
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3695834
.

.

RESEARCH-ARTICLE

Complex Event Recognition meets Hierarchical
Conjunctive eries

DANTE PINTO, Pontifical Catholic University of Chile, Santiago, RM,
Chile
.

CRISTIAN RIVEROS, Pontifical Catholic University of Chile, Santiago,
RM, Chile
.

.

.

Open Access Support provided by:
.

Pontifical Catholic University of Chile
.

PDF Download
3695834.pdf
06 February 2026
Total Citations: 0
Total Downloads: 106
.

.

Published: 07 November 2024
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Management of Data, Volume 2, Issue 5 (November 2024)
hps://doi.org/10.1145/3695834

EISSN: 2836-6573

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3695834
https://dl.acm.org/doi/10.1145/3695834
https://dl.acm.org/doi/10.1145/contrib-99661398778
https://dl.acm.org/doi/10.1145/institution-60029681
https://dl.acm.org/doi/10.1145/institution-60029681
https://dl.acm.org/doi/10.1145/contrib-81351606382
https://dl.acm.org/doi/10.1145/institution-60029681
https://dl.acm.org/doi/10.1145/institution-60029681
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60029681
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3695834&targetFile=custom-bibtex&format=bibtex

Complex Event Recognition meets Hierarchical Conjunctive
Queries
DANTE PINTO∗, Pontificia Universidad Católica de Chile, Chile, IMFD, Chile, and UHasselt, Belgium

CRISTIAN RIVEROS, Pontificia Universidad Católica de Chile, Chile and IMFD, Chile

Hierarchical conjunctive queries (HCQ) are a subclass of conjunctive queries (CQ) with robust algorithmic

properties. Among others, Berkholz, Keppeler, and Schweikardt have shown that HCQ is the subclass of

CQ (without projection) that admits dynamic query evaluation with constant update time and constant

delay enumeration. On a different but related setting stands Complex Event Recognition (CER), a prominent

technology for evaluating sequence patterns over streams. Since one can interpret a data stream as an

unbounded sequence of inserts in dynamic query evaluation, it is natural to ask to which extent CER can take

advantage of HCQ to find a robust class of queries that can be evaluated efficiently.

In this paper, we search to combine HCQ with sequence patterns to find a class of CER queries that can

get the best of both worlds. To reach this goal, we propose a class of complex event automata model called

Parallelized Complex Event Automata (PCEA) for evaluating CER queries with correlation (i.e., joins) over

streams. This model allows us to express sequence patterns and compare values among tuples, but it also allows

us to express conjunctions by incorporating a novel form of non-determinism that we call parallelization. We

show that for every HCQ (under bag semantics), we can construct an equivalent PCEA. Further, we show

that HCQ is the biggest class of full CQ that this automata model can define. Then, PCEA stands as a sweet

spot that precisely expresses HCQ (i.e., among full CQ) and extends them with sequence patterns. Finally, we

show that PCEA also inherits the good algorithmic properties of HCQ by presenting a streaming evaluation

algorithm under sliding windows with logarithmic update time and output-linear delay for the class of PCEA

with equality predicates.

CCS Concepts: • Theory of computation → Database theory; Automata over infinite objects; Automata
extensions; • Information systems→ Data streams.

Additional Key Words and Phrases: Query evaluation, conjunctive queries, streams, complex event recognition.

ACM Reference Format:
Dante Pinto and Cristian Riveros. 2024. Complex Event Recognition meets Hierarchical Conjunctive Queries.

Proc. ACM Manag. Data 2, 5 (PODS), Article 216 (November 2024), 26 pages. https://doi.org/10.1145/3695834

1 Introduction
Hierarchical Conjunctive Queries [12] (HCQ) are a subclass of Conjunctive Queries (CQ) with

good algorithmic properties for dynamic query evaluation [9, 18]. In this scenario, users want to

continuously evaluate a CQ over a database that receives insertion, updates, or deletes of tuples, and

to efficiently retrieve the output after each modification. A landmark result by Berkholz, Keppeler,

and Schweikardt [5] shows that HCQ are the subfragment among CQ for dynamic query evaluation.

∗
This work was done as a member of PUC Chile and IMFD.

Authors’ Contact Information: Dante Pinto, Pontificia Universidad Católica de Chile, Santiago, Chile and IMFD, Santiago,

Chile and UHasselt, Hasselt, Belgium, dante.pintoaraya@uhasselt.be; Cristian Riveros, Pontificia Universidad Católica de

Chile, Santiago, Chile and IMFD, Santiago, Chile, cristian.riveros@uc.cl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/11-ART216

https://doi.org/10.1145/3695834

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

https://doi.org/10.1145/3695834
https://doi.org/10.1145/3695834

216:2 Dante Pinto and Cristian Riveros

Specifically, they show one can evaluate every HCQ with constant update time and constant-delay

enumeration. Furthermore, they show that HCQ are the only class of full CQ (i.e., CQ without

projection) with such guarantees, namely, under fined-grained complexity assumptions, a full

CQ can be evaluated with constant update time and constant delay enumeration if, and only if,

the query is hierarchical. Therefore, HCQ stand as the fragment for efficient evaluation under a

dynamic scenario (see also [18]).

Data stream processing is another dynamic scenario where we want to evaluate queries con-

tinuously but now over an unbounded sequence of tuples (i.e., a data stream). Complex Event
Recognition (CER) is one such technology for processing information flow [11, 14]. CER systems

read high-velocity streams of data, called events, and evaluate expressive patterns for detecting

complex events, a subset of relevant events that witness a critical case for a user. A singular aspect

of CER compared to other frameworks is that the order of the stream’s data matters, reflecting the

temporal order of events in reality (see [29]). For this reason, sequencing operators are first citizens

on CER query languages, which one combines with other operators, like filtering, disjunction, and

correlation (i.e., joins), among others [4].

Similar to dynamic query evaluation, this work aims to find a class of CER query languages with

efficient streaming query evaluation. Our strategy to pursue this goal is simple but effective: we

use HCQ as a starting point to guide our search for CER query languages with good algorithmic

properties. Since one can interpret a data stream as an unbounded sequence of inserts in dynamic

query evaluation, we want to extend HCQ with sequencing while maintaining efficient evaluation.

We plan this strategy from an algorithmic point of view. Instead of studying which CER query

language fragments have such properties, we look for automata models that can express HCQ. By

finding such a model, we can later design our CER query language to express these queries [17].

With this goal and strategy inmind, we start from the proposal of Chain Complex Event Automata

(CCEA), an automata model for CER expressing sequencing queries with correlation, but that cannot

express simple HCQ [16]. We extend this model with a new sort of non-deterministic power that we

call parallelization. This feature allows us to run several parallel executions that start independently

and to gather them together when reading new data items. We define the class of Parallelized
Complex Event Automata (PCEA), the extension of CCEA with parallelization. As an extension,

PCEA can express patterns with sequencing, disjunction, iteration, and correlation but also allows

conjunction. In particular, we can show that PCEA can express a full CQ 𝑄 if, and only if, 𝑄 is

hierarchical. Then, PCEA is a sweet spot that precisely expresses HCQ (i.e., among full CQ) and

extends them with sequencing and other operations. Moreover, we show that PCEA inherits the

good algorithmic properties of HCQ by presenting a streaming evaluation algorithm under sliding

windows, reaching our desired goal.

Example 1.1. To get a feeling of the setting and the queries definable by PCEA, consider the

following scenario (see Section 2 and 4 for the formal details). Suppose that we have a stream:

𝑆(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

0

𝑇 (2)
⧸︀

1

𝑅(1, 10)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

2

𝑆(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

3

𝑇 (3)
⧸︀

4

𝑅(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

5

𝑆(1, 10)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

6

𝑇 (1)
⧸︀

7

. . .

where 𝑅(𝑎,𝑏), 𝑆(𝑎,𝑏), or 𝑇 (𝑎) are data tuples with relation names 𝑅, 𝑆 , and 𝑇 over some schema,

and 𝑎,𝑏 are data values in N. One may think of this stream as a sequence of events 𝑡0𝑡1 . . . (e.g.,
sensors measures, messages in a social network, insertions in a database, etc), where each event 𝑡𝑖
happens before 𝑡𝑖+1. Further, suppose that we want to evaluate the CQ:

𝑄0(𝑥,𝑦) ← 𝑇 (𝑥), 𝑆(𝑥,𝑦), 𝑅(𝑥,𝑦)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:3

namely, find all events (i.e., tuples) 𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 such that 𝑡𝑖 = 𝑇 (𝑎), 𝑡 𝑗 = 𝑆(𝑎,𝑏), and 𝑡𝑘 = 𝑅(𝑎,𝑏)
for some data values 𝑎,𝑏 ∈ N. For instance, 𝑆(2, 11), 𝑇 (2), and 𝑅(2, 11) at positions 0, 1, and 5,

respectively, satisfies𝑄0, and tuples 𝑅(1, 10), 𝑆(1, 10), and𝑇 (1) at positions 2, 6, and 7 do so as well.

Suppose now that we want to further restrict 𝑄0 in such a way that, in addition to the previous

conditions, 𝑅(𝑥,𝑦) must arrive after 𝑇 (𝑥) and 𝑆(𝑥,𝑦). Informally, the restricted query 𝑄 ′
0
could

look like
1
:

𝑄 ′
0
(𝑥,𝑦) ← 𝑇 (𝑥), 𝑆(𝑥,𝑦), 𝑅(𝑥,𝑦), 𝑇 < 𝑅, 𝑆 < 𝑅

For example, tuples at position 0, 1, and 5 will be in the output of 𝑄 ′
0
and tuples at position 2, 6,

and 7 will not (since 𝑇 (1) is after 𝑅(1, 10)).
We want to evaluate 𝑄 ′

0
in a streaming fashion, enumerating the outputs as soon as a new tuple

arrives. Notice that 𝑄 ′
0
is not a hierarchical CQ (and not even a CQ), so we cannot evaluate it

efficiently by using the techniques of dynamic query evaluation. As we will see, we can define 𝑄 ′
0

with a PCEA (see P0 in Figure 1), and then we can evaluate it with the techniques developed in

this work.

Contributions. The technical contributions and outline of the paper are the following.

In Section 2, we provide some basic definitions plus recalling the definition of CCEA.

In Section 3, we introduce the concept of parallelization for standard non-deterministic NFA,

called PFA, and study their properties. We show that PFA can be determinized in exponential time

(similar to NFA) (Proposition 3.2). We then apply this notion to CER and define the class of PCEA,

showing that it is strictly more expressive than CCEA (Proposition 3.4).

Section 4 compares PCEA with HCQ under bag semantics. Given that PCEA runs over streams

and HCQ over relational databases, we must revisit the semantics of HCQ and formalize in which

sense an HCQ and a PCEA define the same query. We show that under such comparison, every

HCQ 𝑄 under bag semantics can be expressed by a PCEA with equality predicates of exponential

size in ⋃︀𝑄 ⋃︀ and of quadratic size if𝑄 does not have self-joins (Theorem 4.1). Furthermore, if𝑄 is not

hierarchical, then 𝑄 cannot be defined by any PCEA (Theorem 4.2).

In Section 5, we study the evaluation of PCEA in a streaming scenario. Specifically, we present a

streaming evaluation algorithm under a sliding window with logarithmic update time and output-

linear delay for the class of unambiguous PCEA with equality predicates (Theorem 5.1).

Related work.Dynamic query evaluation of HCQ and acyclic CQ has been studied in [5, 18, 20, 30].

This research line did not study HCQ or acyclic CQ in the presence of order predicates. [28, 31]

studied CQ under comparisons (i.e., 𝜃 -joins) but in a static setting (i.e., no updates). The closest

work is [19], which studied dynamic query evaluation of CQ with comparisons; however, this work

did not study well-behaved classes of HCQ with comparisons, and, further, their algorithms have

update time linear in the data.

Complex event recognition and, more generally, data stream processing have studied the evalu-

ation of joins over streams (see, e.g., [21, 32, 33]). To the best of our knowledge, no work in this

research line optimizes queries focused on HCQ or provides guarantees regarding update time or

enumeration delay in this setting. We base our work on [16], which we will discuss extensively.

2 Preliminaries

Strings and NFA. A string is a sequence of elements 𝑠 = 𝑎0 . . . 𝑎𝑛−1. For presentation purposes,

we make no distinction between a sequence or a string and, thus, we also write 𝑠 = 𝑎0, . . . , 𝑎𝑛−1 for

denoting a string. We will denote strings using a bar and its 𝑖-th element by 𝑠(︀𝑖⌋︀ = 𝑎𝑖 . We use ⋃︀𝑠 ⋃︀ = 𝑛
1
We use the notation < in this example to explain𝑄′

0
. Since we will use PCEA to define queries, we will not use this notation

later in the paper.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:4 Dante Pinto and Cristian Riveros

for the length of 𝑠 and {𝑠} = {𝑎0, . . . , 𝑎𝑛−1} to consider 𝑠 as a set. Given two strings 𝑠 and 𝑠′, we
write 𝑠𝑠′ for the concatenation of 𝑠 followed by 𝑠′. Further, we say that 𝑠′ is a prefix of 𝑠 , written as

¯𝑠′ ⪯𝑝 𝑠 , if ⋃︀𝑠′⋃︀ ≤ ⋃︀𝑠 ⋃︀ and 𝑠′(︀𝑖⌋︀ = 𝑠(︀𝑖⌋︀ for all 𝑖 < ⋃︀𝑠′⋃︀. Given a non-empty set Σ we denote by Σ∗ the set of
all strings from elements in Σ, where 𝜖 ∈ Σ∗ denotes the 0-length string. For a function 𝑓 ∶ Σ → Ω
and 𝑠 ∈ Σ∗, we write 𝑓 (𝑠) = 𝑓 (𝑎0) . . . 𝑓 (𝑎𝑛−1) to denote the point-wise application of 𝑓 over 𝑠 .

A Non-deterministic Finite Automaton (NFA) is a tuple A = (𝑄, Σ,Δ, 𝐼 , 𝐹) such that 𝑄 is a finite

set of states, Σ is a finite alphabet, Δ ⊆ 𝑄 × Σ ×𝑄 is the transition relation, and 𝐼 and 𝐹 are the set

of initial and final states, respectively. A run of A over a string 𝑠 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ is a non-empty

sequence 𝑝0 . . . 𝑝𝑛 such that 𝑝0 ∈ 𝐼 , and (𝑝𝑖 , 𝑎𝑖 , 𝑝𝑖+1) ∈ Δ for every 𝑖 < 𝑛. We say that A accepts
a string 𝑠 ∈ Σ∗ iff there exists such a run of A over 𝑠 such that 𝑝𝑛 ∈ 𝐹 . We define the language

L(A) ⊆ Σ∗ of all strings accepted by A. Finally, we say that A is a Deterministic Finite Automaton
(DFA) iff Δ is given as a partial function Δ ∶ 𝑄 × Σ → 𝑄 and ⋃︀𝐼 ⋃︀ = 1.

Schemas, tuples, and streams. Fix a set D of data values. A relational schema 𝜎 (or just schema) is

a pair (T, arity)where T are the relation names and arity ∶ T→ Nmaps each name to a number, that

is, its arity. An 𝑅-tuple of 𝜎 (or just a tuple) is an object 𝑅(𝑎0, . . . , 𝑎𝑘−1
) such that 𝑅 ∈ T, each 𝑎𝑖 ∈ D,

and 𝑘 = arity(𝑅). We will write 𝑅(𝑎) to denote a tuple with values 𝑎. We denote by Tuples(︀𝜎⌋︀
the set of all 𝑅-tuples of all 𝑅 ∈ T. We define the size of a tuple 𝑅(𝑎) as ⋃︀𝑅(𝑎)⋃︀ = ∑𝑘−1

𝑖=0
⋃︀𝑎(︀𝑖⌋︀⋃︀ with

𝑘 = arity(𝑅) where ⋃︀𝑎(︀𝑖⌋︀⋃︀ is the size of the data value 𝑎(︀𝑖⌋︀ ∈ D, which depends on the domain.

A stream S over 𝜎 is an infinite sequence of tuples S = 𝑡0𝑡1𝑡2 . . . such that 𝑡𝑖 ∈ Tuples(︀𝜎⌋︀ for
every 𝑖 ≥ 0. For a running example, consider the schema 𝜎0 with relation names T = {𝑅, 𝑆,𝑇},
arity(𝑅) = arity(𝑆) = 2 and arity(𝑇) = 1. A stream S0 over 𝜎0 could be the following (same stream

as in Example 1.1):

S0 ∶= 𝑆(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

0

𝑇 (2)
⧸︀

1

𝑅(1, 10)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

2

𝑆(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

3

𝑇 (3)
⧸︀

4

𝑅(2, 11)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

5

𝑆(1, 10)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

6

𝑇 (1)
⧸︀

7

. . .

where we add an index (i.e., the position) below each tuple (for simplification, we use D = N).
Predicates. For a fixed 𝑘 , a 𝑘-predicate 𝑃 is a subset of Tuples(︀𝜎⌋︀𝑘 . Further, we say that 𝑡 =
(𝑡1, . . . , 𝑡𝑛) satisfies 𝑃 iff 𝑡 ∈ 𝑃 . We say that 𝑃 is unary if 𝑘 = 1 and binary if 𝑘 = 2. In the following,

we denote any class of unary or binary predicates by U or B, respectively.
Although we define our automata models for any class of unary and binary predicates, the

following two predicate classes will be relevant for algorithmic purposes (see Section 4 and 5).

