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Chapter 1
Introduction

Climate change is a reality, and human activity plays a significant role in its pro-
gression. We are the primary factor for the rising levels of greenhouse gases and the
resulting increase in global temperatures across the atmosphere, oceans, and land
[22, SYR-A.1].

Understanding the science and addressing the issue effectively is crucial, though it
is a complex challenge given its far-reaching impact on individuals, industries, and the
natural environment alike. In this thesis, I aim to contribute from a computational
and mathematical perspective, offering new insights and improvements to algorithms
that solve equations describing fluid flow, which ultimately assist in the study of
climate change. Concretely, my contributions are twofold:

• Making multiderivative multistage time-integrators more amenable as a means
for solving conservation laws by taking a Jacobian-free approach;

• Bringing understanding to how stiff equations can negatively impact implicit
multiderivative time-integrators through the conditioning of the linearized sys-
tem, and what can be done to mitigate these adverse effects.

Further introductory details about my specific contributions are provided near the
end of this chapter in the “Jacobian-free” paragraphs at pages 14 and 16.

Ecotrons Figure 1.1 displays a comparison of six widely-referenced datasets1 that
track the rise in five-year average global temperatures compared to the 1850-1900 pre-
industrial average [11]. Global surface air temperatures are estimated to have risen by

1Simmons et al. ([45], 2021) discuss the six datasets in more detail, also take a look at the C3S
temperature indicator website itself [11].
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2 Chapter 1. Introduction

1.2–1.3°C since pre-industrial times. In Europe, the increase has been about 2.3°C,
exceeding the global average by roughly one degree. The latest five-year averages
are either the highest or nearly the highest on record, with 2024 the warmest year
ever recorded, having an average global temperature of 1.6°C above the pre-industrial
average [12].

Increase in global average temperature above 1850-1900 reference period

Figure 1.1: Global average near-surface temperature for centered running 60-month periods
as an increase above the 1850–1900 average, according to six datasets. Data sources: ERA5
(C3S/ECMWF), JRA-3Q (JMA), GISTEMPv4 (NASA), HadCRUT5 (Met Office Hadley Centre),
NOAAGlobalTempv6 (NOAA) and Berkeley Earth. Copyright © 2024 European Centre for Medium-
Range Weather Forecasts (ECMWF). This data is published under a Creative Commons Attribution
4.0 International License. https://creativecommons.org/licenses/by/4.0/. Disclaimer: ECMWF
does not accept any liability whatsoever for any error or omission in the data, their availability, or
for any loss or damage arising from their use. Credit: Copernicus Climate Change Service (C3S),
ECMWF [11].

These rising temperatures are not merely statistical markers; they drive noticeable
consequences for the planet’s ecosystems. By altering seasonal water availability and
disrupting the pace of crucial biogeochemical cycles for carbon, nitrogen, and water,
this warming can shift the fundamental balance of an environment. Such disruptions
have alarming implications, including the potential for forests to turn from vital

https://creativecommons.org/licenses/by/4.0/
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The UHasselt Ecotron facility

Figure 1.2: Upper picture: an outside view showing a subset of the Ecotron units with the National
Park in the background, some units contain heathland, others contain pear trees. Bottom left picture:
view inside the dome; on the center left one can see the black fans replicating wind flow on the basis
of real-time measured data, a heathland extract of the National Park has been put in a lysimeter (the
cylindrical iron tube). Bottom right picture: ground level view of an Ecotron unit; the lysimeter is
shown in more detail including cabling for the measuring devices, the black fans in the ceiling control
the temperature in the dome. Bottom pictures are courtesy of the UHasselt Field Research Center.

carbon sinks into carbon sources [9], thereby amplifying risks for both natural habitats
and the human societies that depend on them.

