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Complex Event Recognition meets Hierarchical Conjunctive
Queries

DANTE PINTO?, Pontificia Universidad Catélica de Chile, Chile, IMFD, Chile, and UHasselt, Belgium
CRISTIAN RIVERQOS, Pontificia Universidad Catélica de Chile, Chile and IMFD, Chile

Hierarchical conjunctive queries (HCQ) are a subclass of conjunctive queries (CQ) with robust algorithmic
properties. Among others, Berkholz, Keppeler, and Schweikardt have shown that HCQ is the subclass of
CQ (without projection) that admits dynamic query evaluation with constant update time and constant
delay enumeration. On a different but related setting stands Complex Event Recognition (CER), a prominent
technology for evaluating sequence patterns over streams. Since one can interpret a data stream as an
unbounded sequence of inserts in dynamic query evaluation, it is natural to ask to which extent CER can take
advantage of HCQ to find a robust class of queries that can be evaluated efficiently.

In this paper, we search to combine HCQ with sequence patterns to find a class of CER queries that can
get the best of both worlds. To reach this goal, we propose a class of complex event automata model called
Parallelized Complex Event Automata (PCEA) for evaluating CER queries with correlation (i.e., joins) over
streams. This model allows us to express sequence patterns and compare values among tuples, but it also allows
us to express conjunctions by incorporating a novel form of non-determinism that we call parallelization. We
show that for every HCQ (under bag semantics), we can construct an equivalent PCEA. Further, we show
that HCQ is the biggest class of full CQ that this automata model can define. Then, PCEA stands as a sweet
spot that precisely expresses HCQ (i.e., among full CQ) and extends them with sequence patterns. Finally, we
show that PCEA also inherits the good algorithmic properties of HCQ by presenting a streaming evaluation
algorithm under sliding windows with logarithmic update time and output-linear delay for the class of PCEA
with equality predicates.

CCS Concepts: « Theory of computation — Database theory; Automata over infinite objects; Automata
extensions; « Information systems — Data streams.
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1 Introduction

Hierarchical Conjunctive Queries [12] (HCQ) are a subclass of Conjunctive Queries (CQ) with
good algorithmic properties for dynamic query evaluation [9, 18]. In this scenario, users want to
continuously evaluate a CQ over a database that receives insertion, updates, or deletes of tuples, and
to efficiently retrieve the output after each modification. A landmark result by Berkholz, Keppeler,
and Schweikardt [5] shows that HCQ are the subfragment among CQ for dynamic query evaluation.
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Specifically, they show one can evaluate every HCQ with constant update time and constant-delay
enumeration. Furthermore, they show that HCQ are the only class of full CQ (i.e., CQ without
projection) with such guarantees, namely, under fined-grained complexity assumptions, a full
CQ can be evaluated with constant update time and constant delay enumeration if, and only if,
the query is hierarchical. Therefore, HCQ stand as the fragment for efficient evaluation under a
dynamic scenario (see also [18]).

Data stream processing is another dynamic scenario where we want to evaluate queries con-
tinuously but now over an unbounded sequence of tuples (i.e., a data stream). Complex Event
Recognition (CER) is one such technology for processing information flow [11, 14]. CER systems
read high-velocity streams of data, called events, and evaluate expressive patterns for detecting
complex events, a subset of relevant events that witness a critical case for a user. A singular aspect
of CER compared to other frameworks is that the order of the stream’s data matters, reflecting the
temporal order of events in reality (see [29]). For this reason, sequencing operators are first citizens
on CER query languages, which one combines with other operators, like filtering, disjunction, and
correlation (i.e., joins), among others [4].

Similar to dynamic query evaluation, this work aims to find a class of CER query languages with
efficient streaming query evaluation. Our strategy to pursue this goal is simple but effective: we
use HCQ as a starting point to guide our search for CER query languages with good algorithmic
properties. Since one can interpret a data stream as an unbounded sequence of inserts in dynamic
query evaluation, we want to extend HCQ with sequencing while maintaining efficient evaluation.
We plan this strategy from an algorithmic point of view. Instead of studying which CER query
language fragments have such properties, we look for automata models that can express HCQ. By
finding such a model, we can later design our CER query language to express these queries [17].

With this goal and strategy in mind, we start from the proposal of Chain Complex Event Automata
(CCEA), an automata model for CER expressing sequencing queries with correlation, but that cannot
express simple HCQ [16]. We extend this model with a new sort of non-deterministic power that we
call parallelization. This feature allows us to run several parallel executions that start independently
and to gather them together when reading new data items. We define the class of Parallelized
Complex Event Automata (PCEA), the extension of CCEA with parallelization. As an extension,
PCEA can express patterns with sequencing, disjunction, iteration, and correlation but also allows
conjunction. In particular, we can show that PCEA can express a full CQ Q if, and only if, Q is
hierarchical. Then, PCEA is a sweet spot that precisely expresses HCQ (i.e., among full CQ) and
extends them with sequencing and other operations. Moreover, we show that PCEA inherits the
good algorithmic properties of HCQ by presenting a streaming evaluation algorithm under sliding
windows, reaching our desired goal.

Example 1.1. To get a feeling of the setting and the queries definable by PCEA, consider the
following scenario (see Section 2 and 4 for the formal details). Suppose that we have a stream:

S(2,11) T(2) R(1,10) S(2,11) T(3) R(2,11) $(1,10) T(1) ...

where R(a,b), S(a,b), or T(a) are data tuples with relation names R, S, and T over some schema,
and a, b are data values in N. One may think of this stream as a sequence of events tt; ... (e.g.,
sensors measures, messages in a social network, insertions in a database, etc), where each event ¢;
happens before t;.1. Further, suppose that we want to evaluate the CQ:

Qo(x,y) < T(x), S(x,y), R(x,y)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.
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namely, find all events (i.e., tuples) t;, t;, and t such that t; = T(a), t; = S(a,b), and t; = R(a,b)
for some data values a,b € N. For instance, S(2,11), T(2), and R(2, 11) at positions 0, 1, and 5,
respectively, satisfies Qg, and tuples R(1,10), S(1,10), and T(1) at positions 2, 6, and 7 do so as well.
Suppose now that we want to further restrict Qp in such a way that, in addition to the previous
conditions, R(x,y) must arrive after T(x) and S(x,y). Informally, the restricted query Qf could
look like':
Qs(x.y) « T(x). S(x.y). R(x,y). T<RS<R

For example, tuples at position 0, 1, and 5 will be in the output of Qj and tuples at position 2, 6,
and 7 will not (since T(1) is after R(1,10)).

We want to evaluate Q) in a streaming fashion, enumerating the outputs as soon as a new tuple
arrives. Notice that Qj is not a hierarchical CQ (and not even a CQ), so we cannot evaluate it
efficiently by using the techniques of dynamic query evaluation. As we will see, we can define Qj
with a PCEA (see P, in Figure 1), and then we can evaluate it with the techniques developed in
this work.

Contributions. The technical contributions and outline of the paper are the following.

In Section 2, we provide some basic definitions plus recalling the definition of CCEA.

In Section 3, we introduce the concept of parallelization for standard non-deterministic NFA,
called PFA, and study their properties. We show that PFA can be determinized in exponential time
(similar to NFA) (Proposition 3.2). We then apply this notion to CER and define the class of PCEA,
showing that it is strictly more expressive than CCEA (Proposition 3.4).

Section 4 compares PCEA with HCQ under bag semantics. Given that PCEA runs over streams
and HCQ over relational databases, we must revisit the semantics of HCQ and formalize in which
sense an HCQ and a PCEA define the same query. We show that under such comparison, every
HCQ Q under bag semantics can be expressed by a PCEA with equality predicates of exponential
size in |Q| and of quadratic size if Q does not have self-joins (Theorem 4.1). Furthermore, if Q is not
hierarchical, then Q cannot be defined by any PCEA (Theorem 4.2).

In Section 5, we study the evaluation of PCEA in a streaming scenario. Specifically, we present a
streaming evaluation algorithm under a sliding window with logarithmic update time and output-
linear delay for the class of unambiguous PCEA with equality predicates (Theorem 5.1).

Related work. Dynamic query evaluation of HCQ and acyclic CQ has been studied in [5, 18, 20, 30].
This research line did not study HCQ or acyclic CQ in the presence of order predicates. [28, 31]
studied CQ under comparisons (i.e., f-joins) but in a static setting (i.e., no updates). The closest
work is [19], which studied dynamic query evaluation of CQ with comparisons; however, this work
did not study well-behaved classes of HCQ with comparisons, and, further, their algorithms have
update time linear in the data.

Complex event recognition and, more generally, data stream processing have studied the evalu-
ation of joins over streams (see, e.g., [21, 32, 33]). To the best of our knowledge, no work in this
research line optimizes queries focused on HCQ or provides guarantees regarding update time or
enumeration delay in this setting. We base our work on [16], which we will discuss extensively.

2 Preliminaries

Strings and NFA. A string is a sequence of elements § = aq . ..a,_;. For presentation purposes,
we make no distinction between a sequence or a string and, thus, we also write § = ay, ..., an_; for
denoting a string. We will denote strings using a bar and its i-th element by 5[i] = a;. We use |$| = n

We use the notation < in this example to explain Q}. Since we will use PCEA to define queries, we will not use this notation
later in the paper.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.



216:4 Dante Pinto and Cristian Riveros

for the length of § and {5} = {ag,...,a,—1} to consider § as a set. Given two strings § and §’, we
write 557 for the concatenation of § followed by §'. Further, we say that § is a prefix of 5, written as
s’ <, §,if |§'| < |3] and §'[i] = §[i] for all i < |§’|. Given a non-empty set = we denote by =* the set of
all strings from elements in 3, where € € * denotes the 0-length string. For a function f: ¥ - Q
and 5 € 3%, we write f(5) = f(ap) ... f(as-1) to denote the point-wise application of f over .

A Non-deterministic Finite Automaton (NFA) is a tuple A = (Q,3, A, I, F) such that Q is a finite

set of states, X is a finite alphabet, A € Q x ¥ x Q is the transition relation, and I and F are the set
of initial and final states, respectively. A run of A over a string § = a4y ... a,-; € * is a non-empty
sequence py ... p, such that py € I, and (p;, a;, pir1) € A for every i < n. We say that A accepts
a string § € 3* iff there exists such a run of A over § such that p, € F. We define the language
L(A) c % of all strings accepted by A. Finally, we say that A is a Deterministic Finite Automaton
(DFA) iff A is given as a partial function A: Q x 3 — Q and |I| = 1.
Schemas, tuples, and streams. Fix a set D of data values. A relational schema o (or just schema) is
a pair (T, arity) where T are the relation names and arity : T — N maps each name to a number, that
is, its arity. An R-tuple of o (or just a tuple) is an object R(ay, . .., ax_1) such that R € T, each q; € D,
and k = arity(R). We will write R(a) to denote a tuple with values a. We denote by Tuples[c]
the set of all R-tuples of all R € T. We define the size of a tuple R(a) as |R(a)| = 5= |a[i]| with
k = arity(R) where |a[i]] is the size of the data value a[i] € D, which depends on the domain.

