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Abstract We investigate non-perturbative bulk corrections
arising from instantons in string theory and M-theory.
By deriving non-local curvature corrections of the form
e−γ R RμνRμν , we demonstrate how these modifications
emerge from wrapped brane instantons and their summation
over multi-instanton configurations. Utilizing holographic
techniques, we establish a direct connection between these
non-perturbative effects and large-N gauge theories, identi-
fying the appropriate holographic dual conformal field theory
(CFT). We further analyze this connection through resum-
mations in the large-N expansion. Additionally, we study
black hole solutions in AdS backgrounds and show that these
instanton-induced corrections significantly modify the near-
horizon geometry. Finally, we explore the regularization of
curvature singularities via these exponential damping terms,
providing a natural resolution mechanism in quantum grav-
ity. Our findings underscore the fundamental role of non-
perturbative physics in shaping the structure of spacetime
and its holographic duals.

1 Introduction

Non-locality in string theory is not an incidental feature but
rather an essential aspect of its formulation, distinguishing it
fundamentally from conventional local quantum field theo-
ries (QFTs). In QFT, locality is embedded in the structure of
the theory: fields are assigned to definite spacetime points,
and interactions are governed by local operators satisfying
differential equations of finite order. The underlying assump-
tion is that physical effects propagate causally through local
interactions. String theory, however, modifies this framework
in a fundamental way by replacing point-like degrees of free-
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dom with extended objects, leading to a formulation in which
non-locality is not merely a possibility but an intrinsic fea-
ture of the theory. This non-locality is not an auxiliary prop-
erty that can be turned on or off but arises directly from the
way strings propagate and interact. Unlike in local field the-
ories, where interactions occur at specific spacetime points,
the extended nature of strings introduces a fundamentally dif-
ferent notion of interaction, one that is intrinsically non-local
and manifests in a variety of interrelated ways.

In local quantum field theory, interactions are localized
at specific spacetime points, and the equations of motion
(EoMs) are governed by differential operators that act locally
on fields. The principle of locality ensures that the behavior
of a given region is determined entirely by its immediate
surroundings, with interactions mediated by fields propagat-
ing in a causal manner. String theory, however, fundamen-
tally alters this framework, introducing non-locality in a way
that is neither incidental nor adjustable but rather an intrin-
sic aspect of the theory. One of the clearest manifestations
of this arises in string field theory (SFT) [1,2], where the
second-quantized formulation of string interactions leads to
kinetic and interaction terms that involve an infinite series of
derivatives.

Unlike in conventional quantum field theories, where dif-
ferential operators are typically of finite order, the structure of
SFT naturally incorporates non-local differential operators,
reflecting the extended nature of strings and the infinite tower
of higher-spin modes present in the spectrum [1,3]. In open
string field theory (OSFT), this non-locality is particularly
evident in the formulation of the star product, which encodes
string interactions in a way that fundamentally differs from
the local vertex structure of field theory. The star product,
defining a non-commutative algebra of string fields, ensures
that interactions are not confined to specific spacetime points
but rather integrate over the entire worldsheet, leading to a
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formulation in which non-locality is an unavoidable conse-
quence of the theory’s structure. The implications of this
are particularly striking in the context of tachyon condensa-
tion in open bosonic string theory, where the effective action
for tachyon fields includes exponential differential operators
such as e�, with � the d’Alembertian operator [4,5].

The presence of these operators signals a departure from
conventional locality, modifying short-distance behavior in
a way that fundamentally alters the vacuum structure of the
theory. Unlike in conventional field theories, where tachyon
condensation is typically understood in terms of spontaneous
symmetry breaking, the non-local structure of SFT suggests a
far more intricate vacuum landscape, where an infinite series
of derivative interactions collectively determine the fate of
the tachyonic mode. This non-locality is not merely a techni-
cal feature but has deep physical significance, particularly in
the high-energy regime, where it modifies the short-distance
structure of interactions and suggests new insights into ultra-
violet (UV) completion.

Since the presence of infinite derivatives naturally regu-
larizes singularities in a way that differs from conventional
renormalization, SFT has been proposed as a framework in
which the problem of divergences in quantum gravity can be
addressed in a fundamentally new way. Moreover, the inter-
play between non-locality and gauge symmetry in SFT sug-
gests deeper connections to the background independence of
string theory, hinting at structures that may be relevant for a
non-perturbative formulation of the theory. In this sense, the
non-locality inherent in string field theory is not just a fea-
ture that distinguishes it from conventional field theories but
one that reshapes fundamental aspects of our understanding
regarding spacetime, interactions, and vacuum structure.

Another significant manifestation of non-locality arises
in non-commutative string theory, where the presence of a
background B-field modifies the fundamental structure of
open string interactions. In this setting, the endpoints of open
strings no longer commute, leading to a deformation of the
underlying algebraic structure of spacetime itself. This non-
commutativity translates directly into a modification of the
field equations, introducing non-local terms that fundamen-
tally alter the low-energy effective description of the theory
[6,7].

These effects are particularly important in the context of
gauge theories and gravity, where non-commutativity mod-
ifies interaction vertices in a way that has no direct ana-
log in conventional field theory. The presence of non-local
structures in string theory is further reinforced by higher-
derivative corrections in string effective actions, which give
rise to non-local modifications of Einstein’s equations [8,9].
These higher-curvature terms are of particular interest in
black hole physics and early universe cosmology, where they
play a crucial role in attempts to resolve singularities by mod-
ifying the short-distance behavior of the gravitational field.

Non-locality also appears naturally in double field the-
ory (DFT), where T-duality is incorporated at a fundamental
level. Unlike in conventional string theory, where T-duality
acts as a discrete symmetry relating momentum and winding
modes, DFT is formulated in an extended spacetime where
this symmetry becomes manifest at the level of equations
of motion. This requires the introduction of additional dual
coordinates conjugate to winding modes, effectively dou-
bling the degrees of freedom of the theory. However, physical
consistency imposes a strong constraint, ensuring that only
a subset of these degrees of freedom contribute to physical
observables.

The presence of these extra coordinates leads to a refor-
mulation of the underlying differential structures, requiring
a generalized geometric framework in which conventional
derivatives are replaced by covariant derivatives adapted to
the doubled space. As a consequence, DFT provides a natural
setting for describing string interactions in a way that main-
tains manifest T-duality, offering new insights into the role
of non-commutativity and non-associativity in string theory
[10].

A further, albeit structurally different, realization of non-
locality appears in p-adic string theory, which provides an
alternative mathematical formulation of string dynamics. In
this approach, spacetime coordinates are replaced by p-adic
numbers, leading to a kinetic term that involves non-local
differential operators rather than conventional second-order
derivatives. The resulting wave equation incorporates an infi-
nite series of derivative terms, fundamentally altering the
structure of dispersion relations and modifying the behavior
of perturbations in a way that is not captured by standard
local field theories.

The presence of an effective nonlocality scale in p-adic
string theory determines its high-energy behavior, suggest-
ing intriguing connections to ultraviolet (UV) completion
[11,12]. Moreover, p-adic string models have played an
important role in the study of tachyon condensation, where
their structure allows for a precise analytic treatment of the
dynamics in a manner that is difficult to achieve in conven-
tional string field theory. These models also exhibit deep con-
nections to the adelic formulation of quantum mechanics,
further reinforcing the idea that non-locality is not merely a
feature of specific string constructions but rather an essential
ingredient in the broader framework of string theory.

These different manifestations of non-locality challenge
conventional notions of locality and causality, raising funda-
mental questions about the nature of spacetime and interac-
tions at the most basic level. In local quantum field theory,
interactions are confined to well-defined regions of space-
time, with causality ensuring that physical effects propagate
only within the light cone. String theory, however, introduces
non-local effects that suggest a more subtle structure, where
information can be encoded and transmitted in ways that
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transcend conventional spacetime locality. This poses a direct
challenge to the standard formulation of effective field theory
and raises deep questions about the consistency of quantum
gravity. Beyond its role in perturbative string theory, non-
locality is also a central feature of the holographic principle
and the AdS/CFT correspondence.