Let 𝜎 be a schema. We denote by U
lin

the class of all unary predicates 𝑈 such that, for every

𝑡 ∈ Tuples(︀𝜎⌋︀, one can decide in linear time over ⋃︀𝑡 ⋃︀ whether 𝑡 satisfies 𝑈 or not. In addition, we

denote by Beq the class of all equality predicates defined as follows: a binary predicate 𝐵 is an

equality predicate iff there exist partial functions
⃗𝐵 and 𝐵 over Tuples(︀𝜎⌋︀ such that, for every

𝑡1, 𝑡2 ∈ Tuples(︀𝜎⌋︀, (𝑡1, 𝑡2) ∈ 𝐵 iff
⃗𝐵(𝑡1) and 𝐵(𝑡2) are defined and

⃗𝐵(𝑡1) = 𝐵(𝑡2). Further, we require
that one can compute

⃗𝐵(𝑡1) and 𝐵(𝑡2) in linear time over ⋃︀𝑡1⋃︀ and ⋃︀𝑡2⋃︀, respectively. For example,

recall our schema 𝜎0 and consider the binary predicate (𝑇𝑥, 𝑆𝑥𝑦) = {(𝑇 (𝑎), 𝑆(𝑎,𝑏)) ⋃︀ 𝑎,𝑏 ∈ D}.
Then by using the functions

⃗𝐵(𝑇 (𝑎)) = 𝑎 and 𝐵(𝑆(𝑎,𝑏)) = 𝑎, one can check that (𝑇𝑥, 𝑆𝑥𝑦) is an
equality predicate.

Note that Beq is a more general class of equality predicates compared with the ones used in [16],

that will serve in our automata models for comparing tuples by “equality” in different subsets of

attributes. We take here a more semantic presentation, where the equality comparison between

tuples is directly given by the functions
⃗𝐵 and 𝐵 and not symbolically by some formula.

Chain complex event automata. A Chain Complex Event Automaton (CCEA) [16] is a tuple

C = (𝑄,U,B,Ω,Δ, 𝐼 , 𝐹) where 𝑄 is a finite set of states, U is a set of unary predicates, B is a set of

binary predicates, Ω is a finite set of labels, 𝐼 ∶ 𝑄 → U×(2Ω ∖{∅}) is a partial initial function, 𝐹 ⊆ 𝑄

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:5

is the set of final states, and Δ is a finite transition relation of the form: Δ ⊆ 𝑄×U×B×(2Ω∖{∅})×𝑄.

Let S = 𝑡0𝑡1 . . . be a stream. A configuration of C over S is a tuple (𝑝, 𝑖, 𝐿) ∈ 𝑄 ×N × (2Ω ∖ {∅}),
representing that the automaton C , is at state 𝑝 after having read and marked 𝑡𝑖 with the set of

labels 𝐿. For ℓ ∈ Ω, we say that (𝑝, 𝑖, 𝐿) marked position 𝑖 with ℓ iff ℓ ∈ 𝐿. Given a position 𝑛 ∈ N,
we say that a configuration is accepting iff it is of the form (𝑝,𝑛, 𝐿) and 𝑝 ∈ 𝐹 . Then a run 𝜌 of C
over S is a sequence of configurations:

𝜌 ∶= (𝑝0, 𝑖0, 𝐿0), (𝑝1, 𝑖1, 𝐿1), . . . , (𝑝𝑛, 𝑖𝑛, 𝐿𝑛)

such that 𝑖0 < 𝑖1 < . . . < 𝑖𝑛 , 𝐼(𝑝0) = (𝑈 , 𝐿0) is defined and 𝑡𝑖0 ∈ 𝑈 , and there exists a transition

(𝑝 𝑗−1,𝑈 𝑗 , 𝐵 𝑗 , 𝐿 𝑗 , 𝑝 𝑗) ∈ Δ such that 𝑡𝑖 𝑗 ∈𝑈 𝑗 and (𝑡𝑖 𝑗−1
, 𝑡𝑖 𝑗) ∈ 𝐵 𝑗 for every 𝑗 ∈ (︀1, 𝑛⌋︀. Intuitively, a run of

a CCEA is a subsequence of the stream that can follow a path of transitions, where each transition

checks a local condition (i.e., the unary predicate𝑈 𝑗) and a join condition (i.e., the binary predicate

𝐵 𝑗) with the previous tuple. For the first tuple, a CCEA can only check a local condition (i.e., there

is no previous tuple).

Given a run 𝜌 like above, we define its valuation 𝜈𝜌 ∶ Ω → 2
N
such that 𝜈𝜌(ℓ) is the set consisting

of all positions in 𝜌 marked by ℓ , formally, 𝜈𝜌(ℓ) = {𝑖 𝑗 ⋃︀ 𝑗 ≤ 𝑛 ∧ ℓ ∈ 𝐿 𝑗}. Further, given a position

𝑖𝑛 ∈ N, we say that 𝜌 is an accepting run at position 𝑛 iff (𝑝𝑛, 𝑖𝑛, 𝐿𝑛) is an accepting configuration.

Then the output of C over S at position 𝑛 is defined as:

⎜C⨆︁𝑛(S) = {𝜈𝜌 ⋃︀ 𝜌 is an accepting run at position 𝑛 of C over 𝑆}.

Example 2.1. Below, we show an example of a CCEA over the schema 𝜎0 with Ω = {●}:

C0 ∶ 𝑞0 𝑞1 𝑞2

𝑇 ⇑ ● 𝑆, (𝑇𝑥, 𝑆𝑥𝑦) ⇑ ● 𝑅, (𝑆𝑥𝑦, 𝑅𝑥𝑦) ⇑ ●

We use 𝑇 to denote the predicate 𝑇 = {𝑇 (𝑎) ⋃︀ 𝑎 ∈ D} and similar for 𝑆 and 𝑅. Further, we use

(𝑇𝑥, 𝑆𝑥𝑦) and (𝑆𝑥𝑦, 𝑅𝑥𝑦) to denote equality predicates as defined above. An accepting run of C0

over S0 is 𝜌 = (𝑞0, 1, {●}), (𝑞1, 3, {●}), (𝑞2, 5, {●})which produces the valuation 𝜈𝜌 = {● ↦ {1, 3, 5}}
that represents the subsequence𝑇 (2), 𝑆(2, 11), 𝑅(2, 11) of S0. Intuitively, C0 defines all subsequences

of the form 𝑇 (𝑎), 𝑆(𝑎,𝑏), 𝑅(𝑎,𝑏) for every 𝑎,𝑏 ∈ D.

Note that the definition of CCEA above differs from [16] to fit our purpose better. Specifically, we

use a set of labels Ω to annotate positions in the streams and define valuations in the same spirit as

the model of annotated automata used in [3, 23]. One can see this extension as a generalization to

the model in [16], where ⋃︀Ω⋃︀ = 1. This extension will be helpful to enrich the outputs of our models

for comparing them with hierarchical conjunctive queries with self-joins (see Section 4).

Computational model. For our algorithms, we assume the computational model of Random

Access Machines (RAM) with uniform cost measure, and addition as its basic operation [1, 15].

This RAM has read-only registers for the input, read-writes registers for the work, and write-only

registers for the output. This computation model is a standard assumption in the literature [5, 6].

3 Parallelized complex event automata
This section presents our automata model for specifying CER queries with conjunction called

Parallelized Complex Event Automata (PCEA), which strictly generalized CCEA by adding a

new feature called parallelization. For the sake of presentation, we first formalize the notion of

parallelization for NFA to extend the idea to CCEA. Before this, we need the notation of labeled

trees that will be useful for our definitions and proofs.

Labeled trees. As it is common in the area [24], we define (unordered) trees as a finite set of

strings 𝑡 ⊆ N∗ that satisfies two conditions: (1) 𝑡 contains the empty string, (i.e., 𝜀 ∈ 𝑡), and (2) 𝑡 is a

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:6 Dante Pinto and Cristian Riveros

prefix-closed set, namely, if 𝑎1...𝑎𝑛 ∈ 𝑡 , then 𝑎1 ...𝑎 𝑗 ∈ 𝑡 for every 𝑗 < 𝑛. We will refer to the strings of

𝑡 as nodes, and the root of a tree, root(𝑡), will be the empty string 𝜀.

Let 𝑢, 𝑣 ∈ 𝑡 be nodes. The depth of 𝑢 will be given by its length depth𝑡(𝑢) = ⋃︀𝑢⋃︀. We say that

𝑢 is the parent of 𝑣 and write parent𝑡(𝑣) = 𝑢 if 𝑣 = 𝑢 ⋅ 𝑛 for some 𝑛 ∈ N. Likewise, we say that

𝑣 is a child of 𝑢 if 𝑢 is the parent of 𝑣 and define children𝑡(𝑢) = {𝑣 ∈ 𝑡 ⋃︀ parent𝑡(𝑣) = 𝑢}.
Similarly, we define the descendants of 𝑢 as desc𝑡(𝑢) = {𝑣 ∈ 𝑡 ⋃︀ 𝑢 ⪯𝑝 𝑣} and the ancestors as
ancst𝑡(𝑢) = {𝑣 ∈ 𝑡 ⋃︀ 𝑣 ⪯𝑝 𝑢}; note that 𝑢 ∈ desc𝑡(𝑢) and 𝑢 ∈ ancst𝑡(𝑢). A node 𝑢 is a leaf of

𝑡 if desc𝑡(𝑢) = {𝑢}, and an inner node if it is not a leaf node. We define the set of leaves of 𝑢 as

leaves𝑡(𝑢) = {𝑣 ∈ desc𝑡(𝑢) ⋃︀ 𝑣 is a leaf node}.
A labeled tree 𝜏 is a function 𝜏 ∶ 𝑡 → 𝐿 where 𝑡 is a tree and 𝐿 is any finite set of labels. We use

dom(𝜏) to denote the underlying tree structure 𝑡 of 𝜏 . Given that 𝜏 is a function, we can write

𝜏(𝑢) to denote the label of node 𝑢 ∈ dom(𝜏). To simplify the notation, we extend all the definitions

above for a tree 𝑡 to labeled tree 𝜏 , changing 𝑡 by dom(𝜏). For example, we write 𝑢 ∈ 𝜏 to refer to

𝑢 ∈ dom(𝜏), or parent𝜏(𝑢) to refer to parentdom(𝜏)(𝑢). Finally, we say that two labeled trees 𝜏 and
𝜏 ′ are isomorphic if there exists a bijection 𝑓 ∶dom(𝜏) → dom(𝜏 ′) such that 𝑢 ⪯𝑝 𝑣 iff 𝑓 (𝑢) ⪯𝑝 𝑓 (𝑣)
and 𝜏(𝑢) = 𝜏 ′(𝑓 (𝑢)) for every 𝑢, 𝑣 ∈ dom(𝜏). We will usually say that 𝜏 and 𝜏 ′ are equal, meaning

they are isomorphic.

Parallelized finite automata. A Parallelized Finite Automaton (PFA) is a tuple 𝒫 = (𝑄, Σ,Δ, 𝐼 , 𝐹)
where 𝑄 is a finite set of states, Σ is a finite alphabet, 𝐼 , 𝐹 ⊆ 𝑄 are the sets of initial and accepting

states, respectively, and Δ ⊆ 2
𝑄 × Σ × 𝑄 is the transition relation. We define the size of 𝒫 as

⋃︀𝒫⋃︀ = ⋃︀𝑄 ⋃︀ +∑(𝑃,𝑎,𝑞)∈Δ(⋃︀𝑃 ⋃︀ + 1), namely, the number of states plus the size of encoding the transitions.

A run tree of a PFA 𝒫 over a string 𝑠 = 𝑎1 . . . 𝑎𝑛 ∈ Σ∗ is a labeled tree 𝜏 ∶ 𝑡 → 𝑄 such that

depth𝜏(𝑢) = 𝑛 for every leaf 𝑢 ∈ 𝜏 ; in other words, every node of 𝜏 is labeled by a state of 𝒫 and

all branches have the same length 𝑛. In addition, 𝜏 must satisfy the following two conditions: (1)

every leaf node 𝑢 of 𝑡 is labeled by an initial state (i.e., 𝜏(𝑢) ∈ 𝐼) and (2) for every inner node

𝑣 at depth 𝑖 (i.e., depth𝜏(𝑣) = 𝑖) there must be a transition (𝑃,𝑎𝑛−𝑖 , 𝑞) ∈ Δ such that 𝜏(𝑣) = 𝑞,

⋃︀children𝜏(𝑣)⋃︀ = ⋃︀𝑃 ⋃︀ and 𝑃 = {𝜏(𝑢) ⋃︀ 𝑢 ∈ children𝜏(𝑣)}, that is, children have different labels and

𝑃 is the set of labels in the children of 𝑣 . We say that 𝜏 is an accepting run of 𝒫 over 𝑠 iff 𝜏 is a run

of 𝒫 over 𝑠 and 𝜏(𝜀) ∈ 𝐹 (recall that 𝜀 = root(𝜏)). We say that 𝒫 accepts a string 𝑠 ∈ Σ∗ if there
is an accepting run of 𝒫 over 𝑠 and we define the language recognized by 𝒫 , L(𝒫), as the set of
strings that 𝒫 accepts.

Example 3.1. In Figure 1 (left), we show the example of a PFA F0 over the alphabet Σ = {𝑇, 𝑆, 𝑅}.
Intuitively, the upper part (i.e., 𝑝0, 𝑝1) looks for a symbol 𝑇 , the lower part (i.e., 𝑝2, 𝑝3) for a symbol

𝑆 , and both runs join together in 𝑝4 when they see a symbol 𝑅. Then, F0 defines all strings that

contain symbols 𝑇 and 𝑆 (in any order) before a symbol 𝑅.

One can see that PFA is a generalization of an NFA. Indeed, NFA is a special case of an PFA

where each run tree 𝜏 is a line. Nevertheless, PFA do not add expressive power to NFA, given that

PFA is another model for recognizing regular languages, as the next result shows.

Proposition 3.2. For every PFA 𝒫 with 𝑛 states there exists a DFA A with at most 2
𝑛 states such

that L(𝒫) = L(A). In particular, all languages defined by PFA are regular.

Intuitively, one could interpret a PFA as an Alternating Finite Automaton (AFA) [7] that runs

backward over the string (however, they still process the string in a forward direction). It was

shown in [7, Theorem 5.2 and 5.3] that for every AFA that defines a language 𝐿 with 𝑛 states, there

exists an equivalent DFA with 2
2
𝑛

states in the worst case that recognizes 𝐿. Nevertheless, they

argued that the reverse language 𝐿𝑅 = {𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ∗ ⋃︀ 𝑎𝑛 . . . 𝑎2𝑎1 ∈ 𝐿} can always be accepted

by a DFA with at most 2
𝑛
states. Then, one can see Proposition 3.2 as a consequence of reversing

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:7

F0 ∶
𝑝0 𝑝1

𝑝2 𝑝3

𝑝4

Σ Σ

Σ Σ

Σ𝑇

𝑆
𝑅 P0 ∶

𝑞0

𝑞1

𝑞2

𝑇 ⇑ ●

𝑆 ⇑ ●

(𝑇𝑥, 𝑅𝑥𝑦)

(𝑆𝑥𝑦, 𝑅𝑥
𝑦)

𝑅⇑●

Fig. 1. On the left, an example of a PFA and, on the right, an example of a PCEA.

an alternating automaton. Despite this connection, we use here PFA as a proper automata model,

which was not studied or used in [7]. Another related proposal is the parallel finite automata model

presented in [27]. Indeed, one can consider PFA as a restricted case of this model, although it was

not studied in [27]. For this reason, we decided to name the PFA model with the same acronym but

a slightly different name as in [27].

Parallelized complex event automata. A Parallelized Complex Event Automaton (PCEA) is

the extension of CCEA with the idea of parallelization as in PFA. Specifically, a PCEA is a tuple

P = (𝑄,U,B,Ω,Δ, 𝐹), where𝑄 ,U, B, Ω, and 𝐹 are the same as for CCEA, and Δ is a finite transition

relation of the form:

Δ ⊆ 2
𝑄 ×U × B𝑄 × (2Ω ∖ {∅}) ×𝑄.

where B𝑄
are all partial functions ℬ ∶ 𝑄 → B, that associate a state 𝑞 to a binary predicate ℬ(𝑞). We

define the size of P as ⋃︀P ⋃︀ = ⋃︀𝑄 ⋃︀ + ∑(𝑃,𝑈 ,ℬ,𝐿,𝑞)∈Δ(⋃︀𝑃 ⋃︀ + ⋃︀𝐿⋃︀). Note that P does not define the initial

function explicitly. As we will see, transitions of the form (∅,𝑈 ,ℬ, 𝐿,𝑞) will play the role of the

initial function on a run of P .

