
Journal of Membrane Science Letters 6 (2026) 100111 

A
2

 

Contents lists available at ScienceDirect

Journal of Membrane Science Letters

journal homepage: www.elsevier.com/locate/memlet  

Decoupling solvent features to address spurious correlations in ceramic 
Organic Solvent Nanofiltration membranes
Wout Linsen a,b ,1, Pieter-Jan Piccard a,b ,∗,1, Jef Hooyberghs a , Anita Buekenhoudt b
a UHasselt—Hasselt University, Data Science Institute, Theory Lab, Agoralaan, 3590, Diepenbeek Belgium
b VITO N.V.—Flemish Institute of Technological Research, Unit MATCH, Boeretang 200, 2400 Mol, Belgium

A R T I C L E  I N F O

Keywords:
Organic solvent nanofiltration
Data science
Ceramic membranes
Spurious correlations
Solvent–solute–membrane interactions

 A B S T R A C T

Organic Solvent Nanofiltration has emerged as an energy-efficient alternative to traditional thermal methods; 
yet its widespread implementation is hindered by its poorly understood transport mechanism. Improving the 
prediction of membrane flux and retention is therefore essential, which has recently been primarily advanced 
through data-driven modeling. Prediction and interpretation of organic solvent nanofiltration transport, 
however, are complicated by the collinearity between solvent size and Hansen solubility, as they are dependent 
on one another for common organic solvent nanofiltration solvents. Considering both solvent size and solubility 
are known to correlate strongly with flux, the collinearity of these properties obscures the impact of either 
of them. We break this collinearity by performing flux measurements on outlier solvents in unmodified and 
methyl-grafted ceramic membranes at room temperature. Breaking collinearity is achieved using propylene 
carbonate and glycerol-water mixtures, whose molecular size and solubility (at room temperature) significantly 
deviate from the trend established by common organic solvent nanofiltration solvents. To quantitatively 
identify the true driver of flux for each membrane separately, linear models using either solvent kinetic 
diameter, molar volume, or Hansen solubility as predictors are compared using statistical tests. Our analysis 
indicates that molecular size (specifically, the squared reciprocal kinetic diameter) is the true predictor 
of flux for unmodified and methyl-grafted titania membranes separately, while molar volume and Hansen 
solubility add no further predictive power. This method can be extended to, e.g., investigate membrane and 
temperature dependence. Decoupling solvent size and Hansen solubility can help improve the understanding of 
organic solvent nanofiltration transport and, via dimensionality reduction, aid the development of data-driven 
modeling.
1. Introduction

While membrane technology is a recognized energy-efficient alter-
native to thermal separation (Sholl and Lively, 2016; Rundquist et al., 
2012; Adler et al., 2000; Obotey Ezugbe and Rathilal, 2020), its appli-
cation within organic solvent nanofiltration (OSN) is hindered by the 
complex interactions between solvent, solute, and membrane (Galizia 
and Bye, 2018; Ignacz et al., 2023b). Capturing these interactions 
more effectively is critical, as the industrial viability of any separation 
process relies heavily on the precise prediction of its key performance 
metrics.

The performance of membranes in a given separation task is mea-
sured by retention and flux. Knowing these measures is essential for 
industrial implementation, but requires thorough and tedious experi-
mentation. Therefore, predicting retention and flux is crucial and drives 
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extensive research. Traditionally, prediction has been pursued through 
mechanistic models, attempting to describe the underlying physical 
processes. However, these models often fall short, either failing to 
provide accurate predictions or relying on empirical coefficients fitted 
from experimental data rather than first principles (Marchetti et al., 
2014; Vandezande et al., 2008; Piccard et al., 2023). Molecular dy-
namics simulations have recently demonstrated potential in explaining 
fundamental transport mechanisms, such as the mediating role of water 
in solvent sorption (Mahmud et al., 2025) or the interaction between 
solvent and grafted oligomers (Kyriakou et al., 2023). To bypass the 
complexity of physical descriptions, and fueled by recent advance-
ments in artificial intelligence and data collection (Van Buggenhout 
et al., 2025; Ignacz et al., 2022), the field is increasingly turning 
towards supervised data-driven approaches (Piccard et al., 2023). Data-
driven approaches have been used to extract physically interpretable 
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trends in solvent–solute–membrane interactions and to identify domi-
nant physicochemical descriptors governing OSN performance (Ignacz 
et al., 2023c; Piccard et al., 2025; Hu et al., 2021; Ignacz et al., 
2023a). Machine-learning models are employed for direct prediction 
of membrane performance across diverse systems (Hu et al., 2021; 
Ignacz et al., 2023a, 2025; Lee et al., 2023; Goebel and Skiborowski, 
2020; Goebel et al., 2020; Kim et al., 2021; Wang et al., 2023; Gallo-
Molina et al., 2023), enabling, e.g., process optimization, exploration of 
large design spaces, or membrane material development and selection. 
These approaches offer a powerful alternative for understanding and 
predicting the complex performance of membranes.