The holographic nature of gravity implies that the degrees
of freedom in an anti-de Sitter (AdS) bulk are fully encoded
in a lower-dimensional conformal field theory (CFT) on its
boundary. This encoding is inherently non-local in the sense
that local bulk operators do not simply correspond to local
operators in the CFT but are reconstructed from non-local
boundary data through integral transformations involving
smearing functions. The reconstruction procedure ensures
that bulk physics is entirely determined by boundary cor-
relation functions, reinforcing the idea that spacetime itself
is not fundamental but rather an emergent construct arising
from a deeper non-local framework.

The explicit reconstruction of bulk operators from bound-
ary data follows a well-defined prescription in the context of
the Hamilton–Kabat–Lifschytz–Lowe (HKLL) formalism,
which expresses bulk fields in terms of non-local CFT oper-
ators [13,14]. This feature plays an essential role in under-
standing how gravitational observables in the bulk corre-
spond to non-local quantities in the dual CFT. Moreover,
the scale-radius duality in AdS/CFT, where radial evolu-
tion in AdS corresponds to renormalization group flow in
the CFT, further illustrates the role of non-locality in the
emergence of a higher-dimensional spacetime from a lower-
dimensional field theory. These considerations suggest that
spacetime itself may be a derived concept, emerging from
deep non-local correlations in the underlying quantum the-
ory, pointing to a perspective in which space, time, and grav-
ity arise from a more fundamental non-local structure.

2 Derivation of the five-dimensional bulk action from
heterotic string theory

The purpose of this section is to obtain the five-dimensional
gravitational action within the framework of heterotic string
theory, incorporating both perturbative α′-corrections and
non-perturbative worldsheet instanton effects. Our starting
point is the ten-dimensional low-energy effective action,
written in the string frame, given by [15,16]:

S10D = 1

2κ2
10

∫
d10x

√−ge−2φ

(
R + 4(∇φ)2 − 1

4
Tr(FμνF

μν) − α′

4
Rμνρσ R

μνρσ

)
.

(2.1)

Here, φ is the dilaton, Fμν represents the gauge field strength
associated with the E8 × E8 or SO(32) gauge groups, while
the last term encodes the leading α′-correction, required by
the Green–Schwarz anomaly cancellation mechanism. At
the level of the ten-dimensional local effective action, the
curvature-squared sector can be organized, after field redef-
initions and including the dilaton coupling, into the Gauss–
Bonnet (GB) invariant. This is the well-known ghost-free
combination in D > 4 that yields second-order metric
equations. In what follows, our five-dimensional reduction
will isolate the RμνRμν structure as a proxy for the over-
all curvature-squared sector; the crucial property controlling
unitarity and the analytic structure in our construction is pro-
vided by the nonlocal completion introduced in Sect. (6),
rather than by a particular choice of local basis at O(α′).
To obtain a five-dimensional effective theory, we consider
a compactification on a five-dimensional internal manifold
X5, adopting the metric ansatz:

ds2
10 = g(5)

μν dx
μdxν + g(5)

mndy
mdyn . (2.2)

The ten-dimensional Ricci scalar decomposes as R(10) =
R(5) + R(X5), with the internal curvature R(X5) contributing
to an effective negative cosmological constant in the resulting
five-dimensional theory. Integrating over the compact space,
which has volume V5, yields the five-dimensional Einstein-
Hilbert action:

S5D = V5

16πGN

∫
d5x

√−ge−2φ

(
R(5) + 12

L2

)
. (2.3)

Throughout Sects. (2)–(6) we assume a stabilized, constant
dilaton, φ = φ0, and work in the 5D Einstein frame. Accord-
ingly, the overall factor e−2φ0 is absorbed into 16πGN , and
no additional dilaton source terms appear in Eq. (5.7) (see
[15,16]). At the same time, the α′-correction descends as

Sα′ = −α′V5

4

∫
d5x

√−ge−2φRμνR
μν. (2.4)

In heterotic string theory the leading curvature-squared cor-
rection is the Gauss-Bonnet combination. Upon reduction,
this yields a specific linear combination of R2-invariants. In
this work we retain the RμνRμν piece as a representative
term to capture the qualitative effect [8,17]. Thus, within the
perturbative sector of heterotic string theory, we find that the
five-dimensional action acquires an RμνRμν contribution.
Beyond these perturbative effects, additional corrections can
emerge from non-perturbative worldsheet instantons. In het-
erotic string theory, the worldsheet action is given by [18]:

Sws = 1

4πα′

∫
d2σ

√
hhabgMN ∂a X

M∂bX
N

+fermionic terms, (2.5)

where hab is the worldsheet metric, gMN is the target space
metric, and XM denote the embedding coordinates. The
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worldsheet instanton action is controlled by the wrapped
area, Sws = V (�2)/α

′. In general V (�2) is a function of
the internal moduli. In this work we assume a homogeneous
(constant-scalar-curvature) internal geometry in which the
internal scalar curvature

RX ≡ R(X5) (2.6)

is constant over X5 and depends smoothly on a finite-
dimensional set of stabilized moduli, collectively denoted
by u. We likewise assume that the calibrated 2-cycle vol-
ume V (�2) depends smoothly on the same modulus sector.
Near a stabilized point u = u0 with RX (u0) = RX,0 and
R′
X (u0) �= 0, one may eliminate the modulus locally and

expand

V (�2) = V0 + dV

dRX

∣∣∣∣
u0

(RX − RX,0)

+ O
(
(RX − RX,0)

2
)

, (2.7)

so that

e−Sws = exp

[
−V (�2)

α′

]
= e−V0/α′

exp
[
−γ (RX − RX,0) + O

(
(RX − RX,0)

2
)]

,

γ ≡ 1

α′
dV

dRX

∣∣∣∣
u0

. (2.8)

The constant prefactor e−V0/α′
is absorbed into the effec-

tive coupling multiplying the induced operator, while RX,0

is fixed hence, to the order retained here we write the instan-
ton factor as exp[−γ RX ] up to an overall constant. A detailed
derivation in an explicit homogeneous example is given in
Appendix (A). Consequently, the instanton-corrected effec-
tive action includes an exponentially suppressed higher-
curvature term,

λ e−Sws RμνR
μν � λ e−γ RX RμνR

μν, (2.9)

where RμνRμν is the five-dimensional curvature invariant
and RX denotes the internal scalar curvature. Such terms
originate from a sum over worldsheet topologies in the
heterotic string path integral, reinforcing the role of non-
perturbative physics in string compactifications [19,20].

Incorporating both perturbative α′-corrections and non-
perturbative worldsheet instanton effects, we have arrived
at a five-dimensional effective action in which the higher-
curvature term is explicitly modified. The presence of
the suppression factor e−γ R underscores the role of non-
perturbative contributions in the heterotic string, offering a
refined perspective on how instanton effects alter the gravi-
tational sector in holographic frameworks. This exponential
form is not an ad hoc insertion but the resummed manifesta-
tion of the infinite tower of worldsheet instanton corrections

contributing to the heterotic effective action. To avoid ambi-
guity, we denote the internal Ricci scalar by R ≡ R(X5)

(assumed constant in this section) and the 5D spacetime Ricci
scalar by R ≡ R(5). The invariant RμνRμν always refers to
the five-dimensional quantity.

3 Non-perturbative corrections in CFT

The AdS/CFT correspondence provides a strikingly precise
relation between gravity in asymptotically AdS spaces and
strongly coupled gauge theories. A particularly well-studied
example is the entropy of an AdS5 black hole, which, in the
dual CFT, is known to scale as [21]

s ∼ N 2, (3.1)

where N denotes the rank of the gauge group. This depen-
dence immediately implies that any correction term of the
form e−s exhibits an exponential suppression in N 2. More
precisely, one finds

e−s = e−cN2
, (3.2)

for some numerical coefficient c. This behavior stands in
contrast to the more familiar 1/N expansion characteristic of
holographic CFTs, where transport coefficients are typically
organized as

η

sc
= 1

4π

(
1 + c1

N
+ c2

N 2 + . . .
)

. (3.3)

While corrections of order 1/N emerge naturally from
quantum loop effects in the bulk, terms of the form e−S

are qualitatively distinct, displaying an exponential suppres-
sion in N 2. This suggests a fundamentally different origin,
one that is inherently non-perturbative. In standard AdS/CFT
setups, finite-N corrections appear in transport coefficients
due to higher-loop contributions in the bulk, which affect the
stress-energy tensor correlators. These corrections take the
well-known power-law form

1

N
,

1

N 2 , . . . (3.4)

However, non-perturbative terms of the form e−s introduce
a qualitatively new ingredient. Their scaling behavior,

e−s = e−cN2 	 1

Nk
, ∀k, (3.5)

reveals that no finite order in 1/N can reproduce such effects.
Thus, their very presence signals a departure from the per-
turbative framework, pointing instead to the role of non-
perturbative physics. This divergence is not only an issue of
formal expansion. While power-law suppressed components
can be traced back to perturbative quantum effects in the
bulk, exponentially suppressed corrections frequently show
contributions from non-perturbative saddle points, instanton
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effects, or even topological configurations in gravitational
theory. Their presence suggests a deeper structure behind
quantum gravity corrections in holography, one that can-
not be comprehended using ordinary perturbative approaches
alone.

