of code.” The
topics covered are numerous and include random sampling, list ranking, sorting, string search, and
compression. The variety of topics is also reflected by the variety of algorithm design principles
presented.

Knowledge of what a concrete algorithm design is can be explicated in different ways. At least three
different levels can be distinguished based on their proximity to the implementation. First, the algo-
rithm’s design can be described using pseudocode. Pseudocode is more abstract and more compact
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than code and yet typically facilitates the re-implementation of the design in various programming
languages. Tool support is available for generating pseudocode for actual implementations [Oda
et al. 2015]. Second, diagrams such as flow charts can be used to describe the algorithm design.
Such diagrams provide benefits in terms of cognitive effectiveness [Malinova Mandelburger and
Mendling 2021] and they have been found to be superior in terms of comprehension in comparison
to pseudocode [Scanlan 1989]. Third, algorithms can be described using formal specifications, e.g.,
by mathematical formulae. It is worth noting that not every type of specification is equally useful for
any type of design. While specific algorithms can be well described using pseudocode or formal spec-
ifications, this does not apply to larger systems consisting of several algorithmic subcomponents.
Below, we discuss a number of examples to illustrate how different specifications are used.

Example 3.10. Many algorithm engineering papers and textbooks use pseudocode (e.g., Ferragina
[2023]; Sanders et al. [2019]). Grund et al. [2021] also use pseudocode to describe how the proposed
approach identifies earlier versions of a considered source code method in the file history.

Example 3.11. Chen et al. [2020] use a flowchart for clarifying the data processing pipeline
of their system. This system builds on a machine-learning-based approach that helps detecting
vulnerabilities in open-source libraries.

Example 3.12. Zhou et al. [2021] use mathematical equations as formal specifications to describe
their method for long sequence time series forecasting. They also use this specification as a basis to
prove relevant properties of the proposed method.

3.5 Knowledge about Design
Knowledge about design relates to insights about properties and characteristics of the respective
algorithm design. The relationship between algorithmic tasks and designs is often explicated as
specific hypotheses. In their deductive-nomological model, Hempel and Oppenheim [1948] describe
a hypothesis as a law bound to a set of conditions. This follows the structure of an explanans
explaining an explanandum, a specific observation. For algorithm engineering, the explanandum is
often the extent to which an algorithm satisfies the requirements defined by the algorithmic task,
the explanans refers to the design principles realized by the algorithm design and the assumptions
made by the algorithmic task [Hall and Rapanotti 2017; Simon 1969; Staples 2014; Wieringa 2014].
The algorithmic task and the algorithm design directly correspond to our ontological framework
described earlier in Figure 1. Knowledge about design can be substantiated in a formal and in an
empirical way.

Example 3.13. To gain formal knowledge on the performance of an algorithm design, Ferragina
[2023] uses (among others) the external-memory (EM) model for analysis. This model focuses on
the I/O bottleneck in computations by assuming a two-level memory hierarchy with a fast (yet
small) internal memory and a large (yet slow) external memory. Data is retrieved from the external
memory in chunks, which mimics block transfers in real systems. In this way, as a golden rule
[Ferragina 2023, Ch. 1], algorithm designs are steered towards exploiting locality.

Example 3.14. Karlin et al. [2021] introduce a new approximation algorithm for the travelling
salesperson problem.They use theorems and proofs to show that, given a constant 𝜖, their algorithm
delivers a solution that has at most 3

2 − 𝜖 times the cost of the optimal solution.

Example 3.15. Gévay et al. [2021] use a plot to demonstrate how the execution time of their
proposed system Mitos changes with increasing size of the input.

There are different types of knowledge about design. Following work by Santner et al. [2003] on
the design and analysis of computer experiments, we distinguish four general knowledge types that
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are often investigated in the field of algorithm engineering: performance, sensitivity, uncertainty,
and explanatory knowledge.

Performance knowledge focuses on the algorithm’s performance in terms of the extent that the
algorithm meets its task requirements. Performance knowledge can be formulated as a question
of satisfaction (Does the algorithm design satisfy the task requirements?) or as a question of
degree (To which extent does the algorithm design satisfy the task requirements better than other
designs?) [Hall and Rapanotti 2017; Staples 2014; Wieringa 2014]. Often, knowledge claims on
performance refer to general criteria [Larsen et al. 2025] or specific measurements. Research focused
on performance knowledge often relies on a competition-based evaluation or formal proofs against
state-of-the-art algorithms.

Example 3.16. Gévay et al. [2021] introduce the system Mitos for task analysis. The key feature
of the proposed system is that it is considerably faster than the state of the art.

Example 3.17. Küçük et al. [2021] introduce an approach for statistical fault detection in source
code. The key feature of the proposed approach is that it performs considerably better than the
state of the art with respect to fault localization.

Sensitivity knowledge focuses on how robust the performance of an algorithm is in face of changes
of internal design decisions. These design decisions are often parameterized and the goal is to
evaluate the robustness of the algorithm’s performance against sub-optimal parameter settings.

Example 3.18. Chen et al. [2020] propose a machine-learning approach for detecting vulnera-
bilities in open-source libraries. To this end, they build on word embeddings from word2vec. As
word2vec relies on a number of parameters (e.g., window size and vector size), they systematically
explore how the performance of the approach is affected by changing parameters for different
datasets.

Uncertainty knowledge considers the performance of an algorithm as a function of the task
assumptions, which describe the relevant aspects of the external environment of an algorithm.
Larsen et al. [2025] use the term context claims to refer to such knowledge. The goal of uncertainty
analysis is to assess how the expected performance of an algorithm varies across problem instances.
Alternatively, the goal could also be to investigate the precision of the expected performance.

Example 3.19. Küçük et al. [2021] propose an approach for fault localization in source code. In
the evaluation experiments, the authors do not only show that the approach is performing better
than the state of the art, they also investigate the impact of a specific dataset characteristic called
covariate imbalance. They analyze the empirical relationship between covariate imbalance and the
chosen performance metric and find that increasing covariate imbalance indeed leads to higher
fault localization costs. They also show, however, that the presented technique is less affected by a
covariate imbalance than the state of the art.

Explanatory knowledge provides insights into the mechanisms of how task assumptions and
design decisions interact and influence the algorithm’s performance. Key for establishing such
knowledge is the comparative evaluation of different configurations of design, for instance, by
including and excluding certain functionality, and then studying the effect on results.

Example 3.20. He et al. [2016] present a residual learning framework for image recognition
to ease the training of networks that are substantially deeper than the state of the art. In their
experiments, the authors analyze edge cases, such as a network with more than 1000 layers. They
find that the performance of such extremely deep networks is not as good as the performance of
networks with around 100 layers. They conclude that this is caused by overfitting and that networks
with more than 1000 layers are unnecessarily large.
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Research papers differ in the extent to which they emphasize knowledge of and knowledge about
design. There are papers that focus on knowledge of design. A paper proposing a new algorithm is a
typical example of this kind. Mind, however, that such papers often include a larger evaluation part
that essentially provides knowledge about design, in which properties of the algorithm are analyzed
to justify its underlying hypotheses. There are also papers offering knowledge about design only.
Survey papers, papers on new theoretical insights about existing algorithms, or benchmarking
studies belong to this category. These studies often do not propose new algorithms, but compare or
analyze previously published ones.

Example 3.21. Wang et al. [2021] address the problem of cardinality estimation in the context of
query optimization. More specifically, they set out to answer the question whether learned models
for cardinality estimation are ready for use in practice. To answer this question, the authors conduct
a comprehensive study with five learned methods and eight traditional methods for cardinality
estimation and four real-world datasets. The study consists of three different parts and provides
deep insights into the performance of the studied methods in different environments and when
learned methods fail to deliver correct results.

Example 3.22. Arthur et al. [2011] provide theoretical evidence on why the very popular 𝑘-means
clustering algorithm from the 1950s is usually very fast in practice – despite its provably exponential
worst-case running time. They show, based on smoothed analysis, that the smoothed number of
iterations is in fact bounded by a polynomial in the input size and the (inverse of) the standard
deviation of a Gaussian perturbation of the data.

