

Influence of proton pump inhibitors on the incidence and clinical course of oesophageal fistula following catheter ablation for atrial fibrillation: a subanalysis of the POTTER-AF study

Thomas Beiert ^{1*}, Vincent Knappe ¹, Andreas Zietzer ¹,
Vanessa Schmidt ^{2,3}, Helmut Pürerfellner ⁴, Philipp Sommer ⁵,
Christian Sohns ⁵, Christian Veltmann ⁶, Daniel Steven ⁷, Kyoung-Ryul
Julian Chun ⁸, Philippe Maury ⁹, Estelle Gandjbakhch ¹⁰, Mikael Laredo ¹⁰,
Stephan Willems ¹¹, Martin Borlich ¹², Anna Füting ^{13,14}, Raphael Spittler ¹⁵,
Sergio Richter ¹⁶, Anja Schade ^{17,18}, Malte Kuniss ¹⁹, Carsten Wunderlich ²⁰,
Dong-In Shin ^{14,21}, Dirk Grosse Meininghaus ²², Marc Bonsels ²³, David Reek ²⁴,
Uwe Wiegand ²⁵, Alexander Bauer ²⁶, Andreas Metzner ²⁷, Lars Eckardt ²⁸,
Olaf Krahnenfeld ²⁹, Christian Sticherling ³⁰, Michael Kühne ³⁰,
Dinh Quang Nguyen ³¹, Laurent Roten ³², Dominik Linz ³³,
Pepijn van der Voort ³⁴, Bart A. Mulder ³⁵, Johan Vijgen ³⁶,
Alexandre Almorad ³⁷, Charles Guenancia ³⁸, Laurent Fauchier ³⁹,
Serge Boveda ^{37,40}, Yves De Greef ^{37,41}, Antoine Da Costa ⁴², Pierre Jais ⁴³,
Antoine Milhem ⁴⁴, Laurence Jesel ⁴⁵, Rodrigue Garcia ^{46,47}, Hervé Poty ⁴⁸,
Ziad Khoueiry ⁴⁹, Julien Seitz ⁵⁰, Julien Laborderie ⁵¹, Alexis Mechulan ⁵²,
Francois Brigadeau ⁵³, Alexandre Zhao ⁵⁴, Yannick Saludas ⁵⁵, Olivier Piot ⁵⁶,
Nikhil Ahluwalia ^{57,58}, Claire A. Martin ⁵⁹, Jian Chen ⁶⁰, Bor Antolic ⁶¹,
Georgios Leventopoulos ⁶², Emin Evren Özcan ⁶³, Hikmet Yorgun ⁶⁴,
Serkan Cay ⁶⁵, Kivanc Yalin ⁶⁶, Maichel Sobhy Botros ⁶⁷,
Ewa Jędrzejczyk-Patej ⁶⁸, Osamu Inaba ⁶⁹, Ken Okumura ⁷⁰, Koichiro Ejima ⁷¹,
Houman Khakpour ⁷², John N. Catanzaro ⁷³, Vivek Reddy ⁷⁴,
Andrea Natale ^{75,76,77}, Hermann Blessberger ⁷⁸, Bing Yang ⁷⁹,
Julia Vogler ^{2,11}, Karl-Heinz Kuck ², José Luis Merino ⁸⁰, Ahmad Keelani ^{2†},
Christian-H. Heeger ^{2,81‡}, Sorin S. Popescu ^{2,81¶}, and
Roland Richard Tilz ^{2,81*¶}; on behalf of the POTTER-AF Investigators

* Corresponding authors. Tel: +49 228 287 16670; fax: +49 228 287 14983. E-mail address: thomas.beiert@ukbonn.de (T.B.); Tel: +49 451 500 44511; fax: +49 451 500 44584. E-mail address: tilz6@hotmail.com (R.R.T.)

† Present address. Department of Rhythmology, Bad Berka Central Clinic, Germany.

‡ Present address. Department of Rhythmology, Asklepios Hospital Altona, Hamburg, Germany.