Data-driven modeling introduces its own set of challenges. In high-
dimensional, data-scarce regimes, models suffer from the curse of di-
mensionality. They are then prone to overfitting, resulting in poor 
generalization on unseen conditions. Hybrid modeling can reduce de-
grees of freedom and thus overfitting. Similarly, selecting a compact 
set of informative features can improve generalization (Chollet and 
Chollet, 2021). A related challenge is spurious correlations: when fea-
tures are highly correlated, separate interpretation becomes impossible. 
Models may value features appearing informative only due to correla-
tions with underlying drivers. Retaining spurious features undermines 
hybrid modeling and inflates dimensionality, hurting generalization. 
Relying on correlation introduces bias, causing failure when extrapo-
lating to unexplored regions where this correlation may not be present. 
Consequently, removing spurious correlations is essential for robust 
data-driven models (Wang and Jordan, 2024; Altman and Krzywinski, 
2018).

A potential pitfall that can hinder OSN prediction and interpretabil-
ity was exposed in a careful investigation of these features by a previous 
study (Piccard et al., 2025). They identified three solvent properties 
that strongly correlate with flux, but are also highly mutually collinear
for solvents commonly used in OSN, here referred to as ‘‘traditional 
solvents’’. In other words, because these properties tend to vary simul-
taneously across the dataset, it becomes mathematically difficult to 
disentangle which specific property is actually driving the performance 
in OSN. This raises the possibility of spurious correlations (apparent 
relationships lacking genuine physical causation) among these solvents. 
Consequently, it is conceivable that one or more of these features pos-
sess little to no genuine predictive capability, and that their apparent 
significance arises merely as an artifact of the training data, a risk that 
extends to many studies utilizing similar solvents.

The primary objective of this study is therefore to decouple the 
effects of multiple solvent properties, specifically size and solubility 
descriptors, on flux to quantitatively identify and eliminate potential 
spurious correlations in unmodified and methyl-grafted titania mem-
branes. This work breaks the collinearity between the solvent properties 
by introducing a targeted dataset of ‘‘untraditional solvents’’, specifically 
selected because their properties deviate from the previously observed 
correlations. By analyzing this decoupled dataset, we will evaluate the 
differences in predictive power when modeling flux, using different 
feature sets. If a feature fails to provide additional predictive value for 
these outlier solvents, it indicates that the previously observed linear 
correlations were likely spurious. Consequently, excluding this feature 
can improve the generalization capability of future models.

2. Materials and methods

2.1. Experiments

Experiments were performed on native and methyl-grafted 0.9 nm 
TiO2 membranes at room temperature. The native membranes are com-
mercially available (manufactured by Inopor), while the methyl-grafted 
versions were modified from their native counterparts in-house using 
our proprietary method of Grignard chemistry (Buekenhoudt et al., 
2015; Van Heetvelde et al., 2013; Mustafa et al., 2016). A rationale 
for why these are selected and a detailed explanation of the setup are 
provided in the supplementary information (SI). The volumetric flux 𝐹
was measured and reported in L/(h⋅ m2).
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2.2. Solvent size and Hansen solubility in OSN

Both solvent size descriptors (in this study, Molar Volume 𝜈 and
Kinetic Diameter 𝑑𝑘𝑖𝑛), as well as Hansen solubility 𝛿𝑡𝑜𝑡 (Hansen, 2007), 
have been valuable for both predicting and interpreting OSN transport. 
Therefore, it would be valuable to disentangle the effect of both.

Hansen solubility parameters are commonly used to interpret and 
model OSN, through both mechanistic (Marchetti et al., 2014; Bueken-
houdt et al., 2013; Karan et al., 2015), and data-driven methods (Ignacz 
et al., 2023c; Goebel and Skiborowski, 2020; Goebel et al., 2020; 
Hu et al., 2021; Lee et al., 2023; Gallo-Molina et al., 2023). Hansen 
solubility can also provide valuable interpretation: when combined 
with the membrane and solute solubility, information on the affinity 
among them is revealed, which can, in turn, be used to deduce flux 
behavior.