In the end, it is important to recall that algorithmic designs as mathematical abstractions and
algorithm implementations as physical programs are epistemologically different [Colburn 2004].
Contributions to the formal verification debate in the 1970s and 1980s argued that program ver-
ification was neither practically [De Millo et al. 1979] nor philosophically feasible [Fetzer 1988].
Abstractions of computer languages, procedures and data have become so firmly established in
computer science that many agree with Hoare [1985] who posits the equivalence of computer pro-
grams and mathematical expressions as much as programming languages and mathematical theory.
However, the correspondence between physical systems executing algorithms and mathematical
specifications is not self evidence and has to be firmly established: “An axiom system may just
happen to describe physical reality, but that is for experimentation in science to decide” [Colburn
2004]. For that reason, both formal and empirical knowledge are equally important for advancing
algorithm engineering.

4 Methodologies of Algorithm Engineering
We emphasized above that the general goal of algorithm engineering is to extend the body of
knowledge of algorithm designs, algorithmic tasks, and corresponding knowledge. Up to this point,
however, we have focused on what we can know. In this section, we elaborate on the question of
how to systematically extend the body of knowledge. We identify four categories of such extensions:

(1) New or better knowledge of tasks.
(2) New or better knowledge of designs;
(3) New or better formal knowledge about tasks and designs;
(4) New or better empirical knowledge about tasks and designs.

Many papers present extensions of the mode knowledge that are improvements of one or the other
kind [Gregor and Hevner 2013]. For instance, an improvement could be a new sorting algorithm
that performs better than existing ones, a new theorem that identifies narrower bounds than
earlier published ones, or more specific empirical results obtained by an experiment. Some papers
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Fig. 3. A framework for algorithm engineering: the methodological perspective.

develop knowledge on how existing solutions can be transferred to problems that have not yet
been discussed. Gregor and Hevner [2013] call this exaptation. Such knowledge extensions might
be an algorithm that solves a newly defined algorithmic task, a theorem on an algorithm for which
no theorems had been proven, or a first empirical study on an algorithm.

Figure 3 summarizes the methodological perspective of our framework. There are two key obser-
vations. First, additions to the body of knowledge are at the center of iterative processes [Sanders
2009; Wieringa 2014]. New algorithmic tasks and algorithm designs extend the corresponding
knowledge categories; new theorems and corresponding proofs establish formal knowledge about
algorithms; and new empirical results inform empirical knowledge about algorithms. Second, each
knowledge type is associated with corresponding research methods: inductive methods, design
methods, formal methods,1 and empirical methods. Validity concerns are of specific importance for
methods. Table 1 summarizes the key validity concerns for algorithm engineering. In the follow-
ing, we describe each method in turn and highlight how these concerns inform and shape their
application.

4.1 Methods for Generating Knowledge of Algorithmic Tasks
We already highlighted that the wicked nature of real-world problems is the reason why algorithmic
tasks are not a simple isomorphic mapping of the problem and, therefore, need to be constructed.
Various methods have been developed and used in operations research [Mingers and Rosenhead
2004; Pidd 2003], requirements engineering [Bourque et al. 2014], and visual analytics [Munzner
2014] for creating a specification of a real-world problem. Essentially, any research method that
operates inductively on qualitative empirical data such as case study methods, focus group designs,
interview studies, or think-aloud techniques [Recker 2021] can be applied.

Example 4.1. Wu et al. [2022] develop techniques for interactive pattern mining. They follow the
design study methodology by Sedlmair et al. [2012] for analyzing the real-world problem domain of

1Here and in the following, formal methods refers to a broad set of rigorous theoretical techniques that allow to derive
formal knowledge about algorithmic tasks and/or algorithm designs.
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Table 1. Validity Concerns in Algorithm Engineering

Validity concern Explanation Affected entities

Ecological validity Extent to which an algorithmic task or setup reflects
real-world conditions and problem contexts (based on
Ashcraft and Radvansky [2010]; Holleman et al. [2020]).

Algorithmic task

Design validity Degree to which the internal structure and logic of an
algorithm design is coherent, justified, and explainable
[Larsen et al. 2020].

Algorithm design

Implementation validity Extent to which an algorithm implementation faithfully
instantiates the intended design and behaves as expected
(based on Lukyanenko et al. [2015]; Lukyanenko and
Parsons [2020]).

Algorithm implementation

External validity Degree to which results generalize across datasets of
interest (based on Cook et al. [2002]).

Empirical results

Justification validity Degree how convincingly a hypothesis or theorem is
supported by a deductive argument (based on [Lannin
2005]).

Theorems, hypotheses

Logical validity Degree to which the syllogisms used in a proof preserve
truth (based on Aristotle, reflected in Durand-Guerrier
[2008]).

Proofs

Internal validity Extent to which observed effects can be attributed to the
treatment rather than to confounding factors [Wohlin
et al. 2012].

Research design

Construct validity Degree to which the measure of a construct accurately
measures the intended property [O’Leary-Kelly and
Vokurka 1998].

Measurement

Conclusion validity Degree to which the results can reasonably be regarded as
revealing the hypothesized connection [Cook and
Campbell 1979; García-Pérez 2012].

Empirical results

racket sports. They interview domain experts, formalize their analysis tasks, and involve them in the
design and evaluation of a prototype. In this way, they identify five analysis tasks and corresponding
constraints. The resulting task descriptions inform the design of the author’s interactive tactics
mining algorithm. Input to this algorithm are raw sequence data of racket matches.

Models are often used for specification in general and for algorithmic tasks more specifically. In
this context, a model is defined as (i) a mapping from some original (ii) by means of an abstraction
operation (iii) in order to serve a specific purpose [Kühne 2006; Mendling 2008]. Various methods
can be used for constructing models that structure problems. For an overview see Mingers and
Rosenhead [2004].

Example 4.2. Algorithms play an important role in supporting supply chain operations. Biswas
and Narahari [2004] provide an extensive analysis of supply chain tasks with the ambition to devise
algorithmic decision support. They use different UML models: class diagrams for clarifying (a) the
relationship between strategies and policies and (b) the objects of a supply chain, as well as activity
diagrams for specifying (a) the steps of addressing the location problem and (b) the behaviour of
the dealer object. Beyond that they use informal models to represent concept taxonomies and their
proposed system architecture.

Examples of real-world problem instances also play an important role for describing tasks.

Example 4.3. Agarwal et al. [2018] analyze the problem of path planning amid a set of obstacles in
a two-dimensional plane. Their work is motivated by robot motion planning used e.g., for surgeries.
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They formalize this real-world problem to a task of constructing an approximate minimal-cost path
algorithm. They illustrate the task using several examples of Voronoi diagrams.

The concern of ecological validity is of particular importance for the specification of tasks. It
refers to what extent the task characteristics relate to the real world such that results will generalize
to real-world problems [Ashcraft and Radvansky 2010; Holleman et al. 2020]. This is in essence
a concern that touches upon the relationship between a class of real-world problems and an
algorithmic task. Validating tasks is difficult, because the real-world problem might not yet be
fully understood (unclear reference), the problem might not have yet occurred in the real world
(hypothetical reference), or the change of the problem is difficult to predict (future reference) [Pidd
2003]. Problem structuring methods [Mingers and Rosenhead 2004] as well as validation and testing
approaches from operations research [Pidd 2003], requirements engineering [Bourque et al. 2014]
or design studies [Munzner 2014] can be used for assuring validity.

4.2 Methods for Generating Knowledge of Algorithm Designs
Algorithm designs are neither arbitrary nor self-evident. We call those research methods that
support the generation of engineering knowledge of algorithm designs design methods. The outputs
of these methods are essentially new algorithm designs. We distinguish deductive, inductive,
abductive, and analogy engineering methods.

New algorithms can be developed by deduction. In essence, deduction implies an operation of
specialization. The starting points of deduction can be existing algorithmic tasks and designs as
well as more general design principles, such as divide-and-conquer.