¶ The last two authors contributed equally to the study.

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, Bonn D-53127, Germany; ²Department of Rhythmology, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, Lübeck D-23538, Germany; ³Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; ⁴Interne 2, Ordensklinikum Linz Elisabethinen, Linz, Austria; ⁵Kliniken für Elektrophysiologie/Rhythmologie, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany; ⁶Heart Center Bremen, Electrophysiology Bremen, Bremen, Germany; ⁷Department for Electrophysiology, Heart Center University Cologne, Cologne, Germany; ⁸MVZ CCB am Agaplesion Markus Krankenhaus, Frankfurt a.M., Germany; ⁹Department of Cardiology, University Hospital Rangueil, Toulouse, France; ¹⁰Sorbonne Université, APHP, Pitié Salpêtrière University Hospital, Cardiology Institute, Paris, France; ¹¹Klinik für Kardiologie und Internistische Intensivmedizin, Asklepios Klinik St. Georg, Hamburg, Germany; ¹²Heart Center, Segeberger Kliniken (Academic Teaching Hospital of the Universities of Kiel, Lübeck and Hamburg), Bad Segeberg, Schleswig-Holstein, Germany; ¹³Department of Electrophysiology, Alfred Krupp Hospital, Essen, Germany; ¹⁴Department of Medicine, Witten/Herdecke University, Witten, Germany; ¹⁵Department of Cardiology II/Electrophysiology, Center for Cardiology, University Hospital Mainz, Mainz, Germany; ¹⁶Department of Internal and Cardiovascular Medicine, Herzzentrum Dresden, University Clinic, Technische Universität Dresden, Dresden, Germany; ¹⁷Department of Interventional Electrophysiology, Helios Hospital Erfurt, Erfurt, Germany; ¹⁸Department of Rhythmology, Rhoen Klinikum Campus Bad Neustadt/Saale, Bad Neustadt/Saale, Germany; ¹⁹Department of Cardiology, Kerckhoff Heart Center, Bad Nauheim, Germany; ²⁰Helios Klinikum Pirna, Klinik für Innere Medizin II, Pirna, Germany; ²¹Department of Cardiology, Heart Centre Niederrhein, Helios Clinic Krefeld, Krefeld, Germany; ²²Department of Cardiology, Medical University Lusatia - Carl Thiem, Cottbus, Germany; ²³Klinik für Kardiologie, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany; ²⁴Department of Cardiology, University Hospital Augsburg, Augsburg, Germany; ²⁵Sana-Klinikum Remscheid GmbH, Akademisches Lehrkrankenhaus der Universität zu Köln, Remscheid, Germany; ²⁶Innere Medizin I, Diak-Klinikum Schwäbisch Hall und Klinikum Crailsheim, Schwäbisch Hall, Germany; ²⁷Klinik für Kardiologie, Universitäres Herz- und Gefäßzentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; ²⁸Department of Cardiology II (Electrophysiology), University Hospital Münster, Münster, Germany; ²⁹Medizinische Klinik II, Sana Kliniken Lübeck, Lübeck, Germany; ³⁰Deaprtment of Cardiology, University Hospital Basel, Basel, Switzerland; ³¹Kardiologie und Rhythmologie, St. Vinzenz-Hospital Köln, Köln, Germany; ³²Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; ³³Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands; ³⁴Cardiology, Catharina Hospital, Eindhoven, The Netherlands; ³⁵Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; ³⁶Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium; ³⁷Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium; ³⁸Cardiology Department, Dijon University Hospital, Dijon, France; ³⁹Service