4 CFT dual of higher-curvature corrections in the bulk

The AdS/CFT correspondence implies that bulk metric fluc-
tuations gμν are encoded in the stress-energy tensor Tμν of
the boundary theory. More generally, the presence of higher-
curvature terms in the bulk action suggests the existence of
corresponding higher-order corrections in the CFT. A nat-
ural candidate for the dual of the bulk term RμνRμν is a
multi-trace interaction involving Tμν , which modifies the
CFT action as

SCFT = S(0)
CFT + λ

∫
d4x e−γONPTμνT

μλT ν
λ . (4.1)

The use of a triple-trace structure follows the general rule
that a bulk term quadratic in curvature couples to the CFT
operator cubic in Tμν , because functional differentiation of
the CFT generating functional with respect to the boundary
metric brings down one Tμν per bulk graviton leg (see [22]).
Lower double-trace deformations would correspond to R-
linear bulk corrections, while R2 terms require three stress-
tensor insertions at leading order in 1/N . In the language
of holographic renormalization, such multi-trace deforma-
tions correspond to mixed boundary conditions for the bulk
graviton, so the deformation in Eq. (4.1) is consistent with the
variational problem and the AdS/CFT dictionary [22]. Here,
S(0)

CFT represents the undeformed large-N CFT action, while
e−γONP introduces a non-perturbative correction. Given the
structure of this interaction, we seek a CFT operator whose
expectation value reproduces the bulk suppression factor
e−γ R . A well-motivated choice is the instanton-induced term

ONP = e−Sinst , (4.2)

where Sinst denotes the action of an instanton-like con-
figuration in the CFT. In large-N gauge theories, instanton
effects typically scale as

e−Sinst ∼ e−N2
. (4.3)

This suggests defining

ONP = Winst = e−Sinst , (4.4)

so that upon taking the expectation value,

〈e−γWinst〉 ≈ e−γ N2
, (4.5)

which precisely matches the suppression factor appearing
in the bulk. This provides a natural holographic origin for
the exponential suppression of higher-curvature corrections.

The bulk effective action can now be obtained by integrating
out high-energy modes in the CFT. In the large-N expansion,
the relevant CFT correlation function satisfies

〈TμνT
μλT ν

λ 〉conn ∼ N 2, (4.6)

in agreement with the scaling of the central charge c ∼ N 2

in holographic CFTs [23], leading to an effective bulk action
of the form

Seff ≈ N 2

16πGN

∫
d5x

√−g

(
R + 12

L2

)

+ N 4

16πGN
λe−γ N2

∫
d5x

√−gRμνR
μν. (4.7)

The overall N 4 scaling in Eq. (4.7) then arises from com-
bining this with the N 2/16πGN prefactor of the gravita-
tional action. Note that despite the N 4 prefactor, the non-
perturbative factor e−γ N2

renders this contribution smaller
than any power 1/Nk in the large-N limit, in agreement
with the resurgent/trans-series structure discussed in Sect. 7.
Comparing with the bulk expression,

λe−γ R RμνR
μν ←→ λe−γ N2〈TμνT

μλT ν
λ 〉, (4.8)

we confirm the emergence of the higher-curvature term
from the non-perturbative structure of the CFT. This estab-
lishes an explicit link between the large-N behavior of the
stress tensor correlators and the gravitational corrections in
the bulk. This construction shows that higher-derivative grav-
ity naturally arises from non-perturbative effects in the CFT.
The instanton-induced operator Winst generates an expecta-
tion value of the form e−N2

, leading to an exponentially sup-
pressed correction in the bulk action. The presence of the
multi-trace interaction TμνTμλT ν

λ provides a direct mecha-
nism for generating the curvature-squared term in the gravi-
tational theory.

We conclude by noting that these non-perturbative effects
play a crucial role in the physics of transport coefficients
in the CFT. The shear viscosity corrections induced by the
higher-derivative terms in the bulk are not perturbative in
1/N , but rather suppressed as e−N2

. This aligns with the
expected contributions from instanton effects, D-brane cor-
rections, or resurgence phenomena. Thus, the structure of the
modified CFT action provides new insight into the nature of
non-perturbative holography and the emergence of higher-
curvature terms in the bulk.

5 Instantons and non-perturbative bulk corrections

In string theory, non-perturbative effects naturally arise
through Euclidean D-branes wrapping compact cycles in
the extra-dimensional geometry [24]. These instanton effects
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contribute to the low-energy effective action via an exponen-
tial suppression factor of the form:

e−Sbrane , (5.1)

where the instanton action, for a Euclidean p-brane wrapping
a (p + 1)-dimensional cycle � in the bulk, takes the form:

Sbrane = 1

gs

∫
d p+1ξ

√
det G + SWZ, (5.2)

in which gs is the string coupling, G the induced metric on
the brane, and SWZ accounts for the coupling to background
fluxes. Holographic duality suggests a natural scaling behav-
ior in the large-N limit [25]. The string coupling satisfies:

1

gs
∼ N , (5.3)

and since the brane volume scales as N , the instanton action
behaves as:

Sbrane ∼ N 2. (5.4)

Consequently, the contribution to the effective action is expo-
nentially suppressed,

e−Sbrane ∼ e−N2
, (5.5)

which is the expected form of non-perturbative corrections.
The presence of a Euclidean D-brane necessarily modifies
the background geometry, acting as a localized source in
the gravitational equations. The induced correction to the
effective action takes the form:

δS ∼ e−Sbrane

∫
d5x

√−gOcurvature, (5.6)

whereOcurvature denotes higher-curvature corrections arising
from the backreaction of the instanton. More explicitly, the
Einstein equations receive a correction:

RMN − 1

2
gMN R + �gMN = 8πGN

(
T bulk
MN + T brane

MN

)
,

(5.7)

in which T bulk
MN contains the usual stress-energy contributions

from fluxes, the dilaton, and metric fluctuations, while T brane
MN

encodes the effects of the wrapped Euclidean D-brane. The
brane stress tensor follows from the variation of the brane
action:

T brane
MN = − 2√−g

δSbrane

δgMN
. (5.8)

For a Euclidean Dp-brane wrapping a cycle in the internal
space, the supergravity description of the action is given by:

Sbrane = μp

∫
d p+1ξ e−φ

√
det P[g]ab + SWZ + · · · , (5.9)

where P[g]ab is the pullback metric, and SWZ captures the
interaction with background Ramond-Ramond fluxes. Since

the Euclidean brane wraps a compact cycle � in the extra-
dimensional geometry, the dominant contribution to its action
comes from the Born-Infeld term:

Sbrane ∼ μp

∫
�

d pξ e−φ
√

det P[g]ab. (5.10)

For large cycle volume, the Euclidean brane action scales
linearly with the volume:

Sbrane ∼ Vol(�)

gs
, (5.11)

so the corresponding instanton weight is e−Sbrane ∼ e−Vol(�)/gs .
The backreaction of the brane induces an additional curvature-
dependent term in the effective action:

Sbrane ∼
∫

d5x
√−g e−Sbrane Rbrane, (5.12)

where Rbrane represents the curvature correction sourced by
the brane.