Next, we extend the notion of a run from CCEA to its parallelized version. Let S = 𝑡0𝑡1 . . . be a
stream. A run tree of P over S is now a labeled tree 𝜏 ∶ 𝑡 → (𝑄 ×N× (2Ω ∖ {∅})) where each node

𝑢 ∈ 𝜏 is labeled with a configuration 𝜏(𝑢) = (𝑞, 𝑖, 𝐿) such that, for every child 𝑣 ∈ children𝜏(𝑢)with
𝜏(𝑣) = (𝑝, 𝑗,𝑀), it holds that 𝑗 < 𝑖 . In other words, the positions of 𝜏-configurations increase towards
the root of 𝜏 , similar to the runs of a CCEA. In addition, 𝑢 must satisfy the transition relation Δ,
that is, there must exist a transition (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ such that (1) 𝑡𝑖 ∈𝑈 , (2) ⋃︀children𝜏(𝑢)⋃︀ = ⋃︀𝑃 ⋃︀
and 𝑃 = {𝑝 ⋃︀ ∃𝑣 ∈ children𝜏(𝑢). 𝜏(𝑣) = (𝑝, 𝑗,𝑀)}, and (3) for every 𝑣 ∈ children𝜏(𝑢) with

𝜏(𝑣) = (𝑝, 𝑗,𝑀), (𝑡 𝑗 , 𝑡𝑖) ∈ ℬ(𝑝). Similar to PFA, condition (2) forces that there exists a bijection

between 𝑃 and the states at the children of 𝑢. Instead, condition (3) forces that two consecutive

configurations (𝑝, 𝑗,𝑀) and (𝑞, 𝑖, 𝐿) must satisfy the binary predicate in ℬ(𝑝) associated with 𝑝 .

Notice that, if 𝑢 is a leaf node in 𝜏 , then it must hold that 𝑃 = ∅ and condition (3) is trivially satisfied.

Also, note that we do not assume that all leaves are at the same depth.

Given a position 𝑛 ∈ N, we say that 𝜏 is an accepting run at position 𝑛 iff the root configuration

𝜏(𝜀) is accepting at position 𝑛. Further, we define the output of a run 𝜏 as the valuation 𝜈𝜏 ∶ Ω → 2
N

such that 𝜈𝜏(ℓ) = {𝑖 ⋃︀ ∃𝑢 ∈ 𝜏 . 𝜏(𝑢) = (𝑞, 𝑖, 𝐿) ∧ ℓ ∈ 𝐿} for every label ℓ ∈ Ω. Finally, the output of a
PCEA P over S at the position 𝑛 is defined as:

⎜P⨆︁𝑛(S) = {𝜈𝜏 ⋃︀ 𝜏 is an accepting run at position 𝑛 of P over 𝑆}.

Example 3.3. In Figure 1 (right), we show an example of a PCEA P0 over schema 𝜎0 with Ω = {●}.
We use the same notation as in Example 2.1 to represent unary and equality predicates. If we run

P0 over S0, we have the following two run trees at position 5:

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:8 Dante Pinto and Cristian Riveros

𝜏0 ∶ (𝑞2, 5, ●)

(𝑞0, 1, ●) (𝑞1, 3, ●)

𝜏1 ∶ (𝑞2, 5, ●)

(𝑞0, 1, ●) (𝑞1, 0, ●)

that produces the valuation 𝜈𝜏0
= {● ↦ {1, 3, 5}} and 𝜈𝜏1

= {● ↦ {0, 1, 5}} representing the

subsequences 𝑇 (2), 𝑆(2, 11), 𝑅(2, 11) and 𝑆(2, 11),𝑇 (2), 𝑅(2, 11) of S0, respectively. Note that the

former is an output of C0 in Example 2.1, but the latter is not.

Proposition 3.4. PCEA is strictly more expressive than CCEA.

The proof for this proposition can be found in the appendix, but it is easy to see that every

CCEA is a PCEA where every transition (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ satisfies that ⋃︀𝑃 ⋃︀ ≤ 1. Additionally, the

previous example gives evidence that PCEA is a strict generalization of CCEA, namely, there exists

no CCEA that can define P0. Intuitively, since a CCEA can only compare the current tuple to the

last tuple, for a stream like S = 𝑅(𝑎,𝑏),𝑇 (𝑎), 𝑆(𝑎,𝑏) it would be impossible to check conditions

over the second attribute of tuples 𝑅(𝑎,𝑏) and 𝑆(𝑎,𝑏).
Unambiguous PCEA. We end this section by introducing a subclass of PCEA relevant to our

algorithmic results. Let P be a PCEA and 𝜏 a run of P over some stream. We say that 𝜏 is simple
iff for every two different nodes 𝑢,𝑢′ ∈ 𝜏 with 𝜏(𝑢) = (𝑞, 𝑖, 𝐿) and 𝜏(𝑢′) = (𝑞′, 𝑖′, 𝐿′), if 𝑖 = 𝑖′, then
𝐿 ∩ 𝐿′ = ∅. In other words, 𝜏 is simple if all positions of the valuation 𝜈𝜏 are uniquely represented

in 𝜏 . We say that P is unambiguous if (1) every accepting run of P is simple and (2) for every

stream S and accepting run 𝜏 of P over S with valuation 𝜈𝜏 , there is no other run 𝜏 ′ of P with

valuation 𝜈𝜏 ′ such that 𝜈𝜏 = 𝜈𝜏 ′ . For example, the reader can check that P0 is unambiguous.

Condition (2) of unambiguous PCEA ensures that each output is witnessed by exactly one run.

This condition is common in MSO enumeration [2, 22] for a one-to-one correspondence between

outputs and runs. Condition (1) forces a correspondence between the size of the run and the size of

the output it represents. As we will see, both conditions will be helpful for our evaluation algorithm,

and satisfied by our translation of hierarchical conjunctive queries into PCEA in the next section.

4 Representing hierarchical conjunctive queries
This section studies the connection between PCEA and hierarchical conjunctive queries (HCQ)

over streams. For this purpose, we must first define the semantics of HCQ over streams and how to

relate their expressiveness with PCEA. We connect them by using a bag semantics of CQ. We start

by introducing bags that will be useful throughout this section.

Bags. A bag (also called a multiset) is usually defined in the literature as a function that maps each

element to its multiplicity (i.e., the number of times it appears). In this work, we use a different but

equivalent representation of a bag where each element has its own identity. This representation
will be helpful in our context to deal with duplicates in the stream and define the semantics of

hierarchical CQ in the case of self-joins.

We define a bag (with own identity) 𝐵 as a surjective function 𝐵 ∶ 𝐼 →𝑈 where 𝐼 is a finite set of

identifiers (i.e., the identity of each element) and𝑈 is the underlying set of the bag. Given any bag

𝐵, we refer to these components as 𝐼(𝐵) and𝑈 (𝐵), respectively. For example, a bag 𝐵 = {{𝑎,𝑎,𝑏}}
(where 𝑎 is repeated twice) can be represented with a surjective function 𝐵0 = {0↦ 𝑎, 1↦ 𝑎, 2↦ 𝑏}
where 𝐼(𝐵0) = {0, 1, 2} and𝑈 (𝐵0) = {𝑎,𝑏}. In general, we will use the standard notation for bags

{{𝑎0, . . . , 𝑎𝑛−1}} to denote the bag 𝐵 whose identifiers are 𝐼(𝐵) = {0, . . . , 𝑛 − 1} and 𝐵(𝑖) = 𝑎𝑖 for
each 𝑖 ∈ 𝐼(𝐵). Note that if 𝐵 ∶ 𝐼 →𝑈 is injective, then 𝐵 encodes a set (i.e., no repetitions). We write

𝑎 ∈ 𝐵 if 𝐵(𝑖) = 𝑎 for some 𝑖 ∈ 𝐼(𝐵) and define the empty bag ∅ such that 𝐼(∅) = ∅ and𝑈 (∅) = ∅.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:9

For a bag 𝐵 and an element 𝑎, we define the multiplicity of 𝑎 in 𝐵 as mult𝐵(𝑎) = ⋃︀{𝑖 ⋃︀ 𝐵(𝑖) = 𝑎}⋃︀.
Then, we say that a bag 𝐵′ is contained in 𝐵, denoted as 𝐵′ ⊆ 𝐵, iff mult𝐵′(𝑎) ≤ mult𝐵(𝑎) for every
𝑎. We also say that two bags 𝐵′ and 𝐵 are equal, and write 𝐵 = 𝐵′, if 𝐵′ ⊆ 𝐵 and 𝐵 ⊆ 𝐵′. Note that
two bags can be equal although the set of identifiers can be different (i.e., they are equal up to a

renaming of the identifiers). Given a set 𝐴, we say that 𝐵 is a bag from elements of 𝐴 (or just a bag

of 𝐴) if𝑈 (𝐵) ⊆𝑈 (𝐴).
Relational databases. Recall that D is our set of data values and let 𝜎 = (T, arity) be a schema. A

relational database 𝐷 (with duplicates) over 𝜎 is a bag of Tuples(︀𝜎⌋︀. Given a relation name 𝑅 ∈ T,
we write 𝑅𝐷

as the bag of 𝐷 containing only the 𝑅-tuples of 𝐷 , formally, 𝐼(𝑅𝐷) = {𝑖 ∈ 𝐼(𝐷) ⋃︀ 𝐷(𝑖) =
𝑅(𝑎) for some 𝑎} and 𝑅𝐷(𝑖) = 𝐷(𝑖) for every 𝑖 ∈ 𝐼(𝑅𝐷). For example, consider again the schema

𝜎0. Then a database 𝐷0 over 𝜎0 is the bag:

𝐷0 ∶= {{𝑆(2, 11),𝑇 (2), 𝑅(1, 10), 𝑆(2, 11),𝑇 (3), 𝑅(2, 11) }}.

Here, one can check that 𝑇𝐷0 = {{𝑇 (2),𝑇 (3)}} and 𝑆𝐷0 = {{𝑆(2, 11), 𝑆(2, 11)}}.
Conjunctive queries. Fix a schema 𝜎 = (T, arity) and a set of variables X disjoint from D (i.e.,

X ∩D = ∅). A Conjunctive Query (CQ) over relational schema 𝜎 is a syntactic structure of the form:

𝑄(𝑥) ← 𝑅0(𝑥0), . . . , 𝑅𝑚−1(𝑥𝑚−1) (†)

such that 𝑄 is a relational name not in T, 𝑅𝑖 ∈ T, 𝑥𝑖 is a sequence of variables in X and data values

in D, and ⋃︀𝑥𝑖 ⋃︀ = arity(𝑅𝑖) for every 𝑖 <𝑚. Further, 𝑥 is a sequence of variables in 𝑥0, . . . , 𝑥𝑚−1. We

will denote a CQ like (†) by𝑄 , where𝑄(𝑥) and 𝑅0(𝑥0), . . . , 𝑅𝑚−1(𝑥𝑚−1) are called the head and the

body of 𝑄 , respectively. Furthermore, we call each 𝑅𝑖(𝑥𝑖) an atom of 𝑄 . For example, the following

are two conjunctive queries 𝑄0 (the same CQ of Example 1.1) and 𝑄1 over the schema 𝜎0:

𝑄0(𝑥,𝑦) ← 𝑇 (𝑥), 𝑆(𝑥,𝑦), 𝑅(𝑥,𝑦) 𝑄1(𝑥,𝑦) ← 𝑇 (𝑥), 𝑅(𝑥,𝑦), 𝑆(2,𝑦), 𝑇 (𝑥)

Note that a query can repeat atoms. For this reason, we will regularly consider 𝑄 as a bag of atoms,

where 𝐼(𝑄) are the positions of 𝑄 and 𝑈 (𝑄) is the set of distinct atoms. For instance, we can

consider 𝑄1 above as a bag of atoms, where 𝐼(𝑄1) = {0, 1, 2, 3} (i.e., the position of the atoms) and

𝑄1(0) = 𝑇 (𝑥), 𝑄1(1) = 𝑅(𝑥,𝑦), 𝑄1(2) = 𝑆(2,𝑦), 𝑄1(3) = 𝑇 (𝑥). We say that a CQ 𝑄 has self-joins if
there are two atoms with the same relation name. We can see in the previous example that 𝑄1 has

self-joins, while 𝑄0 does not.

Homomorphisms and CQ bag semantics. Let 𝑄 be a CQ, and 𝐷 be a database over the same

schema 𝜎 . A homomorphism is any function ℎ ∶ X ∪D→ D such that ℎ(𝑎) = 𝑎 for every 𝑎 ∈ D. We

extend ℎ as a function from atoms to tuples such that ℎ(𝑅(𝑥)) ∶= 𝑅(ℎ(𝑥)) for every atom 𝑅(𝑥).
We say that ℎ is a homomorphism from 𝑄 to 𝐷 if ℎ is a homomorphism and ℎ(𝑅(𝑥)) ∈ 𝐷 for every

atom 𝑅(𝑥) in 𝑄 . We denote by Hom(𝑄,𝐷) the set of all homomorphisms from 𝑄 to 𝐷 .

To define the bag semantics of CQ, we need a more refined notion of homomorphism that

specifies the correspondence between atoms in 𝑄 and tuples in 𝐷 . Formally, a tuple-homomorphism
from 𝑄 to 𝐷 (or t-homomorphism for short) is a function 𝜂 ∶ 𝐼(𝑄) → 𝐼(𝐷) such that there exists a

homomorphism ℎ𝜂 from𝑄 to 𝐷 satisfying that ℎ𝜂(𝑄(𝑖)) = 𝐷(𝜂(𝑖)) for every 𝑖 ∈ 𝐼(𝑄). For example,

consider again 𝑄0 and 𝐷0 above, then 𝜂0 = {0↦ 1, 1↦ 3, 2,↦ 5} and 𝜂1 = {0↦ 1, 1↦ 0, 2↦ 5} are
two t-homomorphism from 𝑄0 to 𝐷0.

Intuitively, a t-homomorphism is like a homomorphism, but it additionally specifies the corre-

spondence between atoms (i.e., 𝐼(𝑄)) and tuples (i.e., 𝐼(𝐷)) in the underlying bags. One can easily

check that if 𝜂 is a t-homomorphism, then ℎ𝜂 (restricted to the variables of 𝑄) is unique. For this

reason, we usually say that ℎ𝜂 is the homomorphism associated to 𝜂. Note that the converse does

not hold: for ℎ from 𝑄 to 𝐷 , there can be several t-homomorphisms 𝜂 such that ℎ = ℎ𝜂 .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:10 Dante Pinto and Cristian Riveros

Let 𝑄(𝑥) be the head of 𝑄 . We define the output of a CQ 𝑄 over a database 𝐷 as:

⎜𝑄⨆︁(𝐷) = {{𝑄(ℎ𝜂(𝑥)) ⋃︀ 𝜂 is a t-homomorphism from 𝑄 to 𝐷}}.
Note that the result is another relation where each 𝑄(ℎ𝜂(𝑥)) is witnessed by a t-homomorphism

from 𝑄 to 𝐷 . In other words, there is a one-to-one correspondence between tuples in ⎜𝑄⨆︁(𝐷) and
t-homomorphisms from 𝑄 to 𝐷 .

Discussion. In the literature, homomorphisms are usually used to define the set semantics of a CQ

𝑄 over a database 𝐷 . They are helpful for set semantics but “inconvenient” for bag semantics since

it does not specify the correspondence between atoms and tuples; namely, they only witness the

existence of such correspondence. In [8], Chaudhuri and Vardi introduced the bag semantics of CQ

by using homomorphisms, which we recall next. Let 𝑄 be a CQ like (†) and 𝐷 a database over the

same schema 𝜎 , and let ℎ ∈ Hom(𝑄,𝐷). We define the multiplicity of ℎ with respect to 𝑄 and 𝐷 by:

mult𝑄,𝐷(ℎ) =
𝑚−1

∏
𝑖=0

mult𝐷(ℎ(𝑅𝑖(𝑥𝑖)))

Chaudhuri and Vardi defined the bag semantics (︀𝑄⌋︀ of 𝑄 over 𝐷 as the bag (︀𝑄⌋︀(𝐷) such that each

tuple 𝑄(𝑎) has multiplicity equal to:

mult(︀𝑄⌋︀(𝐷)(𝑄(𝑎)) = ∑
ℎ∈Hom(𝑄,𝐷) ∶ℎ(𝑥)=𝑎

mult𝑄,𝐷(ℎ)

In the appendix, we prove that for every CQ 𝑄 and database 𝐷 it holds that ⎜𝑄⨆︁(𝐷) = (︀𝑄⌋︀(𝐷),
namely, the bag semantics introduced here (i.e., with t-homomorphisms) is equivalent to the

standard bag semantics of CQ. The main difference is that the standard bag semantics of CQ

are defined in terms of homomorphisms and multiplicities, and there is no direct correspondence

between outputs and homomorphisms. For this reason, we redefine the bag semantics of CQ in terms

of t-homomorphism that will connect the outputs of CQ with the outputs of PCEA over streams.