Significant progress has been made in understanding how climate changes affect
ecosystems, see, e.g., [17]. However, despite considerable progress, ecosystem response
experiments studying climate change still face substantial hurdles, including the in-
tricate interactions among environmental variables, limited climate treatment ranges
and intensities, and a restricted focus on specific responses and interactions [39]. Past
climate change experiments often reduced the potential interactions between factors
due to technological constraints. Additionally, high equipment costs frequently re-
strict the number of experimental units, leading to simplified, two-level experiments
comparing current conditions with future projections. This constraint is substantial,

https://www.uhasselt.be/fieldresearchcentre
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as the complex and nonlinear nature of ecosystem responses to various global change
factors makes it difficult to create reliable models using data limited to two envi-
ronmental levels. Therefore, experiments aimed at overcoming these obstacles are
greatly needed. Due to the intricate processes and variety of organisms involved, a
large, well-equipped, and carefully managed infrastructure is essential for studying
how environmental changes impact ecosystem function. One proposed solution is
through a multitude of Ecotrons, which are specialized facilities that replicate ecosys-
tems off-site, allowing scientists to monitor and control environmental conditions with
numerous sensors [40].

UHasselt itself, in 2016, has set up an Ecotron facility in the Hoge Kempen Na-
tional Park [39]. The accommodation hosts twelve tightly controlled units, consisting
of macrocosms (soil–canopy columns of 2m in diameter and 1.5m depth, see bottom
pictures in Figure 1.2), some of which contain dry heathland extracted from the Na-
tional park itself. Ranging from air temperature, soil water tension to greenhouse
gas concentrations, about 184,000 data points are measured each day, allowing for
the study of a large variety of ecosystem interactions. Within this infrastructure, the
ecosystem is conceptualized as three primary, interacting compartments: the soil, the
vegetation canopy, and the air. A key focus is understanding the exchange of mass
and heat between these distinct layers.

Computational mathematics Ecotrons deliver precise information on ecosystem
dynamics within a controlled setting. Despite overcoming many limitations typical of
climate change studies, they remain bound by the constraints of physical experimenta-
tion. Adjusting and prototyping experiment parameters can be costly, time-intensive,
and sometimes even unfeasible. Additionally, to manage both cost and practicality,
careful prioritization is required, including decisions on sensor resolution and the spe-
cific parameters to be monitored. In this regard, supplementing Ecotron studies with
digital experiments can be advantageous. The ultimate goal of this work is to deliver
reliable and efficient mathematical algorithms that can in a subsequent step be used
to, e.g., model evapotranspiration models in an Ecotron.

Achieving this requires modeling and mathematical representation of real natu-
ral phenomena. Ecosystems, in particular, are defined by biochemical cycles that
drive flows within and between the soil and atmosphere. Predicting how ecosystems
will respond to climate change, therefore, requires an in-depth understanding of the
flow of water, moisture, and heat throughout the entire system. A significant chal-
lenge is that many current models do not sufficiently account for the thin vegetation
layer separating the atmosphere and the soil. This canopy critically influences the
interaction between these main compartments, as it is permeable to flow and acts
as a source and sink for water and carbon. A robust model for the fluxes within
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the vegetation layer, and a computationally tractable method for coupling it to the
soil and air flows, is still missing. The primary obstacle is the intricate geometry of
the canopy; resolving the airflow around every individual plant is computationally
infeasible. A guiding principle to overcome this is model reduction, where techniques
like homogenization are used to derive an upscaled model that represents the aver-
aged effects of the complex geometry without simulating it directly. This overarching
scientific challenge served as the catalyst for the research presented in this thesis.
A fundamental requirement for eventually modeling such a complex, coupled system
is the development of high-fidelity simulation techniques for the airflow component,
which governs much of the transport phenomena. To this end, the augmented2 Euler
and Navier–Stokes equations are often used to model airflow, which is particularly
relevant in an Ecotron setting. In these controlled settings, evapotranspiration plays
a significant role, emphasizing the need for, amongst others, accurate temperature
modeling.