A stream S over o is an infinite sequence of tuples S = fyt1t2 ... such that t; € Tuples[c] for
every i > 0. For a running example, consider the schema o, with relation names T = {R,S,T},
arity(R) = arity(S) = 2 and arity(T) = 1. A stream S, over ay could be the following (same stream
as in Example 1.1):

So = S(2,11) T(2) R(1,10) S(2,11) T(3) R(2,11) S(1,10) T(1) ...

——— —— — O~~~ ——
0 1 2 3 4 5 6 7

where we add an index (i.e., the position) below each tuple (for simplification, we use D = N).

Predicates. For a fixed k, a k-predicate P is a subset of Tuples[c]¥. Further, we say that =
(t1,...,tn) satisfies P iff t € P. We say that P is unary if k = 1 and binary if k = 2. In the following,
we denote any class of unary or binary predicates by U or B, respectively.

Although we define our automata models for any class of unary and binary predicates, the
following two predicate classes will be relevant for algorithmic purposes (see Section 4 and 5).
Let o be a schema. We denote by Uy, the class of all unary predicates U such that, for every
t € Tuples[c], one can decide in linear time over |t| whether ¢ satisfies U or not. In addition, we
denote by Beq the class of all equality predicates defined as follows: a binary predicate B is an
equality predicate iff there exist partial functions B and B over Tuples[c] such that, for every
t1, t; € Tuples[o], (t1,t,) € Biff B(t,) and B(t;) are defined and B(t;) = B(t,). Further, we require
that one can compute B(t;) and B(t,) in linear time over |t;| and |t,|, respectively. For example,
recall our schema oy and consider the binary predicate (Tx, Sxy) = {(T(a),S(a, b)) | a,b € D}.
Then by using the functions B(T(a)) = a and B(S(a,b)) = a, one can check that (Tx, Sxy) is an
equality predicate.

Note that B.q is a more general class of equality predicates compared with the ones used in [16],
that will serve in our automata models for comparing tuples by “equality” in different subsets of
attributes. We take here a more semantic presentation, where the equality comparison between
tuples is directly given by the functions B and B and not symbolically by some formula.

Chain complex event automata. A Chain Complex Event Automaton (CCEA) [16] is a tuple
C = (Q,U,B,Q,A,LF) where Q is a finite set of states, U is a set of unary predicates, B is a set of
binary predicates, Q is a finite set of labels, I : Q — Ux (2 \ {@}) is a partial initial function, F € Q
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Complex Event Recognition meets Hierarchical Conjunctive Queries 216:5

is the set of final states, and A is a finite transition relation of the form: A ¢ QxUxBx (2%~ {@})xQ.
Let S = tot; ... be a stream. A configuration of C over S is a tuple (p,i,L) € Q x N x (2% \ {@}),
representing that the automaton C, is at state p after having read and marked ¢; with the set of
labels L. For ¢ € Q, we say that (p,i,L) marked position i with ¢ iff ¢ € L. Given a position n € N,
we say that a configuration is accepting iff it is of the form (p,n,L) and p € F. Then a run p of C
over § is a sequence of configurations:

1% = (p()’ iOaLO)a (Pl, il,Ll), ) (pna in;Ln)

such that iy < i < ... < iy, I(po) = (U,Ly) is defined and ¢;, € U, and there exists a transition
(pj-1,U;, Bj, Lj, pj) € A such that ti, €Ujand (t;,_,, tij) € Bj for every j € [1,n]. Intuitively, a run of
a CCEA is a subsequence of the stream that can follow a path of transitions, where each transition
checks a local condition (i.e., the unary predicate U;) and a join condition (i.e., the binary predicate
Bj) with the previous tuple. For the first tuple, a CCEA can only check a local condition (i.e., there
is no previous tuple).

Given a run p like above, we define its valuation v, : Q — 2" such that v, (¢) is the set consisting
of all positions in p marked by ¢, formally, v,(f) = {i; | j <nA ¢ € L;}. Further, given a position
in € N, we say that p is an accepting run at position n iff (py, in, L,) is an accepting configuration.
Then the output of C over S at position n is defined as:

[C],(S) = {v, | p is an accepting run at position n of C over S}.

Example 2.1. Below, we show an example of a CCEA over the schema oy with Q = {e}:

T/e S, (Tx,Sx ° R, (Sxy, Rx .
e / @ (Tx, Sxy) / @ (Sxy, Rxy) / D)
We use T to denote the predicate T = {T(a) | a € D} and similar for S and R. Further, we use
(Tx, Sxy) and (Sxy, Rxy) to denote equality predicates as defined above. An accepting run of C
over Spis p = (qo,1,{e}), (91,3, {*})., (g2, 5 {®}) which produces the valuation v, = {® — {1,3,5} }
that represents the subsequence T(2), S(2,11),R(2, 11) of Sy. Intuitively, Cy defines all subsequences
of the form T(a),S(a,b),R(a,b) for every a,b € D.

Note that the definition of CCEA above differs from [16] to fit our purpose better. Specifically, we
use a set of labels Q to annotate positions in the streams and define valuations in the same spirit as
the model of annotated automata used in [3, 23]. One can see this extension as a generalization to
the model in [16], where |Q| = 1. This extension will be helpful to enrich the outputs of our models
for comparing them with hierarchical conjunctive queries with self-joins (see Section 4).

Computational model. For our algorithms, we assume the computational model of Random
Access Machines (RAM) with uniform cost measure, and addition as its basic operation [1, 15].
This RAM has read-only registers for the input, read-writes registers for the work, and write-only
registers for the output. This computation model is a standard assumption in the literature [5, 6].

3 Parallelized complex event automata

This section presents our automata model for specifying CER queries with conjunction called
Parallelized Complex Event Automata (PCEA), which strictly generalized CCEA by adding a
new feature called parallelization. For the sake of presentation, we first formalize the notion of
parallelization for NFA to extend the idea to CCEA. Before this, we need the notation of labeled
trees that will be useful for our definitions and proofs.

Labeled trees. As it is common in the area [24], we define (unordered) trees as a finite set of
strings + € N* that satisfies two conditions: (1) ¢ contains the empty string, (i.e., € € t), and (2) t is a

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.



216:6 Dante Pinto and Cristian Riveros

prefix-closed set, namely, if a,...a, € t, then ay...a; € t for every j < n. We will refer to the strings of
t as nodes, and the root of a tree, root(t), will be the empty string .

Let #,0 € t be nodes. The depth of @ will be given by its length depth, (i) = |i|. We say that
u is the parent of & and write parent,(d) = # if 0 = @ - n for some n € N. Likewise, we say that
4 is a child of @ if @ is the parent of o and define children,(u) = {6 € ¢ | parent,(2) = @}.
Similarly, we define the descendants of @ as desc,(i) = {0 € t | & <, 6} and the ancestors as
ancst,(@#) = {0 € t | & <, a}; note that & € desc,() and @ € ancst,(#). A node @ is a leaf of
t if desc; (@) = {@}, and an inner node if it is not a leaf node. We define the set of leaves of @ as
leaves; (i) = {0 € desc,(@) | 0 is a leaf node}.

A labeled tree 7 is a function 7:t — L where t is a tree and L is any finite set of labels. We use
dom(7) to denote the underlying tree structure ¢ of 7. Given that r is a function, we can write
(@) to denote the label of node @ € dom(r). To simplify the notation, we extend all the definitions
above for a tree t to labeled tree 7, changing t by dom(7). For example, we write @ € 7 to refer to
@ € dom(7), or parent, (@) to refer to parent o, ;) (#). Finally, we say that two labeled trees 7 and
7' are isomorphic if there exists a bijection f:dom(z) - dom(z’) such that @ <, 3 iff f(@) <, f(2)
and 7(@) = 7' (f()) for every i,0 € dom(r). We will usually say that r and 7’ are equal, meaning
they are isomorphic.

Parallelized finite automata. A Parallelized Finite Automaton (PFA) is a tuple P = (Q,%,A, I F)
where Q is a finite set of states, ¥ is a finite alphabet, I, F ¢ Q are the sets of initial and accepting
states, respectively, and A ¢ 29 x ¥ x Q is the transition relation. We define the size of P as
[P| = Q]+ X (paq)en ([P + 1), namely, the number of states plus the size of encoding the transitions.

A run tree of a PFA P over a string § = a;...a, € 2 is a labeled tree 7 : t — Q such that
depth, (@) = n for every leaf @ € 7; in other words, every node of 7 is labeled by a state of P and
all branches have the same length n. In addition, 7 must satisfy the following two conditions: (1)
every leaf node @ of ¢ is labeled by an initial state (i.e., 7(@) € I) and (2) for every inner node
o at depth i (i.e., depth, (7) = i) there must be a transition (P, a,-;,q) € A such that 7(7) = g,
|children,(a)| = |[P| and P = {z(u) | & € children,(d)}, that is, children have different labels and
P is the set of labels in the children of 0. We say that 7 is an accepting run of P over § iff 7 is a run
of P over § and 7(¢) € F (recall that ¢ = root(r)). We say that P accepts a string § € 3 if there
is an accepting run of P over § and we define the language recognized by P, L(P), as the set of
strings that P accepts.

Example 3.1. In Figure 1 (left), we show the example of a PFA F; over the alphabet = = {T, S, R}.
Intuitively, the upper part (i.e., po, p1) looks for a symbol T, the lower part (i.e., pz, p3) for a symbol
S, and both runs join together in p, when they see a symbol R. Then, F; defines all strings that
contain symbols T and S (in any order) before a symbol R.

One can see that PFA is a generalization of an NFA. Indeed, NFA is a special case of an PFA
where each run tree 7 is a line. Nevertheless, PFA do not add expressive power to NFA, given that
PFA is another model for recognizing regular languages, as the next result shows.

PROPOSITION 3.2. For every PFA P with n states there exists a DFA A with at most 2" states such
that L(P) = L(A). In particular, all languages defined by PFA are regular.