CQ over streams. Now, we define the semantics of CQ over streams, formalizing its comparison

with queries in complex event recognition. For this purpose, we must show how to interpret

streams as databases and encode CQ’s outputs as valuations. Fix a schema 𝜎 and a stream S = 𝑡0𝑡1⋯
over 𝜎 . Given a position 𝑛 ∈ N, we define the database of S at position 𝑛 as the 𝜎-database

𝐷𝑛(︀S⌋︀ = {{𝑡0, 𝑡1, . . . , 𝑡𝑛}}. For example, 𝐷5(︀S0⌋︀ = 𝐷0. One can interpret here that S is a sequence of

inserts, and then 𝐷𝑛(︀S⌋︀ is the database version at position 𝑛. Since 𝐷𝑛(︀S⌋︀ is a bag, the identifiers
𝐼(𝐷𝑛(︀S⌋︀) coincide with the positions of the sequence 𝑡0 . . . 𝑡𝑛 .

Let 𝑄 be a CQ over 𝜎 , and let 𝜂 ∶ 𝐼(𝑄) → 𝐼(𝐷𝑛(︀S⌋︀) be a t-homomorphism from 𝑄 to 𝐷𝑛(︀S⌋︀. If
we consider Ω = 𝐼(𝑄), we can interpret 𝜂 as a valuation 𝜂 ∶ Ω → 2

N
that maps each atom of 𝑄 to a

set with a single position; formally, 𝜂(𝑖) = {𝜂(𝑖)} for every 𝑖 ∈ 𝐼(𝑄). Then, we define the semantics

of 𝑄 over stream S at position 𝑛 as:

⎜𝑄⨆︁𝑛(S) = {𝜂 ⋃︀ 𝜂 is a t-homomorphism from 𝑄 to 𝐷𝑛(︀S⌋︀}
Note that ⎜𝑄⨆︁𝑛(S) is equivalent to evaluating 𝑄 over 𝐷𝑛(︀S⌋︀ where instead of outputting a bag of

tuples ⎜𝑄⨆︁(𝐷𝑛(︀S⌋︀), we output the t-homomorphisms (i.e., as valuations) that are in a one-to-one

correspondence with the tuples in ⎜𝑄⨆︁(𝐷𝑛(︀S⌋︀).
Hierarchical conjunctive queries and main results. Let 𝑄 be a CQ of the form (†). Given

a variable 𝑥 ∈ X, define atoms(𝑥) as the bag of all atoms 𝑅𝑖(𝑥𝑖) of 𝑄 such that 𝑥 appears in 𝑥𝑖 .

We say that 𝑄 is full if every variable appearing in 𝑥0, . . . , 𝑥𝑚−1 also appears in 𝑥 . Then, 𝑄 is a

Hierarchical Conjunctive Query (HCQ)[12] iff 𝑄 is full and for every pair of variables 𝑥,𝑦 ∈ X it

holds that atoms(𝑥) ⊆ atoms(𝑦), atoms(𝑦) ⊆ atoms(𝑥) or atoms(𝑥) ∩ atoms(𝑦) = ∅. For example,

one can check that 𝑄0 is an HCQ, but 𝑄1 is not.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:11

𝑄0(𝑥,𝑦) ← 𝑇 (𝑥)
⧸︀

0

, 𝑆(𝑥,𝑦)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

1

, 𝑅(𝑥,𝑦)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

2

𝑥

0 𝑦

1 2

P𝑄0
∶

0

1

𝑥

𝑇 ⇑0

𝑆⇑1

(𝑇𝑥, 𝑅𝑥𝑦)

(𝑆𝑥𝑦, 𝑅𝑥𝑦
)

𝑅⇑2
0

2

𝑥

𝑇 ⇑0

𝑅⇑2

(𝑇𝑥, 𝑆𝑥𝑦)

(𝑅𝑥𝑦, 𝑆𝑥𝑦
)

𝑆⇑1

1

2

𝑦 𝑥

𝑆⇑1

𝑅⇑2

𝑅, (𝑆𝑥𝑦, 𝑅𝑥𝑦)⇑2

𝑆, (𝑅𝑥𝑦, 𝑆𝑥𝑦
)⇑1

𝑇, (?𝑥𝑦,𝑇𝑥)⇑0

Fig. 2. An illustration of constructing an PCEA from an HCQ. On the left, the HCQ 𝑄0 and its 𝑞-tree. On the
right, a PCEA P𝑄0

equivalent to 𝑄0. For presentation purposes, states are repeated several times and ?𝑥𝑦

means a binary relation with any relation name (i.e., 𝑅 or 𝑆).

HCQ is a subset of CQ that can be evaluated with constant-delay enumeration under updates [5,

18]. Moreover, it is the greatest class of full conjunctive queries that can be evaluated with such

guarantees under fine-grained complexity assumptions. Therefore, HCQ is the right yardstick to

measure the expressive power of PCEA for defining queries with strong efficiency guarantees.

Given a PCEA P and a CQ𝑄 over the same schema 𝜎 , we say that P is equivalent to𝑄 (denoted as

P ≡ 𝑄) iff for every stream S over 𝜎 and every position 𝑛 it holds that ⎜P⨆︁𝑛(S) = ⎜𝑄⨆︁𝑛(S).
Theorem 4.1. Let 𝜎 be a schema. For every HCQ𝑄 over 𝜎 , there exists a PCEAP𝑄 over 𝜎 with unary

predicates inU
lin

and binary predicates in Beq such thatP𝑄 ≡ 𝑄 . Furthermore,P𝑄 is unambiguous and
of at most exponential size with respect to 𝑄 . If 𝑄 does not have self-joins, then P𝑄 is of quadratic size.

Proof sketch. We give an example of the construction to provide insights on the expressive

power of PCEA for defining HCQ (the full technical proof is in the extended version [25]). For

this construction, we rely on a 𝑞-tree of an HCQ, a structure introduced in [5]. Formally, let 𝑄 be

an HCQ and assume, for the sake of simplification, that 𝑄 is connected (i.e., the Gaifman graph

associated to 𝑄 is connected). A q-tree for 𝑄 is a labeled tree, 𝜏𝑄 ∶ 𝑡 → 𝐼(𝑄) ∪ {𝑥}, where for every
𝑥 ∈ {𝑥} there is a unique inner node𝑢 ∈ 𝑡 such that 𝜏𝑄(𝑢) = 𝑥 , and for every atom 𝑖 ∈ 𝐼(𝑄) there is a
unique leaf node 𝑣 ∈ 𝑡 such that 𝜏𝑄(𝑣) = 𝑖 . Further, if 𝑢1, . . . ,𝑢𝑘 are the inner nodes of the path from

the root until 𝑣 , then {𝑥𝑖} = {𝜏𝑄(𝑢1), . . . , 𝜏𝑄(𝑢𝑘)}. In [5], it was shown that a CQ 𝑄 is hierarchical

and connected iff there exists a 𝑞-tree for 𝑄 . For instance, in Figure 2 (left) we display again the

HCQ 𝑄0, labeled with the identifiers of the atoms, and below a 𝑞-tree for 𝑄0.

For a connected HCQ without self-joins, the idea of the construction is to use the 𝑞-tree of 𝑄

as the underlying structure of the PCEA P𝑄 . Indeed, the nodes of the 𝑞-tree will be the states

of P𝑄 . For example, in Figure 2 (right) we present a PCEA P𝑄0
equivalent to 𝑄0, where we use

multiple copies of the states for presentation purposes (i.e., if two states have the same label, they

are the same state in the figure). As you can check, the states are {0, 1, 2, 𝑥,𝑦}, which are the nodes

of the 𝑞-tree. Furthermore, the leaves of the 𝑞-trees (i.e., the atoms) are the initial states {0, 1, 2}
where P𝑄0

uses a unary predicate to check that the tuples have arrived and annotates with the

corresponding identifier.

For every atom 𝑅𝑖(𝑥𝑖) and every variable 𝑥 ∈ {𝑥𝑖}, P𝑄 jumps with a transition to the state 𝑥

which is a node in the 𝑞-tree and joins with all the atoms and variables “hanging” from the path

from 𝑥 to the leave 𝑖 in the 𝑞-tree. For example, consider the first component (i.e., top-left) of P𝑄0
in

Figure 2. When P𝑄0
reads a tuple 𝑅(𝑎,𝑏), it jumps to state 𝑥 and joins with all the atoms hanging

from the path from 𝑥 to 2, namely, the atoms 𝑇 and 𝑆 . Similarly, consider the last component (i.e.,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:12 Dante Pinto and Cristian Riveros

below) of P𝑄0
in Figure 2. When P𝑄0

reads a tuple 𝑅(𝑎,𝑏), it also jumps to state 𝑦, but now the only

atom hanging from the path from 𝑦 to 2 in the 𝑞-tree is 1, which corresponds to a single transition

from 1 to 𝑦 joining with the atom 𝑆(𝑥,𝑦). Finally, when P𝑄0
reads a tuple 𝑇 (𝑎), the only variable

that hangs in the path from the root to 0 is the variable 𝑦, and then there is a single transition

from 𝑦 to 𝑥 , joining with an equality predicate (?𝑥𝑦,𝑇𝑥) where ?𝑥𝑦 means a binary relation with

any relational name (i.e., 𝑅 or 𝑆). Finally, the root of the 𝑞-tree serves as the final state of the P𝑄0
,

namely, all atoms were found. Note that an accepting run tree of P𝑄0
serves as a witness that the

𝑞-tree is complete. The construction of HCQ with self-joins is more involved, and we present the

details in the extended version [25]. □

The previous result shows that PCEA has the expressive power to specify every HCQ. Given

that HCQ characterize the full CQ that can be evaluated in a dynamic setting (under complexity

assumptions), a natural question is to ask whether PCEA has the right expressive power, in the

sense that it cannot define CQ that cannot be evaluated efficiently (i.e., non-hierarchical CQ). We

answer this question positively by focusing on full CQ.

Theorem 4.2. Let 𝜎 be a schema. For every full CQ 𝑄 over 𝜎 , if P ≡ 𝑄 for some PCEA P over 𝜎 ,
then 𝑄 is hierarchical.

The reader can find the proof of this theorem in the appendix. By combining Theorem 4.1 and 4.2,

we get the following result stating that PCEA exactly captures the expressive power of HCQ.

Corollary 4.3. Let 𝜎 be a schema. For every full CQ 𝑄 over 𝜎 , 𝑄 is hierarchical if, and only if,
P ≡ 𝑄 for some PCEA P over 𝜎 .

We note that, although PCEA can only define full CQ that are hierarchical, it can define queries

that are not CQ. For instance, P0 in Example 3.3 cannot be defined by any CQ, since a CQ cannot

express that the 𝑅-tuple must arrive after𝑇 and 𝑆 . Therefore, the class of queries defined by PCEA is

strictly more expressive than HCQ.

By Corollary 4.3, PCEA capture the expressibility of HCQ among full CQ. In the next section, we

show that they also share their good algorithmic properties for streaming evaluation.

5 An evaluation algorithm for PCEA
Below, we present our evaluation algorithm for unambiguous PCEA with equality predicates. We

do this in a streaming setting where the algorithm reads a stream sequentially, and at each position,

we can enumerate the new outputs fired by the last tuple. Furthermore, our algorithm works under

a sliding window scenario, where we only want to enumerate the outputs inside the last𝑤 items

for some window size𝑤 . This scenario is motivated by CER [6, 11, 14], where the importance of

data decreases with time, and then, we want the outputs inside some relevant time window.

In the following, we start by defining the evaluation problem and stating the main theorem,

followed by describing our data structure for storing valuations. We end this section by explaining

the algorithm and stating its correctness.

The streaming evaluation problem. Let 𝜎 be a fixed schema. For a valuation 𝜈 ∶ Ω → 2
N
, we

define min(𝜈) = min{𝑖 ⋃︀ ∃ℓ ∈ Ω. 𝑖 ∈ 𝜈(ℓ)}, namely, the minimum position appearing in 𝜈 . In this

section, we study the following evaluation problem of PCEA over streams:

Problem: EvalPCEA(︀𝜎⌋︀
Input: An unambiguous PCEA P = (𝑄,U

lin
,Beq,Ω,Δ, 𝐹) over 𝜎 ,

a window size𝑤 ∈ N, and a stream S = 𝑡0𝑡1 . . .
Output: At each position 𝑖 , enumerate all valuations 𝜈 ∈ ⎜P⨆︁𝑖(S)

such that ⋃︀𝑖 −min(𝜈)⋃︀ ≤𝑤 .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:13

The goal is to output the set ⎜P⨆︁𝑤𝑖 (S) = {𝜈 ∈ ⎜P⨆︁𝑖(S) ⋃︀ ⋃︀𝑖 −min(𝜈)⋃︀ ≤𝑤} by reading the stream S
tuple-by-tuple sequentially. We assume here a method yield(︀S⌋︀ such that each call retrieves the

next tuple, that is, the 𝑖-th call to yield(︀S⌋︀ retrieves 𝑡𝑖 for each 𝑖 ≥ 0.

For solving EvalPCEA(︀𝜎⌋︀, we desire to find a streaming evaluation algorithm [16, 18] that, for

each tuple 𝑡𝑖 , updates its internal state quickly and enumerates the set ⎜P⨆︁𝑤𝑖 (S) with output-linear

delay. More precisely, let 𝑓 ∶ N3 → N. A streaming enumeration algorithm ℰ with 𝑓 -update time for

EvalPCEA(︀𝜎⌋︀ works as follows. Before reading the stream S , ℰ receives as input a PCEA P and

𝑤 ∈ N, and does some preprocessing. By calling yield(︀S⌋︀, ℰ reads S sequentially and processes

the next tuple 𝑡𝑖 in two phases called the update phase and enumeration phase, respectively. In
the update phase, ℰ updates a data structure DS with 𝑡𝑖 taking time O(𝑓 (⋃︀P ⋃︀, ⋃︀𝑡𝑖 ⋃︀,𝑤)). In the

enumeration phase, ℰ uses DS for enumerating ⎜P⨆︁𝑤𝑖 (S) with output-linear delay2. Formally, if

⎜P⨆︁𝑤𝑖 (S) = {𝜈1, . . . , 𝜈𝑘} (i.e., in arbitrary order), the algorithm prints #𝜈1#𝜈2# . . . #𝜈𝑘# to the output

registers, sequentially. Furthermore, ℰ prints the first and last symbols # when the enumeration

phase starts and ends, respectively, and the time difference (i.e., the delay) between printing the

#-symbols surrounding 𝜈𝑖 is inO(⋃︀𝜈𝑖 ⋃︀). Finally, if such an algorithm exists, we say that EvalPCEA(︀𝜎⌋︀
admits a streaming evaluation algorithm with 𝑓 -update time and output-linear delay.

In the following, we prove the following algorithmic result for evaluating PCEA.

Theorem 5.1. EvalPCEA(︀𝜎⌋︀ admits a streaming evaluation algorithm with (⋃︀P ⋃︀⋅⋃︀𝑡 ⋃︀+⋃︀P ⋃︀⋅log(⋃︀P ⋃︀)+
⋃︀P ⋃︀ ⋅ log(𝑤))-update time and output-linear delay.

Note that the update time does not depend on the number of outputs seen so far, and regarding

data complexity (i.e., assuming that P and the size of the tuples, ⋃︀𝑡 ⋃︀ are fixed), the update time

is logarithmic in the size of the sliding window. Theorem 5.1 improves with respect to [16] by

considering a more general class of queries and evaluating over a sliding window. In contrast,

Theorem 5.1 is incomparable to the algorithms for dynamic query evaluation of HCQ in [5, 18].

On the one hand, [5, 18] show constant update time algorithms for HCQ under insertions and

deletions. On the other hand, Theorem 5.1 is for sliding windows (i.e., insertions “on the right” and

deletions “on the left”) and works for CER queries that include disjunction, iteration (i.e., loops),

and can consider the order of tuples. If we restrict to HCQ, the algorithms in [5, 18] have better

complexity, given that there is no need to maintain and check the order in which the tuples are

inserted or deleted.

It is important to note that we base the algorithm of Theorem 5.1 on the ideas introduced in [16].