Taking the variation of e−Sbrane , we obtain:

T brane
MN = − 1√−g

δ

δgMN
e−Sbrane . (5.13)

Since Sbrane scales with the Ricci scalar near the brane, the
resulting stress tensor is of the form:

T brane
MN ∼ e−Sbrane RMN . (5.14)

This scaling follows from the DBI action’s coupling to the
induced metric:

Sbrane ∝
∫

�

√
P[g] ≈ Vol(�)

(
1 + 1

2 Rmnmn �2
s + · · ·

)
,

(5.15)

so to leading order Sbrane ∝ R for small curvature deforma-
tions. Thus, the leading-order contribution from brane back-
reaction enters through a curvature-dependent correction,
exponentially suppressed by e−Sbrane . From a string-theoretic
perspective, Euclidean D-branes generate non-perturbative
modifications to the effective supergravity description, typ-
ically appearing in the Kähler potential, superpotential, or
as higher-derivative interactions. The stress tensor structure
suggests that the dominant correction in the effective action
involves brane-induced curvature interactions of the form:

δS ∼ e−Sbrane

∫
d5x

√−gRbrane. (5.16)

At leading order, this implies a modification to the Ricci
curvature:

δRMN ∼ e−Sbrane RMP R
P
N . (5.17)

Thus, the instanton contribution to the effective action is of
the form:

e−Sbrane RμνR
μν. (5.18)
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Identifying e−Sbrane with an effective exponential suppres-
sion e−γ R , we conclude that the induced term in the five-
dimensional action takes the form:

Ibrane = λe−γ R
∫

d5x
√−gRμνR

μν. (5.19)

These results illustrate the emergence of non-perturbative
higher-curvature corrections from Euclidean D-brane instan-
tons, highlighting their role in the interplay between string-
theoretic effects and AdS/CFT [16].

6 M-brane and non-perturbative bulk corrections

Higher-derivative corrections to gravitational effective actions
are a well-known feature of string theory and M-theory com-
pactifications. These terms naturally arise from a variety of
sources, including bulk supergravity interactions, curvature
effects induced by compactification, and non-perturbative
contributions from Euclidean M-brane instantons. Our aim
here is to explicitly derive the five-dimensional effec-
tive action, incorporating the contributions from wrapped
Euclidean M-branes, and to analyze the emergence of
curvature-dependent suppression factors.

The non-perturbative effects of M-brane instantons gener-
ate corrections to the five-dimensional action, with a charac-
teristic prefactor appearing in the higher-derivative terms.
The leading-order terms in this action correspond to the
standard Einstein-Hilbert action with a cosmological con-
stant, while additional terms proportional to RμνRμν emerge
as a consequence of quantum effects, in particular, from
Euclidean M2- and M5-brane instanton contributions.

Instantons in M-theory arise when Euclidean M2-branes
(EM2) wrap holomorphic two-cycles C2 and Euclidean M5-
branes (EM5) wrap holomorphic four-cycles C4 in the inter-
nal compactification manifold [24,26,27]. The contributions
of these instantons to the low-energy effective action are
exponentially suppressed and take the general form e−Sinst ,
where Sinst denotes the instanton action. For an EM2-brane
wrapping a two-cycle C2, the leading contribution is dictated
by its worldvolume action:

SEM2 = TM2

∫
C2

d2ξ
√

det g, (6.1)

where the M2-brane tension is given by

TM2 = 1

(2π)2l3p
. (6.2)

The volume of C2 depends on the internal curvature, leading
to a warping correction in the effective action. This depen-

dence is manifest in the modified form of the instanton action:

SEM2 ∝ 1

l3p

∫
C2

e−γ Rd2ξ. (6.3)

Thus, the instanton contribution to the partition function takes
the form

e−SEM2 = e− 1
gs
e−γ RVol(C2), (6.4)

The factor e−γ R effectively encodes the curvature-induced
warping of the internal metric in flux compactifications: in
11D supergravity with R4 corrections, the background vol-
ume form acquires multiplicative corrections 1 + γ R + · · ·
[17]. Resumming these into an exponential is a convenient
way to represent the non-perturbative backreaction on the
wrapped brane action. where the curvature-dependent sup-
pression factor e−γ R appears as a direct consequence of the
geometric deformation of C2 induced by higher-curvature
corrections.

A parallel analysis applies to EM5-branes wrapping four-
cycles C4, where the leading contribution to the instanton
action is

SEM5 = TM5

∫
C4

d4ξ
√

det g, (6.5)

with the M5-brane tension given by

TM5 = 1

(2π)5l6p
. (6.6)

Once again, the dependence of the four-cycle volume on cur-
vature results in a warping-dependent suppression factor:

SEM5 ∝ 1

l6p

∫
C4

e−γ Rd4ξ. (6.7)

Thus, the corresponding instanton contribution takes the
form

e−SEM5 = e− 1
gs
e−γ RVol(C4). (6.8)

A more complete understanding of these corrections is
obtained by summing over multi-instanton configurations.
The total instanton contribution to the partition function is
given by

Z =
∑
n

1

n!
(
e−SEM5

)n =
∑
n

1

n!
(
e− 1

gs
e−γ RVol(C4)

)n
. (6.9)

Expanding the exponential and summing over instanton num-
bers yields the final result:

Z = exp

(
− 1

gs
e−γ RVol(C4)

)
. (6.10)

The volume of the four-cycle can be expressed in terms of the
local curvature, incorporating higher-derivative corrections:

Vol(C4) ≈ V0 + αRμνR
μν, (6.11)
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where α is a compactification-dependent coefficient. Sub-
stituting this into the partition function yields the modified
effective action:

Seff ⊃
∫

d5x
√−g e−γ RVol(C4). (6.12)

Here, V0 renormalizes the background terms, while the rele-
vant curvature correction takes the form

Seff ⊃
∫

d5x
√−g e−γ R RμνR

μν. (6.13)

While Eq. (6.13) has been written as an exponentially sup-
pressed curvature-squared operator, its origin as a resummed
instanton contribution implies a nonlocal completion of the
quadratic graviton operator rather than a standalone local
RμνRμν deformation. Concretely, expanding around a max-
imally symmetric background with constant curvature R =
R0 and metric perturbation gμν = ḡμν + hμν , the linearized
kinetic operator can be written schematically as

K(�) = e−H(�/M2) �
(
P(2) − 1

2 P(0−s)
)

+ O(R0/M2),

(6.14)

where � is the covariant d’Alembertian on the background,
P(2) and P(0−s) are the usual spin projectors, M is the non-
local (stringy) scale, and H(z) is an entire function deter-
mined by the multi-instanton resummation. The ghost-free
entire-function form factor structure in Eq. (6.14) is stan-
dard in infinite-derivative/nonlocal gravity; see e.g. [28–30]
for derivations of the exponential-of-entire-function comple-
tion and its pole/spectrum implications. The corresponding
propagator in momentum space reads

D̃μνρσ (p) = e−H(−p2/M2)

p2

(
P(2)

μνρσ − 1
2 P(0−s)

μνρσ

)
+ · · · ,

(6.15)

so that, because e−H has no zeros for finite p2, no new poles
are introduced beyond the massless graviton pole at p2 =
0. Correspondingly, the propagator form Eq. (6.15) realizes
the usual condition for ghost-freedom: the exponential of an
entire function does not introduce additional poles beyond
the graviton pole; see [28–30]. Thus the would-be massive
spin-2 ghost that afflicts a purely local RμνRμν deformation
never appears here. In particular, whereas a local quadratic
theory yields

D̃local(p) ∼ 1

p2 − 1

p2 + m2
2

, (6.16)

with the second term the unphysical (wrong-residue) mas-
sive spin-2 pole, the nonlocal completion (6.15) replaces
any such extra pole by an entire-function form factor, which
softens the UV behavior without adding degrees of freedom.
This mechanism is precisely what one expects from a string-
theoretic resummation: instanton sums and string field theory

both generate nonpolynomial (infinite-derivative) structures
that are ghost-free when the form factors are exponentials
of entire functions. In this sense, Eq. (6.13) is consistent
with the stringy spectrum-there is no isolated “massive spin-
2 ghost” mode to be matched-and it is complementary to
the well-known local statement that, at O(α′), curvature-
squared terms can be organized into the Gauss-Bonnet com-
bination (ghost-free at the local level). Here, the nonlocal
structure induced by wrapped M-brane instantons ensures
ghost-freedom directly at the level of the full quadratic oper-
ator (6.14), while the overall e−γ R factor encodes the cur-
vature dependence of the instanton action and reduces to a
harmless constant multiplier in the linearized analysis about
R0. Consequently, Eq. (6.13) eliminates the unphysical mas-
sive tensor mode and remains fully consistent with string-
theoretic expectations regarding the physical graviton con-
tent.