Intuitively, one could interpret a PFA as an Alternating Finite Automaton (AFA) [7] that runs
backward over the string (however, they still process the string in a forward direction). It was
shown in [7, Theorem 5.2 and 5.3] that for every AFA that defines a language L with n states, there
exists an equivalent DFA with 22" states in the worst case that recognizes L. Nevertheless, they
argued that the reverse language LX = {aja,...a, € 2* | a,...asa; € L} can always be accepted
by a DFA with at most 2" states. Then, one can see Proposition 3.2 as a consequence of reversing
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Fig. 1. On the left, an example of a PFA and, on the right, an example of a PCEA.

an alternating automaton. Despite this connection, we use here PFA as a proper automata model,
which was not studied or used in [7]. Another related proposal is the parallel finite automata model
presented in [27]. Indeed, one can consider PFA as a restricted case of this model, although it was
not studied in [27]. For this reason, we decided to name the PFA model with the same acronym but
a slightly different name as in [27].

Parallelized complex event automata. A Parallelized Complex Event Automaton (PCEA) is
the extension of CCEA with the idea of parallelization as in PFA. Specifically, a PCEA is a tuple
P =(0,U,B,Q,AF),where Q,U, B, Q, and F are the same as for CCEA, and A is a finite transition
relation of the form:

Ac22xUxB? x (2% {@}) x Q.

where BC are all partial functions B : Q — B, that associate a state g to a binary predicate B(q). We
define the size of P as [P| = [Q[ + X (p,u,B.1.q)ea (IP| + |L|). Note that 7P does not define the initial
function explicitly. As we will see, transitions of the form (@, U, B, L, ¢) will play the role of the
initial function on a run of P.

Next, we extend the notion of a run from CCEA to its parallelized version. Let S = tyt; ... be a
stream. A run tree of P over S is now a labeled tree 7: t — (Q x N x (22 \ {@&})) where each node
il € 7 is labeled with a configuration (i) = (g, i, L) such that, for every child o € children,(#) with
7(3) = (p, j, M), it holds that j < i.In other words, the positions of 7-configurations increase towards
the root of 7, similar to the runs of a CCEA. In addition, & must satisfy the transition relation A,
that is, there must exist a transition (P, U, B,L,q) € A such that (1) ¢; € U, (2) [children,(a@)| = |P|
and P = {p | 30 € children,(a).7(d) = (p,j,M)}, and (3) for every 0 € children (i) with
7(3) = (p,j, M), (tj,t;) € B(p). Similar to PFA, condition (2) forces that there exists a bijection
between P and the states at the children of @. Instead, condition (3) forces that two consecutive
configurations (p, j, M) and (g, i, L) must satisfy the binary predicate in B(p) associated with p.
Notice that, if @ is a leaf node in 7, then it must hold that P = & and condition (3) is trivially satisfied.
Also, note that we do not assume that all leaves are at the same depth.

Given a position n € N, we say that 7 is an accepting run at position n iff the root configuration
7(¢) is accepting at position n. Further, we define the output of a run 7 as the valuation v, : Q — 2
such that v, (¢) = {i | Jaer. r(a) = (q,i,L) A £ € L} for every label ¢ € Q. Finally, the output of a
PCEA P over S at the position n is defined as:

[P],(S) = {v:|ris an accepting run at position n of P over S}.

Example 3.3. In Figure 1 (right), we show an example of a PCEA P, over schema oy with Q = {e}.
We use the same notation as in Example 2.1 to represent unary and equality predicates. If we run
Py over Sy, we have the following two run trees at position 5:
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Tt (g2,5, ) G (g2, 5,)
7\ VRN
(90, 1,0) (q1,3,9) (g0, 1,0) (91,0, )

that produces the valuation v,, = {® — {1,3,5}} and v, = {e — {0,1,5}} representing the
subsequences T(2),5(2,11),R(2,11) and S(2,11),T(2),R(2,11) of Sy, respectively. Note that the
former is an output of Cy in Example 2.1, but the latter is not.

PRrRoOPOSITION 3.4. PCEA is strictly more expressive than CCEA.

The proof for this proposition can be found in the appendix, but it is easy to see that every
CCEA is a PCEA where every transition (P,U, B, L, q) € A satisfies that |P| < 1. Additionally, the
previous example gives evidence that PCEA is a strict generalization of CCEA, namely, there exists
no CCEA that can define Py. Intuitively, since a CCEA can only compare the current tuple to the
last tuple, for a stream like S = R(a,b),T(a),S(a,b) it would be impossible to check conditions
over the second attribute of tuples R(a,b) and S(a, b).

Unambiguous PCEA. We end this section by introducing a subclass of PCEA relevant to our
algorithmic results. Let P be a PCEA and 7 a run of P over some stream. We say that 7 is simple
iff for every two different nodes @, i’ € r with 7(@2) = (q,i,L) and (@') = (¢/,i’,L’), if i = i’, then
LnL"=@. In other words, 7 is simple if all positions of the valuation v, are uniquely represented
in 7. We say that P is unambiguous if (1) every accepting run of P is simple and (2) for every
stream S and accepting run 7 of P over S with valuation v,, there is no other run 7’ of P with
valuation v+ such that v; = v,s. For example, the reader can check that Py is unambiguous.
Condition (2) of unambiguous PCEA ensures that each output is witnessed by exactly one run.
This condition is common in MSO enumeration [2, 22] for a one-to-one correspondence between
outputs and runs. Condition (1) forces a correspondence between the size of the run and the size of
the output it represents. As we will see, both conditions will be helpful for our evaluation algorithm,
and satisfied by our translation of hierarchical conjunctive queries into PCEA in the next section.

4 Representing hierarchical conjunctive queries

This section studies the connection between PCEA and hierarchical conjunctive queries (HCQ)
over streams. For this purpose, we must first define the semantics of HCQ over streams and how to
relate their expressiveness with PCEA. We connect them by using a bag semantics of CQ. We start
by introducing bags that will be useful throughout this section.

Bags. A bag (also called a multiset) is usually defined in the literature as a function that maps each
element to its multiplicity (i.e., the number of times it appears). In this work, we use a different but
equivalent representation of a bag where each element has its own identity. This representation
will be helpful in our context to deal with duplicates in the stream and define the semantics of
hierarchical CQ in the case of self-joins.

We define a bag (with own identity) B as a surjective function B : I - U where I is a finite set of
identifiers (i.e., the identity of each element) and U is the underlying set of the bag. Given any bag
B, we refer to these components as I(B) and U(B), respectively. For example, a bag B = {a,a,b}}
(where a is repeated twice) can be represented with a surjective function By = {0+~ a,1 — a,2 — b}
where I(By) = {0,1,2} and U(By) = {a,b}. In general, we will use the standard notation for bags
{ao,...,an-1}} to denote the bag B whose identifiers are I(B) = {0,...,n - 1} and B(i) = a; for
each i € I(B). Note that if B: I — U is injective, then B encodes a set (i.e., no repetitions). We write
a € Bif B(i) = a for some i € I(B) and define the empty bag @ such that I(@) = @ and U(@) = @.
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For a bag B and an element a, we define the multiplicity of a in B as multg(a) = |{i | B(i) = a}|.

Then, we say that a bag B’ is contained in B, denoted as B’ C B, iff multg/(a) < multg(a) for every
a. We also say that two bags B’ and B are equal, and write B = B', if B’ ¢ B and B ¢ B'. Note that
two bags can be equal although the set of identifiers can be different (i.e., they are equal up to a
renaming of the identifiers). Given a set A, we say that B is a bag from elements of A (or just a bag
of A)if U(B) c U(A).
Relational databases. Recall that D is our set of data values and let o = (T, arity) be a schema. A
relational database D (with duplicates) over ¢ is a bag of Tuples[c]. Given a relation name R € T,
we write RP as the bag of D containing only the R-tuples of D, formally, I(RP) = {i e (D) | D(i) =
R(a) for some a} and RP (i) = D(i) for every i € I(RP). For example, consider again the schema
0p- Then a database Dy over oy is the bag:

Dy = {S(2,11),T(2),R(1,10),5(2,11),T(3),R(2,11) }}.
Here, one can check that TP = {T(2),T(3)} and S™ = {5(2,11),5(2,11)}}.

Conjunctive queries. Fix a schema o = (T, arity) and a set of variables X disjoint from D (i.e.,
X NnD = @). A Conjunctive Query (CQ) over relational schema o is a syntactic structure of the form:

Q(x) < Ry(%o),-- -, Rm-1(Fm-1) ()
such that Q is a relational name not in T, R; € T, %; is a sequence of variables in X and data values
in D, and |x;| = arity(R;) for every i < m. Further, % is a sequence of variables in %, . .., Xy—-1. We

will denote a CQ like (1) by Q, where Q(x) and Ry(%y), ..., R—1(%m-1) are called the head and the
body of Q, respectively. Furthermore, we call each R;(%;) an atom of Q. For example, the following
are two conjunctive queries Qy (the same CQ of Example 1.1) and Q; over the schema oy:

Qo(x,y) < T(x), S(x.y), R(x.y) Qi(x.y) « T(x), R(x,y), $(2.y), T(x)

Note that a query can repeat atoms. For this reason, we will regularly consider Q as a bag of atoms,
where I(Q) are the positions of Q and U(Q) is the set of distinct atoms. For instance, we can
consider Q; above as a bag of atoms, where I(Q;) = {0,1,2,3} (i.e., the position of the atoms) and
01(0) =T(x), 01(1) =R(x,y), 01(2) = S(2,y), 01(3) = T(x). We say that a CQ Q has self-joins if
there are two atoms with the same relation name. We can see in the previous example that Q; has
self-joins, while Qy does not.

Homomorphisms and CQ bag semantics. Let Q be a CQ, and D be a database over the same
schema o. A homomorphism is any function h : X U D — D such that h(a) = a for every a € D. We
extend h as a function from atoms to tuples such that A(R(x)) := R(h(x)) for every atom R(%).
We say that h is a homomorphism from Q to D if h is a homomorphism and h(R(x)) € D for every
atom R(x) in Q. We denote by Hom(Q, D) the set of all homomorphisms from Q to D.

To define the bag semantics of CQ, we need a more refined notion of homomorphism that
specifies the correspondence between atoms in Q and tuples in D. Formally, a tuple-homomorphism
from Q to D (or t-homomorphism for short) is a function 5 : I(Q) — I(D) such that there exists a
homomorphism h,, from Q to D satisfying that h,(Q(i)) = D(n(i)) for every i € I(Q). For example,
consider again Qg and Dy above, then g = {0 — 1,1~ 3,2,»> 5} and; = {0~ 1,1+ 0,2 — 5} are
two t-homomorphism from Qy to Dy.