Nevertheless, it has several new insights that are novel and are not present in [16]. First, our

algorithm evaluates PCEA, which is a generalization of CCEA, and then the approach in [16]

requires several changes. Second, the data structure for our algorithm must manage the evaluation

of a sliding window and simultaneously combine parallel runs into one. This challenge requires a

new strategy for enumeration that combines cross-products with checking a time condition. Finally,

maintaining the runs that are valid inside the sliding window with logarithmic update time requires

the design of a new data structure based on the principles of a heap, which is novel. We believe

this data structure is interesting in its own right, which could lead to new advances in streaming

evaluation algorithms with enumeration.

We dedicate the rest of this section to explaining the streaming evaluation algorithm of Theo-

rem 5.1, starting by describing the data structure DS.

The data structure. Fix a set of labels Ω. For representing sets of valuations 𝜈 ∶ Ω → 2
N
, we use a

data structure composed of nodes, where each node stores a position, a set of labels, and pointers to

2
For PCEA, output-linear delay is different from the notion of constant delay [26], even if we restrict to data complexity

(i.e., if the input PCEA is fixed). Since a PCEA can have loops, an output could be of size proportional to the size of the data.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:14 Dante Pinto and Cristian Riveros

other nodes. Formally, the data structure DS is composed by a set of nodes, denoted by Nodes(DS),
where each node n has a set 𝐿(n) ⊆ Ω, a position 𝑖(n) ∈ N, a set prod(n) ⊆ Nodes(DS), and two

links to other nodes uleft(n),uright(n) ∈ Nodes(DS). We assume that the directed graph𝐺DS with

𝑉 (𝐺DS) = Nodes(DS) and 𝐸(𝐺DS) = {(n1,n2) ⋃︀ n2 ∈ prod(n1) ∨ n2 = uleft(n1) ∨ n2 = uright(n1)}
is acyclic. In addition, we assume a special node � ∈ Nodes(DS) that serves as a bottom node (i.e.,

all components above are undefined for �) and � ∉ prod(n) for every n.
Each node in DS represents a bag of valuations. To explain this representation, we need to first

introduce some algebraic operations on valuations. Given two valuations 𝜈,𝜈 ′ ∶ Ω → 2
N
, we define

the product 𝜈 ⊕ 𝜈 ′ ∶ Ω → 2
N
such that (︀𝜈 ⊕ 𝜈 ′⌋︀(ℓ) = 𝜈(ℓ) ∪ 𝜈 ′(ℓ) for every ℓ ∈ Ω. Further, we extend

this product to bags of valuations 𝑉 and 𝑉 ′ such that 𝑉 ⊕𝑉 ′ = {{𝜈 ⊕ 𝜈 ′ ⋃︀ 𝜈 ∈ 𝑉 ,𝜈 ′ ∈ 𝑉 ′}}. Note that
⊕ is an associative and commutative operation and, thus, we can write ⊕𝑖 𝑉𝑖 for referring to a

sequence of ⊕-operations. Given a pair (𝐿, 𝑖) ∈ 2
Ω ×N, we define the valuation 𝜈𝐿,𝑖 ∶ Ω → 2

N
such

that 𝜈𝐿,𝑖(ℓ) = {𝑖} if ℓ ∈ 𝐿, and 𝜈𝐿,𝑖(ℓ) = ∅, otherwise. With this notation, for every n ∈ Nodes(DS)
we define the bags ⎜n⨆︁

prod
and ⎜n⨆︁ recursively as follows:

⎜n⨆︁
prod
∶= {{𝜈𝐿(n),𝑖(n)}} ⊕ ⊕

n′∈prod(n)
⎜n′⨆︁ ⎜n⨆︁ ∶= ⎜n⨆︁

prod
∪ ⎜uleft(n)⨆︁ ∪ ⎜uright(n)⨆︁.

For �, we define ⎜�⨆︁
prod
= ⎜�⨆︁ = ∅. Intuitively, the set prod(n) represents the product of its nodes

with the valuation 𝜈𝐿,𝑖 , and the nodes uleft(n) and uright(n) represent unions (for union-left and
union-right, respectively). This interpretation is analog to the product and union nodes used in

previous work of MSO enumeration [2, 22], but here we encode products and unions in a single node.

For efficiently enumerating ⎜n⨆︁, we require that valuations in DS are represented without

overlapping. To formalize this idea, define that the product 𝜈 ⊕ 𝜈 ′ is simple if for every ℓ ∈ Ω, 𝜈(ℓ)
and 𝜈 ′(ℓ) are disjoint and (︀𝜈 ⊕ 𝜈 ′⌋︀(ℓ) = 𝜈(ℓ) ∪ 𝜈 ′(ℓ). Accordingly, we extend this notion to bags of

valuations: 𝑉 ⊕𝑉 ′ is simple if 𝜈 ⊕ 𝜈 ′ is simple for every 𝜈 ∈ 𝑉 and 𝜈 ′ ∈ 𝑉 ′. We say that DS is simple

if {{𝜈𝐿(n),𝑖(n)}} ⊕⊕n′∈prod(n) ⎜n′⨆︁ is simple for every n ∈ Nodes(DS). This notion is directly related

to unambiguous PCEA in Section 3. Intuitively, the first condition of unambiguous PCEA will help

us to force that DS is always simple.

The next step is to incorporate the window-size restriction to DS. For a node n ∈ Nodes(DS), let
max(n) = max{𝑖 ∈ 𝜈(ℓ) ⋃︀ 𝜈 ∈ ⎜n⨆︁ ∧ ℓ ∈ Ω}. Then, given a position 𝑖 ≥ max(n) and a window size

𝑤 ∈ N, define the bag:
⎜n⨆︁𝑤𝑖 ∶= {{𝜈 ∈ ⎜n⨆︁ ⋃︀ ⋃︀𝑖 −min(𝜈)⋃︀ ≤𝑤}}.

We plan to represent ⎜n⨆︁𝑤𝑖 and enumerate its valuations with output-linear delay. For this goal,

from now on we fix a𝑤 ∈ N and write DS𝑤 to denote the data structure with window size𝑤 . For

the enumeration of ⎜n⨆︁𝑤𝑖 , in each node n we store the value:

max-start(n) ∶= max{min(𝜈) ⋃︀ 𝜈 ∈ ⎜n⨆︁
prod

}

This value will be helpful to verify whether ⎜n⨆︁𝑤𝑖 is non-empty or not; in particular, one can check

that ⎜n⨆︁𝑤𝑖 ≠ ∅ iff ⋃︀𝑖 − max-start(n)⋃︀ ≤ 𝑤 . We always assume that ⋃︀max(n) − max-start(n)⋃︀ ≤ 𝑤
(otherwise ⎜n⨆︁𝑤𝑖 = ∅). In addition, we require an order with uleft(n) and uright(n) to discard

empty unions easily. For every node n ∈ Nodes(DS𝑤), we require:

max-start(n) ≥ max-start(uleft(n)) and max-start(n) ≥ max-start(uright(n)) (‡)

whenever uleft(n) ≠ � ≠ uright(n). Intuitively, the binary tree formed by n and all nodes that

can be reached by following uleft(⋅) and uright(⋅) is not strictly ordered; however, it follows the

same principle (‡) as a heap [10]. Note that it is not our goal to use DS𝑤 as a priority queue (since

removing the max element from a heap takes logarithmic time, and we need constant time), but to

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:15

Algorithm 1 Evaluation of an unambiguous PCEA P = (𝑄,U
lin
,Beq,Ω,Δ, 𝐹) with equality predi-

cates over a stream S under a sliding window of size𝑤 .

1: procedure Evaluation(P ,𝑤,S)
2: DS𝑤 ← ∅
3: 𝑖 ← −1

4: while 𝑡 ← yield(︀S⌋︀ do
5: Reset()

6: FireTransitions(𝑡, 𝑖)

7: UpdateIndices(𝑡, 𝑖)

8: for each n ∈ ⋃𝑝∈𝐹 N𝑝

9: ∧ ⋃︀max-start(n) − 𝑖 ⋃︀ ≤𝑤 do
10: Enumerate(n, 𝑖,𝑤)

11:

12: procedure Reset()
13: 𝑖 ← 𝑖 + 1

14: for each 𝑝 ∈ 𝑄 do
15: N𝑝 ← ∅

16: procedure FireTransitions(𝑡, 𝑖)
17: for each 𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ do
18: if 𝑡 ∈𝑈 ∧⋀𝑝∈𝑃 H(︀𝑒, 𝑝, ℬ⃗𝑝(𝑡)⌋︀ ≠ ∅ then
19: N← {H(︀𝑒, 𝑝, ℬ⃗𝑝(𝑡)⌋︀ ⋃︀ 𝑝 ∈ 𝑃 }
20: N𝑞 ← N𝑞 ∪ {extend(𝐿, 𝑖,N)}
21:

22: procedure UpdateIndices(𝑡)
23: for each 𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ do
24: for each 𝑝 ∈ 𝑃 ∧ n ∈ N𝑝 do
25: if H(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀ = ∅ then
26: H(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀ ← n
27: else
28: n′ ← H(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀
29: H(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀ ← union(n′,n)

use condition (‡) to quickly check if there are more outputs to enumerate in uleft(n) or uright(n) by
comparing the max-start value of a node with the start of the current location of the time window.

Theorem 5.2. Let 𝑤 ∈ N be a window size and assume that DS𝑤 is simple. Then, for every
n ∈ Nodes(DS𝑤) and every position 𝑖 ≥ max(n), the valuations in ⎜n⨆︁𝑤𝑖 can be enumerated with
output-linear delay and without preprocessing (i.e., the enumeration starts immediately).

We sketch the proof of this theorem in the appendix.

We require two procedures, called extend and union, for operating nodes in our algorithm. The

first procedure extend(𝐿, 𝑖,N) receives as input a set 𝐿 ⊆ Ω, a position 𝑖 ∈ N, and N ⊆ Nodes(DS𝑤)
such that 𝑖(n) < 𝑖 for every n ∈ N. The procedure outputs a fresh node n𝑒 such that ⎜n𝑒⨆︁𝑤𝑖 ∶= {{𝜈𝐿,𝑖}}⊕
⊕n∈N ⎜n⨆︁

𝑤

𝑖 . By the construction of DS𝑤 , this operation is straightforward to implement by defining

𝐿(n𝑒) = 𝐿, 𝑖(n𝑒) = 𝑖 , prod(n𝑒) = N, and uleft(n𝑒) = uright(n𝑒) = �. Further, we can compute

max-start(n𝑒) from the set N as follows: max-start(n𝑒) = min{𝑖,min{max-start(n) ⋃︀ n ∈ N}}.
Overall, we can implement extend(𝐿, 𝑖,N) with running time O(⋃︀N⋃︀).
The second procedure union(n1,n2) receives as inputs two nodes n1,n2 ∈ Nodes(DS𝑤) such

that max(n1) ≤ 𝑖(n2) and uleft(n2) = uright(n2) = �. It outputs a fresh node n𝑢 such that ⎜n𝑢⨆︁𝑤𝑖 ∶=
⎜n1⨆︁𝑤𝑖 ∪⎜n2⨆︁𝑤𝑖 . The implementation of this procedure is more involved since it requires inserting n2

into n1 by using uleft(n1) and uright(n1), and maintaining condition (‡). Furthermore, we require

them to be fully persistent [13], namely, n1 and n2 are unmodified after each operation.

Proposition 5.3. Let 𝑘 ∈ N and assume that one performs union(n1,n2) over DS𝑤 with the
same position 𝑖 = 𝑖(n2) at most 𝑘 times. Then one can implement union(n1,n2) with running time
O(log(𝑘 ⋅𝑤)) per call.

In the appendix, we provide a proof of this proposition. An illustration on how this data structure

works is included in Example 5.4.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:16 Dante Pinto and Cristian Riveros

The streaming evaluation algorithm. In Algorithm 1, we present the main procedures of

the evaluation algorithm given a fixed schema 𝜎 . The algorithm receives as input a PCEA P =
(𝑄,U

lin
,Beq,Ω,Δ, 𝐹) over 𝜎 , a window size𝑤 ∈ N, and a reference to a stream S . We assume that

these inputs are globally accessible by all procedures. Recall that we can test if 𝑡 ∈ 𝑈 in linear

time for any 𝑈 ∈ U
lin
. Further, recall that Beq are equality predicates and, for every 𝐵 ∈ Beq, there

exists linear time computable partial functions
⃗𝐵 and 𝐵 such that (𝑡1, 𝑡2) ∈ 𝐵 iff

⃗𝐵(𝑡1) and 𝐵(𝑡2) are
defined and

⃗𝐵(𝑡1) = 𝐵(𝑡2), for every 𝑡1, 𝑡2 ∈ Tuples(︀𝜎⌋︀.
For the algorithm, we require some data structures. First, we use the previously described data

structure DS𝑤 and its nodes Nodes(DS𝑤). Second, we consider a look-up table H that maps triples

of the form (𝑒, 𝑝,𝑑) to nodes in Nodes(DS𝑤) where 𝑒 ∈ Δ, 𝑝 ∈ 𝑄 , and 𝑑 is the output of any partial

function
⃗𝐵 or 𝐵. We write H(︀𝑒, 𝑝,𝑑⌋︀ for accessing its node, and H(︀𝑒, 𝑝,𝑑⌋︀ ← n for updating a node

n at entry (𝑒, 𝑝,𝑑). Also, we write H(︀𝑒, 𝑝,𝑑⌋︀ = ∅ or H(︀𝑒, 𝑝,𝑑⌋︀ ≠ ∅ for checking whether there is a

node or not at entry (𝑒, 𝑝,𝑑). We assume all entries are empty at the beginning. Intuitively, for

𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ and 𝑝 ∈ 𝑃 , we use H(︀𝑒, 𝑝, ⋅⌋︀ to check if the equality predicate ℬ𝑝 is satisfied or

not (here ℬ𝑝 = ℬ(𝑝)). As it is standard in the literature [5, 18] (i.e., by adopting the RAM model),

we assume that each operation over look-up tables takes constant time. Finally, we assume a set of

nodes N𝑝 for each 𝑝 ∈ 𝑄 whose use will be clear later.

Algorithm 1 starts at the main procedure Evaluation. It initializes the data structure DS𝑤 to

empty (i.e., the only node it has is the special node �) and the index 𝑖 for keeping the current

position in the stream (lines 2-3). Then, the algorithm loops by reading the next tuple yield(︀S⌋︀,
performs the update phase (lines 5-7), followed by the enumeration phase (lines 8-9), and repeats

the process over again. Next, we explain the update phase and enumeration phase separately.

The update phase is composed of three steps, encoded as procedures. The first one, Reset, is

in charge of starting a new iteration by updating 𝑖 to the next position and emptying the sets

N𝑝 (lines 12-14). The second step, FireTransitions, uses the new tuple 𝑡 to fire all transitions

𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ of P (lines 16-19). We do this by checking if 𝑡 satisfies 𝑈 and all equality

predicates {ℬ𝑝}𝑝∈𝑃 (line 17). The main intuition is that the algorithm stores partial runs in the

look-up table H, whose outputs are represented by nodes in DS𝑤 . Then the call H(︀𝑒, 𝑝, ℬ⃗𝑝(𝑡)⌋︀ is
used to verify the equality

⃗ℬ𝑝(𝑡 ′) = ℬ⃗𝑝(𝑡) for some previous tuple 𝑡 ′. Furthermore, if H(︀𝑒, 𝑝, ℬ⃗𝑝(𝑡)⌋︀
is non-empty, it contains the node that represents all runs that have reached 𝑝 . If𝑈 and all predicates

{ℬ𝑝}𝑝∈𝑃 are satisfied, we collect all nodes at states 𝑃 in the set N (line 18), and symbolically extend

these runs by using the method extend(𝐿, 𝑖,N) of DS𝑤 . We collect the output node of extend in
the set N𝑞 for use in the next procedure UpdateIndices.

The last step of the update phase, UpdateIndices, is to update the look-up table H by using 𝑡 and

the nodes stored at the sets {N𝑝}𝑝∈𝑄 (lines 22-28). Intuitively, the nodes in N𝑝 represent new runs

(i.e., valuations) that reached state 𝑝 when reading 𝑡 . Then, for every transition 𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ
such that 𝑝 ∈ 𝑃 , we want to update the entry (𝑒, 𝑝, ⃗ℬ𝑝(𝑡)) of H with the nodes from N𝑝 , to be ready

to be fired for future tuples. For this goal, we check each n ∈ N𝑝 and, if H(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀ is empty,

we just place n at the entry (𝑒, 𝑝, ⃗ℬ𝑝(𝑡)) (lines 23-25). Otherwise, we use the union operator of

DS𝑤 , to combine the previous outputs with the new ones of n (lines 26-28). Note that the call to

union(n′,n) satisfies the requirements of this operator, given that n was created recently.