The mathematical models used to describe fluid flows are based on fundamental
conservation principles, including the conservation of mass, momentum, and energy.
These principles give rise to specific types of mathematical equations known as con-
servation laws, which, in their simplest one-dimensional form can be written as

∂tw + ∂xf(w) = 0 . (1.1)

In here, w is unknown and depends on both space x and time t. The time derivative ∂t

indicates the evolution of w over time, while the spatial derivative ∂x shows how the
flux f(w) changes across the domain. This combination leads to a system of nonlinear
partial differential equations (PDEs), which is typically difficult, if not impossible,
to solve analytically, as the complexity of the flux function f(w) arises from the
nonlinear interactions between mass, momentum, and energy. Nevertheless, solutions
to eq. (1.1) provide valuable insights into technical and physical problems, making
attempts to obtain approximate solutions still very much worthwhile. Yet, where and
how does one typically begin the process of deriving a numerical approximation?

Before tackling that question, we want to emphasize that the PDEs considered in
this thesis are deliberately simplified. We focus on well-established systems like the
Euler equations, rather than a highly accurate Ecotron model. This strategic choice
allows for a rigorous investigation into the primary goal of this work: the development
of efficient numerical methods. Since these fundamental conservation laws share key
challenges with the more complex Ecotron system, they serve as an ideal stepping
stone for future applications on more advanced models.

2In this context augmented means extended by adding extra terms or equations to account for
additional physical phenomena dictated by, for example moisture, chemical components or sometimes
gravity.
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Illustrative example of numerical timestepping Consider the two humans
competing in a judo match at time n on the left of Figure 1.3. If one were asked to
draw a follow-up sketch of these same people exactly one second later into the match
at time n + 1, one would try to attain as much information as possible aiding in the
prediction: Toward which direction are each of the athletes moving? How were both
athletes positioned seconds before? Is it maybe easier to predict their positioning only
a tenth of a second later? Can we use basic human anatomy to better understand
the forces at play?

Figure 1.3: Two different scenarios in a judo bout. Both upper and lower paths start from the same
situation at time n; the athletes nearly hooking each others right leg. In the upper path, a prediction
for time n+1 is made purely on sight. An intermediate step is drawn to aid making a prediction. The
athlete in the blue judogi seems to win the bout by sweeping the opponent’s leg from the outside
(this technique is called O-soto-gari). In the lower path, instead of having an intermediate step,
forces are drawn onto the starting image. The arrows seem to indicate a counter-clockwise torsional
movement. A possible prediction with this additional information might be that the athlete in the
white judogi wants to block the opponent’s leg by extending his right leg and using his body and
arms to push him over that right leg (this technique is called Tai-otoshi).

In a first attempt, only the linear directions of movement are considered, based
upon what is observed from the initial image. This yields the upper path in Figure
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1.3. By means of an intermediate scenario, it seems that the athlete in the blue
judogi (judo uniform) is winning by catching his rival off-guard with a leg sweep. The
second attempt, instead of using an intermediate stage, puts all efforts in drawing
forces applied by the athletes. With the addition of arrows in the lower path of
Figure 1.3, it seems that there are counter-clockwise torsional forces involved. By
blocking the opponent’s leg with the right leg, and using his body and arms to throw
him over that leg, the athlete in the white judogi seems to be in a winning position.

Without any extra knowledge, it will remain difficult to tell which path is more
correct, or what the advantages and disadvantages of the different approaches are.
Potentially, it might be better to balance efforts by gaining both information through
intermediate steps and using force arrows. Therefore, establishing a means to compare
accuracy is essential. In this particular example, the most straightforward approach
would be to analyze a videotape of the bout. Such a videotape serves as the exact
reality, also mathematically coined as the exact solution. Then, errors can be defined
as

en = ∥wn − w(tn)∥,

where w(tn) denotes the exact solution at time tn, and wn an approximation to it.
Here, tn is a discretization of the otherwise continuous time t. For simplicity, we rely
on uniform discretizations, such that tn := n∆t for n ∈ N. However, in many cases,
such an exact solution does not exist. This raises two fundamental questions:

• Is it possible to quantify the prediction error without having an exact solution?
And, if possible, can we bound this error?