Both molar volume and kinetic diameter describe the size of sol-
vents. While molar volume measures the bulk solvent size, kinetic 
diameter is a more direct measure of molecular size. Molar volume 
commonly and naturally emerges in models of membrane transport 
when thermodynamic relations are employed (Mulder, 1996; Mason 
and Lonsdale, 1990; Piccard et al., 2023). Kinetic diameter is instead a 
more direct measure of size (similar to molecular weight for mass), and 
can be used to describe steric effects (Piccard et al., 2025). Its role (or 
that of related direct size measures) in mechanistic modeling is more 
limited, although it has been used by Darvishmanesh et al. in their 
resistance-in-series model (Darvishmanesh et al., 2009).

2.3. Normalization of flux

To reliably compare experimental data and isolate the specific 
behavior of flux in relation to the features under study, it is helpful to 
eliminate the influence of other variables. For instance, flux is known to 
be strongly influenced by transmembrane pressure and solvent viscosity 
with known dependencies. To partly account for this, we can fall back 
on theoretical models for flux based on hydrodynamics, such as the 
Hagen–Poiseuille equation that predicts flux inversely proportional to 
solvent viscosity 𝜂, and proportional to trans-membrane pressure 𝛥𝑝, 
according to Mulder (1996): 

𝐹 = 𝐴
8𝜋𝜏𝑧

𝛥𝑝
𝜂

(Hagen–Poiseuille), (1)

with pore cross-sectional area 𝐴, tortuosity 𝜏, and pore length 𝑧. Thus, 
we can account for these known dependencies by dividing flux by 𝛥𝑝∕𝜂: 

𝐹 ⋅
𝜂
𝛥𝑝

(To account for known hydrodynamics). (2)

This adjusted flux yields a significantly higher correlation with the 
solvent features of interest (Piccard et al., 2025).

To further account for slight structural heterogeneity between in-
dividual membranes of the same type, the data is scaled against a 
reference standard: the pure water flux (Buekenhoudt et al., 2013). 
By creating a ratio of the solvent permeability to the pure water per-
meability, we obtain a dimensionless, normalized flux 𝐹𝑛𝑜𝑟𝑚, expressed 
as (Buekenhoudt et al., 2013; Piccard et al., 2025): 

𝐹𝑛𝑜𝑟𝑚 =
[

𝐹 ⋅
𝜂
𝛥𝑝

]

∕

[

𝐹
𝐻2𝑂

⋅
𝜂
𝐻2𝑂

𝛥𝑝
𝐻2𝑂

]

(3)

Through this non-dimensionalization, experimental results obtained 
under varying transmembrane pressures, distinct membrane samples, 
and solvents of differing viscosity can now be effectively compared.
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2.4. Properties of binary mixtures

Binary solvent mixtures are treated as effective single-solvents, 
whose properties are calculated as weighted averages of the individual 
properties. Molar volume is calculated via mole-fraction-averaging, 
kinetic diameter via volume-fraction-averaging, and Hansen solubility 
from the individually volume-fraction-weighted HSP’s.

This averaging approach is based on empirical evidence of flux mea-
surements in the 0.9 nm TiO2 membranes. First, no change in mixture 
composition was observed during filtration for the titania membranes, 
indicating that the components permeate as bulk fluid. Second, analysis 
of traditional experimental flux measurements (detailed in the SI) 
demonstrates that binary mixtures characterized by weighted-averaged 
𝑑𝑘𝑖𝑛, 𝜈, and 𝛿𝑡𝑜𝑡 follow the same flux trends as pure solvents.

Not considering membrane transport, the averaging approach is 
experimentally verified as a good approximation for Hansen solubil-
ity (Hansen, 2007), and molar volume in the considered mixtures (Ne-
gadi et al., 2017; Bai et al., 1998; Guevara-Carrion et al., 2021; Scharlin 
et al., 2002). However, applying a volume-fraction-weighted average 
to the kinetic diameter, being a molecular-scale property rather than 
a macroscopic one, may not be physically meaningful. Caution is 
therefore required when treating binary mixtures as effective single 
solvents, and this limitation is recognized.