Example 5.4. For getting some intuition on how the data structure DS𝑤 and Algorithm 1 work,

we show an example involving the extend and the union procedures. Consider the PCEA P0 from

Figure 1 and the stream:

𝑇 (0)
⧸︀

0

𝑆(0, 0)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

1

𝑇 (0)
⧸︀

2

𝑅(0, 0)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

3

. . .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:17

0 ∶ ({●}, 0, 0)

�

𝑅𝐿

(a)

1 ∶ ({●}, 0, 0)({●}, 1, 1)

� 𝑅

𝐿𝑅

𝐿

(b)

2 ∶ ({●}, 0, 0)({●}, 1, 1)

({●}, 2, 2)

� 𝑅

𝐿𝑅

𝐿

𝐿

𝑅

(c)

3 ∶

({●}, 0, 0)({●}, 1, 1)

({●}, 2, 2)({●}, 3, 1)

� 𝑅

𝐿𝑅

𝐿

𝐿

𝑅Prod

Prod

(d)

Fig. 3. (a), (b), (c), and (d) show the resulting data structure DS𝑤 following Algorithm 1 after reading the tuples
𝑇 (0), 𝑆(0, 0), 𝑇 (0), and 𝑅(0, 0), respectively. We represent each node by a triple (𝐿(n), 𝑖(n),max-start(n)),
with uleft(n), uright(n), and prod(n) represented by labeled edges 𝐿, 𝑅 and Prod, respectively.

In Figure 3, we show how the data structure DS𝑤 with 𝑤 = 4 evolves after reading the stream

until position 3. To represent nodes we use tuples of the form n = (𝐿(n), 𝑖(n),max-start(n)),
with uleft(n), uright(n), and prod(n) represented by labeled edges 𝐿, 𝑅 and Prod on the figure,

respectively. We label each new node with the position of the tuple that adds it.

Based on the previous description, the enumeration phase is straightforward. Given that the

nodes in {N𝑝}𝑝∈𝑄 represent new runs at the last position, ⋃𝑝∈𝐹 N𝑝 are all new runs that reached

some final state. Then, for each node n ∈ ⋃𝑝∈𝐹 N𝑝 satisfying ⋃︀max-start(n) − 𝑖 ⋃︀ ≤ 𝑤 we call the

procedure Enumerate(n, 𝑖,𝑤) that enumerates all valuations in ⎜n⨆︁𝑤𝑖 . Theorem 5.2 shows that

this method exists with the desired guarantees given that P is unambiguous which implies that

DS𝑤 is simple. Note that, for enforcing output-linear delay, we assume that the for each routine is

done wisely by removing the nodes n ∈ ⋃𝑝∈𝐹 N𝑝 that does not satisfy ⋃︀max-start(n) − 𝑖 ⋃︀ ≤𝑤 before

starting the enumeration phase. Further, runs correspond with valuations, namely, ⎜n⨆︁𝑤𝑖 is a set,

and, thus, we enumerate the outputs without repetitions.

Proposition 5.5. For every unambiguous PCEA P with equality predicates,𝑤 ∈ N, stream S , and
position 𝑖 ∈ N, Algorithm 1 enumerates all valuations ⎜P⨆︁𝑤𝑖 (S) without repetitions.

We end by discussing the update time of Algorithm 1. By inspection, one can check that we

performed a linear pass over Δ during the update phase, where each iteration takes linear time

over each transition. Overall, we made at most O(⋃︀P ⋃︀) calls to unary predicates, the look-up table,

or the data structure DS𝑤 . Each call to a unary predicate takes O(⋃︀𝑡 ⋃︀)-time and, thus, at most

O(⋃︀P ⋃︀ ⋅ ⋃︀𝑡 ⋃︀)-time in total. The operations to the look-up table or extend take constant time. Instead,

we performed at mostO(⋃︀P ⋃︀) unions over the same position 𝑖 . By Proposition 5.3, each union takes
time O(log(⋃︀P ⋃︀ ⋅𝑤)). Summing up, the updating time is O(⋃︀P ⋃︀ ⋅ ⋃︀𝑡 ⋃︀ + ⋃︀P ⋃︀ ⋅ log(⋃︀P ⋃︀) + ⋃︀P ⋃︀ ⋅ log(𝑤)).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:18 Dante Pinto and Cristian Riveros

6 Future work
We present an automata model for CER that expresses HCQ and can be evaluated in a streaming

fashion under a sliding window with a logarithmic update time and output-linear delay. These

results achieve the primary goal of this paper but leave several directions for future work. First,

defining a query language that characterizes the expressive power of PCEA will be interesting.

Second, one would like to understand a disambiguation procedure to convert any PCEA into an

unambiguous PCEA or to decide when this is possible. Last, we study here algorithms for PCEAwith

equality predicates, but the model works for any binary predicate. Then, it would be interesting to

understand for which other predicates (e.g., inequalities) the model still admits efficient streaming

evaluation. On this line, an interesting problem is to study how to extend the algorithms for PCEA

to include deletions everywhere in the stream.

Acknowledgments
This work was funded by ANID Fondecyt Regular project 1230935 and ANID – Millennium Science

Initiative Program – Code ICN17_002.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:19

References
[1] A. V. Aho and J. E. Hopcroft. The design and analysis of computer algorithms. Addison-Wesley, 1974.

[2] A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel. A circuit-based approach to efficient enumeration. In ICALP,
volume 80 of LIPIcs, pages 111:1–111:15, 2017.

[3] A. Amarilli, L. Jachiet, M. Muñoz, and C. Riveros. Efficient enumeration for annotated grammars. In PODS, pages
291–300. ACM, 2022.

[4] A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Weidlich. Complex event recognition languages: Tutorial.

In DEBS, pages 7–10. ACM, 2017.

[5] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In PODS, pages 303–318,
2017.

[6] M. Bucchi, A. Grez, A. Quintana, C. Riveros, and S. Vansummeren. CORE: a complex event recognition engine. VLDB,
15(9):1951–1964, 2022.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM (JACM), 28(1):114–133, 1981.
[8] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In PODS, pages 59–70, 1993.
[9] R. Chirkova, J. Yang, et al. Materialized views. Foundations and Trends® in Databases, 4(4):295–405, 2012.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT press, 2022.

[11] G. Cugola and A. Margara. Processing flows of information: From data stream to complex event processing. ACM
Computing Surveys (CSUR), 44(3):1–62, 2012.

[12] N. N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic structures. In PODS, pages 293–302,
2007.

[13] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. In STOC, pages 109–121,
1986.

[14] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. N. Garofalakis. Complex event recognition in the big

data era: a survey. VLDB J., 29(1):313–352, 2020.
[15] E. Grandjean and L. Jachiet. Which arithmetic operations can be performed in constant time in the RAM model with

addition? CoRR, abs/2206.13851, 2022.
[16] A. Grez and C. Riveros. Towards Streaming Evaluation of Queries with Correlation in Complex Event Processing. In

ICDT, volume 155, pages 14:1–14:17, 2020.

[17] A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren. A formal framework for complex event recognition. ACM Trans.
Database Syst., 46(4):16:1–16:49, 2021.

[18] M. Idris, M. Ugarte, and S. Vansummeren. The dynamic yannakakis algorithm: Compact and efficient query processing

under updates. In SIGMOD, pages 1259–1274, 2017.
[19] M. Idris, M. Ugarte, S. Vansummeren, H. Voigt, and W. Lehner. General dynamic yannakakis: conjunctive queries with

theta joins under updates. VLDB J., 29(2-3):619–653, 2020.
[20] A. Kara, M. Nikolic, D. Olteanu, and H. Zhang. Pods. pages 375–392. ACM, 2020.

[21] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing. In SIGMOD, pages 811–825, 2015.
[22] M. Muñoz and C. Riveros. Streaming enumeration on nested documents. In ICDT, volume 220 of LIPIcs, pages

19:1–19:18, 2022.

[23] M. Muñoz and C. Riveros. Constant-delay enumeration for slp-compressed documents. In ICDT, volume 255 of LIPIcs,
pages 7:1–7:17, 2023.

[24] F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3):39–46, 2002.
[25] D. Pinto and C. Riveros. Complex event recognition meets hierarchical conjunctive queries. arXiv preprint

arXiv:2408.01652, 2024.
[26] L. Segoufin. Constant delay enumeration for conjunctive queries. ACM SIGMOD Record, 44(1):10–17, 2015.
[27] P. D. Stotts and W. W. Pugh. Parallel finite automata for modeling concurrent software systems. J. Syst. Softw.,

27(1):27–43, 1994.

[28] N. Tziavelis, W. Gatterbauer, and M. Riedewald. Beyond equi-joins: Ranking, enumeration and factorization. VLDB,
14(11):2599–2612, 2021.

[29] M. Ugarte and S. Vansummeren. On the difference between complex event processing and dynamic query evaluation.

In AMW, volume 2100, 2018.

[30] Q. Wang, X. Hu, B. Dai, and K. Yi. Change propagation without joins. VLDB, 16(5):1046–1058, 2023.
[31] Q. Wang and K. Yi. Conjunctive queries with comparisons. In SIGMOD, pages 108–121. ACM, 2022.

[32] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In SIGMOD, pages 407–418,
2006.

[33] J. Xie and J. Yang. A survey of join processing in data streams. Data Streams: Models and Algorithms, pages 209–236,
2007.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:20 Dante Pinto and Cristian Riveros

A Proofs of Section 3
Proof of Proposition 3.2

Proof. To prove this statement, we follow the same principle used in the subset construction.

To simulate all possible run trees of a PFA with a DFA, we start at the leaves, with all initial states.

Then for each symbol we move up on the tree, firing all transitions that used a subset of the current

set of states. At the end of the string, if the last set has a final state, then it means that one can

construct a run tree that accepts the input.

Let 𝒫 = (𝑄, Σ,Δ, 𝐼 , 𝐹) be a parallelized finite automata. We build the DFA A = (2𝑄 , Σ, 𝛿, 𝐼 , 𝐹 ′)
such that 𝐹 ′ = {𝑃 ⋃︀ 𝑃 ∩ 𝐹 ≠ ∅} and 𝛿(𝑃,𝑎) = {𝑞 ⋃︀ ∃𝑃 ′ ⊆ 𝑃 . (𝑃 ′, 𝑎,𝑞) ∈ Δ)} for every 𝑃 ⊆ 𝑄 and 𝑎 ∈ Σ.
We now prove that both automata define the same language.

L(𝒫) ⊆ L(A). Let 𝑠 = 𝑎1 . . . 𝑎𝑛 ∈ Σ∗ be a string such that 𝑠 ∈ L(𝒫) and let 𝜏 ∶ 𝑡 → 𝑄 be an accepting

run tree of 𝒫 over 𝑠 . We need to prove that the run 𝜌 ∶ 𝑆𝑛
𝑎1Ð→ 𝑆𝑛−1

𝑎2Ð→ . . .
𝑎𝑛Ð→ 𝑆0 is an accepting

run of A over 𝑠 , i.e. 𝑆𝑛 ∈ 𝐹 ′. To this end, we define 𝐿𝑖 = {𝜏(𝑢) ⋃︀ depth𝜏(𝑢) = 𝑖} as the set of states
labeling 𝜏 at depth 𝑖 and prove that 𝐿𝑖 ⊆ 𝑆𝑖 for all 0 ≤ 𝑖 ≤ 𝑛. Since 𝐿0 = {𝜏(𝜀)}, this in return means

that 𝑆𝑛 ∩ 𝐹 ≠ ∅ and 𝑆𝑛 ∈ 𝐹 ′.
For every leaf node 𝑢 it holds that depth𝜏(𝑢) = 𝑛 and 𝜏(𝑢) ∈ 𝐼 , meaning 𝐿𝑛 ⊆ 𝑆𝑛 = 𝐼 . Let us

assume that 𝐿𝑖−1 ⊆ 𝑆𝑖−1; for every inner node 𝑣 at depth 𝑖 there must be a transition (𝑃,𝑎𝑛−𝑖 , 𝑞) ∈ Δ
such that 𝜏(𝑣) = 𝑞 and 𝑃 = {𝜏(𝑢) ⋃︀ 𝑢 ∈ children𝜏(𝑣)}. Following the definition of 𝛿 , it is clear that

𝑞 ∈ 𝛿(𝑃,𝑎), and since this is true for every node at depth 𝑖 , we have that 𝐿𝑖 ⊆ 𝑆𝑖 .
Given that 𝐿0 ⊆ 𝑆0, we know that 𝑆𝑛 ∈ 𝐹 ′, which means that 𝜌 is an accepting run of A over 𝑠

and therefore L(𝒫) ⊆ L(A).

L(A) ⊆ L(𝒫). Let 𝑠 = 𝑎1 . . . 𝑎𝑛 ∈ Σ∗ be a string such that 𝑠 ∈ L(A) and let 𝜌 ∶ 𝑆𝑛
𝑎1Ð→ 𝑆𝑛−1

𝑎2Ð→
. . .

𝑎𝑛Ð→ 𝑆0 be the run of A over 𝑠 . We can now construct a run tree of 𝒫 over 𝑠 .

Since 𝜌 is an accepting run, we know that 𝑆0 ∩ 𝐹 ≤ ∅. We define 𝜏 ∶ 𝑡 → 𝑄 such that 𝜏(𝜀) = 𝑓

with 𝑓 ∈ 𝑆0 ∩ 𝐹 . If we consider a node 𝑣 ∈ 𝑡 at depth 𝑖 , such that 𝜏(𝑣) = 𝑞 and 𝑞 ∈ 𝑆𝑖 , we can follow

the definition of 𝛿 , and inductively add nodes to 𝜏 according to the transition (𝑃,𝑎𝑛−𝑖 , 𝑞) ∈ Δ so

that ⋃︀children𝜏(𝑣)⋃︀ = ⋃︀𝑃 ⋃︀ and 𝑃 = {𝜏(𝑢) ⋃︀ 𝑢 ∈ children𝜏(𝑣)}. For every leaf node 𝑣 it holds that

depth𝜏(𝑣) = 𝑛 and since 𝑆𝑛 = 𝐼 all of them will be labeled by initial states.

The labeled tree 𝜏 we just constructed is an accepting run of 𝒫 over 𝑠 , meaning L(A) ⊆ L(𝒫)
and, therefore, L(𝒫) = L(A). □

Proof of Proposition 3.4
Proof. To prove this statement we just need to find a Parallelized-CEA P with no CCEA

equivalent, i.e. there is no CCEA C such that ⎜P⨆︁(S) = ⎜C⨆︁(S) for every stream S . Let P be the

PCEA represented in Figure 2, then P = (𝑄,U,B,Ω,Δ, 𝐹), with 𝑄 = {𝑅(𝑥,𝑦), 𝑆(𝑥,𝑦),𝑇 (𝑥), 𝑥,𝑦},
Ω = {𝑅, 𝑆,𝑇}, 𝐹 = {𝑥} and:

Δ = {(∅,𝑈𝑅(𝑥,𝑦),∅, {𝑅(𝑥,𝑦)}, 𝑅(𝑥,𝑦)),
(∅,𝑈𝑆(𝑥,𝑦),∅, {𝑆(𝑥,𝑦)}, 𝑆(𝑥,𝑦)),
(∅,𝑈𝑇 (𝑥),∅, {𝑇 (𝑥)},𝑇 (𝑥)),
({𝑅(𝑥,𝑦),𝑇 (𝑥)},𝑈𝑆(𝑥,𝑦), {(𝑅(𝑥,𝑦), 𝐵𝑅(𝑥,𝑦),𝑆(𝑥,𝑦)), (𝑇 (𝑥), 𝐵𝑇 (𝑥),𝑆(𝑥,𝑦))}, {𝑆(𝑥,𝑦)}, 𝑥),
({𝑆(𝑥,𝑦),𝑇 (𝑥)},𝑈𝑅(𝑥,𝑦), {(𝑆(𝑥,𝑦), 𝐵𝑆(𝑥,𝑦),𝑅(𝑥,𝑦)), (𝑇 (𝑥), 𝐵𝑇 (𝑥),𝑅(𝑥,𝑦))}, {𝑅(𝑥,𝑦)}, 𝑥),
({𝑅(𝑥,𝑦)},𝑈𝑆(𝑥,𝑦), {(𝑅(𝑥,𝑦), 𝐵𝑅(𝑥,𝑦),𝑆(𝑥,𝑦))}, {𝑆(𝑥,𝑦)},𝑦),
({𝑆(𝑥,𝑦)},𝑈𝑅(𝑥,𝑦), {(𝑆(𝑥,𝑦), 𝐵𝑆(𝑥,𝑦),𝑅(𝑥,𝑦))}, {𝑅(𝑥,𝑦)},𝑦),
({𝑦},𝑈𝑇 (𝑥), {(𝑦, 𝐵𝑦,𝑇 (𝑥,𝑦))}, {𝑇 (𝑥)}, 𝑥)}

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:21

with the predicates𝑈𝑅(𝑥) and 𝐵𝑅(𝑥),𝑆(𝑦) defined as:

𝑈𝑅(𝑥) ∶= {𝑅(𝑎) ∈ Tuples(︀𝜎⌋︀ ⋃︀ ∃ℎ ∈ Hom . ℎ(𝑅(𝑥)) = 𝑅(𝑎)}

and:

𝐵𝑅(𝑥),𝑆(𝑦) ∶= {(𝑅(𝑎), 𝑆(¯𝑏)) ⋃︀ ∃ℎ ∈ Hom . ℎ(𝑅(𝑥)) = 𝑅(𝑎) ∧ℎ(𝑆(𝑦)) = 𝑆(¯𝑏)}.