Example 4.4. Ganapathi and Chowdhury [2022] present divide-and-conquer for parallelizing
classical iterative sorting algorithms, including a recursive algorithm that combines quicksort and
bubble sort. “The aim is to sort the entire array 𝐴[0… 𝑛 − 1]. The function BubbleSort(𝐴[𝑙 … ℎ]) sorts
the subarray 𝐴[𝑙… ℎ]. The initial invocation to the algorithm is BubbleSort(𝐴[0… 𝑛−1]). The function
in turn calls the Partition function. The Partition function brings the smallest 𝑛/2 elements to the left
half and the largest 𝑛/2 elements to the right half of array A. Once the array A is partitioned, then
BubbleSort is recursively called onto the left and right halves in parallel to sort the two halves. After
the two halves are sorted recursively, the entire array 𝐴[0… 𝑛 − 1] will be sorted. When a subproblem
reaches the base case, it is sorted using the standard iterative bubble sort logic.” In this way, the authors
deductively construct a new algorithm based on (1) the divide-and-conquer design principle also
employed within quicksort and (2) the original bubble sort algorithm.

New algorithms can be developed by induction. In general, induction means generalizing from a
set of specific problem instances. According to Manber [1988], particularly the analogy to math-
ematical induction is a promising methodological reference for algorithm design. Mathematical
induction is a method for proving that a statement 𝑃(𝑛) is true for all 𝑛 ∈ ℕ. The proof by induction
works by showing that (1) 𝑃(𝑛) holds for a base case such as 𝑛 = 0 or 𝑛 = 1 and (2) 𝑃(𝑛) holds for
𝑛 + 1. Manber [1988] argues that this method can be transferred to algorithm design by solving an
arbitrary instance of the problem at hand by assuming that the same problem has already been
solved for a smaller size.

Example 4.5. The application of inductive algorithm design can be illustrated using sorting
algorithms [Manber 1988]: “[…] given a sequence of 𝑛 > 1 numbers to sort (it is trivial to sort one
number), we can assume that we already know how to sort 𝑛 − 1 numbers. Then we can either sort
the first 𝑛 − 1 numbers and insert the 𝑛th number in its correct position (which leads to an algorithm
called insertion sort), or start by putting the 𝑛th number in its final position and then sort the rest
(which is called selection sort). We need only to address the operation on the 𝑛th number.” The proof
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technique loop invariant can be seen as a direct translation from mathematical induction to proving
the correctness of iterative algorithms such as insertion sort, see Cormen et al. [2009, Ch. 2].

It is worth pointing out that induction can also be used as a general bottom-up approach. Given
a problem, the idea is to start by first solving a specific instance of this problem. By extending the
obtained solution, one might then be able to solve the original, larger problem.

Example 4.6. To illustrate an inductive approach, consider the algorithmic task of schema match-
ing. In essence, schemamatching is the problem of generating correspondences between elements of
two database schemas, e.g., for the purpose of data integration [Rahm and Bernstein 2001]. Given two
database schemas and a respective ground truth (i.e., the correct correspondences as identified by
a human), the inductive approach is to analyze a few of the correspondences from the ground truth
and then devise a possible algorithmic strategy to identify them automatically, e.g., via simple string
matching. By step-wise increasing the set of considered instances, a better solution can be developed.

New algorithms can also be devised by abduction [Tomiyama et al. 2003]. In essence, abduction
is driven by anomalies [Sætre and Van de Ven 2021]. In the context of algorithms, such anomalies
might be related to specific circumstances in which an algorithm does not meet its expectations. The
abductive process takes these anomalies as a starting point for detailed diagnosis, which provides
hunches for generating plausible modifications and extensions. These can then be evaluated to
which extent they meet expectations.

Example 4.7. An example from process mining of abductive algorithm design is the 𝛼-algorithm
for generating Petri net models from a set of execution sequences, so-called event logs. The original
𝛼-algorithm by Van der Aalst et al. [2004] is able to rediscover a Petri net from its set of execution
sequences if this Petri net is structured and does not contain short loops (i.e., it does not produce exe-
cution sequences such as 𝑎𝑎 or 𝑎𝑏𝑎𝑏).These limitations are addressed by later extensions. deMedeiros
et al. [2004] propose the 𝛼+algorithm. It offers a solution to the short-loop problem by preprocessing
the input sequences. Wen et al. [2007] work on the limitation that the original algorithm assumes
that sequences are generated from a free-choice Petri net. Their 𝛼++algorithm is able to deal with
non-local dependencies thanks to a modification of behavioural relations used by the algorithm.

New algorithms can also be developed by means of analogy or metaphor [Sörensen 2015]. This is
the case when specific observations are generalized and detached from its context. Many algorithms
stem from such generalizations. Most prominent are metaheuristics and optimization algorithms in-
spired by the phenomena discussed in the natural sciences such as simulated annealing [Kirkpatrick
et al. 1983], particle swarm optimization [Kennedy and Eberhart 1995], or backpropagation for
artificial neural networks [Werbos 1994]. Note that here we look at how these original algorithms
have been formulated for the first time and not how they are applied to specific problems later.
That latter case would be a deductive usage of existing algorithms.

Example 4.8. Genetic algorithms are inspired by the process of natural selection [Forrest 1996].
They build on the concepts of mutation, crossover, and selection to iteratively generate high-quality
solutions to optimization and search problems. Among others, genetic algorithms have been used
for image processing, scheduling problems, and parameter optimization in machine learning.

Some comments are warranted. First, the inspiration base for new algorithms is not restricted to
the body of knowledge of algorithm engineering and other sciences. Feyerabend [1975] provides
arguments why any sort of inspiration, even if factually wrong, can be fertile. Brown et al. [2005]
have emphasized the value of artistic contributions that exhibit its merits in terms of subjective
elegance or beauty. Algorithm engineering like any other act of human problem solving builds on
creativity, for which dozens of mechanisms including and beyond the ones mentioned above exist.
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For an extensive list see Simonton [2022, p.295]. Also serendipity is important to mention in this
context as accidental discovery of things not sought for. It is estimated that one quarter of scientific
discoveries are serendipitous [Thagard 2012]. Second, even if sought systematically, solutions in
form of algorithms do not directly derive from algorithmic tasks. Design studies have shown that
an understanding of the problem leads to solution ideas, which in turn provide a better problem
understanding, and so forth. Dorst and Cross [2001] refer to this as a co-evolution of problem and
solution space. Similar observations have been made for system development by Guindon [1990]
and innovation management by von Hippel and von Krogh [2016]. These works describe design as
an opportunistic thought process. This means that creativity and serendipity leave a white space
for algorithm engineering that has not yet been fully conquered by systematic methods.

No matter which engineering method is used, a key concern for developing engineering knowl-
edge of algorithms in this context is design validity. Adapting the definition by Larsen et al. [2020],
we define this validity as the degree to which the internal structure of an algorithm is consistent,
transparent, and explainable. The importance of explanation has been recently acknowledged by
research on explainable artificial intelligence and decision making [Saeed and Omlin 2023]. Already
Naur [1985] stated that a computer program can only be modified systematically if the developer
has a theory about how the program works. In this way, design validity enables reproduction,
critical assessment, and reuse in an incremental scientific process.

4.3 Methods for Generating Formal Knowledge about Tasks and Designs
Properties of algorithmic tasks and the outcomes of specific algorithms can be investigated using
formal analysis methods and algorithm theory. In essence, such analysis is a branch of theoretical
computer science. For that reason, analytical arguments are typically presented as theorems, for
which their logical validity is demonstrated by corresponding proofs.

Analytical statements can be made about the complexity of algorithmic tasks and about the
outcomes of specific algorithms. We associate outcomes with the efficiency of its computation
and the effectiveness of the output. The efficiency of computation is typically assessed by means
of asymptotic analysis. To this end, asymptotic formulas are used to describe the magnitude of
computational steps and memory space required. These are expressed according to Landau [1909]
as 𝒪(⋅), Ω(⋅), and Θ(⋅). In essence, 𝒪(⋅) indicates the upper bound of the growth rate of a function
that describes the efficiency, while Ω(⋅) defines a lower bound, and Θ(⋅) a bound above and below
some strictly positive function. The symbols 𝑜(⋅) and 𝜔(⋅), in turn, refer to upper and lower bounds,
respectively, that are asymptotically not tight [Cormen et al. 2009, Ch. 3.1]. Identifying such
efficiency bounds is a key research objective of algorithm theory.