For mixture viscosities (used for the calculation of 𝐹𝑛𝑜𝑟𝑚 in Eq. (3)), 
experimental values from literature are used, as this can strongly 
deviate from a simple weighted average (Thompson et al., 2006; del 
Carmen Grande et al., 2007; Bernal-García et al., 2008).

2.5. Statistical method

To evaluate the predictive power of 𝜈, 𝑑𝑘𝑖𝑛, and 𝛿𝑡𝑜𝑡, linear regression 
models were created using each feature separately as the predictor, 
and normalized flux 𝐹𝑛𝑜𝑟𝑚 as target, making no distinction between 
‘‘traditional’’ and ‘‘untraditional’’ data. To ensure that the performance 
of these linear models is statistically robust (and not a result of chance), 
each model was recreated 50 times, with each iteration using a dif-
ferent set of test and training data (80%/20% train/test). The models’ 
performance was evaluated using the Mean Absolute Error (MAE) of 
the test set, because of its high interpretability. Moreover, in machine 
learning, MAE can be used to model experimental data that might 
contain measurement uncertainty (Hastie et al., 2009). The resulting 
MAE distributions (across the 50 different iterations) were then ana-
lyzed using a one-way ANOVA followed by a Tukey’s honest significant 
difference (HSD). The ANOVA simply determines whether at least one of 
the means of those MAE distributions is significantly different from the 
others. The Tukey’s HSD test then assesses which of the three linear 
models are significantly different. In essence, this procedure tells us 
which of 𝜈, 𝑑𝑘𝑖𝑛, or 𝛿𝑡𝑜𝑡 is better at predicting flux 𝐹𝑛𝑜𝑟𝑚. However, as 
the random-split test sets are not completely mutually independent, p-
values might be overly optimistic. Such tests are nevertheless often used 
to evaluate models when data is sparse (Rainio et al., 2024). Therefore, 
to strengthen the analysis, it is supplemented with Cliff’s delta as an 
effect-size measure, which quantifies the lack of overlap between the 
MAE distributions (Meissel and Yao, 2024).

To investigate the combined effect of two features, two-dimensional 
linear regression models were trained using all possible pairs of 𝜈, 𝑑𝑘𝑖𝑛, 
or 𝛿𝑡𝑜𝑡. The same statistical procedure was followed; however, here, 
the ANOVA was followed by a Dunnett’s test to compare the models 
to the 1D model with the lowest MAE (Hirotsu, 2017). This additional 
procedure is followed because even if one single feature may be best 
at predicting flux on its own, it does not exclude possible contributions 
from the others.
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Table 1
Overview of the organic solvents used in this study, as well as water and 
organic-water mixtures, with their total Hansen solubility 𝛿𝑡𝑜𝑡, kinetic diameter 
𝑑𝑘𝑖𝑛, molar volume 𝜈, and viscosity 𝜂 at room temperature. The mixtures 
are expressed in volume percentages, and their properties are averaged as 
described in Section 2.4. (∗) A list of binary traditional solvents part of this 
dataset is provided in the SI. (∗∗) Values for kinetic diameter are gathered from 
literature (Bowen et al., 2003; Iliyas et al., 2007; Shao and Huang, 2007).
 Solvent 𝛿𝑡𝑜𝑡 [MPa0.5] 𝑑𝑘𝑖𝑛 [Å]∗∗ 𝜈 [cm3∕mol−1] 𝜂 [mPa s] 

Traditional solvents
 Acetone 20.0 4.6 74.0 0.32  
 Acetonitrile 24.3 3.4 52.5 0.34  
 Dichloromethane (DCM) 20.3 4.9 64.1 0.43  
 Dimethylformamide (DMF) 24.8 5.0 77.0 0.82  
 Dimethyl sulfoxide (DMSO) 26.7 4.4 71.2 2.00  
 Ethyl acetate 18.1 5.2 97.8 0.43  
 Ethanol 26.5 4.4 52.8 1.08  
 Heptane 15.3 4.3 147.4 0.40  
 Isopropanol (IPA) 23.5 4.7 76.6 2.15  
 Methanol 29.6 3.8 40.7 0.54  
 Tetrahydrofuran (THF) 19.4 4.8 81.1 0.46  
 Toluene 18.2 5.5 106.3 0.57  
 Water 47.8 2.6 18.0 0.92  
 Various binary mixtures (∗)  