de Cardiologie, Centre Hospitalier Universitaire Trousseau, Tours, France; ⁴⁰Cardiology – Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; ⁴¹Department of Cardiology, ZNA Heart Centre, Antwerp, Belgium; ⁴²Division of Cardiology, Jean Monnet University, Saint-Etienne, France; ⁴³CHU Bordeaux, Univ. Bordeaux, IHU LIRYC ANR-10-IAHU-04, Bordeaux, France; ⁴⁴Cardiology Department, La Rochelle Hospital, La Rochelle, France; ⁴⁵Division of Cardiovascular Medicine, University Hospital Strasbourg, Strasbourg, France; ⁴⁶Department of Cardiology, University Hospital of Poitiers, Poitiers, France; ⁴⁷Centre d'Investigation Clinique 1402, University Hospital of Poitiers, Poitiers, France; ⁴⁸Cardiologie, Clinique Tonkin, Lyon, France; ⁴⁹Service de Cardiologie, Clinique Saint Pierre, Perpignan, France; ⁵⁰Electrophysiology, Hospital St. Joseph, Marseille, France; ⁵¹Cardiology Department, Bayonne Hospital, Bayonne, France; ⁵²Service de Cardiologie, Hospital Clairval, Marseille, France; ⁵³Service Cardiologie, University Hospital Lille, Lille, France; ⁵⁴Cardiologie et Vasculaire, Clinique Ambroise Paré, Paris, France; ⁵⁵Cardiologie, Clinique Pôle Santé République, Clermont Ferrand, France; ⁵⁶Centre Cardiologie du Nord, Saint Denis, France; ⁵⁷Barts Heart Centre, Barts Health NHS Trust, London, UK; ⁵⁸William Harvey Heart Centre, Queen Mary University of London, London, UK; ⁵⁹Department of Cardiology, Royal Papworth Hospital, University of Cambridge, Cambridge, UK; ⁶⁰Department of Heart Disease, Haukeland University Hospital, University of Bergen, Bergen, Norway; ⁶¹Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia; ⁶²Department of Cardiology, University of Patras, Patras, Greece; ⁶³Heart Rhythm Management Center, Dokuz Eylül University, Izmir, Turkey; ⁶⁴Department of Cardiology, Hacettepe University, Ankara, Turkey; ⁶⁵Department of Cardiology, Division of Arrhythmia and Electrophysiology, University of Health Sciences, Yıldız İhtisas Cardiovascular Building, Ankara City Hospital, Ankara, Turkey; ⁶⁶Department of Cardiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey; ⁶⁷Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt; ⁶⁸Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland; ⁶⁹Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama, Japan; ⁷⁰Division of Cardiology, Saiseikai Kumamoto Hospital, Kumamoto, Japan; ⁷¹Department of Cardiology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; ⁷²UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, USA; ⁷³Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina University Health, Greenville, NC, USA; ⁷⁴Helmsteyn Electrophysiology Center, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁷⁵Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; ⁷⁶Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy; ⁷⁷Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; ⁷⁸Department of Cardiology, Kepler University Hospital, Linz, Austria; ⁷⁹Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China; ⁸⁰La Paz University Hospital, Universidad Autónoma de Madrid, Idipaz, Madrid, Spain; and ⁸¹German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Received 21 July 2025; accepted after revision 26 July 2025; online publish-ahead-of-print 24 October 2025