Example 4.9. Bodlaender et al. [2015] investigate algorithms for connectivity tasks2 such as
traveling salesperson, the number of Hamiltonian cycles, and the number of Steiner trees of a
given graph 𝐺 = (𝑉 , 𝐸). They identify time complexity bounds for these problems that depend
on the pathwidth and the treewidth of the input graphs. They formulate theorems and prove
that algorithms with run-time complexity exist that challenge previously known bounds. Their
bounds for these NP-hard problems are exponential in the treewidth tw (or in the pathwidth), but
polynomial in the input size, i.e., 𝑐tw ⋅ |𝑉 |𝒪(1) for constants 𝑐 that differ depending on the actual
algorithmic task.

The effectiveness of output is typically assessed in terms of correctness and completeness. Note
that for certain notions of output effectiveness like approximating human judgment or human

2We adopt terminology of our framework here. Algorithm theory typically uses the term problem for what we call here
algorithmic task.
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recognition of visual objects, the criteria of correctness and completeness do not objectively apply,
such that effectiveness can be better understood as a notion of accuracy or solution quality. Many
algorithms allow to tradeoff accuracy with efficiency.

Example 4.10. Fan et al. [2010] present an algorithm that performs graph pattern matching
in cubic time if graph patterns are restricted to specific connectivity properties. They prove the
correctness by showing that it terminates, that the result is indeed a match, and that this match is
maximum. Also a proof for the cubic time complexity is provided.

Formal knowledge about algorithm designs is established by the help of mathematical proofs.
A mathematical conjecture for which a proof was found is called a theorem [Velleman 2019].
Proofs make use of equivalences and inference rules for propositional or higher-order logic and for
arithmetic.

Example 4.11. Gauch [2003, p.165-170] summarizes useful equivalences and inference rules for
propositional logic. Equivalences include double negation, conditional exchange, commutativ-
ity, distribution, associativity, contraposition, DeMorgan’s rules, exportation, redundancy, and
biconditional. Gauch [2003, p.169-170] also states useful inference rules including modus ponens,
modus tollens, simplification, conjunction, disjunctive syllogism, hypothetical syllogism, addi-
tion, and constructive dilemma. These rules build on axioms of identity, excluded middle, and
noncontradiction.

Different methods for constructing proofs have been described including the construction of
truth tables and deduction [Gauch 2003]. Methodological support is provided by Velleman [2019].
He distinguishes different types of goals that have to be proved and corresponding proof strategies.

(1) To prove 𝑃 → 𝑄, assume 𝑃 is true and then prove 𝑄.
(2) To prove 𝑃 → 𝑄, assume 𝑄 is false and then prove 𝑃 is false.
(3) To prove ¬𝑃, try to reformulate the goal and use another strategy.
(4) To prove ¬𝑃, assume 𝑃 is true and reach a contradiction.
(5) To prove ∀𝑥 𝑃(𝑥), assume that 𝑥 is arbitrary and prove 𝑃(𝑥).
(6) To prove ∃𝑥 𝑃(𝑥), choose specific 𝑥 and prove 𝑃(𝑥).
(7) To prove 𝑃 ∧ 𝑄, prove 𝑃 and 𝑄 separately.
(8) To prove 𝑃 ↔ 𝑄, prove 𝑃 → 𝑄 and 𝑄 → 𝑃 separately.
(9) To prove 𝑃 ∨ 𝑄, distinguish cases and prove either 𝑃 or 𝑄.

(10) To prove 𝑃 ∨ 𝑄, assume 𝑃 is false and prove 𝑄.
(11) To prove ∃!𝑥𝑃(𝑥) (uniqueness), prove that ∀𝑦, 𝑧 ∶ 𝑃(𝑦) ∧ 𝑃(𝑧) → 𝑦 = 𝑧.
(12) To prove ∃!𝑥𝑃(𝑥) (uniqueness), prove that ∃𝑥 ∶ 𝑃(𝑥) ∧ 𝑃(𝑦) → 𝑥 = 𝑦.

Example 4.12. Lokshtanov et al. [2018] investigate lower bounds of run-time efficiency of algo-
rithms operating on graphs with bounded treewidth. They present several theorems and lemmata
with corresponding proofs. Their Theorem 1 has an implication as a goal and is proved using
Velleman’s Strategy (1) by construction. Their Lemma 11 includes three conjectures. For the first
and the second, Strategy (9) is applied distinguishing two cases. For the third, Strategy (2) is used for
constructing a contradiction. Lemma 15 is proved by help of Strategy (6). An arbitrary assignment
is chosen for which the conclusion is proved. Many figures illustrate the idea of the proofs and
concepts.

The key concern of proofs for theorems is logical validity. We define logical validity based on
Aristotle as the degree to which the syllogisms used in a proof preserve truth [Durand-Guerrier
2008, p.374]. Crafting proofs is often a manual exercise performed by researchers. Tools can be used
to support this exercise. Techniques from model checking and verification have been implemented
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in theorem provers such as the ones by Detlefs et al. [2005]; Paulson [1994]; Schulz [2002]. Still, as
Lakatos [1976] emphasizes, the eventual confidence in the logical validity of a proof is hardly a
uni-directional deductive exercise, but rather a social process within the research community.

4.4 Methods for Generating Empirical Knowledge about Algorithm Designs
Empirical knowledge about algorithm designs refers to algorithmic tasks, designs, and their rela-
tionship. Such empirical knowledge can be methodologically established by developing hypotheses
and testing them. New hypotheses can be derived inductively or deductively [Recker 2021]. The
importance of theories as a knowledge context [Wieringa 2014] has been stressed in various empir-
ical branches of computer science such as software engineering [Johnson et al. 2012; Ralph 2019;
Wohlin et al. 2015] and computer visualization [Sedlmair et al. 2012].

4.4.1 Develop Hypotheses. The inductive development of hypotheses takes World 1 and its entities
as a starting point. This includes the algorithmic problem, available implementations and data, as
well as prior outcomes. Popper and Eccles [1977] states that in order to learn more about World 1, [the
researcher] must theorize. Such theorizing is subjective to thoughts and observations about World 1
by the researcher in World 2 yielding hypotheses as World 3 entities. The deductive development of
hypotheses takes World 3 and its different knowledge entities as a starting point. A reference for
such deduction can be formal knowledge about designs and tasks, which may have been formally
proved in earlier publications. Also empirical knowledge about designs and tasks published in prior
research can inform the formulation of new hypotheses. Such knowledge can also stem from other
disciplines.

Example 4.13. Sedgewick [1978] discusses the implementation of quicksort. Prior formal knowl-
edge states that the average-case run-time performance increases with input size 𝑛 according
to 𝒪(𝑛 log 𝑛). Sedgewick posits that the run time of a practical quicksort implementation can be
improved – compared with the standard algorithm design found in textbooks. He relies on prior
empirical (and to some extent also formal) knowledge on issues concerning recursion depth, small
subarrays, worst-case input distributions, and different partitions.

Example 4.14. The graph drawing discipline develops algorithms that produce effective and
aesthetic layouts for graphs. Ware et al. [2002] propose a set of metrics of a graph layout including
the number of crossings, path bendiness, or shortest path length. Their experimental study shows
that these metrics are correlated with cognitive effectiveness of the graph layout for human
participants. The justification such metrics builds on cognitive theories [Malinova Mandelburger
and Mendling 2021]. Metrics of graph aesthetics help to compare and improve algorithms [Gibson
et al. 2013].

It is important to note that hypotheses are not always articulated in an explicit manner. This,
however, does not mean that no hypotheses exist. If, for instance, the performance of a novel
design is compared against the state-of-the-art design without stating a clear hypothesis, there still
exists the implicit hypothesis that the novel design is better with respect to a relevant performance
dimension.

The key concern for hypothesis and theorem formulation is justification validity. It refers to how
convincingly a hypothesis or theorem is supported by a deductive argument [Lannin 2005]. This
might be a matter of deduction from prior knowledge and, if applicable, its underlying theoretical
argument. In certain settings, the backing of a theoretical justification is essential for establishing
an explanation for the expected effect as stated by the hypothesis. It should again be noted that not
all hypotheses in algorithm engineering are or can be justified by theory. Often, nonetheless, there
is a rationale why an association, e.g., between a design and performance, should be present.
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4.4.2 Derive Research Design. The term research design refers to the plan used to examine a
research question of interest [Marczyk et al. 2010]. Various types of design can be distinguished
according to how explicitly they define and justify hypotheses and control for alternative expla-
nations. An exploratory design imposes no control and does not rely on justified hypotheses. It is
appropriate in areas where algorithmic tasks and algorithm designs are not yet well understood.