6.1 Cauchy problem and ghost-free nonlocal dynamics

The correction in Eq. (6.13), is not introduced as an iso-
lated fourth-derivative interaction; rather, it is the resummed
limit of an infinite series of higher-derivative terms gener-
ated by wrapped M-brane instantons. In the effective theory,
this resummation is captured by entire form factors of the
covariant d’Alembertian, so that the quadratic (in fluctua-
tions) kinetic operator takes the schematic ghost-free form
Eq. (6.14). In transverse-traceless (TT) gauge hμν → hTT

μν ,
Eq. (6.14) implies the linearized field equation

e−H(�/M2) � hTT
μν = 0. (6.17)

In momentum space this becomes

e−H(−p2/M2) p2 h̃TT
μν(p) = 0, (6.18)

so the only propagator pole is at p2 = 0 because e−H has
no zeros for finite p2 when H is entire. Hence, no additional
spin-2 or spin-0 massive poles are generated, and the spec-
trum contains only the massless graviton as in GR. Equiva-
lently, the nonlocal completion removes the would-be mas-
sive ghost that would appear in a purely local Rμν Rμν theory.
A useful way to see that the initial value problem remains well
posed is via the field redefinition

h̃μν ≡ e− 1
2 H(�/M2) hμν, (6.19)

under which Eq. (6.17) reduces to the second-order wave
equation � h̃TT

μν = 0 (up to standard background/gauge
terms). Thus the number of required Cauchy data matches
GR: two integration functions per physical polarization on
a spacelike hypersurface. More generally, for linear infinite-
order equations each propagator pole contributes two initial
data; because Eqs. (6.18)–(6.19) exhibit only the massless
p2 =0 pole, no infinite tower of initial conditions is required
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and no Ostrogradsky instability arises.1 Finally, note that
the entire form factor leaves the characteristics (and hence
the causal front velocity) unchanged in the geometric-optics
limit; the kernel merely induces exponentially suppressed,
sub-nonlocal-scale memory tails in retarded solutions. This
is the standard mechanism by which string-inspired, ghost-
free nonlocal gravities tame UV behavior without introduc-
ing propagating ghosts, and it is precisely the regime realized
by the instanton-resummed structure leading to Eq. (6.13)
(see also Sect. (8) for the related regularization of focusing
in the Raychaudhuri equation).

This result demonstrates how summing over instantons
naturally leads to higher-curvature corrections in the low-
energy effective theory. The curvature-suppressed correction
e−γ R RμνRμν emerges as a universal feature of M-theory
compactifications with non-perturbative contributions from
wrapped M-branes. Similar effects have been observed in
other settings, including heterotic M-theory compactifica-
tions [24,26] and G-flux-induced corrections [27,31]. Our
analysis extends these considerations by explicitly incorpo-
rating the dependence on spacetime curvature and demon-
strating its impact on instanton-induced modifications to the
effective action.

Since the instanton-resummed correction in Eq. (6.13) is
inherently non-polynomial, it is natural to ask whether non-
locality threatens causality. In our framework, the nonlocal
form factor multiplying the quadratic kinetic operator can be
written as

F
( �
M2

)
= exp

[ − H
(

�
M2

) ]
, (6.20)

with H an entire function chosen such that �H(z) ≥ 0 for
�z ≥ 0. Linearizing about a maximally symmetric back-
ground and using the standard spin projectors, the kinetic
operator takes the schematic form Eq. (6.14), so that the
momentum-space propagator is Eq. (6.15). Because H is
entire, exp[−H ] has no zeros on the finite complex plane;
consequently, the only pole is the massless graviton pole at
p2 = 0. Thus no extra (in particular, no ghost-like) spin-2
or scalar degree of freedom is introduced by the nonlocal
completion, and the number of propagating modes coincides
with GR. The Cauchy problem is therefore well posed with
the standard GR initial data (metric and its first time deriva-
tive modulo constraints), rather than an infinite tower of ini-
tial conditions associated with higher-order time derivatives.
Regarding signal propagation, the retarded Green’s function
can be written as

GR(x) =
∫

d4 p

(2π)4

exp[− H(−p2/M2)]
− p2 + iεp0 e−i p·x . (6.21)

1 See, e.g., analyses of the initial value problem in infinite-derivative
field theories showing that a finite number of propagator poles implies
a finite, GR-like set of Cauchy data.

Standard Paley-Wiener bounds for Fourier transforms of
entire functions with suitable growth imply that GR(x)
develops only exponentially suppressed tails outside the
light-cone, while the front velocity remains luminal. In
the geometric-optics (eikonal) limit-the regime relevant for
classical signal propagation-the characteristics are null, so
macroscopic causality is preserved. Any micro-causality vio-
lation is confined to distances of order M−1 (set by the non-
locality scale, e.g. the string scale) and is unobservable at the
scales where the effective description applies. This behavior
is fully consistent with the string-theoretic origin of non-
locality (cf. the appearance of infinite-derivative structures
in string field theory) and with ghost-free infinite-derivative
gravity models that implement entire-form-factor comple-
tions.2 Finally, we note that the same exponential form fac-
tors that tame UV behavior and preserve macroscopic causal-
ity also underlie our singularity-regularization mechanism
in Sect. (8): the effective focusing term in the Raychaudhuri
equation acquires an exponential damping Eq. (8.3), prevent-
ing uncontrolled geodesic focusing while remaining compat-
ible with the AdS asymptotics and with the string-inspired
UV completion.

7 Non-perturbative resurgence and bulk curvature
corrections

It is natural to ask how exponentially suppressed terms such
as e−γ R RμνRμν may arise in the bulk gravitational action.
We consider the five-dimensional action, and argue that
such terms are naturally generated through non-perturbative
resurgence effects in large-N gauge theories. The essential
idea is that these corrections emerge from resummations in
the large-N expansion, which are associated with tunneling
effects and non-perturbative saddle-point contributions in the
path integral.

Resurgence theory provides a framework for relating per-
turbative and non-perturbative contributions in asymptotic
expansions of path integrals [35]. In large-N gauge theories,
the partition function takes the form

Z =
∞∑
k=0

ck
Nk

+
∑
j

e−NSj
∞∑

m=0

d j,m

Nm
, (7.1)

where the second sum represents instanton contributions,
with S j denoting the action of a non-perturbative saddle. The
suppression factor e−NSj signals that these effects are expo-
nentially small in N . For large-N gauge theories and matrix

2 For background on nonlocal structures in string theory and on ghost-
free infinite-derivative completions see, e.g., [1,2] and the broader
nonlocal/UV-softened gravity literature [32–34].