Keywords

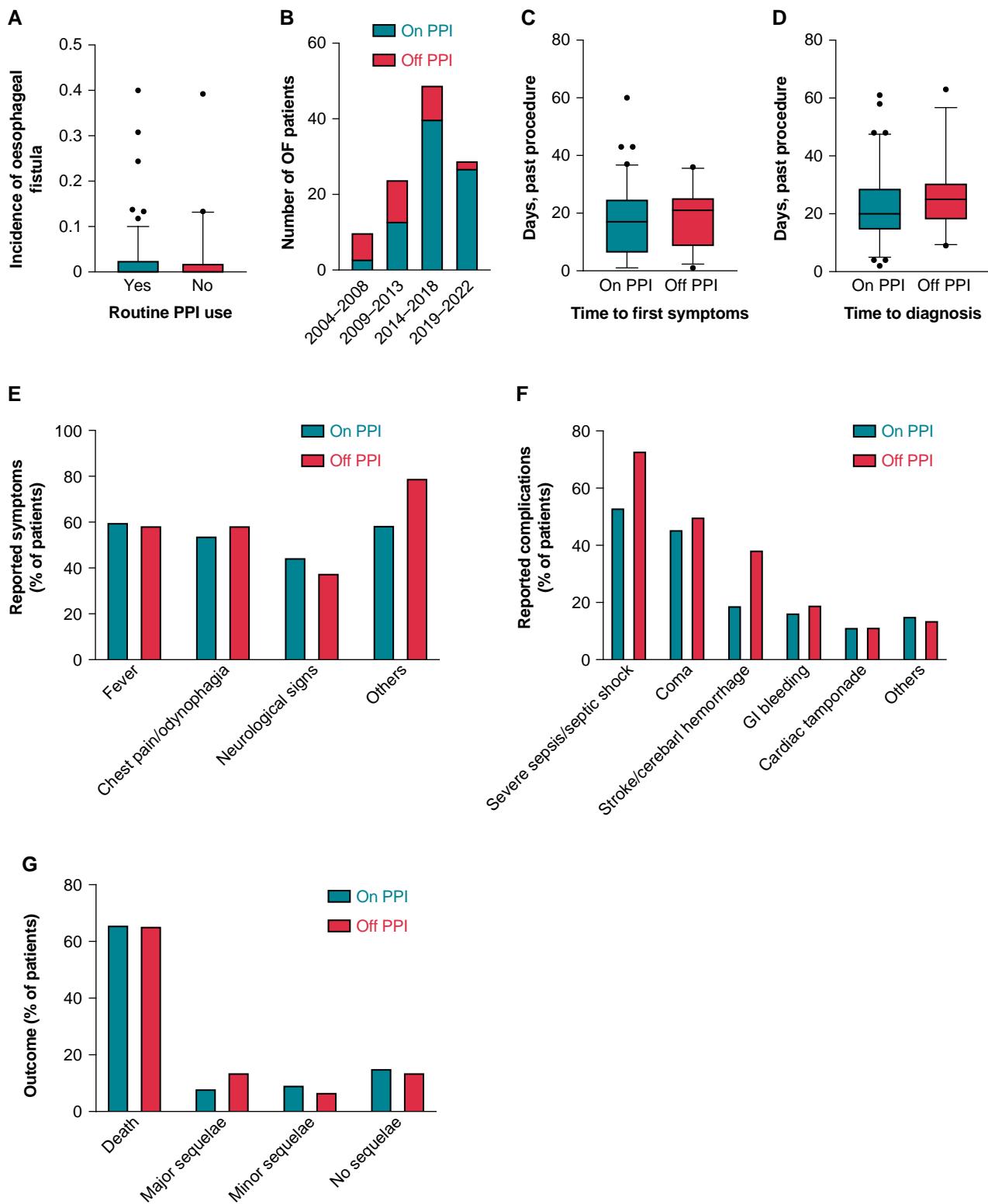
Atrial fibrillation • Catheter ablation • Oesophageal fistula • Proton pump inhibitor

Introduction

Atrial fibrillation (AF) represents the most common cardiac arrhythmia with an increasing incidence and prevalence worldwide.¹ Pulmonary vein isolation (PVI) via catheter ablation is the cornerstone of AF treatment.¹ Despite years of experience and significant technological advances, oesophageal fistula (OF) remains the most severe complication of catheter ablation for AF, associated with high morbidity and mortality.^{2,3} The POTTER-AF study reported a very low incidence of 0.025%.² Therefore, data on effective preventive measures remain limited. Despite the lack of evidence, proton pump inhibitor (PPI) therapy is a widely adopted prophylactic treatment.^{4,5} While PPIs are considered to be generally well tolerated, recent studies have demonstrated relevant pharmacological interactions and adverse effects, warranting a cautious prescription.⁶ The aim of this study was to evaluate the impact of routine PPI use on the incidence and clinical course of OF in the POTTER-AF study.

Methods

All patients diagnosed with an OF from the POTTER-AF study were stratified based on the use of post-procedural PPI.