Intuitively, a t-homomorphism is like a homomorphism, but it additionally specifies the corre-
spondence between atoms (i.e., I(Q)) and tuples (i.e., I(D)) in the underlying bags. One can easily
check that if 7 is a t-homomorphism, then h;, (restricted to the variables of Q) is unique. For this
reason, we usually say that h,, is the homomorphism associated to 7. Note that the converse does
not hold: for & from Q to D, there can be several t-homomorphisms 7 such that h = h;,.
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Let Q(x) be the head of Q. We define the output of a CQ Q over a database D as:
[Q](D) = {Q(hy(x)) | nis at-homomorphism from Q to D}}.

Note that the result is another relation where each Q(h, (%)) is witnessed by a t-homomorphism
from Q to D. In other words, there is a one-to-one correspondence between tuples in [Q](D) and
t-homomorphisms from Q to D.

Discussion. In the literature, homomorphisms are usually used to define the set semantics of a CQ
Q over a database D. They are helpful for set semantics but “inconvenient” for bag semantics since
it does not specify the correspondence between atoms and tuples; namely, they only witness the
existence of such correspondence. In [8], Chaudhuri and Vardi introduced the bag semantics of CQ
by using homomorphisms, which we recall next. Let Q be a CQ like (+) and D a database over the
same schema o, and let h € Hom(Q, D). We define the multiplicity of h with respect to Q and D by:

multg p(h) - ’"n multp (h(Ri(%:)))

Chaudhuri and Vardi defined the bag semantics [Q] of Q over D as the bag [Q](D) such that each
tuple O(a) has multiplicity equal to:
mult[Q](D)(Q(d)) = Z muth,D(h)
heHom(Q,D) : h(x)=a

In the appendix, we prove that for every CQ Q and database D it holds that [Q](D) = [Q](D),
namely, the bag semantics introduced here (i.e., with t-homomorphisms) is equivalent to the
standard bag semantics of CQ. The main difference is that the standard bag semantics of CQ
are defined in terms of homomorphisms and multiplicities, and there is no direct correspondence
between outputs and homomorphisms. For this reason, we redefine the bag semantics of CQ in terms
of t-homomorphism that will connect the outputs of CQ with the outputs of PCEA over streams.

CQ over streams. Now, we define the semantics of CQ over streams, formalizing its comparison
with queries in complex event recognition. For this purpose, we must show how to interpret
streams as databases and encode CQ’s outputs as valuations. Fix a schema o and a stream S = tyt;-+
over o. Given a position n € N, we define the database of S at position n as the o-database
D,[S]={tt1,...,ta}. For example, D5s[Sy] = Dy. One can interpret here that S is a sequence of
inserts, and then D,[S] is the database version at position n. Since D,[S] is a bag, the identifiers
I(D,[S]) coincide with the positions of the sequence tg . . . t,.

Let Q be a CQ over o, and let n : I(Q) — I(D,[S]) be a t-homomorphism from Q to D,[S]. If
we consider Q = I(Q), we can interpret 5 as a valuation f : Q — 2" that maps each atom of Q to a
set with a single position; formally, /(i) = {n(i)} for every i € I(Q). Then, we define the semantics
of Q over stream S at position n as:

[0],,(S) = {ii| nisat-homomorphism from Q to D,[S]}

Note that [Q],,(S) is equivalent to evaluating Q over D,[S] where instead of outputting a bag of
tuples [Q](Dn[S]), we output the t-homomorphisms (i.e., as valuations) that are in a one-to-one
correspondence with the tuples in [Q](D,[S]).

Hierarchical conjunctive queries and main results. Let Q be a CQ of the form (). Given
a variable x € X, define atoms(x) as the bag of all atoms R;(%;) of Q such that x appears in X;.
We say that Q is full if every variable appearing in Xy, . .., X, also appears in x. Then, Q is a
Hierarchical Conjunctive Query (HCQ)[12] iff Q is full and for every pair of variables x,y € X it
holds that atoms(x) < atoms(y), atoms(y) € atoms(x) or atoms(x) N atoms(y) = &. For example,
one can check that Qp is an HCQ, but Q; is not.
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Qo(x,y) < T(x),5(xy),R(x,y)

O/X\y
1/ \2

®

Fig. 2. An illustration of constructing an PCEA from an HCQ. On the left, the HCQ Qg and its g-tree. On the
right, a PCEA P, equivalent to Qo. For presentation purposes, states are repeated several times and ?xy
means a binary relation with any relation name (i.e., R or S).

HCQ is a subset of CQ that can be evaluated with constant-delay enumeration under updates [5,
18]. Moreover, it is the greatest class of full conjunctive queries that can be evaluated with such
guarantees under fine-grained complexity assumptions. Therefore, HCQ is the right yardstick to
measure the expressive power of PCEA for defining queries with strong efficiency guarantees.
Given a PCEA P and a CQ Q over the same schema o, we say that P is equivalent to Q (denoted as
P = Q) iff for every stream S over ¢ and every position n it holds that [P],(S) = [Q],,(S).

THEOREM 4.1. Let o be a schema. For every HCQ Q over o, there exists a PCEA Py over o with unary
predicates in Uy, and binary predicates in Beq such that Pg = Q. Furthermore, P is unambiguous and
of at most exponential size with respect to Q. If Q does not have self-joins, then Py is of quadratic size.

Proor skeTcH. We give an example of the construction to provide insights on the expressive
power of PCEA for defining HCQ (the full technical proof is in the extended version [25]). For
this construction, we rely on a g-tree of an HCQ, a structure introduced in [5]. Formally, let Q be
an HCQ and assume, for the sake of simplification, that Q is connected (i.e., the Gaifman graph
associated to Q is connected). A g-tree for Q is a labeled tree, 7p : t - I(Q) U {x}, where for every
x € {x} there is a unique inner node @ € t such that 7o (%) = x, and for every atom i € I(Q) thereis a
unique leaf node 4 € ¢ such that 7o(9) = i. Further, if Iy, . . ., @ are the inner nodes of the path from
the root until 3, then {%;} = {ro(#1),...,70 (@) }. In [5], it was shown that a CQ Q is hierarchical
and connected iff there exists a g-tree for Q. For instance, in Figure 2 (left) we display again the
HCQ Qo, labeled with the identifiers of the atoms, and below a g-tree for Q.

For a connected HCQ without self-joins, the idea of the construction is to use the g-tree of Q
as the underlying structure of the PCEA Py. Indeed, the nodes of the g-tree will be the states
of Pg. For example, in Figure 2 (right) we present a PCEA Pp, equivalent to Qy, where we use
multiple copies of the states for presentation purposes (i.e., if two states have the same label, they
are the same state in the figure). As you can check, the states are {0, 1, 2, x, y }, which are the nodes
of the g-tree. Furthermore, the leaves of the g-trees (i.e., the atoms) are the initial states {0, 1,2}
where Py, uses a unary predicate to check that the tuples have arrived and annotates with the
corresponding identifier.

For every atom R;(%;) and every variable x € {X;}, Po jumps with a transition to the state x
which is a node in the g-tree and joins with all the atoms and variables “hanging” from the path
from x to the leave i in the g-tree. For example, consider the first component (i.e., top-left) of Py, in
Figure 2. When Py, reads a tuple R(a, b), it jumps to state x and joins with all the atoms hanging
from the path from x to 2, namely, the atoms T and S. Similarly, consider the last component (i.e.,
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below) of Py, in Figure 2. When Py, reads a tuple R(a, b), it also jumps to state y, but now the only
atom hanging from the path from y to 2 in the g-tree is 1, which corresponds to a single transition
from 1 to y joining with the atom S(x,y). Finally, when Pg, reads a tuple T(a), the only variable
that hangs in the path from the root to 0 is the variable y, and then there is a single transition
from y to x, joining with an equality predicate (?xy, Tx) where ?xy means a binary relation with
any relational name (i.e., R or S). Finally, the root of the g-tree serves as the final state of the Pg,,
namely, all atoms were found. Note that an accepting run tree of Pg, serves as a witness that the
g-tree is complete. The construction of HCQ with self-joins is more involved, and we present the
details in the extended version [25]. )

The previous result shows that PCEA has the expressive power to specify every HCQ. Given
that HCQ characterize the full CQ that can be evaluated in a dynamic setting (under complexity
assumptions), a natural question is to ask whether PCEA has the right expressive power, in the
sense that it cannot define CQ that cannot be evaluated efficiently (i.e., non-hierarchical CQ). We
answer this question positively by focusing on full CQ.

THEOREM 4.2. Let o be a schema. For every full CQ Q over o, if P = Q for some PCEA P over o,
then Q is hierarchical.

The reader can find the proof of this theorem in the appendix. By combining Theorem 4.1 and 4.2,
we get the following result stating that PCEA exactly captures the expressive power of HCQ.

COROLLARY 4.3. Let o be a schema. For every full CQ Q over o, Q is hierarchical if, and only if,
‘P = Q for some PCEA P overo.

We note that, although PCEA can only define full CQ that are hierarchical, it can define queries
that are not CQ. For instance, P, in Example 3.3 cannot be defined by any CQ, since a CQ cannot
express that the R-tuple must arrive after T and S. Therefore, the class of queries defined by PCEA is
strictly more expressive than HCQ.

By Corollary 4.3, PCEA capture the expressibility of HCQ among full CQ. In the next section, we
show that they also share their good algorithmic properties for streaming evaluation.

5 An evaluation algorithm for PCEA

Below, we present our evaluation algorithm for unambiguous PCEA with equality predicates. We
do this in a streaming setting where the algorithm reads a stream sequentially, and at each position,
we can enumerate the new outputs fired by the last tuple. Furthermore, our algorithm works under
a sliding window scenario, where we only want to enumerate the outputs inside the last w items
for some window size w. This scenario is motivated by CER [6, 11, 14], where the importance of
data decreases with time, and then, we want the outputs inside some relevant time window.

In the following, we start by defining the evaluation problem and stating the main theorem,
followed by describing our data structure for storing valuations. We end this section by explaining
the algorithm and stating its correctness.

The streaming evaluation problem. Let o be a fixed schema. For a valuation v : Q — 2N we
define min(v) = min{i | 3¢ € Q. i € v(¢)}, namely, the minimum position appearing in v. In this
section, we study the following evaluation problem of PCEA over streams:

Problem: EvalPCEA[c]
Input: An unambiguous PCEA P = (Q, Ujin, Beg, @, A, F) over o,
a window size w € N, and a stream S = tyt; ...
Output: At each position i, enumerate all valuations v € [P];(S)
such that |i — min(v)| < w.
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The goal is to output the set [P];"(S) = {v € [P],(S) | |i - min(v)| < w} by reading the stream S
tuple-by-tuple sequentially. We assume here a method yield[S] such that each call retrieves the
next tuple, that is, the i-th call to yield[S] retrieves ¢; for each i > 0.