• Can it be guaranteed that the path of prediction is the physically correct path?

Numerical mathematics concerns itself with developing techniques for which the
answers to these questions are “yes”. Over the years, many computational meth-
ods have been developed and are now standard practice for finding approximating
solutions to conservation laws. This field of mathematical research, which focuses
on numerical algorithms, has a rich history, with a primary emphasis on enhancing
stability and efficiency — one of the main goals of this work.

Classical discretization approaches Below, a few conventional discretization
approaches are provided, with the main focus put on temporal discretization. For
a more comprehensive understanding, in particular in the context of high-order
schemes, we refer to the books [28, 50, 51].
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Method of Lines (MOL)
The most common way for approximating hyperbolic conservation laws is by means

of the Method of Lines (MOL) procedure. In here, one separates the spatial dis-
cretization from the temporal discretization, and often, it is opted for discretizing the
spatial domain first. For each spatial coordinate, this leads to a new set of ordinary
differential equations (ODEs) which continuously depend on time t.

Typically, one gathers all the new unknowns into a vector function y : R+ → RM ,
and writes the ODE system as

y′(t) = Φ(y), (1.2)

where Φ: RM → RM . In theory, one could consider solving the new ODE system
analytically, but as to be expected, if the underlying PDE problem is complicated,
one cannot reasonably expect the new ODE system to be any easier to deal with.
This will only worsen with increasing spatial resolutions.

The benefit, instead, lies in the separate numerical treatment of the temporal
component, given that any method of choice out of a vast catalog of ODE solvers
can be applied. Especially for industrial applications, this modular approach is very
much appreciated, allowing for the combination of state-of-the-art software packages
for both space and time. Consider, for example, the classical Runge–Kutta fourth-
order (RK4) scheme [29], one of the most well-known multistage methods. (For a
more comprehensive history, see [20, §II.1].) In terms of the ODE system eq. (1.2),
the computation of the stages is shown below. A color-coding scheme (outlined in the
table that follows) has been applied to the indices, making it easier to visually track
the role of each stage.

Color Description
Magenta Inter-stage dependency: a stage being used as input on the

right-hand side of an equation to compute an intermediate stage.
Cyan Structural component: a stage being defined (on the left-hand side),

or a stage used as input for the final solution update.

The computation of the stages then proceeds as:

Y
[n]

1 := yn, (1.3a)

Y
[n]

2 := yn + 1
2∆tΦ(Y [n]

1 ), (1.3b)

Y
[n]

3 := yn + 1
2∆tΦ(Y [n]

2 ), (1.3c)

Y
[n]

4 := yn + ∆tΦ(Y [n]
3 ), (1.3d)
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which are used in turn to update the solution

yn+1 := yn + ∆t

6 Φ(Y [n]
1 ) + ∆t

3 Φ(Y [n]
2 ) + ∆t

3 Φ(Y [n]
3 ) + ∆t

6 Φ(Y [n]
4 ). (1.4)

Here, yn ≈ y(tn) and yn+1 ≈ y(tn+1) are approximations to y(t) at times tn = n∆t

and tn+1 = (n+1)∆t, respectively. Given that y′(t) = Φ(y), the sum in the update can
be interpreted as a weighted average of the first-order derivatives. This representation
offers a calculated measure of the rate of change of y(t) with respect to time at the
specific instance tn.

The reasons for using multistage methods such as RK4 are straightforward: they
are easy to implement, robust, and reasonably efficient, making them highly appealing
for a wide range of applications. However, this apparent simplicity hides substantial
performance costs which are not reflected in the amount of floating-point operations
(i.e., specific types of computational tasks), but rather in data transfer requirements.