Let S𝑖 = {{𝑅(0, 𝑖),𝑇 (0), 𝑆(0, 𝑖), . . .}} be a family of streams over the set of data values D = N with

𝑖 ∈ N. It is clear that the valuation {{0, 1, 2}} ∈ ⎜P⨆︁(S𝑖) for every 𝑖 ∈ N. Let C = (𝑄 ′,U′,B′,Ω′,Δ′, 𝐼 ′, 𝐹 ′)
be a deterministic CCEA such that ⎜C⨆︁(S𝑖) = ⎜P⨆︁(S𝑖) for every 𝑖 ∈ N. This means that for every

stream S𝑖 , there is an accepting run of C over of the form 𝜌𝑖 ∶ 𝑞𝑖,0
𝑅(0,𝑖)
ÐÐÐ→ 𝑞𝑖,1

𝑇 (0)
ÐÐ→ 𝑞𝑖,2

𝑆(0,𝑖)
ÐÐÐ→ 𝑞𝑖,3.

Since C has a finite number of states, we know that there must be two streams, S 𝑗 and S𝑘 with

𝑗 ≠ 𝑘 with accepting runs 𝜌 𝑗 ∶ 𝑞 𝑗,0

𝑅(0, 𝑗)
ÐÐÐ→ 𝑞 𝑗,1

𝑇 (0)
ÐÐ→ 𝑞 𝑗,2

𝑆(0, 𝑗)
ÐÐÐ→ 𝑞 𝑗,3 and 𝜌𝑘 ∶ 𝑞𝑘,0

𝑅(0,𝑘)
ÐÐÐ→ 𝑞𝑘,1

𝑇 (0)
ÐÐ→

𝑞𝑘,2
𝑆(0,𝑘)
ÐÐÐ→ 𝑞𝑘,3, respectively, such that 𝑞 𝑗,𝑖 = 𝑞𝑘,𝑖 for every 0 ≤ 𝑖 ≤ 3.

Given the run 𝜌𝑘 of C , we know that there must be a transition (𝑞𝑘,2,𝑈 , 𝐵,𝜔,𝑞𝑘,3) ∈ Δ′ such
that 𝑆(0, 𝑘) ∈ 𝑈 and (𝑇 (0), 𝑆(0, 𝑘)) ∈ 𝐵 and since 𝑞𝑘,2 = 𝑞 𝑗,2 and 𝑞𝑘,3 = 𝑞 𝑗,3 the following will be

an accepting run of C over the stream 𝑆 𝑗,𝑘 = {{𝑅(0, 𝑗),𝑇 (0), 𝑆(0, 𝑘)}}: 𝜌 𝑗,𝑘 ∶ 𝑞 𝑗,0

𝑅(0, 𝑗)
ÐÐÐ→ 𝑞 𝑗,1

𝑇 (0)
ÐÐ→

𝑞 𝑗,2

𝑆(0,𝑘)
ÐÐÐ→ 𝑞 𝑗,3.

We can easily check that there are no accepting runs of P over S 𝑗,𝑘 , meaning ⎜P⨆︁(S 𝑗,𝑘) ≠
⎜C⨆︁(S 𝑗,𝑘) and therefore there is no CCEA C such that ⎜P⨆︁(S) = ⎜C⨆︁(S) for every stream S . □

B Proofs of Section 4
Proof of equivalence between CQ bag-semantics
Fix a schema 𝜎 , a relational database 𝐷 over 𝜎 , and a CQ 𝑄 over 𝜎 of the form:

𝑄(𝑥) ← 𝑅0(𝑥0), . . . , 𝑅𝑚−1(𝑥𝑚−1).

Further, without loss of generality, assume that X = ⋃𝑖{𝑥𝑖} and, thus, all homomorphisms ℎ ∶ X ∪
D→ D in Hom(𝑄,𝐷) are restricted to the variables of𝑄 . To prove that ⎜𝑄⨆︁(𝐷) = (︀𝑄⌋︀(𝐷), we need
to prove that both bags have equal multiplicity, namely, mult⎜𝑄⨆︁(𝐷)(𝑄(𝑎)) = mult(︀𝑄⌋︀(𝐷)(𝑄(𝑎))
for every 𝑄-tuple 𝑄(𝑎).

Towards this goal, let t-Hom(𝑄,𝐷) be the set of all t-homomorphism from𝑄 to 𝐷 . Recall that for

every t-homomorphism 𝜂 ∈ t-Hom(𝑄,𝐷) there exists a unique homomorphism ℎ𝜂 ∈ Hom(𝑄,𝐷)
associated to 𝜂. Conversely, one can easily see that, for every ℎ ∈ Hom(𝑄,𝐷), there are exactly:

mult𝑄,𝐷(ℎ) =
𝑚−1

∏
𝑖=0

mult𝐷(𝑅𝑖(ℎ(𝑥𝑖)))

t-homomorphisms 𝜂 such that ℎ = ℎ𝜂 . Indeed, for having ℎ = ℎ𝜂 we must map each 𝑖 ∈ 𝐼(𝑄) (i.e.,
𝑅𝑖(𝑥𝑖)) to a tuple 𝑗 ∈ 𝐼(𝐷) of the form 𝑅𝑖(ℎ(𝑥𝑖)) and we only have mult𝐷(𝑅𝑖(ℎ(𝑥𝑖))) copies of it.
Then, for each 𝑖 ∈ 𝐼(𝑄) we can choose 𝜂(𝑖) in mult𝐷(ℎ(𝑅𝑖(𝑥𝑖))) possible ways, independently. In
other words, for every ℎ ∈ Hom(𝑄,𝐷) it holds that:

⋃︀{𝜂 ∈ t-Hom(𝑄,𝐷) ⋃︀ ℎ = ℎ𝜂}⋃︀ = mult𝑄,𝐷(ℎ).

Using the previous equation, for any 𝑄-tuple 𝑄(𝑎) we can show that mult⎜𝑄⨆︁(𝐷)(𝑄(𝑎)) =
mult(︀𝑄⌋︀(𝐷)(𝑄(𝑎)). By following the definition for the multiplicities of a bag ⎜𝑄⨆︁(𝐷), we know that:

mult⎜𝑄⨆︁(𝐷)(𝑄(𝑎)) = ⋂︀{ 𝑗 ⋃︀ ⎜𝑄⨆︁(𝐷)(𝑗) = 𝑄(𝑎)}⋂︀.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:22 Dante Pinto and Cristian Riveros

We also know that, if ⎜𝑄⨆︁(𝐷)(𝑗) = 𝑄(𝑎) holds, then there must be a unique t-homomorphism 𝜂 for

𝑗 such that ℎ𝜂(𝑥) = 𝑎 (i.e., there is a one-to-one correspondence between identifiers in 𝐼(⎜𝑄⨆︁(𝐷))
and 𝑡-homomorphisms in t-Hom(𝑄,𝐷)). Then the following equivalences follows:

mult⎜𝑄⨆︁(𝐷)(𝑄(𝑎)) = ⋂︀{ 𝑗 ⋃︀ ⎜𝑄⨆︁(𝐷)(𝑗) = 𝑄(𝑎)}⋂︀
= ⋃︀{𝜂 ∈ t-Hom(𝑄,𝐷) ⋃︀ ℎ𝜂(𝑥) = 𝑎}⋃︀
= ∑

ℎ∈Hom(𝑄,𝐷) ∶
ℎ(𝑥)=𝑎

⋃︀{𝜂 ∈ t-Hom(𝑄,𝐷) ⋃︀ ℎ = ℎ𝜂}⋃︀

= ∑
ℎ∈Hom(𝑄,𝐷) ∶

ℎ(𝑥)=𝑎

mult𝑄,𝐷(ℎ)

= mult(︀𝑄⌋︀(𝐷)(𝑄(𝑎)).
□

Proof of Theorem 4.2
We prove that, if 𝑄 is non-hierarchical, then P ⇑≡ 𝑄 for every PCEA P over 𝜎 . So, assume that 𝑄 is

a full non-hierarchical CQ over 𝜎 . To better explain the proof, we will start with a specific case and

then explain how to extend it to every conjunctive query.

Fix a schema 𝜎 and, for the sake of simplification, assume thatD = N. Let𝑄(𝑥,𝑦) be the following
full CQ:

𝑄(𝑥,𝑦) ← 𝑅0(𝑥,𝑦), 𝑅1(𝑥), 𝑅2(𝑦)
Note that 𝑄 is not a hierarchical query, since atoms(𝑥) ⇑⊆ atoms(𝑦), atoms(𝑦) ⇑⊆ atoms(𝑥), and
atoms(𝑦) ∩ atoms(𝑧) ≠ ∅.
By contradiction, suppose that there exists PCEA P = (𝑃,U,B,Ω,Δ, 𝐹) such that P ≡ 𝑄 . For

every 𝑖, 𝑗 ∈ N we define the stream S𝑖, 𝑗 such that S𝑖, 𝑗 = 𝑅0(𝑖, 𝑗), 𝑅1(𝑖), 𝑅2(𝑗), Note that after the
third tuple, the tuples of S𝑖, 𝑗 are not relevant. It is easy to see that the valuation:

𝜈 = {𝑅0(𝑥,𝑦) → 0, 𝑅1(𝑥) → 1, 𝑅2(𝑦) → 2}

satisfies that 𝜈 ∈ ⎜𝑄⨆︁
2
(S𝑖, 𝑗) and, then, 𝜈 ∈ ⎜P⨆︁2

(S𝑖, 𝑗) for every 𝑖, 𝑗 ∈ N. Let 𝜏𝑖, 𝑗 be the run of P over

S𝑖, 𝑗 that ends at position 2 and produces 𝜈 . Clearly, each 𝜏𝑖, 𝑗 has three nodes and it is either of the

following two shapes:

𝜏𝑖, 𝑗 ∶ (𝑞0, 0, 𝑅0(𝑥,𝑦)) (𝑞1, 1, 𝑅1(𝑥)) (𝑞2, 2, 𝑅2(𝑦)) 𝜏𝑖, 𝑗 ∶ (𝑞2, 2, 𝑅2(𝑦))

(𝑞0, 0, 𝑅0(𝑥,𝑦)) (𝑞1, 1, 𝑅1(𝑥))

for some states 𝑞0, 𝑞1, 𝑞2 ∈ 𝑃 . We call the former a line shape and the latter a tree shape. Note that
although some runs 𝜏𝑖, 𝑗 may coincide in the shape, they can use different states or transitions of P .

However, given that P is finite, there are a finite number of such runs. Then, let 𝑁 be the number

of different runs 𝜏𝑖, 𝑗 of P .

For every 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 , there must exists 𝑗𝑖 , 𝑗
′
𝑖 ≤ 𝑁 such that 𝑗𝑖 ≠ 𝑗 ′𝑖 and 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′

𝑖
are

equivalent, namely, they have the same shape, states, and transitions. We need to consider two

possible scenarios.

(1) Assume that for some 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 , both 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′𝑖
have the shape of a line like above

(left). Then, it is easy to see that P would have the same run tree for the stream:

S∗ = 𝑅0(𝑖, 𝑗𝑖), 𝑅1(𝑖), 𝑅2(𝑗 ′𝑖), . . .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:23

This implies that 𝜈 ∈ ⎜P⨆︁
2
(S∗), however, 𝜈 ∉ ⎜𝑄⨆︁

2
(S∗) which is a contradiction.

(2) Otherwise, assume that, for every 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 , 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′𝑖
have not the shape of a line,

namely, they are tree shape. By the pigeonhole principle, there must exists 𝑖0 < 𝑖1 < . . . < 𝑖𝑁 ≤
(𝑁 + 1) ⋅ 𝑁 such that 𝑗𝑖0 = 𝑗𝑖1 = . . . = 𝑗𝑖𝑁 = 𝑗∗. Therefore, all the runs 𝜏𝑖0, 𝑗∗ , . . . , 𝜏𝑖𝑁 , 𝑗∗ are tree

shape. Applying again the pigeonhole principle, we know that there must exist 𝑘, ℓ ≤ 𝑁 with

𝑘 ≠ ℓ such that 𝜏𝑖𝑘 , 𝑗∗ and 𝜏𝑖ℓ , 𝑗∗ are equivalent and have tree shape like above (right). Then, it

is easy to see that P would have the same run tree for stream:

S∗ = 𝑅0(𝑖𝑘 , 𝑗∗), 𝑅1(𝑖ℓ), 𝑅2(𝑗∗), . . .

Again, this implies that 𝜈 ∈ ⎜P⨆︁
2
(S∗), however, 𝜈 ∉ ⎜𝑄⨆︁

2
(S∗) which is a contradiction.

Given that in both scenarios we found a stream S∗ where ⎜P⨆︁
2
(S∗) ≠ ⎜𝑄⨆︁

2
(S∗), we conclude

that P ⇑≡ 𝑄 for every PCEA P over 𝜎 .

For the general case, we consider any full CQ 𝑄 of the form:

𝑄(𝑥) ← 𝑅0(𝑥0), . . . , 𝑅𝑚−1(𝑥𝑚−1)

that is non-hierarchical, meaning there is a pair of variables 𝑥,𝑦 ∈ X such that atoms(𝑥) ⇑⊆ atoms(𝑦),
atoms(𝑦) ⇑⊆ atoms(𝑥), and atoms(𝑥) ∩ atoms(𝑦) ≠ ∅. For every 𝑖 < 𝑚, we say that 𝑅𝑖(𝑥𝑖) is an
𝑥-atom if 𝑥 ∈ {𝑥𝑛𝑒𝑤𝑐𝑖} and 𝑦 ∉ {𝑥𝑖}; an 𝑦-atom if 𝑥 ∉ {𝑥𝑖} and 𝑦 ∈ {𝑥𝑖}; an 𝑥𝑦-atom if 𝑥,𝑦 ∈ {𝑥𝑖};
and an ∅-atom if {𝑥,𝑦} ∩ {𝑥𝑖} = ∅. Given that 𝑄 is non-hierarchical, 𝑄 has at least one 𝑥-atom,

one 𝑦-atom, and one 𝑥𝑦-atom (note that it could have no ∅-atom). Without loss of generality,

we can reorder the atoms in 𝑄 and assume that there exist numbers𝑚𝑥𝑦 ,𝑚𝑥 , and𝑚𝑦 such that

0 ≤𝑚𝑥𝑦 <𝑚𝑥 <𝑚𝑦 <𝑚 and for every 𝑖 <𝑚: if 𝑖 <𝑚𝑥𝑦 , then 𝑅𝑖({𝑥𝑖}) is an ∅-atom; if𝑚𝑥𝑦 ≤ 𝑖 <𝑚𝑥 ,

then 𝑅𝑖({𝑥𝑖}) is an 𝑥𝑦-atom; if 𝑚𝑥 ≤ 𝑖 < 𝑚𝑦 , then 𝑅𝑖({𝑥𝑖}) is an 𝑥-atom; and if 𝑚𝑦 ≤ 𝑖 , then

𝑅𝑖({𝑥𝑖}) is an 𝑦-atom. In other words, 𝑄 is of the form:

𝑄(𝑥) ← 𝑅0(𝑥0), . . .
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
∅-atoms

, 𝑅𝑚𝑥𝑦
(𝑥𝑚𝑥𝑦

), . . .
)︁⌊︂]︂⌊︂)︂

𝑥𝑦-atoms

, 𝑅𝑚𝑥
(𝑥𝑚𝑥

), . . .
)︁⌊︂]︂⌊︂)︂

𝑥-atoms

, 𝑅𝑚𝑦
(𝑥𝑚𝑦

), . . . , 𝑅𝑚−1(𝑥𝑚−1)
)︁⌊︂]︂⌊︂)︂

𝑦-atoms

(‡)

Similar than for the simple case, for every 𝑖, 𝑗 ∈ N we define the stream:

S𝑖, 𝑗 = 𝑅0(𝑎0), . . . , 𝑅𝑚−1(𝑎𝑚−1), . . .

where for every tuple 𝑎𝑘 each of its variables will be mapped to zero, except for 𝑥 and 𝑦, which

will be mapped to 𝑖 and 𝑗 , respectively. It is clear that the valuation 𝜈 = {𝑅𝑘(𝑥𝑘) → 𝑘 ⋃︀ 𝑘 <𝑚} ∈
⎜𝑄⨆︁𝑚−1