For solving EvalPCEA[ o], we desire to find a streaming evaluation algorithm [16, 18] that, for
each tuple #;, updates its internal state quickly and enumerates the set [P]}’(S) with output-linear
delay. More precisely, let f : N* — N. A streaming enumeration algorithm € with f-update time for
EvalPCEA[ o] works as follows. Before reading the stream S, £ receives as input a PCEA P and
w € N, and does some preprocessing. By calling yield[S], £ reads S sequentially and processes
the next tuple #; in two phases called the update phase and enumeration phase, respectively. In
the update phase, £ updates a data structure DS with t; taking time O(f(|P],|t:|, w)). In the
enumeration phase, € uses DS for enumerating [P];"(S) with output-linear delay*. Formally, if
[P1(S) = {v1,..., vk} (ie. in arbitrary order), the algorithm prints #v;#v,#.. . #v.# to the output
registers, sequentially. Furthermore, £ prints the first and last symbols # when the enumeration
phase starts and ends, respectively, and the time difference (i.e., the delay) between printing the
#-symbols surrounding v; is in O(|v;|). Finally, if such an algorithm exists, we say that EvalPCEA[ o]
admits a streaming evaluation algorithm with f-update time and output-linear delay.

In the following, we prove the following algorithmic result for evaluating PCEA.

THEOREM 5.1. EvalPCEA[c ] admits a streaming evaluation algorithm with (|P|-|t|+|P|-log(|P]) +
|P| - log(w))-update time and output-linear delay.

Note that the update time does not depend on the number of outputs seen so far, and regarding
data complexity (i.e., assuming that PP and the size of the tuples, |¢| are fixed), the update time
is logarithmic in the size of the sliding window. Theorem 5.1 improves with respect to [16] by
considering a more general class of queries and evaluating over a sliding window. In contrast,
Theorem 5.1 is incomparable to the algorithms for dynamic query evaluation of HCQ in [5, 18].
On the one hand, [5, 18] show constant update time algorithms for HCQ under insertions and
deletions. On the other hand, Theorem 5.1 is for sliding windows (i.e., insertions “on the right” and
deletions “on the left”) and works for CER queries that include disjunction, iteration (i.e., loops),
and can consider the order of tuples. If we restrict to HCQ, the algorithms in [5, 18] have better
complexity, given that there is no need to maintain and check the order in which the tuples are
inserted or deleted.

It is important to note that we base the algorithm of Theorem 5.1 on the ideas introduced in [16].
Nevertheless, it has several new insights that are novel and are not present in [16]. First, our
algorithm evaluates PCEA, which is a generalization of CCEA, and then the approach in [16]
requires several changes. Second, the data structure for our algorithm must manage the evaluation
of a sliding window and simultaneously combine parallel runs into one. This challenge requires a
new strategy for enumeration that combines cross-products with checking a time condition. Finally,
maintaining the runs that are valid inside the sliding window with logarithmic update time requires
the design of a new data structure based on the principles of a heap, which is novel. We believe
this data structure is interesting in its own right, which could lead to new advances in streaming
evaluation algorithms with enumeration.

We dedicate the rest of this section to explaining the streaming evaluation algorithm of Theo-
rem 5.1, starting by describing the data structure DS.

The data structure. Fix a set of labels Q. For representing sets of valuations v : Q — 2", we use a
data structure composed of nodes, where each node stores a position, a set of labels, and pointers to

ZFor PCEA, output-linear delay is different from the notion of constant delay [26], even if we restrict to data complexity
(ie., if the input PCEA is fixed). Since a PCEA can have loops, an output could be of size proportional to the size of the data.
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other nodes. Formally, the data structure DS is composed by a set of nodes, denoted by Nodes(DS),
where each node n has a set L(n) € Q, a position i(n) € N, a set prod(n) ¢ Nodes(DS), and two
links to other nodes uleft(n), uright(n) € Nodes(DS). We assume that the directed graph Gps with
V(Gps) = Nodes(DS) and E(Gps) = {(n1,nz) | ny € prod(n;) Vv ny = uleft(n;) v n, = uright(n;)}
is acyclic. In addition, we assume a special node L € Nodes(DS) that serves as a bottom node (i.e.,
all components above are undefined for 1) and L ¢ prod(n) for every n.

Each node in DS represents a bag of valuations. To explain this representation, we need to first
introduce some algebraic operations on valuations. Given two valuations v, v’ : Q — 2, we define
the product v @ v/ : Q — 2" such that [v @ v'](£) = v(£) uv'(¢) for every £ € Q. Further, we extend
this product to bags of valuations V and V’ such that Ve V' = {ve V' | v e V,v' € V' }}. Note that
@ is an associative and commutative operation and, thus, we can write @; V; for referring to a
sequence of @-operations. Given a pair (L, i) € 2° x N, we define the valuation vy ; : Q — 2" such
that vp ;(¢) = {i} if £ € L, and vp ;(¢) = @, otherwise. With this notation, for every n € Nodes(DS)
we define the bags [n] 4 and [n] recursively as follows:

[Pproa = i B e @ [n'] [n] = [n]proq U [uleft(n)] v [uright(n)].

n’eprod(n)

For L, we define [1] 4 = [1] = @. Intuitively, the set prod(n) represents the product of its nodes
with the valuation vy ;, and the nodes uleft(n) and uright(n) represent unions (for union-left and
union-right, respectively). This interpretation is analog to the product and union nodes used in
previous work of MSO enumeration [2, 22], but here we encode products and unions in a single node.

For efficiently enumerating [n], we require that valuations in DS are represented without
overlapping. To formalize this idea, define that the product v @ v' is simple if for every ¢ € Q, v(¢)
and v/(¢) are disjoint and [v ® v'](£) = v(¢) UV'(¢). Accordingly, we extend this notion to bags of
valuations: V @ V' is simple if v @ v is simple for every v € V and v/ € V'. We say that DS is simple
if {VL(n),i(n) )} ® @rreprod(n) [n'] is simple for every n € Nodes(DS). This notion is directly related
to unambiguous PCEA in Section 3. Intuitively, the first condition of unambiguous PCEA will help
us to force that DS is always simple.

The next step is to incorporate the window-size restriction to DS. For a node n € Nodes(DS), let
max(n) = max{i € v(£) | v € [n] A £ € Q}. Then, given a position i > max(n) and a window size
w € N, define the bag:

[n]i" = {veln]|]i-min(v)| < w}.
We plan to represent [n];” and enumerate its valuations with output-linear delay. For this goal,
from now on we fix a w € N and write DS,, to denote the data structure with window size w. For
the enumeration of [n];”, in each node n we store the value:

max-start(n) := max {min(V) |ve [n]prod}

This value will be helpful to verify whether [n];" is non-empty or not; in particular, one can check
that [n]}" # @ iff |i - max-start(n)| < w. We always assume that | max(n) — max-start(n)| < w
(otherwise [n];” = @). In addition, we require an order with uleft(n) and uright(n) to discard
empty unions easily. For every node n € Nodes(DS,,), we require:

max-start(n) > max-start(uleft(n)) and max-start(n) > max-start(uright(n)) 1)

whenever uleft(n) # 1 # uright(n). Intuitively, the binary tree formed by n and all nodes that
can be reached by following uleft(-) and uright(-) is not strictly ordered; however, it follows the
same principle (¥) as a heap [10]. Note that it is not our goal to use DS,, as a priority queue (since
removing the max element from a heap takes logarithmic time, and we need constant time), but to
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Algorithm 1 Evaluation of an unambiguous PCEA P = (Q, Ujin, Beg, Q, A, F) with equality predi-
cates over a stream S under a sliding window of size w.

1: procedure EvaruaTion(P, w,S) 16: procedure FIRETRANSITIONS(t, i)
2 DS, <« & 17: for each e = (P,U,B,L,q) € Ado
3 i< -1 18: if t e U A Npep Hle,p, By(t)] # & then
4 whilet « yield[S] do 19: N« {H[e,p,B,(t)]|peP}
5: RESET() 20: Ng < Ng U {extend(L,i,N)}
6 FIRETRANSITIONS(t, i) o1,
; EPDATEIIINDIECBS(t’ l[)\] 22: procedure UPDATEINDICES(?)
oreachn € Uper Np . 23: for each e = (P,U,B,L,q) € Ado
9 A |max-start(n) — i| < w do
} 24: foreachpePAneN, do
10: ENUMERATE(N, i, w) . .
25: if H[e,p,B,(t)] = @ then
o : Hle,p, B,(t)] < n
12: procedure RESET() 26: P Bp
13 i it 27: else .
: _ ,
14:  foreachpeQdo 2 n= Hk[e’p’ Bp(t)]. ,
15 N, < @ 29: H[e,p, B,(t)] < union(n’,n)

use condition (%) to quickly check if there are more outputs to enumerate in uleft(n) or uright(n) by
comparing the max-start value of a node with the start of the current location of the time window.

THEOREM 5.2. Let w € N be a window size and assume that DS,, is simple. Then, for every
n € Nodes(DS,,) and every position i > max(n), the valuations in [n]}" can be enumerated with
output-linear delay and without preprocessing (i.e., the enumeration starts immediately).

We sketch the proof of this theorem in the appendix.

We require two procedures, called extend and union, for operating nodes in our algorithm. The
first procedure extend(L, i, N) receives as input a set L € Q, a position i € N, and N ¢ Nodes(DS,,)
such that i(n) < i for every n € N. The procedure outputs a fresh node n such that [n.]}" := {vi; }®
@®nen [n];”. By the construction of DS,,, this operation is straightforward to implement by defining
L(n.) = L, i(n.) = i, prod(n.) = N, and uleft(n.) = uright(n,) = L. Further, we can compute
max-start(n,) from the set N as follows: max-start(n,) = min{i, min{max-start(n) | n € N}}.
Overall, we can implement extend(L, i, N) with running time O(|N|).

The second procedure union(ny, ny) receives as inputs two nodes ny, ny € Nodes(DS,,) such
that max(n;) < i(nz) and uleft(n;) = uright(n,) = L. It outputs a fresh node n, such that [n,];" :=
[ni];” u[n;];". The implementation of this procedure is more involved since it requires inserting n,
into n; by using uleft(n;) and uright(n, ), and maintaining condition (). Furthermore, we require
them to be fully persistent [13], namely, n; and n, are unmodified after each operation.