123



   70 Page 10 of 16 Eur. Phys. J. C            (2026) 86:70 

models, non-perturbative saddle actions scale as [36]:

S j ∼ N 2. (7.2)

This scaling implies that non-perturbative effects behave as

e−N2
, (7.3)

in direct correspondence with the structure of bulk curva-
ture corrections. Thus, the emergence of such terms in the
gravitational action suggests a dual origin in the resurgence
structure of the CFT. In the AdS/CFT correspondence, bulk
metric fluctuations gμν are dual to the stress-energy tensor
Tμν in the boundary CFT [25]. This suggests that the appear-
ance of curvature-squared terms in the bulk action should be
understood as arising from non-perturbative resummations of
stress tensor interactions in the CFT. Indeed, large-N com-
putations indicate that the stress tensor two-point function
receives resurgence corrections of the form [37]:

〈TμνTρσ 〉 ∼ CT

⎛
⎝1 +

∑
j

e−N2S j

⎞
⎠ . (7.4)

From this, one can infer that the effective action for the stress
tensor in the CFT acquires additional terms of the form

SCFT = S(0)
CFT + λ

∫
d4x e−γ S j TμνT

μλT ν
λ . (7.5)

This directly mirrors the bulk curvature correction,

Ibulk ⊃ λe−γ R RμνR
μν. (7.6)

A key observation follows from holographic renormaliza-
tion. The three-point function of the stress tensor in the CFT
scales as [22]:

〈TμνT
μλT ν

λ 〉 ∼ N 4. (7.7)

Substituting this into the resummation-improved CFT action,
one finds

Seff ≈ N 2

16πGN

∫
d5x

√−g

(
R + 12

L2

)

+ N 4

16πGN
λe−γ R

∫
d5x

√−gRμνR
μν. (7.8)

Comparing with the bulk action, we arrive at the identifica-
tion:

λe−γ R RμνR
μν ←→ λe−S j 〈TμνT

μλT ν
λ 〉. (7.9)

This analysis provides compelling evidence that the bulk
curvature correction e−γ R RμνRμν arises from resurgence
effects in the CFT. More generally, it illustrates how higher-
curvature terms in holographic gravity can be understood as
a direct manifestation of the resurgent structure of the CFT
path integral. This deep connection between bulk gravity and
resurgence offers further insight into non-perturbative effects
in holographic duality.

8 Curvature singularities and regularization
mechanisms

One of the most significant challenges in gravitational
physics is the resolution of curvature singularities, a prob-
lem that becomes particularly relevant in the quantum grav-
itational regime. A natural approach to understanding these
singularities involves the explicit computation of curvature
invariants, which serve as key diagnostic tools for the pres-
ence and severity of singular behavior in spacetime. A fun-
damental invariant in this context is the Ricci scalar, which
encapsulates the trace part of the curvature tensor and takes
the form

R = 40

L2 − 30μ

r4 , (8.1)

where L denotes the characteristic AdS length scale, and μ

is a parameter related to the black hole mass. The essen-
tial point here is that, as r → 0, the Ricci scalar diverges,
indicating a singularity unless appropriate modifications are
introduced. A more refined probe of curvature is provided by
the Kretschmann scalar, which measures the full contraction
of the Riemann tensor:

Rμνρσ R
μνρσ = 72μ2

r8 + 240

L4 + . . . . (8.2)

The dominant contribution, scaling as r−8, suggests that the
divergence is even more severe than that of the Ricci scalar.
Thus, any proposed resolution of singularities must involve
a mechanism capable of suppressing such divergences in the
small-scale regime.

A natural approach is to introduce an exponential sup-
pression factor of the form e−γ R [32,33], with γ acting as a
regularization parameter. Here R denotes the absolute mag-
nitude of curvature invariants, so the regulator effectively
behaves as e−γ |R|. This ensures exponential damping of both
positive and negative curvature divergences and avoids the
sign ambiguity for R → −∞. In the limit r → 0, this
term behaves as e−γ /r4

, leading to an exponential damping
of the divergences in curvature invariants. The significance of
such modifications is well established in nonlocal gravity and
higher-derivative approaches, where they arise as effective
corrections motivated by string theory and quantum gravity
[34].

The operator-level content of our nonlocal completion-an
exponential of an entire function multiplying the quadratic
graviton kinetic operator-lies in the same ghost-free univer-
sality class as the infinite-derivative/nonlocal gravities stud-
ied extensively in the modified-gravity literature [28–30].
The distinctive point in the present work is the microscopic
origin: the form factor and its associated exponential sup-
pression arise from a string/M-theory instanton resumma-
tion, providing a UV-motivated completion rather than a
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purely phenomenological ansatz. For an illustrative applica-
tion where nonlocality leads to improved (in particular, con-
vergent) structures in a gravitational/statistical setting, see
e.g. [38]. A complementary perspective on the singularity
structure comes from the behavior of geodesic congruences,
governed by the Raychaudhuri equation [39,40]. For timelike
geodesics, this equation takes the form

dθ

dτ
= −1

3
θ2 − σμνσ

μν − C

r4 e
−γ R, (8.3)

where θ is the expansion scalar, σμν denotes the shear ten-
sor, and C is a constant. This effective replacement arises
by contracting the modified Einstein equations with uμuν :
the nonlocal term contributes an effective Ricci convergence
Rμνuμuν �→ Rμνuμuν e−γ |R|, consistent with the regulator
introduced above (see [32–34]). In the absence of regulariza-
tion, the term proportional to 1/r4 would lead to a singular
focusing of geodesics at r → 0. However, the presence of the
damping factor ensures that such divergences are effectively
suppressed. Solving for the expansion scalar, we obtain

θ(τ ) = 1
1
θ0

+ τ
3

, (8.4)

where θ0 is the initial expansion. Crucially, this result
remains finite, demonstrating that geodesic congruences
do not undergo uncontrolled focusing even at arbitrarily
small values of r . We have not attempted to construct
the exact Schwarzschild-AdS solution in the presence of
e−γ |R|RμνRμν . A systematic approach is to treat the non-
local term as a small deformation and solve the field equa-
tions order-by-order in its coupling. Our Raychaudhuri-based
argument shows that the exponential factor suffices to pre-
vent geodesic focusing, indicating singularity resolution even
prior to constructing the full metric. These results collec-
tively establish that the spacetime remains regular under the
influence of the exponential suppression factor e−γ R . The
finiteness of curvature invariants and the controlled behavior
of geodesic congruences provide strong evidence that singu-
larities are effectively resolved within this framework. From
the broader perspective of quantum gravity, this suggests
an underlying modification to the Einstein-Hilbert action,
involving nonlocal terms of the form e−�/M2

, where �
denotes the d’Alembertian operator and M is a character-
istic mass scale.

Dynamically, the suppression of focusing effects in the
Raychaudhuri equation underscores the robustness of this
regularization mechanism. That singularity resolution occurs
in a manner that remains stable under the evolution of
geodesic congruences further reinforces the viability of such
nonlocal modifications. These findings strongly suggest that
exponential suppression terms offer a compelling and phys-
ically consistent approach to singularity resolution in gravi-
tational systems.

9 Conclusion

In this work, we have examined the emergence of non-
perturbative effects in higher-dimensional gravity, particu-
larly in the context of string theory and M-theory, with a
focus on the role of Euclidean D-brane and M-brane instan-
tons in generating bulk curvature corrections beyond per-
turbation theory. These instanton effects play a fundamen-
tal role in the non-perturbative structure of quantum gravity
and are closely related to resurgence phenomena in large-N
gauge theories, where trans-series expansions and exponen-
tially suppressed corrections provide a more complete under-
standing of perturbative series and their analytic continua-
tion. Within this framework, we have explored how instanton
contributions modify the effective gravitational action, lead-
ing to corrections in higher-curvature terms that may have
important implications for black hole solutions, singularity
resolution, and the broader problem of singularity avoidance
in quantum gravity.

Since instantons encode essential features of duality sym-
metries and are naturally tied to the moduli space of string
compactifications, their role in the non-perturbative dynam-
ics of string theory and M-theory offers a perspective on
quantum gravity that extends beyond conventional perturba-
tive approaches. By analyzing their effects on the low-energy
effective action, we have studied how these corrections
influence black hole thermodynamics, including entropy
shifts, near-horizon modifications, and possible implica-
tions for information recovery. The connection between
instanton-induced corrections in higher-dimensional gravity
and the resurgence program further suggests a deep interplay
between perturbative and non-perturbative physics, offering
a unifying perspective on the structure of quantum gravity
corrections. The results obtained here not only clarify the
role of D-brane and M-brane instantons in string theory but
also point toward new directions in addressing fundamen-
tal problems in quantum gravity, black hole physics, and the
resolution of spacetime singularities.

A key result of this analysis is the derivation of non-
perturbative curvature corrections from wrapped Euclidean
D-brane instantons in string theory. These instantons con-
tribute exponentially suppressed terms to the five-dimensional
bulk gravitational action, governed by a suppression factor
of the form e−Sbrane . The origin of these terms lies in the
dependence of the wrapped brane action on the volume of
the compactification manifold, leading to higher-curvature
interactions in the bulk theory. As a consequence, the Ein-
stein equations are modified by non-localized source terms
associated with the backreaction of the instanton. Extending
this framework to M-theory, we have examined the contribu-
tions of Euclidean M2- and M5-brane instantons wrapping
holomorphic cycles in compactification manifolds. In this
setting, we have shown that instantons generate non-trivial
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curvature-dependent corrections, with the dominant contri-
bution taking the form e−γ R RμνRμν .