Normally distributed variables are reported as mean \pm standard deviation. Non-normally distributed variables are shown as median and interquartile range. The unpaired Student's *t*-test was conducted for group comparisons if normally, and the Mann–Whitney *U* test if non-normally distributed. Categorical variables are displayed as absolute numbers and relative frequencies and were compared using Fisher's exact test.

Results

Routine proton pump inhibitor prescription

Of the participating centres, 195 of 214 had available data on institutional routine post-procedural PPI prescription. In 155 centres (79.5%), patients were routinely treated with PPI after an AF ablation procedure. The mean rate of OF in those centres was 0.023% \pm 0.053%, compared to 0.024% \pm 0.067% in centres without routine PPI treatment ($P = 0.842$; Figure 1A).

Throughout the study period, we observed an increase in PPI prescription in the cohort of OF patients, rising from 30% before 2009 to 93% after 2018 (Figure 1B).

Figure 1 (A) Incidence of OF in relation to institutional routine post-procedural PPI treatment. Data points represent individual institutions. (B) Development of PPI prescription in OF patients over time. Displayed are numbers of OF patients with and without PPI prescription in indicated time frames. (C and D) Time to first symptoms (C) and time to diagnosis (D). Data points represent individual patients. (E) Overview of symptoms on first clinical presentation. (F) Overview of complications. (G) Overview of the outcome of all patients with OF. PPI, proton pump inhibitor; GI, gastrointestinal. The bottom and top edges of the box plots represent the 25th and 75th percentiles, and the lower and upper whiskers give the 5th and 95th percentiles, respectively. The lines within the boxes indicate the median values.

Patient population

Data on periprocedural characteristics, management, outcome and information on post-procedural PPI prescription were available for 114 patients with OF. Patients had a mean age of 62.5 ± 11.4 years. Paroxysmal, persistent, and long-standing persistent AF were present in 43%, 50%, and 7% of patients, respectively. Eighty-five patients (75%) were treated with PPI after the ablation procedure. The proportion of female patients was significantly lower in the cohort with PPI compared to the group without (41.2% vs. 67.9%, $P = 0.017$). No other differences were noted.

The energy source used was radiofrequency in 96.5%, cryoballoon in 2.6%, and laser balloon in 0.6% of patients, with no significant differences between the groups. Contact force measuring catheters were used more often in the 'on PPI' group (56.3% vs. 17.2%, $P < 0.001$). Additional linear ablations in the left atrium were performed in 45.7% of patients.

Patient presentation

The median time between procedure and onset of symptoms was comparable between groups (17.0 (6.0, 25.0) days vs. 21.0 (8.3, 25.5) days for patients 'on PPI' and 'off PPI', respectively, $P = 0.177$; Figure 1C). Similarly, the median time to diagnosis was 20.0 (14.3, 29.0) days in patients treated with PPI and 25.0 (17.8, 30.8) days in those without ($P = 0.123$; Figure 1D).

The primary initial symptoms in patients with and without PPI treatment included fever (60.0% vs. 58.6%, $P = 1.00$), chest pain or odynophagia (54.1% vs. 58.6%, $P = 0.829$), neurological symptoms (stroke or seizures) (44.7% vs. 37.9%, $P = 0.665$), and others (58.8% vs. 79.3%, $P = 0.072$) (Figure 1E).

Complications and outcome

The complication rate did not differ between patients treated with PPI compared to those without (Figure 1F). Most frequently observed were severe sepsis or septic shock (53.2% vs. 73.1%, $P = 0.108$), coma (45.6% vs. 50.0%, $P = 0.821$), stroke or cerebral haemorrhage (19.0% vs. 38.5%, $P = 0.062$), gastrointestinal bleeding (16.5% vs. 19.2%, $P = 0.768$), cardiac tamponade (11.4% vs. 11.5%, $P = 1.00$), or others (15.3% vs. 13.8%, $P = 0.222$).