ProposITION 5.3. Let k € N and assume that one performs union(ny, ny) over DS,, with the

same position i = i(ny) at most k times. Then one can implement union(ny, ny) with running time
O(log(k - w)) per call.

In the appendix, we provide a proof of this proposition. An illustration on how this data structure
works is included in Example 5.4.
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The streaming evaluation algorithm. In Algorithm 1, we present the main procedures of
the evaluation algorithm given a fixed schema o. The algorithm receives as input a PCEA P =
(O, Uy, Beq, QA F ) over o, a window size w € N, and a reference to a stream S. We assume that
these inputs are globally accessible by all procedures. Recall that we can test if t € U in linear
time for any U € Uyy,. Further, recall that B4 are equality predicates and, for every B € Beg, there
exists linear time computable partial functions B and B such that (,t,) € B iff B(t;) and B(t;) are
defined and B(t;) = B(ty), for every ty, , € Tuples[c].

For the algorithm, we require some data structures. First, we use the previously described data
structure DS,, and its nodes Nodes(DS,,). Second, we consider a look-up table H that maps triples
of the form (e, p,d) to nodes in Nodes(DS,,) where e € A, p € Q, and d is the output of any partial
function B or B. We write Hle, p, d] for accessing its node, and H[e, p, d] < n for updating a node
n at entry (e, p,d). Also, we write H[e, p,d] = @ or H[e, p,d] # @ for checking whether there is a
node or not at entry (e, p,d). We assume all entries are empty at the beginning. Intuitively, for
e=(P,UB,Lq)cAandp e P, weuse H[e,p,-] to check if the equality predicate B,, is satisfied or
not (here B, = B(p)). As it is standard in the literature [5, 18] (i.e., by adopting the RAM model),
we assume that each operation over look-up tables takes constant time. Finally, we assume a set of
nodes N, for each p € Q whose use will be clear later.

Algorithm 1 starts at the main procedure EvALUATION. It initializes the data structure DS,, to
empty (i.e., the only node it has is the special node 1) and the index i for keeping the current
position in the stream (lines 2-3). Then, the algorithm loops by reading the next tuple yield[S],
performs the update phase (lines 5-7), followed by the enumeration phase (lines 8-9), and repeats
the process over again. Next, we explain the update phase and enumeration phase separately.

The update phase is composed of three steps, encoded as procedures. The first one, RESET, is
in charge of starting a new iteration by updating i to the next position and emptying the sets
N, (lines 12-14). The second step, FIRETRANSITIONS, uses the new tuple ¢ to fire all transitions
e=(P,U,B,Lgq) € A of P (lines 16-19). We do this by checking if ¢ satisfies U and all equality
predicates {B }pep (line 17). The main intuition is that the algorithm stores partial runs in the
look-up table H, whose outputs are represented by nodes in DS,,. Then the call H[e, p, Bp(t)] is
used to verify the equality B, (t') = B, (t) for some previous tuple ¢'. Furthermore, if H[e, p, B, ()]
is non-empty, it contains the node that represents all runs that have reached p. If U and all predicates
{Bp }pgp are satisfied, we collect all nodes at states P in the set N (line 18), and symbolically extend
these runs by using the method extend(L, i, N) of DS,,. We collect the output node of extend in
the set N, for use in the next procedure UPDATEINDICES.

The last step of the update phase, UPDATEINDICES, is to update the look-up table H by using ¢ and
the nodes stored at the sets {N, } 5o (lines 22-28). Intuitively, the nodes in N, represent new runs
(i.e., valuations) that reached state p when reading ¢. Then, for every transition e = (P,U,B,L,q) € A
such that p € P, we want to update the entry (e, p, Bp(t)) of H with the nodes from N, to be ready
to be fired for future tuples. For this goal, we check each n € N, and, if H[e, p, B,(t)] is empty,
we just place n at the entry (e, p, B,(t)) (lines 23-25). Otherwise, we use the union operator of
DS,,, to combine the previous outputs with the new ones of n (lines 26-28). Note that the call to
union(n’, n) satisfies the requirements of this operator, given that n was created recently.

Example 5.4. For getting some intuition on how the data structure DS,, and Algorithm 1 work,
we show an example involving the extend and the union procedures. Consider the PCEA Py from
Figure 1 and the stream:

T(0) S(0,0) T(0) R(0,0) ...

—_— —— —~ Y——
0 1 2 3
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0: ({},0,0) 1: ({e},1,1) ({e}.0,0)

{) \\.//

({e}.2,2) 3: ({8),31) —— ({}.2.2)

"

2: ({o11) 7/ ({s}0,0) ({eh11) <{}oo>

N N

©

Fig. 3. (a), (b), (c), and (d) show the resulting data structure DS, following Algorithm 1 after reading the tuples
T(0), S(0,0), T(0), and R(0,0), respectively. We represent each node by a triple (L(n),i(n), max-start(n)),
with uleft(n), uright(n), and prod(n) represented by labeled edges L, R and Prod, respectively.

In Figure 3, we show how the data structure DS,, with w = 4 evolves after reading the stream
until position 3. To represent nodes we use tuples of the form n = (L(n),i(n), max-start(n)),
with uleft(n), uright(n), and prod(n) represented by labeled edges L, R and Prod on the figure,
respectively. We label each new node with the position of the tuple that adds it.

Based on the previous description, the enumeration phase is straightforward. Given that the
nodes in {Nj } 5co represent new runs at the last position, Uper N are all new runs that reached
some final state. Then, for each node n € Uper N, satisfying | max-start(n) — i| < w we call the
procedure ENUMERATE(n, i, w) that enumerates all valuations in [n];". Theorem 5.2 shows that
this method exists with the desired guarantees given that P is unambiguous which implies that
DS,, is simple. Note that, for enforcing output-linear delay, we assume that the for each routine is
done wisely by removing the nodes n € Uper N, that does not satisfy | max-start(n) - i| < w before
starting the enumeration phase. Further, runs correspond with valuations, namely, [n];" is a set,
and, thus, we enumerate the outputs without repetitions.

PROPOSITION 5.5. For every unambiguous PCEA P with equality predicates, w € N, stream S, and
position i € N, Algorithm 1 enumerates all valuations [P];"(S) without repetitions.

We end by discussing the update time of Algorithm 1. By inspection, one can check that we
performed a linear pass over A during the update phase, where each iteration takes linear time
over each transition. Overall, we made at most O(|P|) calls to unary predicates, the look-up table,
or the data structure DS,,. Each call to a unary predicate takes O(|t|)-time and, thus, at most
O(|P]- |t])-time in total. The operations to the look-up table or extend take constant time. Instead,
we performed at most O(|P|) unions over the same position i. By Proposition 5.3, each union takes
time O(log(|P|- w)). Summing up, the updating time is O(|P|- |t| + |P| - log(|P]) + |P| - log(w)).
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6 Future work

We present an automata model for CER that expresses HCQ and can be evaluated in a streaming
fashion under a sliding window with a logarithmic update time and output-linear delay. These
results achieve the primary goal of this paper but leave several directions for future work. First,
defining a query language that characterizes the expressive power of PCEA will be interesting.
Second, one would like to understand a disambiguation procedure to convert any PCEA into an
unambiguous PCEA or to decide when this is possible. Last, we study here algorithms for PCEA with
equality predicates, but the model works for any binary predicate. Then, it would be interesting to
understand for which other predicates (e.g., inequalities) the model still admits efficient streaming
evaluation. On this line, an interesting problem is to study how to extend the algorithms for PCEA
to include deletions everywhere in the stream.
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A Proofs of Section 3
Proof of Proposition 3.2

Proor. To prove this statement, we follow the same principle used in the subset construction.
To simulate all possible run trees of a PFA with a DFA, we start at the leaves, with all initial states.
Then for each symbol we move up on the tree, firing all transitions that used a subset of the current
set of states. At the end of the string, if the last set has a final state, then it means that one can
construct a run tree that accepts the input.

Let P = (Q,%,A,I,F) be a parallelized finite automata. We build the DFA A = (29,3,6,1, F)

suchthat /' ={P|PnF+ @} and 6(P,a) ={q| 3P cP.(P',a,q) € A)} foreveryPCQanda € 3.
We now prove that both automata define the same language.
L(P)c L(A).Let5=ay...a, € X* be astring such that§ € L(P) and let 7 : t > Q be an accepting
run tree of P over 5. We need to prove that the run p : S, 4, Sn1 NN So is an accepting
run of A over 3, i.e. S, € F'. To this end, we define L; = {r() | depth, (&) =i} as the set of states
labeling 7 at depth i and prove that L; ¢ S; for all 0 < i < n. Since Ly = {z(¢)}, this in return means
that S,nF+@and S, € F'.

For every leaf node # it holds that depth, (@) = n and 7(@) € I, meaning L, € S, = I. Let us
assume that L;_; C S;_;; for every inner node & at depth i there must be a transition (P, a,—i,q) € A
such that 7(¢) = gand P = {z() | @ € children.(9)}. Following the definition of §, it is clear that
q € 6(P,a), and since this is true for every node at depth i, we have that L; C S;.

Given that Ly € Sy, we know that S,, € F/, which means that p is an accepting run of A over §

and therefore L(P) ¢ L(A).

L(A) € L(P).Lets = aj...a, € S* be a string such that § € £(A) and let p : S, —> Sp_; —>
N Sy be the run of A over §. We can now construct a run tree of P over 3.

Since p is an accepting run, we know that Sy N F < @. We define 7 : t - Q such that 7(¢) = f
with f € Sy N F. If we consider a node 7 € t at depth i, such that 7(d) = g and q € S;, we can follow
the definition of §, and inductively add nodes to 7 according to the transition (P, a,—;,q) € A so
that |children,(d)| = |P| and P = {z(@) | & € children,(d)}. For every leaf node 4 it holds that
depth_ (@) = n and since S, = I all of them will be labeled by initial states.