Solvents and solvent mixtures used in this study
 Water/Glycerol 92.8/7.2 46.81 2.90 19.05 1.11  
 Water/Glycerol 85/15 45.70 3.17 20.31 1.44  
 Water/Glycerol 65/35 42.89 3.86 24.47 3.20  
 Water/Glycerol 50/50 40.82 4.38 28.90 6.86  
 Propylene Carbonate 27.20 5.10 84.72 2.50  

3. Results and discussion

3.1. Beyond traditional solvent property combinations

Size and solubility properties, here represented by 𝜈−1 & 𝑑−2𝑘𝑖𝑛 and 
𝛿𝑡𝑜𝑡 respectively, are highly mutually collinear for ‘‘traditional solvents’’ 
commonly used in OSN (see Table  1). This is clearly illustrated by the 
gray dots in Fig.  1, where these three features appear to be linearly 
dependent on one another. These gray dots represent the pure solvents 
and mixtures among them. This collinearity is no coincidence: chemi-
cals outside these linear trends tend to be either highly viscous liquids 
or gases at room temperature (Piccard et al., 2025). However, this 
collinearity limits the extraction of useful information (see Section 2.2), 
as results may be spurious. Indeed, in the SI, it is quantitatively 
demonstrated that, using only traditional solvents, it is not possible to 
identify whether solvent size (𝜈−1, 𝑑−2𝑘𝑖𝑛) or Hansen solubility (𝛿𝑡𝑜𝑡) is a better 
predictor of flux.

This study, therefore, identified solvents that lie outside these es-
tablished trends. Glycerol and propylene carbonate are found to be 
most suitable outliers (Fig.  1, green cross and blue dot respectively), as 
they deviate strongly from the trend of the ‘‘traditional solvents’’ in all 
feature combinations plotted in Fig.  1. Glycerol at room temperature, 
however, is impractical for experimental use due to its high viscosity
(which is, at the same time, the reason that it deviates from the 
linear trend; Glycerol is large and polar, causing high viscosity). For 
this reason, water–glycerol mixtures are selected instead. These are 
included in Fig.  1 (red dots), and their properties are listed in Table 
1. In the SI, the deviation of these solvents from the trend is shown 
quantitatively.

3.2. Decoupling the effect of solvent properties on flux

Fig.  2 shows scatterplots of the collinearity-breaking flux measure-
ments in function of solubility and size properties, revealing distinct 
variations among these features. Previous measurements on ‘‘tradi-
tional solvents’’ (gray dots) are also displayed, all of which contain a 
solute of varying species (explaining the high-variance gray dots).
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Fig. 1. Scatter-correlation matrix of the used features. The upper-right elements of the matrix present the Pearson correlation coefficient of the ‘‘traditional data’’. 
The lower triangle presents the scatter plots of the feature combinations. New solvents (mixtures) used for this study are indicated. The main diagonal of the 
matrix contains histograms of the separate features, also using the ‘‘traditional data’’.
Qualitatively, the scatterplots indicate that 𝑑−2𝑘𝑖𝑛 is a robust linear 
predictor, as the experimental data for the outlier solvents adhere 
closely to the linear trend established by the traditional data. In con-
trast, deviations are clearly pronounced for 𝜈−1 and 𝛿𝑡𝑜𝑡, where the new 
solvents diverge from the traditional trend lines. To objectively verify 
these observations and identify the true driver of flux, we apply the 
statistical method described in Section 2.5.

3.2.1. 1D statistical analysis
To quantitatively assess which of the three solvent properties (𝑑−2𝑘𝑖𝑛, 

𝜈−1 or 𝛿𝑡𝑜𝑡) is the ‘true’ predictor of flux, we applied our statistical 
method, described in detail in Section 2.5, on the data presented in Fig. 
2. The results of this statistical analysis are displayed in Fig.  3 using 
boxplots.

Fig.  3A shows the MAE of linear models, trained using the indicated 
property as predictor. Kinetic diameter (𝑑−2𝑘𝑖𝑛) is the best predictor, 
showing the lowest MAE, followed by molar volume for both native and 
methyl-grafted membranes. This is quantitatively supported by their 𝑝-
values determined by Tukey’s HSD. This indicates that the MAE of a 
linear model in function of 𝑑−2𝑘𝑖𝑛 is significantly different compared to 
either 𝜈−1 (with 𝑝 = 2.51 ⋅ 10−8 (native) and 𝑝 = 2.59 ⋅ 10−10 (methyl-
grafted)) and 𝛿𝑡𝑜𝑡 (with 𝑝 = 2.75 ⋅ 10−14 (native) and 𝑝 = 2.15 ⋅ 10−14

(methyl-grafted). These conclusions are supported by the values of 
the Cliff’s delta measure, provided between boxplots in Fig.  3A. All 
values are large, except for the medium value for the native membrane 
between 𝛿𝑡𝑜𝑡 and 𝜈 (Meissel and Yao, 2024).