A correlational design identifies hypotheses and corresponding measures. It does not control for
alternative explanations and does not make use of explicit treatments. It can provide evidence for
empirical connections, but does not offer causal insights. Such connections, for instance between
the different data characteristics and performance, can be assessed using correlation and regression.
Correlational studies have been used in empirical software engineering in the early 1980s, e.g.,
Basili et al. [1983], but were later largely replaced by experiments for better control of confounding
factors.

An experimental design manipulates one or more experimental factors with two or more levels
in a controlled way. Often, the algorithm design is considered as this factor with several competing
algorithms representing the levels. Also properties of the input data can be varied. The effects of
the factor can be evaluated using statistical tests of mean comparison [Demšar 2006].

Example 4.15. In the field of process mining, Augusto et al. [2018] conducted an exploratory study
comparing the different algorithms for generating process models from event logs. These models
are evaluated using accuracy and complexity measures, showing relative strengths and weaknesses
of different algorithms. A follow-up correlational study by Augusto et al. [2022] investigates how
properties of the input data are connected with properties of the generated process models using
correlation and regression analysis. Experimental studies in this area are scarce. Experiments
require the explicit manipulation by generating artificial event log data with controlled properties.
An example of such an experimental study is Janssenswillen and Depaire [2019] who investigate the
relation between process discovery algorithms and the fitness-precision tradeoff in an experimental
setting.

A central concern of the research design is internal validity. A research design is internally valid if
its manipulation is causally responsible for an observed effect [Wohlin et al. 2012, p.102,106]. Various
factors that relate to the real-world problem, the algorithm itself, and the execution environment
can affect validity [Barr et al. 1995]. Exploratory and correlational designs are weak in terms of
internal validity. Experimental designs build on randomization and blocking to eliminate the effect
of potentially confounding factors [Wohlin et al. 2012]. Randomization is a means to statistically
eliminate the effect of confounding factors by randomly assigning units to treatment groups.
Blocking eliminates the effect of confounding factors by keeping them at a constant level. For
instance, consider a new algorithm is claimed to perform better than a recent alternative. Then,
both can be run repeatedly on the same machine to avoid confounding effects. Furthermore, both
can be implemented in the same programming language by the same developer to block these
factors [Kriegel et al. 2017].

4.4.3 Build Implementation for Instrumentation. The instrumentation of the research design
instantiates the research design by running an implementation of the algorithm with evaluation
data as input to produce performance measurements of the computational process and of the
generated output. An implementation of the algorithm design is used for the instrumentation. Any
implementation uses a specific programming language on a specific operating system running on a
specific microprocessor family, which all affect the performance of the algorithm.

Example 4.16. Kriegel et al. [2017] demonstrate that implementations of the same algo-
rithm design can vary in performance by orders of magnitude. Run time of different DBScan
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implementations was found to differ by four orders of magnitude. Even different versions of the
same frameworks like ELKI and WEKA yielded substantial performance differences.

Several publications give practical advice and clarify which matters to consider for implementing
the infrastructure for instrumentation. Various practical concerns are relevant such as software
testing, handling errors, tracking provenance, and creating packages, as much as matters of team
work and appropriate use of version control and command-line tools [Irving et al. 2021].

Example 4.17. Angriman et al. [2019] present guidelines on how to build the experimental
pipeline addressing the following concerns. Principles of software testing such as unit tests should
be considered. Implementation code should be managed using version control systems and shared
as open source on platforms like Github. Experiments should be fully automated for reproducibility
using scripts or tools such as SimexPal. Output files should be separated into experimental results,
metadata, and supplementary data, in both a human readable, but also machine processable way.

A key concern here is implementation validity (or instantiation validity [Lukyanenko et al. 2015;
Lukyanenko and Parsons 2020]). One threat for implementation validity is that the design generally
leaves space for alternative implementation options. In this way, implementation decisions can
turn out to be confounding factors [Lukyanenko et al. 2015]. Another threat is a potentially un-
faithful implementation. Testing cannot fully assure the conformance with the design specification.
Optimization, debugging and publishing code help to establish the desired confidence [Kriegel et al.
2017]. Formal verification with corresponding tools can assure that an implementation meets its
design specification [D’Silva et al. 2008].

4.4.4 Choose Evaluation Data for Instrumentation. Algorithms run on input such that we can
investigate their performance. This input for the instrumentation is called evaluation data. Different
types of evaluation data can be distinguished along two dimensions: whether the data is publicly
available or not and whether it stems from real-world or artificially generated problem instances.

In many research communities, benchmark datasets are made publicly available in order to
encourage the performance evaluation of competing algorithms. The utilization of benchmark
datasets affects the validity of research findings for several reasons. On the one hand, using
benchmark data acts as a blocking mechanism and eliminates hidden confounding effects that could
arise from using disparate datasets. On the other hand, the prolonged use of the same benchmark
data could seduce researchers to tailor their designs to the characteristics of a specific dataset.
This, in turn, increases the risk of overfitting the specific benchmark data and hurting the external
validity of the research findings [Sim et al. 2003; Tichy 1998].

Benchmark datasets are available for various algorithmic tasks, such as part-of-speech tagging
[Paul and Baker 1992], image recognition [Russakovsky et al. 2015], ontology matching [Algergawy
et al. 2019], process mining [van Dongen et al. 2013], VRPs [Defryn et al. 2016], network analysis
[Kunegis 2013; Leskovec and Sosic 2016], and various combinatorial optimization problems such as
graph partitioning and graph clustering [Bader et al. 2018]. Benchmark datasets not only facilitate
comparative evaluation. They also play an important role for exploring how specific features of
realistic input data can be exploited [Sanders 2009].

Example 4.18. Different versions of the ImageNet dataset have been used for several classification
challenges including the tasks of image classification, single-object localization, and object detection.
Russakovsky et al. [2015] provide an overview of the results for the years 2012-2014 with error
rates and corresponding confidence intervals for many published algorithms.

Benchmarking data might not be available for specific algorithmic tasks or at least not at the
required level of richness. In this case, the use of private data is appropriate, even if that data cannot
be shared.
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Example 4.19. Alsger et al. [2016] develop an algorithm to estimate origin–destination trails
based on smart card fare data. The authors use a unique smart card fare dataset obtained from
the Australian public transport operator TransLink. This dataset provides rich details including
boarding and alighting times and locations for each passenger. Using this dataset, the accuracy of
the algorithm’s capability to estimate origin–destination trails is evaluated.

Datasets, no matter if public or private, can be sampled from a real-world problem instance or
artificially generated. The TransLink dataset is also an example of a real-world dataset. Real-world
datasets are valuable for capturing the variability and complexity of a real-world problem, or at
least the relevant and realistic range of to-be-expected input [Sanders 2009]. Artificial (computer-
simulated or synthetic) datasets [Santner et al. 2003] can be used once relevant input data features
are understood. Simulation affords the systematic variation of typical input ranges, which is
instrumental for generating knowledge into how input data features translate into algorithmic per-
formance variations. Simulated data is also useful when empirical data does not exist, is insufficient,
imprecise [Hofmann 2013], or too large to store or share [Penschuck et al. 2020].

Example 4.20. Feature selection algorithms identify relevant features in high-dimensional data.
Bolón-Canedo et al. [2013] review feature selection algorithms using artificial data for two reasons:
“1. Controlled experiments can be developed by systematically varying chosen experimental conditions,
like adding more irrelevant features or noise in the input. This fact facilitates to draw more useful
conclusions and to test the strengths and weaknesses of the existing algorithms. 2. The main advantage
of artificial scenarios is the knowledge of the set of optimal features that must be selected; thus, the
degree of closeness to any of these solutions can be assessed in a confident way.”