The labeled tree 7 we just constructed is an accepting run of P over §, meaning L(A) € L(P)

and, therefore, L(P) = L(A). m|

Proof of Proposition 3.4

Proor. To prove this statement we just need to find a Parallelized-CEA P with no CCEA
equivalent, i.e. there is no CCEA C such that [P](S) = [C](S) for every stream S. Let P be the
PCEA represented in Figure 2, then P = (Q, U,B, Q, A,F), with QO = {R(x,y),5(x,y),T(x),x,y},
Q={R,S, T}, F={x} and:

A = {(@.Up(xy) 2 {R(x.y) }.R(x.y)),
(2, Us(x,), 2: {S(x, )}, S(x. 1)),
(2, Ur(x), @ AT(x) }, T(x)),
({R(x’ y)’ T(x)}’ US(x,y)’ {(R(x’ y)’ BR(x,y),S(x,y) )’ (T(x)’ BT(x),S(x,y))}’ {S(x’ y)}’ x)’
({8(x,y), T(x) }, Ug(x, ) 1 (S(x,9)s Bs(x,9).R(x.) ) (T (X), Brse) () ) 1 {R(%, 4) }, %),
({R(x,y) }, Us(x,y)> {(R(%, 4), Br(x,),5(x.9)) 1 1S (. ¥) 1, y)s
({S(xy) }, Ur(x,yys {(S(x,9), Bs(x, ), R(x.9)) 1 {R(X,Y) 1Y),
({y}. Ur(ey { (4. By 1)) 1 AT (x) . %) }
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with the predicates Ug(x) and Bg(x),s(5) defined as:
Ugr(z) = {R(a) € Tuples[c] | 3h € Hom. h(R(x)) = R(a)}

and:
Brex).s(g) = {(R(a),S(b)) | 3h e Hom. h(R(x)) = R(a) A h(S(7)) = S(b)}.

Let S; = {R(0,i),T(0),5(0,i),...}} be a family of streams over the set of data values D = N with
i € N.Itis clear that the valuation {0, 1,2}} € [P](S;) foreveryi e N.LetC = (Q',U’,B’, Q', A", ', F')
be a deterministic CCEA such that [C](S;) = [P](S;) for every i € N. This means that for every

. . R(0,i) T(0) S(0,i)

stream S;, there is an accepting run of C over of the form p; : qip qi1 qi2 qi3-

Since C has a finite number of states, we know that there must be two streams, S; and Sy with

. . . R(0.,7) 7(0) 5(0.5) R(0,k) 7(0)
Jj # k with accepting runs p; : g;, qj1 qj2 gj3and pg : Qo — Q1 —

S(0,k
Qk2 Q qk3, respectively, such that q;; = gi; for every 0 < i < 3.

Given the run py of C, we know that there must be a transition (g2 U, B, ®,qx3) € A’ such
that S(0,k) € U and (T(0),5(0,k)) € B and since g2 = gj2 and gx3 = g;3 the following will be

an accepting run of C over the stream S;; = {{R(0, ), T(0),5(0,k)}}: pjx : gj0 ROD, gj1 1O,

S(0,k)
dj2 —> 43
We can easily check that there are no accepting runs of P over S, meaning [P](S;x) #
[C](S;k) and therefore there is no CCEA C such that [P[(S) = [C](S) for every stream S. O

B Proofs of Section 4
Proof of equivalence between CQ bag-semantics

Fix a schema o, a relational database D over o, and a CQ Q over o of the form:

Q(x) < Ro(%0)-- -, Rm—1(%m—1)-

Further, without loss of generality, assume that X = U;{;} and, thus, all homomorphisms h : X U
D — D in Hom(Q, D) are restricted to the variables of Q. To prove that [Q] (D) = [Q](D), we need
to prove that both bags have equal multiplicity, namely, multjoy(py(Q(a)) = mult(o)py(Q(a))
for every Q-tuple Q(a).

Towards this goal, let t-Hom(Q, D) be the set of all t-homomorphism from Q to D. Recall that for
every t-homomorphism 7 € t-Hom(Q, D) there exists a unique homomorphism h, € Hom(Q, D)
associated to 1. Conversely, one can easily see that, for every h € Hom(Q, D), there are exactly:

multo p(h) = nﬁo multp (R; (h(%:)))

t-homomorphisms 7 such that h = hy,. Indeed, for having h = h,, we must map each i € I(Q) (i.e.,
Ri(x;)) to a tuple j € I(D) of the form R;(h(%;)) and we only have multp (R;(h(%;))) copies of it.
Then, for each i € I(Q) we can choose 1(i) in multp (h(R;(%;))) possible ways, independently. In
other words, for every h €e Hom(Q, D) it holds that:

[{ € -Hom(Q. D) | h = hy}| = multgp(h).

Using the previous equation, for any Q-tuple Q(a) we can show that multjo)(py(Q(a)) =
mult[)(py(Q(a)). By following the definition for the multiplicities of a bag [Q](D), we know that:

multo)(p)(Q(a)) = [{j | [Q1(D)(j) = Q(a)}]-
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We also know that, if [Q](D)(j) = Q(a) holds, then there must be a unique t-homomorphism 7 for
j such that h,(x) = a (i.e., there is a one-to-one correspondence between identifiers in I([Q[(D))
and t-homomorphisms in t-Hom(Q, D)). Then the following equivalences follows:

multyg) () (Q(a)) = [{7 1 1Q1(D)()) = Q(a)}]
- [{n € -Hom(Q. D) | hy(%) = a}]
= Y HnetHom(Q.D)|h=hy)|

heHom(Q,D):
h(x)=a

= Z muth, D ( ]’l)

heHom(Q,D):
h(x)=a

= mult[Q](D) (Q(d))

Proof of Theorem 4.2
We prove that, if Q is non-hierarchical, then P # Q for every PCEA P over o. So, assume that Q is
a full non-hierarchical CQ over o. To better explain the proof, we will start with a specific case and
then explain how to extend it to every conjunctive query.

Fix a schema ¢ and, for the sake of simplification, assume that D = N. Let Q(x, y) be the following
full CQ:

Q(xy) < Ro(xy) Ri(x), Ra(y)

Note that Q is not a hierarchical query, since atoms(x) ¢ atoms(y), atoms(y) ¢ atoms(x), and
atoms(y) N atoms(z) + @.

By contradiction, suppose that there exists PCEA P = (P, UB,QAF ) such that P = Q. For
every i, j € N we define the stream S; ; such that S; j = Ry(i, j), R1 (i), R2(j), . . .. Note that after the
third tuple, the tuples of S; ; are not relevant. It is easy to see that the valuation:

v = {Ro(x,y) = 0,Ri(x) - L,Ry(y) — 2}

satisfies that v € [Q],(S;;) and, then, v € [P],(S; ;) for every i, j € N. Let 7; ; be the run of P over
S;,j that ends at position 2 and produces v. Clearly, each 7; ; has three nodes and it is either of the
following two shapes:

Tij* (0,0, Ro(x,y)) — (q1, LRi(x)) — (92,2, Re(y)) Tijt (q2.2,Ro(y))
PN
(90,0, Ro(x,y)) (g1, L, Ri(x))

for some states qo, q1, g2 € P. We call the former a line shape and the latter a tree shape. Note that
although some runs 7; ; may coincide in the shape, they can use different states or transitions of P.
However, given that P is finite, there are a finite number of such runs. Then, let N be the number
of different runs 7; ; of P.

For every i < (N +1) - N, there must exists ji, j; < N such that j; # j{ and 7;;, and 7; j; are
equivalent, namely, they have the same shape, states, and transitions. We need to consider two
possible scenarios.

(1) Assume that for some i < (N +1) - N, both 7; j, and 7; j: have the shape of a line like above

(left). Then, it is easy to see that P would have the same run tree for the stream:

S* = Ro(i ji), Ri (i), R (ji). - -
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This implies that v € [P],(S*), however, v ¢ [Q],(S*) which is a contradiction.

(2) Otherwise, assume that, for every i < (N +1)-N, 7;j, and 7; j2 have not the shape of a line,
namely, they are tree shape. By the pigeonhole principle, there must exists iy < i; <... < iy <
(N +1)- N such that j;, = j;, =... = jiy, = j*. Therefore, all the runs 7, j+,...,7; j* are tree
shape. Applying again the pigeonhole principle, we know that there must exist k, £ < N with
k # ¢ such that 7;,_;+ and 7;, j» are equivalent and have tree shape like above (right). Then, it
is easy to see that P would have the same run tree for stream:

S* = Ro(ix, J* ), Ri(ie), R (), - -
Again, this implies that v € [P],(S*), however, v ¢ [Q],(S*) which is a contradiction.

Given that in both scenarios we found a stream S* where [P],(S*) # [Q],(S*), we conclude
that P # Q for every PCEA P over o.
For the general case, we consider any full CQ Q of the form:

O(x) <« Ro(%0),---» Rm—1(Xm-1)

that is non-hierarchical, meaning there is a pair of variables x, y € X such that atoms(x) ¢ atoms(y),
atoms(y) ¢ atoms(x), and atoms(x) N atoms(y) # @. For every i < m, we say that R;(%;) is an
x-atom if x € {xnewc;} and y ¢ {x;}; an y-atom if x ¢ {x;} and y € {x;}; an xy-atom if x,y € {x;};
and an g-atom if {x,y} n {x;} = @. Given that Q is non-hierarchical, Q has at least one x-atom,
one y-atom, and one xy-atom (note that it could have no @-atom). Without loss of generality,
we can reorder the atoms in Q and assume that there exist numbers m,, my, and m, such that
0 < Myy < my < my < mand for every i < m:if i < my,, then R;({X;}) is an @-atom; if my, <i < my,
then R;({X;}) is an xy-atom; if m, < i < my, then R;({X;}) is an x-atom; and if m, < i, then
Ri({x;}) is an y-atom. In other words, Q is of the form:

Q(x) « Ro(fco),...,Rmxy(;zmxy),...,Rmx(;‘cmx),...,Rmy(xmy),...,Rm,l(;zm,l) (%)

N——— . P S S—
J-atoms xy-atoms x-atoms y-atoms

Similar than for the simple case, for every i, j € N we define the stream:
Sij = Ro(do), .-, Rm-1(Gm-1), ...

where for every tuple @ each of its variables will be mapped to zero, except for x and y, which
will be mapped to i and j, respectively. It is clear that the valuation v = {R (%) - k | k <m} €
[0],,_,(S;;) for every i, j e N.

From now, we follow the same strategy to the simple case presented above. Once again, assume
there exists a PCEA P = (P, U,B, Q, A,F) such that P = Q. Then, v € [P],,_,(S;;) for every
i, j € N. Let 7; ; be the run tree of P over S; ; that ends at position m — 1 and produces v. Given that
P is finite, let N be the number of different runs 7; ; of P.