Mortality was high and comparable in both groups (65.9% for patients 'on PPI' vs. 65.5% for patients 'off PPI', $P = 1.00$; Figure 1G). A total of 7/85 (8.2%) vs. 4/29 (13.8%) and 8/85 (9.4%) vs. 2/29 (6.9%) patients experienced major or minor sequelae, respectively ($P = 0.467$ and $P = 1.00$). Only 13/85 (15.3%) vs. 4/29 (13.8%) patients had no sequelae ($P = 1.00$).

Discussion

The key findings of the study are as follows:

- (1) The incidence of OF did not differ between centres with and without post-procedural PPI prescription.
- (2) Patients with and without PPI had comparable time to symptom onset, complication rate, and mortality.
- (3) The use of PPI following AF ablation has significantly increased over time.

Proton pump inhibitors are widely prescribed after left atrial ablation procedures to reduce gastric acidity, as gastroesophageal reflux is thought to contribute to the progression of ablation-induced oesophageal lesions and OF formation.^{4,5,7,8} Beyond potential prevention, PPI therapy might influence the time course and clinical presentation of OF. However, no difference in OF incidence was observed between centres with or without routine PPI use. Similarly, a study from Ugata et al.⁹ showed no reduction of mortality or severe oesophageal injury with prophylactic PPI. A recent substudy of the MADE-PVI trial suggested a protective effect in

patients with pre-existing reflux oesophagitis.¹⁰ Nevertheless, no definite conclusions can be drawn from those observational or *post hoc* analyses, and no additional evidence supports or contradicts the use of PPI therapy.⁸ As the present study is a retrospective analysis exclusively in patients with OF, the independent and causal influence of post-procedural PPI prescription on the incidence of OF cannot be evaluated.

We observed comparable time to first symptoms, time to diagnosis, symptom burden, complications, and outcome, altogether questioning the effectiveness of PPI in OF prevention. Nevertheless, despite the lack of randomized data, empirical PPI treatment remains a reasonable approach due to its low cost and favourable safety profile, at least for thermal ablations. But trade-offs including relevant pharmacological interactions and an increased risk of infections should be considered.⁶

Limitations

The retrospective nature of the study bears known limitations. Possible practice changes in routine PPI prescription during the observational period were not evaluated. The details on PPI therapy are not known and might have changed over the observational period.

Acknowledgements

We thank all the local investigators and assistant personnel for their great effort. Furthermore, we thank all the POTTER-AF collaborators.

Funding

All authors declare no funding for this contribution.

IRB information

The POTTER-AF study was approved by the Ethics Commission of the University of Luebeck (reference number: AZ 21–291).

Conflict of interest: R.R.T. is a consultant for Boston Scientific, Philips, Medtronic, Biosense Webster, and Abbott Medical; is a shareholder and medical director by Active Health; had received speaker honoraria from Boston Scientific, Biotronik, Biosense Webster, Abbott Medical, Lifetech, and Pfizer; has received research grants from Abbott, Biotronik, Medtronic, Biosense Webster, and Lifetech; and has received travel grants from Abbott, Biosense Webster, Boston Scientific, Medtronic, and Philips. S.S.P. is a medical consultant by Active Health and has received travel grants and congress grants from Lifetech and educational grants and a speaker grant from Abbott Medical. T.B. discloses speaking honoraria and travel expenses from Abbott, Biosense Webster, Biotronik, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Medtronic, Pfizer, and Zoll, outside the submitted work. K.-H.K. reports grants and personal fees from Abbott Vascular, Medtronic, and Biosense Webster, outside the submitted work. C.-H.H. received travel grants and research grants from Abbott, Haemonetics, Boston Scientific, Lifetech, Biosense Webster, and Cardiofocus and speaker honoraria from Haemonetics, Medtronic, Abbott, Boston Scientific, Novartis, Pfizer, Biosense Webster, Cardiofocus, C.T.I. GmbH, and Doctrina Med. He is a consultant of Boston Scientific, Lifetech, Haemonetics, Biosense Webster, and Cardiofocus. J.V. received speaker honoraria from Abbott, Boston Scientific, Impulse Dynamics, Pfizer, and Doctrina Med. H.P. received honoraria or consultation fees from Bayer, Daiichi Sankyo, Boehringer Ingelheim, Pfizer, Abbott, Biosense Webster, Boston Scientific, and Medtronic and participated in a company sponsored speaker's bureau for Biosense Webster, Abbott, Medtronic, and Boston. M.M. is a consultant and speaker of Abbott Medical, Biosense Webster, Medtronic, and Boston Scientific. P.S. served on advisory boards for Biosense Webster, Boston Scientific, Abbott, and Medtronic. C.S. received research support and lecture fees from Medtronic, Abbott, Boston Scientific, and Biosense Webster. In addition, C.S. is a consultant for Medtronic, Boston Scientific, and Biosense Webster. C.V. received consulting honoraria from Biotronik and Medtronic and training and speaker's honoraria from Medtronic, BMS, and Zoll. S.W. received consulting fees from Abbott, Biosense Webster, Boston Scientific, Bristol Myers Squibb, Boehringer Ingelheim, and Hasselt University user on 04 February 2026