The choice for real-world or artificially generated datasets has implications for external validity.
External validity is the degree of how well we can generalize results across populations of interest
[Cook et al. 2002, p.467], i.e., datasets of interest in our case. One aspect of external validity relates
to statistical generalizability. This is the question whether the results obtained from a study can be
generalized to the larger population from which the data was extracted [Winer 1999]. Ideally, the
data should be a random sample from the population of interest, as it simplifies the task of achieving
statistical generalizability. This approach is quite straightforward when dealing with artificial data.
However, when dealing with real-world data, random sampling is often not feasible. In such cases,
Cook et al. [2002] recommend employing purposive sampling to increase heterogeneity among the
instances. In line with this argument, Kriegel et al. [2017] recommends to vary features related to
the size and complexity of the input data.

Example 4.21. van der Kouwe et al. [2019] identify frequent benchmarking flaws in systems
security evaluations, such as cherry-picking workloads, using unrealistic threat models, or omitting
baseline comparisons. These issues pose a threat primarily to external validity, as the evaluation
results often fail to generalize beyond the constrained conditions under which they were obtained.
Although the benchmarks may be internally consistent, they do not reliably represent real-world
environments and, thus, limit the applicability of the conclusions drawn.

Another aspect of external validity pertains to realism. This is the question to which extent the
findings can be applied to a more natural or real-world setting. Real-world data, often referred
to as organic data, are generally assumed to possess such realism. Nevertheless, as long as there
are unknown discrepancies between the data generation processes across different populations,
potential threats to external validity also exist for real-world data [Xu et al. 2020]. Achieving
realism poses a greater challenge when working with artificial data. Experimental settings using
artificial data often tend to simplify reality in order to unveil causal patterns, which may limit
their applicability to more natural settings [Wieringa and Daneva 2015]. The primary challenge
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when dealing with artificial data in this regard lies in the endeavor to study features of real-world
problems and ensure that these features are adequately reflected in the artificial data [Lhermitte
et al. 2011].

Example 4.22. Bolón-Canedo et al. [2013] conduct an extensive study using artificial datasets. In
order to strengthen the external validity of their analysis, they extend their study to additionally
include two real-world datasets. In this way, they demonstrate that conclusions of their study with
artificial datasets also extend to real scenarios.

4.4.5 Measurement and Instrumentation. Hypotheses on algorithms have to be operationalized
to measures of performance. Larsen et al. [2025] use the term criterion. These measures capture the
efficiency of the algorithm execution and the effectiveness of the generated output.Themeasurement
of efficiency is classically based on the number of steps an algorithm performs or run-time duration
[Knuth 1974]. The effectiveness of the output can be measured in various ways based on the distance
between the desired and actually generated output or an assessment of its usefulness.

Example 4.23. Graph drawing algorithms address the real-world problem of visualizing an
abstract graph in an efficient and effective manner. Efficiency is often based on the run time and
measured using, for instance, the CPU time in seconds [Hachul and Jünger 2005]. Effectiveness
is often assessed according to how well the algorithm’s output can assist humans solving real-
world problems, for instance, as measured by the speed and accuracy of human task performance
[Purchase 1998].

A key concern of measurement is construct validity. In essence, it points to the question whether
a measure of a construct sufficiently measures the intended property [O’Leary-Kelly and Vokurka
1998]. More specifically, the measures have to be a valid and reliable operationalization of the
intended concept [Fenton and Pfleeger 1996]. For run-time efficiency measurement, Kriegel et al.
[2017] call for caution with wall-clock time, since it can be dominated by implementation details.
Effectiveness measurement comes with more challenges and relates to properties of what is called
gold standard, ground truth, reference data, or test data [Kondermann 2013; Toft et al. 2005; Zendel
et al. 2017]. A gold standard is not the data that is processed by an algorithm, but the reference
against which the generated output is compared.

If an objectively correct or optimal gold standard exists, the effectiveness of the solution can be
assessed by the help of simple distance measures or measures such as precision, recall, mean square
error, or area under the curve [Hossin and Sulaiman 2015; Saito and Rehmsmeier 2015]. A gold
standard can be constructed by means of highly accurate devices, by simulating, or by generating
synthetic data [Kondermann 2013]. If a gold standard is obtained by annotation of human judgement,
the same measures can be applied, but have to be interpreted differently. Unknown human errors
or biases likely exist depending on the type of task [Kondermann 2013]. Research on ImageNet has,
initially as a by-product, yielded extensive insights into sophisticated large-scale annotation proce-
dures using crowdsourcing [Russakovsky et al. 2015]. If a gold standard is absent, human judgement
can be used to assess the usefulness of the output. This assessment can be based on psychome-
tric measurement using questionnaire items, for instance, of the technology acceptance model
[Venkatesh and Davis 2000]. Psychometric measurement items can also be newly developed using
guidelines such as the ones proposed by Petter et al. [2007] and summarized by Recker [2021, p.99].

Example 4.24. Process drift detection is the analytical task of automatically identifying those
points in time where the behaviour of a process changes. Algorithms for such drift detection take
event sequences as input. Maaradji et al. [2017] evaluate their algorithm in terms of wall-clock
time efficiency and effectiveness in terms of how precision and recall develop relative to time
window size. Yeshchenko et al. [2021] evaluate their drift detection algorithm for efficiency using
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wall-clock time and effectiveness based on user assessment of usefulness of the generated output.
This assessment uses items of the technology acceptance model [Venkatesh and Davis 2000].

Research designs involving human participants have been critically appraised from an ethical
standpoint. Awareness of ethical issues sprang from experiments that could cause medical and
psychological harm for participants [Rutstein 1969; Slater et al. 2006]. Classical designs such as the
Milgram experiments on obedience are distant to typical algorithm engineering research; however,
ethical concerns are relevant, for instance, in studies where algorithmic output is evaluated using
man-made gold standards.

Example 4.25. Miceli et al. [2020] conduct a participatory study on data annotation of images by
humans in two annotation companies, one in Buenos Aires, Argentina, and one in Sofia, Bulgaria.
Their findings highlight intertwined issues with biases, misunderstanding, and unawareness on the
one hand and personal vulnerability of the individual workers on the other hand. As a consequence,
Kazimzade and Miceli [2020] recommend the development of ethical standards for data annotation
in terms of transparency, education of annotators, and corresponding regulation.

4.4.6 Draw Conclusions. The comparison of the expected with the observed results leads either
to a rejection or a failure to reject the null hypothesis. In case of an unexpected failure to reject the
null hypothesis, it is challenging to identify the cause of the deviation. The reason for failure can be
a mismatch between real-world problem and implementation in World 1, human misinterpretations
in World 2, or failures across worlds between algorithm task and real-world problem, algorithm
design and task, or algorithm implementation and design [Staples 2015]. Methods for root cause
analysis [Doggett 2005] can be used to single out what did work and what not. Upon this basis, there
are two ways of responding to such unexpected results: a revision of the algorithm task, design, or
implementation (design revision) or a revision of the hypotheses, research design, instrumentation,
or measurement (knowledge revision) [Staples 2015]. In this way, scientific knowledge creation
manifests itself as an iterative process that is directed towards aligning the algorithmic task and
design, and any corresponding knowledge.

Example 4.26. Pittke et al. [2015] present algorithms to detect homonyms and synonyms in text
labels of process model collections. Their evaluation analyzes efficiency in terms of processing
time and effectiveness using precision and recall. Furthermore, they present examples to illustrate
the capabilities of their approach. The examples highlight that resolving one case of a homonym
or synonym potentially creates issues with other terms of the process model collection. This
unexpected insight points to the opportunity of a design revision in future research.

In order to gain a profound understanding of the mechanisms that explain a certain result, it has
been recommended to use a combination of macro- and micro-benchmarks.

Example 4.27. Traeger et al. [2008] describe various considerations for a careful evaluation
design for file system and storage benchmarking. Specifically, the authors propose using at least
one macro-benchmark, capturing a full application workload, with a diverse set of targeted micro-
benchmarks, designed to analyze specific file system behaviors, such as small writes or metadata
operations. This design supports internal validity, as the micro-benchmarks isolate and evaluate
individual performance aspects with minimal confounding. At the same time, the inclusion of
the macro-benchmark contributes to external validity by ensuring that overall system behavior is
assessed under realistic, application-driven conditions. The complementary use of both types of
benchmarks allows for fine-grained analysis while maintaining relevance to real-world workloads.