The appearance of such terms is a natural consequence
of the warping dependence of the brane action, as well as
the summation over multi-instanton configurations. These
results provide a concrete realization of how higher-derivative
gravitational terms arise in the low-energy effective action of
M-theory compactifications. From the perspective of holog-
raphy, we have investigated the relationship between these
non-perturbative bulk corrections and resurgence in large-
N gauge theories. Using asymptotic series resummation
techniques, we have identified a correspondence between
bulk curvature modifications and non-perturbative saddle-
point contributions in the boundary CFT. The leading-order
instanton-induced corrections to the stress-energy tensor in
the CFT manifest as higher-order stress tensor interactions,
which, via the AdS/CFT correspondence, map directly to the
curvature-squared terms in the bulk gravitational action. This
provides evidence that non-perturbative effects in string the-
ory and M-theory are intimately connected to the large-N
expansion in quantum field theory.

We have also examined the impact of these corrections
on black hole physics by considering their effects on the
metric function of a static, spherically symmetric black
hole in AdS. The inclusion of the non-perturbative term
e−γ R RμνRμν in the gravitational action leads to a correction
of the Schwarzschild-AdS metric function, modifying the
near-horizon geometry while preserving the asymptotic AdS
structure. The leading-order correction introduces terms that
decay exponentially at large distances, ensuring consistency
with the expected infrared behavior of the spacetime. These
modifications may have important consequences for black
hole thermodynamics, potentially affecting entropy, temper-
ature, and stability properties of black hole solutions within
string-theoretic frameworks.

Our instanton-resummed nonlocal curvature corrections
become parametrically important when local curvature invari-
ants approach the string scale, i.e. precisely in the regime
where the semiclassical black hole description is expected
to cross over to a string/long-string description at the cor-
respondence point. In this sense, the exponential (entire-
function) suppression that softens the near-horizon/high-
curvature region provides an effective-action realization of
the approach to the black hole-string correspondence regime,
and it offers a complementary viewpoint on how stringy non-
locality can modify the near-horizon geometry without intro-
ducing additional propagating ghost degrees of freedom. See
[41] for a recent review discussion.

Finally, we have explored the implications of these cur-
vature corrections for singularity resolution in gravitational
backgrounds. By explicitly computing key curvature invari-
ants such as the Ricci scalar and Kretschmann scalar, we have
shown that the exponential suppression factor e−γ R acts as

a regularizing term, preventing the formation of curvature
singularities in classical black hole solutions. Moreover, an
analysis of geodesic congruences confirms that the expo-
nential damping term suppresses the focusing of geodesics,
leading to a geometric mechanism that prevents the forma-
tion of singularities at small scales. These results suggest that
non-perturbative corrections may provide a natural resolu-
tion mechanism for curvature singularities in quantum grav-
ity, reinforcing the broader perspective that non-perturbative
effects play a fundamental role in the microscopic structure
of spacetime.

As an illustrative CFT example, one may consider the
instanton sector of N = 4 SYM at finite N , where the
gauge-instanton action Sinst = (

8π2/g2
YM

) ∝ N leads to cor-
relator corrections ∼ e−N . Summing over multi-instantons
gives e−N2

-type contributions, mirroring the bulk e−γ RR2

structure (see [42]). Our findings open several promising
avenues for further research, particularly in understanding
the intricate relationship between non-perturbative instan-
ton corrections and string dualities, which could provide
deeper insights into the structure of the bulk effective action.
String dualities, such as T-duality, S-duality, and U-duality,
are fundamental in relating different string backgrounds and
establishing equivalences between seemingly distinct theo-
ries. The inclusion of non-perturbative effects, particularly
those arising from Euclidean D-brane and M-brane instan-
tons, could refine our understanding of these dualities and
reveal new constraints on the effective action governing low-
energy dynamics.

The interplay between instanton effects and modular
properties of string amplitudes suggests a profound con-
nection between non-perturbative corrections and automor-
phic forms, which play a crucial role in determining the
structure of protected quantities in supersymmetric theories.
Moreover, studying the transformation properties of instan-
tonic contributions under duality symmetries could provide
insights into how these effects persist across different cor-
ners of the moduli space, potentially leading to new con-
straints on the landscape of consistent string compactifica-
tions. Additionally, investigating how these corrections affect
key observables such as the entropy of supersymmetric black
holes and the stability of non-perturbative vacua may further
illuminate the role of brane instantons in bridging perturba-
tive and non-perturbative aspects of quantum gravity.

Another promising direction for future work is explor-
ing how these non-perturbative curvature modifications influ-
ence dynamical scenarios, including cosmological solutions
and gravitational wave propagation. In the context of early
universe cosmology, higher-derivative corrections induced
by instantons could significantly alter inflationary dynam-
ics, modifying slow-roll conditions and affecting predic-
tions for the power spectrum of primordial fluctuations. Such

123



Eur. Phys. J. C            (2026) 86:70 Page 13 of 16    70 

effects may offer novel mechanisms for realizing ekpyrotic
or bouncing cosmologies that could provide alternatives to
inflation while addressing singularity resolution. Addition-
ally, the presence of non-perturbative corrections in black
hole and cosmological backgrounds raises intriguing possi-
bilities regarding their impact on the thermodynamic stability
of solutions and the nature of singularity formation.

In the context of gravitational wave physics, higher-
derivative terms induced by instantonic effects could lead
to modifications in the dispersion relations of tensor pertur-
bations, introducing potential observational signatures that
could be tested with future experiments such as LISA or
next-generation ground-based interferometers. Such modifi-
cations may also affect the propagation of signals in strongly
curved backgrounds, offering a unique window into quan-
tum gravity corrections through the study of gravitational
lensing, ringdown signals from black hole mergers, and the
propagation of ultra-high-energy cosmic rays.

Another crucial avenue of investigation is the study of
non-perturbative effects in higher-spin gravity and their role
in holographic renormalization. Higher-spin theories, which
generalize general relativity to include an infinite tower of
massless higher-spin fields, exhibit rich structure and pro-
vide valuable insights into the nature of quantum gravity in
AdS/CFT correspondence. The presence of instantonic con-
tributions in these theories could lead to novel corrections
to correlation functions of conserved currents in holographic
duals, potentially refining our understanding of the role of
large-N resummation effects in strongly coupled gauge the-
ories.

Additionally, higher-derivative corrections stemming from
non-perturbative effects may alter the standard holographic
renormalization procedure, necessitating modifications to the
counterterms used in the AdS/CFT dictionary. This could
have profound consequences for the structure of entangle-
ment entropy calculations, the classification of consistent
boundary conditions for higher-spin fields, and the inter-
play between bulk locality and large-N factorization in holo-
graphic theories. Furthermore, understanding how instanton-
induced higher-spin effects modify black hole solutions
in higher-spin gravity could provide new insights into the
microstate structure of extremal black holes and their rela-
tion to unitary representations of the higher-spin algebra.

The emergence of non-perturbative bulk corrections from
resurgence in large-N gauge theories raises fundamental
questions about the nature of the semi-classical expansion in
quantum gravity. In resurgence theory, non-perturbative con-
tributions are deeply intertwined with the asymptotic struc-
ture of perturbative series, suggesting that quantum gravity
may possess a hidden trans-series structure where exponen-
tially suppressed corrections provide a non-perturbative com-
pletion of perturbative calculations. Investigating how these
effects generalize to other settings, such as matrix models

and topological string theory, could reveal new approaches to
constructing non-perturbative formulations of quantum grav-
ity.

Matrix models, which serve as effective descriptions of
non-perturbative string theory in certain limits, provide a nat-
ural setting to explore instanton effects in a controlled man-
ner. In particular, the study of D-instantons in matrix models
could offer new perspectives on the resolution of space-time
singularities and the emergence of space-time from a non-
perturbative perspective. Similarly, in topological string the-
ory, where non-perturbative corrections are often captured by
holomorphic anomaly equations, a systematic investigation
of brane-instanton effects could shed light on the structure
of the non-perturbative string landscape, including implica-
tions for the swampland program and the classification of
consistent string vacua.