Medtronic, and Daiichi and grants from Abbott and Boston Scientific. S.R. is a consultant for Medtronic, Abbott, and Biotronik and a member of the Medtronic European Conduction System Pacing Advisory Board. M.K. received honoraria for teaching, proctoring, and lectures, honoraria for advisory board activities, participation in clinical trials, and travel grants. C.W. received lecture fees from Biosense Webster. U.W. received lecture fees from Abbott Medical and Medtronic Inc. J.S. is shareholder by Volta medical and reports consultant and speaker fees from Biosense, Abbott, and Medtronic. A.M. received consultant fees from Medtronic, CardioFocus, Biosense Webster, and Boston Scientific and travel grants and lecture honoraria from Medtronic, CardioFocus, Biosense Webster, Boston Scientific, Lifetech, AstraZeneca, Boehringer Ingelheim, Bayer, and Philips-EPD. L.E. discloses consultant fees, speaking honoraria, and travel expenses from Abbott, Bayer Healthcare, Biosense Webster, Biotronik, Boehringer, Boston Scientific, Bristol Myers Squibb, Daiichi Sankyo, Medtronic, Pfizer, and Sanofi Aventis. Research has been supported by German Research Foundation (DFG) and German Heart Foundation outside the submitted work. C.S. reports grants and lecture fees from Biosense Webster and Medtronic and served as a proctor for Biosense Webster and Medtronic. He also reports grants from the Swiss Heart Foundation, the Foundation for Cardiovascular Research Basel, and the University of Basel. L.R. has received research grants from Medtronic, the Swiss National Foundation, the Swiss Heart Foundation, the Immanuel and Ilse Straub Foundation, and the Sitem Insel Support Fund, all for work outside the submitted study. He has received speaker fees/honoraria from Biosense Webster, Boston Scientific, Abbott, and Medtronic. A.A. received institutional grants for research, teaching, advisory, and proctoring purposes from Abbott, Boston, JnJ Medtech, and Medtronic, none related to this work. C.G. received research grants from MicroPort CRM; consultant fees from MicroPort CRM, Boston Scientific, Abbott, and Medtronic; and honoraria from Biotronik, Medtronic, AstraZeneca, BMS-Pfizer, and Biosense Webster. L.F. reports consulting fees for AstraZeneca, Bayer, BMS/Pfizer, Boehringer Ingelheim, Medtronic, Novo Nordisk, and Novartis and lecture fees for AstraZeneca, Bayer, BMS/Pfizer, Boehringer Ingelheim, and Zoll. S.B. received consultant fees for Medtronic, Boston Scientific, Microport, and Zoll. N.L. received consulting fees from Abbott, Medtronic and Boston Scientific PJ Grant from Biosense Webster, Metronic, Abbott, and Boston. C.M. received speaker honoraria and consultancy fees from BSCI, Medtronic, Biosense Webster, and Adagio. J.C. serves as a consultant for Biosense Webster, Johnson & Johnson. G.L. has received funding from Biosense Webster, Medtronic, and Abbott (speaker honoraria). E.E.Ö. reports payment from healthcare industry to his institution for his personal services and honoraria, consultancy, and advisory board from Biosense Webster and Medtronic. H.Y. is a proctor for Abbott, Medtronic, and Biosense Webster. S.C. reports travel grants and speaker's honoraria from Medtronic, Biosense Webster, and Abbott and is a proctor of Medtronic and Biotronik. E.J. received consultant fees from Biotronik, Medtronic, Abbott, and Boston Scientific. K.O. received remuneration from Nippon Boehringer Ingelheim, Daiichi Sankyo, Johnson & Johnson,