Noteworthy about this result is the difference between the inverse 
molar volume and the inverse square of the kinetic diameter. Both are 
parameters assumed to describe the size of the solvent. However, the 
4 
scatter data for both molar volume and HSP deviate significantly from 
the linear trend in a similar way, although the deviation is stronger for 
HSP. This can be explained by realizing that molar volume is a measure 
of bulk solvent size, and the kinetic diameter is a measure of molecular 
size. A measure of bulk solvent is also dependent on the intermolecular 
interactions present, which also affect Hansen solubility.

3.2.2. 2D statistical analysis
While this analysis suggests kinetic diameter (specifically, 𝑑−2𝑘𝑖𝑛) to 

be the true linear predictor, it does not exclude possible contributions 
from 𝜈−1 and 𝛿𝑡𝑜𝑡. Therefore, two-dimensional linear models using these 
properties in combination with 𝑑−2𝑘𝑖𝑛 are made and compared to the 
one-dimensional model to see if additional predictive power can be 
obtained.

The two-dimensional analysis, shown in Fig.  3B, reveals that no 
combination of features lowers the MAE of the one-dimensional model 
based on kinetic diameter. No significant difference, compared to the 
reference 1D model of kinetic diameter, is observed when adding 𝛿𝑡𝑜𝑡
or 𝜈−1. Also, their Cliff’s deltas are negligibly small. This indicates that 
the other features exert little to no additional influence and 𝑑−2𝑘𝑖𝑛 is the 
true predictor.

The SI validates the feature exponents used in our linear regression 
model. Specifically, we show that varying the exponents for Hansen sol-
ubility yields consistent results, confirming that our main conclusions 
are not dependent on this specific parameterization.

4. Conclusion

Solvent features in OSN are decoupled by employing outlier sol-
vents to break previously observed collinearity. Properties of solvents 
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Fig. 2. Normalized flux as a function of the Hansen solubility parameter (left column), inverse molar volume (middle column), and the inverse squared solvent 
kinetic diameter (right column) for a native 0.9 nm TiO2 membrane (upper row), and a methyl-grafted version of the same membrane (bottom row). The dashed 
trend lines are linear fits constructed from only the ‘‘traditional data’’.
Fig. 3. Boxplots displaying the distribution of the MAE of linear regression models trained using the indicated properties as flux predictors for a native 0.9 nm 
TiO2 membrane (left) and its methyl-grafted counterpart (right). Top (A): 1D linear regression models using a single input, supplemented with the Cliff’s delta 
values. Bottom (B): 2D linear regression models using two predictors (for comparison, the 1D boxplot using only 𝑑−2

𝑘𝑖𝑛 is repeated).
describing size (e.g., molar volume, kinetic diameter) or solubility 
(e.g., Hansen solubility) are known to correlate highly with flux, but 
because they are also mutually dependent on one another, it was not 
possible to distinguish their effects. Here, we designed experiments that 
decouple this collinearity and demonstrate that the kinetic diameter 
(specifically, 𝑑−2𝑘𝑖𝑛) is the primary predictor of flux for a fixed unmodi-
fied and methyl-grafted 0.9 nm TiO2 membrane at room temperature, 
significantly outperforming Hansen solubility (𝛿𝑡𝑜𝑡) and molar volume 
(specifically, 𝜈−1).
5 
Decoupling solvent size and Hansen solubility can help improve 
the understanding of OSN transport and, via dimensionality reduction, 
aid the development of data-driven modeling. Importantly, when OSN 
interpretation is implemented within data-driven modeling, i.e., in 
hybrid models, this understanding is crucial to consider.

An interesting future endeavor is to assess whether this conclusion 
holds in general, or is specific to the unmodified and methyl-grafted 
0.9 nm TiO2 membranes separately. Particularly, Hansen solubility 
may be powerful in modeling membrane dependence, which was not 
investigated in this study.
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