Also the expected rejection of the null hypothesis requires some further reflection. The key
concern here is conclusion validity, i.e., to which degree the results can reasonably be regarded as
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revealing the hypothesized connection [Cook and Campbell 1979; García-Pérez 2012]. Conclusion
validity strongly emphasizes statistical analysis, but also covers qualitative considerations [Cozby
2007]. Conclusions can be drawn from statistical tests when their assumptions hold and the required
significance levels are obtained. Additional qualitative analysis of outliers or data points that exhibit
anomalies can help to further support conclusions [Hernández-Orallo 2017] or to investigate reasons
of failure. Often, reservations on conclusions from empirical research are reported as limitations or
threats to validity.

Example 4.28. Teymourian et al. [2020] present a clustering algorithm for the modularization of
large-scale software systems.The authors conduct extensive experiments to show that their solution
can compete with existing algorithms in terms of both modularization quality as well as run time.
At the end of the paper, the authors have included a dedicated section entitled Threats to Validity.
They use this section to mainly discuss concerns of external and internal validity. Among others,
they discuss that the selected application might not be representative of software systems in general
and that employing different evaluation metrics may lead to different results. Besides external and
internal validity, the authors also discuss concerns, such as conclusion validity. For instance, they
point out that the employed ground truth might not match the ground truth created by humans.

Researchers have to take a step back and stick to the facts when drawing conclusions. Results, no
matter if expected or unexpected, may be subject to errors or fraudulent manipulation. Imperative
for understanding is that all results can be explained [Small et al. 1997]. Gauch [2003] states that
“most fallacious reasoning in science results from accidental blunders. Unexamined presuppositions, bad
data, and invalid logic lead to wrong conclusions, despite the best of intentions. To be honest, however,
it must be admitted that scientists are only human, so occasionally errors result not from failure of
competence but from failure of will. [… ] Sometimes reason is usurped by desire, so the goal becomes not
to embrace reality, but to evade reality. Logic is enlisted in this dirty, insincere business of rationalizing.”

Reproducibility is therefore a key concern for establishing transparency and trust in scientific
results. In essence, reproducibility requires that the algorithm can be implemented and evaluated
independently by a different team [Angriman et al. 2019]. Weaker notions include replicability (a
different research team conducts a study using the same source code and experimental setup) and
repeatability (the same research team conducts a study using the same source code and experimental
setup) [Plesser 2018]. Tomeet reproducibility as a requirement, evaluation data and implementations
should be made available and citable [Stodden et al. 2016]. Different initiatives, such as making
research data and research software meet the principles of findability, accessibility, interoperability,
and reusability (FAIR), address this concern [Barker et al. 2022; Wilkinson et al. 2016], not only to
reproduce results, but also to reuse research material to help gaining new insights.

Example 4.29. The Proceedings of the VLDB Endowment encourages authors to share their work
in a reproducible way. Corresponding submissions are invited to include the following material:3 a
prototype system implementation, either the process to generate the input data or the actual data
itself, the executable code as instrumentation to produce the raw result data, and the scripts to
transform the raw data into the graphs included in the paper. The article by Tziavelis et al. [2020]
on optimal algorithms for ranked enumeration of answers to full conjunctive queries is one of the
accepted VLDB papers that has been evaluated to meet these reproducibility criteria.

5 Implications for Algorithm Engineering
This section discusses the implications of our framework for algorithm engineering. The framework
highlights that research papers in this area require ontological clarity, epistemological precision,

3https://vldb.org/pvldb/reproducibility/, accessed 7 August 2023.
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Table 2. Questions on Ontological Clarity

Ontological Clarity of Tasks
What is the task, and how does the task relate to real-world problems?
Which assumptions are made regarding input data, algorithmic processing, and the desired
output?
Which performance requirements are relevant?
To which extent can the task be fully specified? How are users involved if the task is fuzzy?
Ontological Clarity of Designs
How does the algorithm work, and upon which design principles is the algorithm designed?
Which design decisions were made based on which assumptions?
Based on which considerations have parameter values been set?
If applicable, which implementation decisions have been made?
Which results does the implementation provide?

and methodological validity. These three pillars provide the foundation for a scientific contribution.
In this context, a contribution is an extension or an improvement of the body of knowledge regarding
knowledge of tasks and design, knowledge about tasks and design, and knowledge how to conduct
research in terms of methodology. The accumulation of scientific contributions in the body of
knowledge represents scientific progress.

In the following, we discuss which questions help capturing to which extent a contribution has
ontological clarity, epistemological precision, and methodological validity.

5.1 Ontological Clarity
In essence, a contribution has ontological clarity if it is clear to which algorithmic task and algorithm
design it relates, as much as corresponding real-world problem, implementations, and results. Table 2
summarizes questions that authors should consider answering in their papers with respect to tasks.
The audience of the paper must be able to understand what the exact task is and to which real-
world problems it relates. Some tasks are canonical and well understood in specific research areas.
The more specific and newly identified a particular task is, the more detailed elaboration on its
characteristics is required, for instance using models and examples. Clarity in this matter provides
a basis for judging the appropriateness of assumptions in input data and algorithmic processing, as
much as on the desired output and performance requirements. If the task cannot be fully specified
or solved algorithmically, it should be clarified how users can interactively direct the computation
and work with the output.

Table 2 also summarizes questions that authors should consider in their papers with respect to
designs. The audience of the article must be able to understand how the algorithm works and how
this addresses the requirements imposed by the task. Clarifying the design principles uponwhich the
design rests, how design decisions were taken, and how parameter values were set, helps readers to
judge plausibility. If the contribution relates to an implementation and corresponding experiments,
relevant additional implementation decisions should be explained and made transparent.

5.2 Epistemological Precision
A contribution has epistemological precision if it precisely describes what is not known, how that
lack of knowledge constitutes a research problem, and how it extends the body of knowledge in
this respect. Table 3 summarizes related questions on tasks. The task can be described in different
ways. The anticipated contribution defines the degree of precision to which the task has to be
specified. If possible, descriptions from prior research should be used or appropriately adapted.
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Table 3. Questions on Epistemological Precision

Epistemological Precision of Tasks
Why is the task described formally, semi-formally, informally, or else?
What prior research has been published on this task?
What knowledge of this specific task has been published?
Which new or improved knowledge of this task is presented?
Which formal knowledge about this task including theorems has been published?
Which new or improved theorems about this task are presented?
Which empirical knowledge including hypotheses about this task has been published?
Which new or improved hypotheses about this task are presented?
Epistemological Precision of Designs
What knowledge of a specific design has been published?
Which new or improved knowledge of a design is presented?
Why is the design described using pseudocode, flow charts, formal specification, or else?
Which formal knowledge about a design including theorems has been published?
Which new or improved theorems about a design are presented?
Which empirical knowledge including hypotheses about a design has been published?
Which new or improved hypotheses about a design are presented?
Do theorems and hypotheses relate to performance, sensitivity, uncertainty, and explanatory
knowledge with corresponding causal factors?

Prior knowledge of a task defines the backdrop against which corresponding knowledge about
the task can be identified. Understanding the boundaries of the body of knowledge requires a
comprehensive review of the relevant literature, including formal and empirical contributions.
Mind that not only publications on the exact task are relevant, but also more general classes of
tasks and related tasks inform our understanding. The systematic review of the literature is the
basis for summarizing what is known and the new or improved knowledge that a article provides.

Table 3 also summarizes related questions on designs. Similar concerns apply as for tasks. The
anticipated contribution defines the degree of precision to which a design has to be specified. If
possible, descriptions from prior research should be reused. Prior knowledge of a design defines
the boundaries of relevant knowledge about it. Mind that this knowledge about designs is relative
to the specific tasks under consideration. A comprehensive review of the relevant literature on
related designs is required. If possible, insights into performance should be complemented with
analysis of sensitivity, uncertainty, and explanatory factors.

5.3 Methodological Validity
A reader of a research article needs to understand the boundaries of the knowledge that is being
created. A contribution hasmethodological validity if the latest researchmethods andmethodological
concerns are appropriately considered. Overall, we distinguish nine concerns. Table 4 summarizes
corresponding questions.

The central question regarding validity is which validity concerns have to be considered. First,
this consideration depends upon the ontological focus of the contribution.