(S𝑖, 𝑗) for every 𝑖, 𝑗 ∈ N.
From now, we follow the same strategy to the simple case presented above. Once again, assume

there exists a PCEA P = (𝑃,U,B,Ω,Δ, 𝐹) such that P ≡ 𝑄 . Then, 𝜈 ∈ ⎜P⨆︁𝑚−1
(S𝑖, 𝑗) for every

𝑖, 𝑗 ∈ N. Let 𝜏𝑖, 𝑗 be the run tree of P over S𝑖, 𝑗 that ends at position𝑚 − 1 and produces 𝜈 . Given that

P is finite, let 𝑁 be the number of different runs 𝜏𝑖, 𝑗 of 𝒫 .
By the reordering of 𝑄 like (‡) and the definition of S𝑖, 𝑗 , we know that all run trees 𝜏𝑖, 𝑗 have

at the root the 𝑦-atom 𝑅𝑚−1(𝑥𝑚−1). Given that 𝑄 has at least one 𝑥𝑦-atom, then every run tree 𝜏𝑖 𝑗
has at least one 𝑥𝑦-atom in a node. For every 𝑖, 𝑗 ∈ N, let 𝑢𝑖, 𝑗 be a node in 𝜏𝑖, 𝑗 that is the closest

to the root of 𝜏𝑖, 𝑗 and its labeled by an 𝑥𝑦-atom. We know that 𝑢𝑖, 𝑗 exists and the path from 𝑢𝑖, 𝑗
to root(𝜏𝑖, 𝑗) has zero or more 𝑥-atoms, followed by only 𝑦-atoms until the root. Indeed, by the

construction of S𝑖, 𝑗 it cannot be a switch from an 𝑦-atom to an 𝑥-atom in the path from 𝑢𝑖, 𝑗 to the

root. If this path contains at least one 𝑥-atom, we say that 𝜏𝑖, 𝑗 has a line shape. Otherwise, we say
that 𝜏𝑖, 𝑗 has a tree shape. Note that if there is no 𝑥-atom from 𝑢𝑖, 𝑗 to the root, then there must exists

a node in 𝜏𝑖, 𝑗 labeled by an 𝑥-atom whose path to the root only contains 𝑦-atoms. For this reason, it

makes sense to name it as tree shape (i.e., like in the simple case above).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:24 Dante Pinto and Cristian Riveros

Finally, we can use the same argument as for the simple case to prove that P ≢ 𝑄 . Namely, for

every 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 , there must exists 𝑗𝑖 , 𝑗
′
𝑖 ≤ 𝑁 such that 𝑗𝑖 ≠ 𝑗 ′𝑖 and 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′𝑖 are equivalent,

namely, they have the same shape, states, and transitions. Then we must distinguish between the

two possible scenarios: (1) 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′𝑖
are line shape for some 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 , and (2) 𝜏𝑖, 𝑗𝑖 and 𝜏𝑖, 𝑗 ′𝑖

are tree shape for every 𝑖 ≤ (𝑁 + 1) ⋅ 𝑁 . In both cases, we apply the same argument like in the

simple case by constructing a stream S∗ such that 𝜈 ∈ ⎜P⨆︁𝑚−1
(S∗), but 𝜈 ∉ ⎜𝑄⨆︁𝑚−1

(S∗) which
will lead to a contradiction. From there, we conclude that P ⇑≡ 𝑄 for every PCEA P over 𝜎 .

C Proofs of Section 5
Proof of Theorem 5.2

Proof. Let𝑤 ∈ N be a window size, DS𝑤 be a simple data structure and n ∈ Nodes(DS𝑤) be a
node of the data structure. The valuations in ⎜n⨆︁𝑤𝑖 are defined as:

⎜n⨆︁𝑤𝑖 ∶= {{𝜈 ∈ ⎜n⨆︁ ⋃︀ ⋃︀𝑖 −min(𝜈)⋃︀ ≤𝑤}}.

with

⎜n⨆︁
prod
∶= {{𝜈𝐿(n),𝑖(n)}} ⊕ ⊕

n′∈prod(n)
⎜n′⨆︁ ⎜n⨆︁ ∶= ⎜n⨆︁

prod
∪ ⎜uleft(n)⨆︁ ∪ ⎜uright(n)⨆︁.

Following the definitions used in [22], we will say that the algorithm enumerates the results

𝜈 ∈ ⎜n⨆︁𝑤𝑖 by writing #𝜈1#𝜈2# . . . #𝜈𝑚# to the output registers, where # ∉ Ω is a separator symbol. Let

time(𝑖) be the time in the enumeration when the algorithm writes the 𝑖-th symbol #, we define

the delay(𝑖) = time(𝑖 + 1) − time(𝑖) for each 𝑖 ≤𝑚. We say that the enumeration has output-linear
delay if there is a constant 𝑘 such that for every 𝑖 ≤𝑚 it holds that delay(𝑖) ≤ 𝑘 ⋅ ⋃︀𝜈𝑖 ⋃︀.
To output the first valuation of ⎜n⨆︁𝑤𝑖 we need to (1) determine if ⎜n⨆︁𝑤𝑖 = ∅ and (2) build the

valuation by calculating the products in ⎜n⨆︁. We can know that ⎜n⨆︁𝑤𝑖 ≠ ∅ iff ⋃︀𝑖 −max-start(n)⋃︀ ≤𝑤 ,

and since the value of max-start(n) = max{min(𝜈) ⋃︀ 𝜈 ∈ ⎜n⨆︁
prod

} is stored in every node n and we

are doing a simple calculation with constants, we can check (1) in constant time. Note that it is

not necessary to recursively check the max-start of the rest of the nodes in ⎜n⨆︁
prod

since they are

considered in the definition.

On the other hand, the product of two bags of valuations 𝑉 ,𝑉 ′ is defined as the bag 𝑉 ⊕𝑉 ′ =
{{𝜈 ⊕ 𝜈 ′ ⋃︀ 𝜈 ∈ 𝑉 ,𝜈 ′ ∈ 𝑉 ′}}, where 𝜈 ⊕ 𝜈 ′ is the product of two valuations, defined as a valuation

such that (︀𝜈 ⊕ 𝜈 ′⌋︀(ℓ) = 𝜈(ℓ) ∪ 𝜈 ′(ℓ) for every ℓ ∈ Ω. With these definitions, we can enumerate a

single valuation 𝜈 ∈ ⎜n⨆︁
prod

by calculating the union between a valuation 𝜈n ∈𝑈 ({{𝜈𝐿(n),𝑖(n)}}) and
𝜈n′ ∈ prod(n′) for each 𝑛′ ∈ prod(n′). It is easy to see that we can complete (2) by both calculating

and writing this valuation in linear time. It is worth noting that we can make sure that we find

valuations inside of the time window in constant time by traversing every bag in reverse order

(starting from the valuations with a higher to lower min{𝜈}).
After enumerating the first output, we can continue traversing the bags of valuations, checking

in constant time if ⋃︀𝑖 −min{𝜈n′} ≤𝑤 ⋃︀. In the worst case, which will occur right after writing the last

valuation in the output, we will have to check that ⋃︀𝑖 −min{𝜈n′} ≤𝑤 ⋃︀ for every node n′ ∈ prod(𝑛),
but since each check takes constant time and there is one node for each valuation we are adding to

the output, this step can also be done in linear time with respect to ⋃︀𝜈 ⋃︀. Finally, after enumerating

every output of prod(𝑛) inside the time window, we can recursively start the enumeration for

uleft(n) and uright(n) in constant time, which will maintain an output-linear delay. □

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

Complex Event Recognition meets Hierarchical ConjunctiveQueries 216:25

Proof of Proposition 5.3
Proof. Fix 𝑘,𝑤 ∈ N and assume that one performs union(n1,n2) over DS𝑤 with the same

position 𝑖 = 𝑖(n2) at most 𝑘 times. In the following, we first prove the proposition with an imple-

mentation of the union operation that is not fully persistent and then show how to modify the

implementation to maintain this property.

Let n1,n2 ∈ Nodes(DS𝑤) be two nodes such that max(n1) ≤ 𝑖(n2) and uleft(n2) = uright(n2) = �.
We say that n1 ≤ n2 iff (1) max-start(n1) ≤ max-start(n2) and (2) if max-start(n1) = max-start(n2)
then 𝑖(n1) ≤ 𝑖(n2).
Recall that this operation requires inserting n2 into n1 and it outputs a fresh node n𝑢 such that

⎜n𝑢⨆︁𝑤𝑖 ∶= ⎜n1⨆︁𝑤𝑖 ∪ ⎜n2⨆︁𝑤𝑖 .
If ⋃︀max-start(n1 − 𝑖(𝑛2))⋃︀ >𝑤 then all of the outputs from n1 are now out of the time window, so

⎜n1⨆︁𝑤𝑖 ∪ ⎜n2⨆︁𝑤𝑖 = ⎜n2⨆︁𝑤𝑖 and therefore union(n1,n2) = n2. The time it will take to do this operation

will be the time necessary to insert n2 in DS𝑤 , which we will analyze later.

On the other hand, if ⋃︀max-start(n1 − 𝑖(n2))⋃︀ ≤ 𝑤 , we have to consider the outputs of both

nodes, n2 and n1. First check how n1 compares with n2. If n1 ≤ n2, then we have to create the

new node n = n2 such that uleft(n) = union(uleft(n2),n1) and, similarly, if n1 > n2, we need

to create the new node n = n1 such that uleft(n) = union(uleft(n1),n2). In both cases, we are

only creating one node and switching or adding pointers between nodes a constant number of

times. Although it might seem like a recursive operation at first glance, we know beforehand that

max-start(n) ≥ max-start(uleft(n)), so there will be at most one other union process generated.

Once again since we can do this part of the operation in constant time and the bulk of the operation

will be the time necessary for the insertion of the new node.

We know that for every position 𝑖 = 𝑖(n2) we will perform a union operation at most 𝑘 times.

Starting with an empty data structure, there will be at most 𝑘 ⋅ 𝑤 nodes in DS𝑤 given a time

window𝑤 . Assuming DS𝑤 is a perfectly balanced binary tree, this means that the tree has a depth

of log
2
(𝑘 ⋅𝑤).

To ensure that the tree will always be balanced, we can add one bit of information to every node,

which we will call the direction bit, that indicates which of the children of the node we need to

visit for the insertion. If 𝑏𝑖𝑡(n) = 0, we must go to its left child and we must go to the right one

otherwise. After each insertion, we need to change the value of the direction bit of every node in

the path from the root to the newly inserted one, to avoid repeating the same path on the next

insertion. This operation can be done in constant time for each node, so the time it will take to

update all of the direction bits for each insertion will be exactly the depth of the tree.

Since one performs union(n1,n2) over DS𝑤 with the same position 𝑖 = 𝑖(n2) at most 𝑘 times, if

we start with an empty data structure, it will have at most 𝑘 ×𝑤 nodes after reading𝑤 tuples from

the stream. To insert the next node n′, by following the direction bits, we will end up in the oldest

node of the tree n, but it is clear that 𝑖(n) ≤ 𝑖(n′)+𝑤 , meaning that max-start(n)− 𝑖(n) ≤𝑤 which

indicates that all of the outputs of n are outside of the time window and therefore we can safely

remove n from the tree and replace it with n′ without losing outputs. Given that the depth of DS𝑤
is at most 𝑘 ⋅𝑤 , and all of our previous operations take time proportional to the depth of the tree,

we can conclude that the running time of the union operation is in O(log(𝑘 ⋅𝑤)) for each call.

As we stated before, although the method we just discussed works and has a running time in

O(log(𝑘 ⋅𝑤)) for each call, it is not a fully persistent implementation, since we are removing nodes

from the leaves when they are not producing an output and we are also modifying the direction

bits of the nodes. To solve this problem, we can use the path copying method. With this method,

whenever we need to modify a node, we create a copy with the modifications applied instead.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

216:26 Dante Pinto and Cristian Riveros

In our case, for every insertion we will create a copy of the entire path from the root to the new

node, since we will modify the direction bit of each of these nodes, setting the modified copy of

the root as the new root of the data structure. It is easy to see that with clever use of pointers, the

copying of a node can be done in constant time, so the usage of this method does not increase the

overall running time of the union operation. □

Proof of Proposition 5.5
Proof. Fix a time window size𝑤 ∈ N a stream S , a position 𝑖 ∈ N and an PCEA with equality

predicates P = (𝑄,U
lin
,Beq,Ω,Δ, 𝐹). The output of the automaton P over S at position 𝑖 with time

window𝑤 is defined as the set of valuations:

⎜P⨆︁𝑤𝑖 (S) = {𝜈𝜌 ⋃︀ 𝜌 is an accepting run of P over 𝑆 at position 𝑖 ∧ ⋃︀𝑖 −min(𝜈)⋃︀ ≤𝑤}
We need to prove that Algorithm 1 enumerates every valuation 𝜈𝜌 without repetitions. One way

to do this is showing that at any position in the stream the indices in 𝐻 contain the information of

every single run of P so far showing that the outputs for each of these runs can be enumerated.

First, let 𝑖 = 0 and suppose that S = {{𝑅(𝑥), . . .}}. 𝐻 trivially contains the information of all the

runs up to this point, so we need to show that this condition still holds after the first tuple.

Looking at the algorithm, after the Reset call, we start with 𝑖 = 0, DS𝑤 = ∅, 𝑁𝑝 = ∅ for every

𝑝 ∈ 𝑄 . Calling FireTransitions(𝑅(𝑥), 0) we check each transitions satisfied by 𝑅(𝑥) and we

register them in nodes for DS𝑤 . SinceP is unambiguous, there is only one transition that can

lead to an accepting state, 𝑒𝑓 = (∅,𝑈 ,∅, 𝐿𝑓 , 𝑝 𝑓) ∈ Δ with 𝑝 𝑓 ∈ 𝐹 and for 𝑒𝑓 we have 𝑁 = {} and
𝑁𝑝𝑓
= extend(𝐿𝑓 , 0, {}). In addition, P can take (several)transitions that do not lead to a final state;

these would be transitions of the form 𝑒 = (∅,𝑈 ,∅, 𝐿, 𝑝) ∈ Δ with 𝑁𝑝 = extend(𝐿, 0, {}).
On the other hand, UpdateIndices(𝑅(𝑥)) uses the nodes created in FireTransitions and

assigns them to every possible transition that could be satisfied by them. In particular, for every

reached state 𝑝 , we add each node in N𝑝 to the data structure 𝐻(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀, registering every

incomplete run of P .

Finally, we enumerate the outputs of each run that reached a final state. Since P is unambiguous,

this enumeration will not have duplicates. It is easy to see that enumerate will output our only

valuation since 𝑝 𝑓 ∈ 𝐹 .
For the general case, suppose that 𝐻 contains the information of every single run of P up until

position 𝑖 − 1 and that S(︀𝑖⌋︀ = 𝑆(𝑦) and that we can enumerate every valuation in ⎜P⨆︁𝑤𝑖−1
(S). We

want to prove that after calling FireTransitions(𝑆(𝑦), 𝑖) and UpdateIndices(𝑆(𝑦)), 𝐻 will also

contain the information of the runs up until 𝑖 .

Once again we start with N𝑝 = ∅ for each 𝑝 ∈ 𝑄 , but this time𝐻(︀𝑒, 𝑝, ⃗ℬ𝑝(𝑡)⌋︀ is not empty. Similar

to the previous case, upon calling FireTransitions(𝑆(𝑦), 𝑖), we create a new node for every new

state reached by any of the runs and it is clear by the definition of Δ and
⃗ℬ𝑝(𝑡) that 𝑆(𝑦) ∈𝑈 and

⋀𝑝∈𝑃 H(︀𝑒, 𝑝, ℬ⃗𝑝(𝑡)⌋︀ ≠ ∅ for a transition 𝑒 = (𝑃,𝑈 ,ℬ, 𝐿,𝑞) ∈ Δ iff there is a run tree 𝜌 and a node 𝑢

such that 𝜌(𝑢) = (𝑞, 𝑖, 𝐿).
In the same fashion, UpdateIndices(𝑆(𝑦)) will thoroughly calculate for each transition and

each state in those transitions the left projection of the binary predicate for 𝑆(𝑦), maintaining the

data structure in 𝐻 updated with the runs of P .

Finally, the algorithm was already capable of enumerating every valuation that ends in a position

𝑗 < 𝑖 , and we get from FireTransitions(𝑆(𝑦), 𝑖) that every new accepting run will have its

associated nodes. □

Received May 2024; revised August 2024; accepted September 2024

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallelized complex event automata
	4 Representing hierarchical conjunctive queries
	5 An evaluation algorithm for PCEA
	6 Future work
	References
	A Proofs of Section 3
	B Proofs of Section 4
	C Proofs of Section 5