and Medtronic. J.N.C. received research support from Circa Scientific. A.N. is a consultant for Abbott, Baylis, Biosense Webster, Biotronik, Boston Scientific, and Medtronic. DS received research grant from Abbott, Medtronic, Johnson & Johnson; advisory board fee from Pfizer and Abbott; and speaker fee from Abbott, Medtronic, and Johnson & Johnson. J.L.M. received speaker fees and/or honoraria for lectures and scientific advice from Biotronik, Medtronic, Microport, Milestone Pharmaceutical, Sanofi, and Zoll. All other authors have no relevant disclosures.

Data availability

Data supporting the POTTER-AF study are curated at the Study Centre of the Department of Rhythmology, University Hospital Schleswig-Holstein, Germany. These data are not shared openly but are available on reasonable request from the corresponding authors.

References

1. Gelder ICV, Rienstra M, Bunting KV, Casado-Arroyo R, Caso V, Crijns HJGM et al. 2024 ESC guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). *Eur Hear J* 2024;45: 3314–414.
2. Tilz RR, Schmidt V, Pürerfellner H, Maury P, Chun KRJ, Martinek M et al. A worldwide survey on incidence, management, and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: the POTTER-AF study. *Eur Hear J* 2023;44: 2458–69.
3. Tilz RR, Pürerfellner H, Kuck K-H, Merino JL, Schmidt V, Vogler J, et al. Under-reporting of complications following AF ablation: comparison of the manufacturer and user facility device experience FDA database and a voluntary invitation-based registry—the POTTER-AF 3 study. *Hear Rhythm* 2025;22:1472–1479.
4. Bodzick GM, Norton CA, Montgomery JA. Prevention and treatment of atrioesophageal fistula related to catheter ablation for atrial fibrillation. *J Innov Card Rhythm Manag* 2019;10:3634–40.
5. Zellerhoff S, Lenze F, Eckardt L. Prophylactic proton pump inhibition after atrial fibrillation ablation: is there any evidence? *Europace* 2011;13:1219–21.
6. Nehra AK, Alexander JA, Loftus CG, Nehra V. Proton pump inhibitors: review of emerging concerns. *Mayo Clin Proc* 2018;93:240–6.
7. Kapur S, Barbhaya C, Deneke T, Michaud GF. Esophageal injury and atrioesophageal fistula caused by ablation for atrial fibrillation. *Circulation* 2017;136:1247–55.
8. Leung LWM, Akhtar Z, Sheppard MN, Louis-Auguste J, Hayat J, Gallagher MM. Preventing esophageal complications from atrial fibrillation ablation: a review. *Hear Rhythm* 2021;2:651–64.
9. Ugata Y, Michihata N, Matsui H, Fushimi K, Yasunaga H. Impact of proton pump inhibitors on mortality and severe esophageal injury after catheter ablation for atrial fibrillation: a nationwide retrospective study using propensity score matching. *Hear Vessel* 2021;36:1730–8.
10. Cordes F, Ellermann C, Dechering DG, Frommeyer G, Kochhäuser S, Lange PS et al. Pre-procedural proton pump inhibition is associated with fewer peri-oesophageal lesions after cryoballoon pulmonary vein isolation. *Sci Rep* 2021;11:4728.