By the reordering of Q like ( %) and the definition of S; j, we know that all run trees 7; ; have
at the root the y-atom Ry,,—1 (¥m-1). Given that Q has at least one xy-atom, then every run tree z;;
has at least one xy-atom in a node. For every i, j € N, let #; ; be a node in ;; that is the closest
to the root of 7; ; and its labeled by an xy-atom. We know that #; ; exists and the path from ; ;
to root(r; ;) has zero or more x-atoms, followed by only y-atoms until the root. Indeed, by the
construction of §; ; it cannot be a switch from an y-atom to an x-atom in the path from ; ; to the
root. If this path contains at least one x-atom, we say that 7; ; has a line shape. Otherwise, we say
that 7; ; has a tree shape. Note that if there is no x-atom from #; ; to the root, then there must exists
anode in 7; ; labeled by an x-atom whose path to the root only contains y-atoms. For this reason, it
makes sense to name it as tree shape (i.e., like in the simple case above).
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Finally, we can use the same argument as for the simple case to prove that P # Q. Namely, for
every i < (N +1) - N, there must exists ji, j; < N such that j; # j{ and 7, and 7, ;s are equivalent,
namely, they have the same shape, states, and transitions. Then we must distinguish between the
two possible scenarios: (1) 7; j, and ; j are line shape for some i < (N +1) - N, and (2) 7;, and ; il
are tree shape for every i < (N + 1) - N. In both cases, we apply the same argument like in the
simple case by constructing a stream S* such that v e [P] _ (S8*),but v ¢ [Q],_,(S*) which
will lead to a contradiction. From there, we conclude that P # Q for every PCEA P over o.

C Proofs of Section 5
Proof of Theorem 5.2

Proor. Let w € N be a window size, DS,, be a simple data structure and n € Nodes(DS,,) be a
node of the data structure. The valuations in [n];" are defined as:

[n}]lw = {ven]]|l]i-min(v)| <wl}.

with

[Plproa = i B e @ [n'] [n] = [n]proq U [uleft(n)] v [uright(n)].

n’eprod(n)

Following the definitions used in [22], we will say that the algorithm enumerates the results
v e [n];” by writing #v#va#. .. #v,,# to the output registers, where # ¢ Q is a separator symbol. Let
time(i) be the time in the enumeration when the algorithm writes the i-th symbol #, we define
the delay(i) = time(i + 1) — time(i) for each i < m. We say that the enumeration has output-linear
delay if there is a constant k such that for every i < m it holds that delay(i) < k - |v;|.

To output the first valuation of [n];” we need to (1) determine if [n];" = @ and (2) build the
valuation by calculating the products in [n]. We can know that [n];" # @ iff |i - max-start(n)| < w,
and since the value of max-start(n) = max{min(v) [ v € [n] .4} is stored in every node n and we
are doing a simple calculation with constants, we can check (1) in constant time. Note that it is
not necessary to recursively check the max-start of the rest of the nodes in [[n}]pmd since they are
considered in the definition.

On the other hand, the product of two bags of valuations V, V' is defined as the bag V& V' =
{vev' | veV,v e V'], where v @ V' is the product of two valuations, defined as a valuation
such that [ve v'](£) = v(£) uV'(£) for every ¢ € Q. With these definitions, we can enumerate a
single valuation v € [n] 4 by calculating the union between a valuation v, € U({vi(n).i(n) }}) and
Vo € prod(n’) for each n’ € prod(n’). It is easy to see that we can complete (2) by both calculating
and writing this valuation in linear time. It is worth noting that we can make sure that we find
valuations inside of the time window in constant time by traversing every bag in reverse order
(starting from the valuations with a higher to lower min{v}).

After enumerating the first output, we can continue traversing the bags of valuations, checking
in constant time if |i — min{ v, } < w]|. In the worst case, which will occur right after writing the last
valuation in the output, we will have to check that |i - min{v,} < w| for every node n’ € prod(n),
but since each check takes constant time and there is one node for each valuation we are adding to
the output, this step can also be done in linear time with respect to |v|. Finally, after enumerating
every output of prod(n) inside the time window, we can recursively start the enumeration for
uleft(n) and uright(n) in constant time, which will maintain an output-linear delay. |

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 216. Publication date: November 2024.



Complex Event Recognition meets Hierarchical Conjunctive Queries 216:25

Proof of Proposition 5.3

ProoF. Fix k,w € N and assume that one performs union(ny, ny) over DS,, with the same
position i = i(n,) at most k times. In the following, we first prove the proposition with an imple-
mentation of the union operation that is not fully persistent and then show how to modify the
implementation to maintain this property.

Let ny, ny € Nodes(DS,,) be two nodes such that max(n;) < i(nz) and uleft(n;) = uright(n;) = 1.
We say that n; < nj iff (1) max-start(n;) < max-start(nz) and (2) if max-start(n; ) = max-start(n,)
then i(n;) <i(ny).

Recall that this operation requires inserting n;, into n; and it outputs a fresh node n,, such that
[nu];” :=[n]}" v nz];".

If | max-start(n; —i(n2))| > w then all of the outputs from n; are now out of the time window, so
[ni]}" unz]}” = [n2];” and therefore union(ny, n2) = n,. The time it will take to do this operation
will be the time necessary to insert n, in DS,,, which we will analyze later.

On the other hand, if | max-start(n; — i(nz))| < w, we have to consider the outputs of both
nodes, n; and n;. First check how n; compares with n,. If n; < n,, then we have to create the
new node n = n; such that uleft(n) = union(uleft(n;),n;) and, similarly, if n; > n,, we need
to create the new node n = n; such that uleft(n) = union(uleft(n;), n;). In both cases, we are
only creating one node and switching or adding pointers between nodes a constant number of
times. Although it might seem like a recursive operation at first glance, we know beforehand that
max-start(n) > max-start(uleft(n)), so there will be at most one other union process generated.
Once again since we can do this part of the operation in constant time and the bulk of the operation
will be the time necessary for the insertion of the new node.

We know that for every position i = i(ny) we will perform a union operation at most k times.
Starting with an empty data structure, there will be at most k - w nodes in DS,, given a time
window w. Assuming DS,, is a perfectly balanced binary tree, this means that the tree has a depth
of log, (k - w).

To ensure that the tree will always be balanced, we can add one bit of information to every node,
which we will call the direction bit, that indicates which of the children of the node we need to
visit for the insertion. If bit(n) = 0, we must go to its left child and we must go to the right one
otherwise. After each insertion, we need to change the value of the direction bit of every node in
the path from the root to the newly inserted one, to avoid repeating the same path on the next
insertion. This operation can be done in constant time for each node, so the time it will take to
update all of the direction bits for each insertion will be exactly the depth of the tree.

Since one performs union(ny, ny) over DS,, with the same position i = i(n;) at most k times, if
we start with an empty data structure, it will have at most k x w nodes after reading w tuples from
the stream. To insert the next node n’, by following the direction bits, we will end up in the oldest
node of the tree n, but it is clear that i(n) < i(n") + w, meaning that max-start(n) —i(n) < w which
indicates that all of the outputs of n are outside of the time window and therefore we can safely
remove n from the tree and replace it with n” without losing outputs. Given that the depth of DS,,
is at most k - w, and all of our previous operations take time proportional to the depth of the tree,
we can conclude that the running time of the union operation is in O(log(k - w)) for each call.

As we stated before, although the method we just discussed works and has a running time in
O(log(k-w)) for each call, it is not a fully persistent implementation, since we are removing nodes
from the leaves when they are not producing an output and we are also modifying the direction
bits of the nodes. To solve this problem, we can use the path copying method. With this method,
whenever we need to modify a node, we create a copy with the modifications applied instead.
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In our case, for every insertion we will create a copy of the entire path from the root to the new
node, since we will modify the direction bit of each of these nodes, setting the modified copy of
the root as the new root of the data structure. It is easy to see that with clever use of pointers, the
copying of a node can be done in constant time, so the usage of this method does not increase the
overall running time of the union operation. O

Proof of Proposition 5.5

Proor. Fix a time window size w € N a stream S, a position i € N and an PCEA with equality
predicates P = (Q, Ujin, Beg, Q, A, F). The output of the automaton P over S at position i with time
window w is defined as the set of valuations:

[P1(S) = {v, | pisan accepting run of P over S at position i A |i — min(v)| < w}

We need to prove that Algorithm 1 enumerates every valuation v, without repetitions. One way
to do this is showing that at any position in the stream the indices in H contain the information of
every single run of P so far showing that the outputs for each of these runs can be enumerated.

First, let i = 0 and suppose that S = {R(x),...}. H trivially contains the information of all the
runs up to this point, so we need to show that this condition still holds after the first tuple.

Looking at the algorithm, after the RESET call, we start with i = 0, DS,, = @, N,, = & for every
p € Q. Calling FIRETRANSITIONS(R(%),0) we check each transitions satisfied by R(x) and we
register them in nodes for DS,,. Since’P is unambiguous, there is only one transition that can
lead to an accepting state, ef = (&,U, @, Ly, pr) € A with ps € F and for ef we have N = {} and
Ny, = extend(Ly,0, {}). In addition, P can take (several)transitions that do not lead to a final state;
these would be transitions of the form e = (@, U, &, L, p) € A with N, = extend(L, 0, {}).

On the other hand, UpDATEINDICES(R(X)) uses the nodes created in FIRETRANSITIONS and
assigns them to every possible transition that could be satisfied by them. In particular, for every
reached state p, we add each node in N, to the data structure Hfe, p, Bp(t)], registering every
incomplete run of P.

Finally, we enumerate the outputs of each run that reached a final state. Since P is unambiguous,
this enumeration will not have duplicates. It is easy to see that enumerate will output our only
valuation since py € F.

For the general case, suppose that H contains the information of every single run of P up until
position i — 1 and that S[i] = S(7) and that we can enumerate every valuation in [P]}",(S). We
want to prove that after calling FIRETRANSITIONS(S(7), i) and UpDATEINDICES(S(7)), H will also
contain the information of the runs up until i.

Once again we start with N, = & for each p € Q, but this time H[e, p, Bp (¢)] is not empty. Similar
to the previous case, upon calling FIRETRANSITIONS(S(7), 1), we create a new node for every new
state reached by any of the runs and it is clear by the definition of A and B,(t) that S(7) € U and
Nper Hle, p, Bp(t)] + @ for a transition e = (P,U, B, L, q) € A iff there is a run tree p and a node @
such that p(@) = (q,i,L).

In the same fashion, UpDATEINDICES(S(7)) will thoroughly calculate for each transition and
each state in those transitions the left projection of the binary predicate for S(7), maintaining the
data structure in H updated with the runs of P.

Finally, the algorithm was already capable of enumerating every valuation that ends in a position
J < i, and we get from FIRETRANSITIONS(S(7),i) that every new accepting run will have its
associated nodes. O
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