— If a contribution relates to algorithmic tasks, then ecological validity is relevant.
— If a contribution presents an algorithm design, then design validity is important.
— If a contribution builds, among others, on an algorithm implementation, then implementation

validity has to be considered.
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Table 4. Questions on Methodological Validity

Methodological Validity of Tasks
Which methods are used to generate knowledge of tasks?
If there are relevant threats to ecological validity, how have they been mitigated?
To what extent can the study findings be generalized to real-world problems?
Methodological Validity of Design
Which methods are used to generate knowledge of designs?
Why have deductive, inductive, abductive, analogy methods been used, or else?
How did the co-evolution of problem and design space unfold?
If there are relevant threats to design validity, how have they been mitigated?
To which extent is the internal structure of an algorithm consistent, transparent and
explainable?
To which asymptotic function class is the efficiency related?
Which formal guarantees regarding correctness, completeness, and termination can be made?
If there are relevant concerns regarding logical validity, how have they been addressed?
What is the trade-off between efficiency and effectiveness?
Which proof strategies are used to prove theorems and lemmata?
Why are hypotheses developed deductively or inductively, or else?
If there are relevant threats to justification validity, how have they been mitigated?
Do hypotheses have a theoretical justification or else?
Why is an exploratory, correlational, or experimental research design used?
If there are relevant threats to internal validity, how have they been mitigated?
What are potentially confounding factors and how are they controlled?
Which implementation method was chosen and why?
How was the implementation tested?
If there are relevant threats to implementation validity, how have they been mitigated?
Which evaluation data is chosen and why?
Why is benchmark data or private data, real-world data or artificial used?
If there are relevant threats to external validity, how have they been mitigated?
Are feature ranges understood and realistic?
How are relevant factors untangled and isolated?
How is overfitting avoided?
How are appropriate measures selected or constructed?
If there are relevant threats to construct validity, how have they been mitigated?
Are the measures valid and reliable operationalizations of the intended concept?
Is effectiveness measured by help of an objective gold standard, a gold standard obtained from
human annotation, or human judgements in absence of a gold standard?
How can unexpected results be explained?
What are arguments for a design revision or a knowledge revision?
If there are relevant threats to conclusion validity, how have they been mitigated?
Do assumptions of statistical tests hold?
What can we learn from outliers or anomalous data points?
Are the results reproducible according to established standards?
Are data and research software shared upon FAIR principles?

Second, it is relevant to which type of knowledge a contribution refers.
— No matter if a contribution provides knowledge of or about tasks or design, methodological

transparency is required. Based on which considerations and methods is this knowledge
established?
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— If a contribution offers new formal knowledge, then both justification validity of establishing
theorems and logical validity of corresponding proofs has to be considered.

— If a contribution formulates new empirical knowledge, then justification validity of the hy-
potheses and internal validity of the research design have to be considered. Furthermore, the
instrumentation of the research design requires the implementation validity of the implemen-
tation and the external validity of the evaluation data. Construct validity is relevant for the
results produced and conclusion validity for drawing appropriate conclusions.

Third, there are different strategies to address validity concerns. The weakest consideration is
to create transparency about limitations, for instance in a subsection on threats to validity. A better
approach is to conduct additional analyses to investigate to which extent a certain aspect of validity
could be affected by factors that were not addressed by the research design. If possible, an even better
strategy is when validity concerns are anticipated and considered in the research design, for instance
by help of manipulation checks, systematic sampling of evaluation data, or other means of quality
control. All this helps to assure that the right conclusions can be drawn from the research at hand.

Fourth, it has to be noted that a contribution can never be perfect with respect to all validity
concerns. In particular, the tradeoff between internal and external validity has often been discussed
in the literature. To a certain extent, this tradeoff is inherited from the choice of a specific research
design and research method [Recker 2021]. One way to address this is to integrate multiple different
research designs into a research strategy [Roe and Just 2009]. Another perspective on imperfections
is to judge them based on what is known on a particular research problem. If hardly any knowledge
is available on an emerging research problem, the bar for methodological rigor might be lower than
for well-researched problems. However, the bar is then still high to explicitly discuss threats to
validity.

In the end, it is important to emphasize that knowledge of without knowledge about is insufficient.
The central knowledge concern of algorithm engineering is the satisfaction relationship between
algorithmic tasks and algorithm designs. This implies that validity concerns are relevant for any
article that proposes a new algorithm.

5.4 Ethical Considerations along the Algorithm Engineering Framework
Ethics plays a pivotal role in algorithm engineering since algorithms increasingly impact various
facets of society. Recognizing this, many authors discuss numerous dimensions of ethics in the
context of designing and using algorithms including trust, fairness, transparency, and bias mitigation
[Barocas et al. 2023; Martin 2019; Spiekermann et al. 2022]. If appropriately designed, algorithms
can contribute to human well-being by positively influencing user behaviour and preventing
negative outcomes for humans. Some fundamental dilemmas apply, such as exemplified by the
moral machine experiment [Awad et al. 2018], which algorithms often approach from a utilitarian
or a duty ethics angle. Preventing ethical issues is a key concern of approaches such as IEEE 7000
that cover ethical value requirements [Spiekermann 2021]. While discussing ethics in more detail
is beyond the scope of this article, we would like to emphasize its importance in the context of
algorithm engineering and point out that our framework can help identify where ethics may come
into play.

The ontological perspective shows that ethical concerns are by no means limited to the design
of algorithms. As the starting point is a real-world problem, one can already ask whether this
real-world problem and the corresponding tasks are ethical. One prominent and widely discussed
example is the task of creating so-called deepfakes, i.e., face-swapping technologies that enable the
creation of fake images or videos that appear to be real [Meskys et al. 2020]. While there are several
real-world problems that can ethically justify the deepfake creation task (e.g., bringing back dead
actors), others are highly problematic (e.g., fake speeches of politicians or deep fake pornography).
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The epistemological perspective points to the issue of creating knowledge about the design that
provides insights into its ethical implications. Strictly speaking, such knowledge can be interpreted
as a specific category of performance knowledge and to which extent corresponding requirements
are satisfied. A difficulty of such an assessment is that dilemmas apply and ethical norms differ
between individuals and cultural contexts [Awad et al. 2018].

The methodological perspective particularly emphasizes the role of evaluation data. It has been
widely discussed that data, especially when used for training of AI models, can lead to different types
of biases and discrimination [Ntoutsi et al. 2020]. Our framework further points at the relationship
between evaluation data and the empirical knowledge we can generate about a design: data that is
biased or not representative will lead to biased and non-representative knowledge. An aspect that
might be less obvious is that the generation of evaluation data might be associated with ethical
concerns as well. Kshetri [2021] discusses the issues associated with large data being manually
labeled via crowdsourcing microtasks, often performed by individuals residing in developing
countries who do not receive fair payment.

We recognize that the aspects discussed above are a few out of many ethical concerns. We,
however, believe that our framework can structure a discussion on ethics in algorithm engineering.

6 Conclusion
In this article, we presented a research framework for algorithm engineering. Our framework builds
on three areas discussed in the philosophy of science: ontology, epistemology and methodology. In
essence, ontology describes algorithm engineering as being concerned with algorithmic problems,
algorithmic tasks, algorithm designs and algorithm implementations. Epistemology describes the
body of knowledge of algorithm engineering as a collection of prescriptive and descriptive knowl-
edge, residing in World 3 of Popper’s Three Worlds model. Methodology refers to the steps how we
can systematically enhance our knowledge of specific algorithms. In this context, we identified
nine validity concerns and discussed how researchers can respond to falsification.

Our framework has important methodological implications for researching algorithms in var-
ious areas of computer science. First, it offers a theoretical foundation for algorithm engineering
grounded in the philosophy of science. This foundation clarifies how algorithms can be studied and
which knowledge can be obtained. Second, our framework provides guidance for the methodological
evaluation of newly proposed algorithms. Authors can use considerations that are related to the dif-
ferent validity concerns as a starting point. Third, this methodological grounding offers a framework
for conducting research on algorithms in various areas of computer science in a way that supports
an incremental research path. The concepts tied together in our framework might eventually help to
foster knowledge transfer across sub-disciplines of computer science on how to research algorithms.
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