In conclusion, our analysis demonstrates
that non-perturbative effects from Euclidean brane instan-
tons lead to higher-derivative corrections in the bulk, which
in turn have profound implications for black hole physics,
holography, and singularity resolution. These results rein-
force the deep connections between string theory, gauge the-
ory, and quantum gravity, highlighting the importance of non-
perturbative physics in shaping the fundamental structure of
spacetime. By uncovering new avenues for research in string
dualities, cosmology, gravitational wave physics, higher-spin
gravity, holography, and resurgence theory, this work opens
up promising directions for advancing our understanding of
non-perturbative aspects of quantum gravity.

The study of instanton effects and their interplay with
string dualities could refine our understanding of how space-
time and gauge interactions emerge in the deep quan-
tum regime, while their impact on cosmology and gravi-
tational wave physics may lead to testable predictions for
future observational experiments. Moreover, the connection
between resurgence, matrix models, and topological strings
suggests that the interplay between perturbative and non-
perturbative physics in quantum gravity is far richer than pre-
viously understood, potentially leading to new breakthroughs
in our quest for a complete formulation of quantum grav-
ity. As we continue to explore these directions, it becomes
increasingly clear that non-perturbative effects, often over-
looked in traditional perturbative approaches, play a funda-
mental role in shaping the very fabric of space-time, offering
new insights into the deepest questions of quantum gravity,
black hole physics, and holography.
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A Curvature Dependence of Wrapped Cycle Volumes

In this appendix we provide an explicit and self-contained
demonstration of how an effective curvature dependence of
a wrapped cycle volume can arise in a controlled regime,
leading to an instanton weight of the form exp[−γ RX ] as
used in Sect. (2). Consider a ten-dimensional background
compactified on a five-manifold X5,

ds2
10 = e2A(y) g(5)

μν (x) dxμdxν

+ e−2A(y) gmn(y; u) dymdyn, (A.1)

where A(y) is a warp factor and gmn(y; u) is an internal
metric depending smoothly on a modulus u (or a finite set
of moduli, suppressed for notational simplicity). We assume
the internal space is homogeneous in the sense that for each
fixed u the scalar curvature

RX (u) ≡ R
(
X5, gmn(·; u)

)
(A.2)

is constant over X5. In the regime relevant for a five-
dimensional effective description, we further assume (i) mod-
uli stabilization at u = u0 with small fluctuations |u−u0| 	
1, and (ii) that the warp factor is slowly varying on the cycle
of interest (so that it can be treated as approximately constant
over the wrapped cycle to the order retained).

A heterotic worldsheet instanton corresponds to a Euclidean
fundamental string wrapping a nontrivial two-cycle �2 ⊂
X5. Its classical action is proportional to the induced area:

Sws = 1

2πα′

∫
�2

d2σ

√
det

(
i∗g10

) ≡ V (�2)

α′ . (A.3)

(The last equality defines V (�2) in the conventions of the
main text; any 2π -factor difference is absorbed into the def-
inition of γ below.)

Thus the non-perturbative weight entering the effective
action is

e−Sws = exp

[
−V (�2)

α′

]
. (A.4)

To exhibit the curvature dependence explicitly, consider the
internal manifold

X5 = S2 × S3 (A.5)

equipped with a one-parameter family of homogeneous met-
rics obtained by scaling the round metrics on the factors with
a volume-preserving squashing modulus u:

ds2
X5

(u) = L2
(
e2u d�2

2 + e−4u/3 d�2
3

)
, (A.6)

where d�2
n are unit-radius round metrics and L is an overall

length scale. Because the S2 block has dimension 2 and the
S3 block has dimension 3, the total volume element scales as√
gX5(u) ∝ (

e2u)2/2(
e−4u/3)3/2 = e2u e−2u = 1,

so the total internal volume is independent of u at fixed
L (this mimics the common situation in flux compactifica-
tions where an overall volume modulus is stabilized while
a shape/squashing modulus remains in a controlled sec-
tor). For an n-sphere of radius r , the scalar curvature is
R(Snr ) = n(n − 1)/r2. In the metric (A.6), the effective
radii are

a(u) = L eu, b(u) = L e−2u/3, (A.7)

for the S2 and S3 factors, respectively. Since the Levi-Civita
connection is block-diagonal on a direct product, the scalar
curvature adds:

RX (u) = R(S2
a(u)) + R(S3

b(u)) = 2

a(u)2 + 6

b(u)2

= 2

L2 e
−2u + 6

L2 e
4u/3. (A.8)

Expanding about u = 0 (the reference homogeneous metric)
gives

RX (u) = 8

L2 + 4

L2 u + O(u2)

≡ RX,0 + RX,1 u + O(u2), RX,0 = 8

L2 , RX,1 = 4

L2 .

(A.9)

Take �2 to be the S2 factor. Its induced metric is L2e2ud�2
2,

hence its area is

V (�2)(u) =
∫
S2

√
det(L2e2ugS2) d2σ

= 4π a(u)2 = 4πL2e2u . (A.10)

Expanding at small u gives

V (�2)(u) = 4πL2 (1 + 2u + O(u2))

≡ V0 + V1 u + O(u2), V0 = 4πL2, V1 = 8πL2.
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(A.11)

From (A.9), for sufficiently smallu one can invert to obtain

u = RX − RX,0

RX,1
+ O(

(RX − RX,0)
2)

= L2

4
(RX − RX,0) + O(

(RX − RX,0)
2). (A.12)

Substituting into (A.11) yields the affine relation

V (�2) = V0 + κ (RX − RX,0) + O(
(RX − RX,0)

2),
κ ≡ V1

RX,1
= 2πL4. (A.13)

This is the explicit realization (to controlled linear order
around a stabilized background) of a curvature-dependent
cycle volume: V (�2) is not assumed to be universally pro-
portional to curvature, but in a one-modulus homogeneous
sector it is an analytic function of RX with a well-defined
linear term. Inserting (A.13) into the instanton action (A.3)
gives

Sws = V (�2)

α′ = V0

α′

+ κ

α′ (RX − RX,0) + O(
(RX − RX,0)

2). (A.14)

Therefore the instanton factor becomes

e−Sws = e−V0/α′
exp

[
−γ (RX − RX,0) + O(

(RX − RX,0)
2)] ,

γ ≡ κ

α′ = 2πL4

α′ . (A.15)

As emphasized in Sect. (2), the overall constant e−V0/α′
is

absorbed into the effective coupling multiplying the induced
operator in the five-dimensional action. Since RX,0 is fixed
once the internal background is specified, one may equiva-
lently write the leading dependence as

e−Sws ∝ exp[−γ RX ]
(up to a constant prefactor and higher

−ordercorrectionsinRX − RX,0). (A.16)

The reduction above is valid under the following explicit
conditions:

1. Homogeneity/constant scalar curvature: RX (u) is con-
stant on X5 for each u. This is satisfied for the homoge-
neous metrics (A.6).

2. Small fluctuation regime: |u−u0| 	 1 so that truncation
at linear order in u (equivalently linear order in RX −
RX,0) is justified.

3. Validity of the α′ expansion: the internal curvature scale
is below the string scale, e.g. |RX | α′ 	 1, so that higher
α′ corrections do not invalidate the effective description.

4. Warp-factor locality on the cycle: the warp factor is
approximately constant over �2 to the retained order so
that V (�2) is well approximated by the induced metric
volume in the homogeneous ansatz.

Within this regime, the dependence of the wrapped cycle vol-
ume on RX is controlled, and the instanton weight produces
the exponential curvature factor used in Sect. (2). We have
provided an explicit homogeneous example in which (i) RX

and V (�2) are computable functions of a stabilized mod-
ulus, (ii) eliminating the modulus yields an affine relation
between V (�2) and RX to controlled linear order, and (iii)
the wrapped worldsheet instanton weight acquires an expo-
nential dependence on RX (up to an overall constant). This
establishes concretely how the effective factor exp[−γ RX ]
can arise in the five-dimensional action from wrapped instan-
tons, as assumed in Sect. (2).
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