The memory footprint of Runge–Kutta methods comes from the intermediate
stages Y

[n]
1 , Y

[n]
2 , Y

[n]
3 , Y

[n]
4 that must be stored. For their computation, each stage

requires reading at least one full vector and writing the result in another vector, which
leads to substantial data transfer. On modern computer architectures, this can create
a performance bottleneck, as processors are faster at performing calculations on data
in their local cache memory than they are at retrieving it from main memory. This
cost is particularly relevant in high-performance computing, where data movement
between distributed processors introduces significant communication overhead; the
RK4 method requires a communication round for each of its stages.

Instead, it may be advantageous to trade these data movements and communi-
cation costs for a higher amount of local computations, yielding an approach that
favors large arithmetic intensity to attain high order accuracy. This can be achieved
by means of a multiderivative approach, that makes use of higher-order derivatives of
the solution y(t), denoted by y(k)(t) =: dk−1

dtk−1 Φ(y(t)) (k > 1). Multiderivative meth-
ods offer more refined differential behavior of the ODE system, and, in turn, a better
gauge for the sensitivity of y in relation to t. For example, the explicit fourth-order
Taylor method,

yn+1 := yn + ∆tΦ(yn) + ∆t2

2!
d
dt

Φ(yn) + ∆t3

3!
d2

dt2 Φ(yn) + ∆t4

4!
d3

dt3 Φ(yn) (1.5)

achieves the same order as the RK4 scheme, but without the use of stages3. The pri-
mary concern here is the difficulty of computing dk−1

dtk−1 Φ(yn) for k = 1, 2, 3, 4, which

3Please note that dk−1

dtk−1 Φ(y) is a quantity derived from Φ, such that for the exact solution y(t)

to eq. (1.2), there holds dk

dtk y(t) = dk−1

dtk−1 Φ(y(t)). This leads to, e.g., d
dt

Φ(y) = Φ′(y)Φ(y), where Φ′

is the Jacobian of Φ with respect to y.
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depends directly on the complexity of the function Φ(y) and requires it to be suffi-
ciently smooth (C3 for this fourth-order case). Although certain advanced discretiza-
tions (e.g., finite volume methods with limiters) can violate this requirement, the
scope of this work is confined to problems where this assumption holds.

Even when this smoothness is guaranteed, the task of computing the derivatives
remains highly complex. By repeatedly making use of the ODE system eq. (1.2), this
leads to the tensor formulas

d
dt

Φ(y) = Φ′(y)y(1) , (1.6a)

d2

dt2 Φ(y) = Φ′′(y) •
[
y(1)|y(1)

]
+ Φ′(y)y(2) , (1.6b)

d3

dt3 Φ(y) = Φ′′′(y) •
[
y(1)|y(1)|y(1)

]
+ 3Φ′′(y) •

[
y(1)|y(2)

]
+ Φ′(y)y(3) , (1.6c)

where we ignore the t−dependency for the ease of presentation. The bullet operator
is the tensor action, i.e.,

Φ′′′ • [u|v|w] :=
M∑

j,k,l=1

∂3Φ
∂yj∂yk∂yl

ujvkwl ,

where u, v, w ∈ RM . Furthermore, not only is it a cumbersome procedure in general
to explicitly embed all the terms used into eq. (1.6), the size M of the ODE solution
also plays a crucial role. For practical case studies (e.g., think of a discretization
of the equations describing evapotranspiration in a full Ecotron), it is not out of
the ordinary that M ≫ 106. And, therefore, because the MOL approach opts first
for a spatial discretization, computing higher order derivatives y(k) is intrinsically
interwoven with the selected spatial mesh, and thus M . This, in turn, is reflected in
the tensors Φ′(y), Φ′′(y) and Φ′′′(y) that grow massively in dimension; for instance,
Φk(y) is an M × · · · × M (k-times) tensor.

To make the multiderivative approach viable, these tensors should never be
explicitly formed or stored. Instead, Jacobian-free (or tensor-free) techniques, such
as the recursive application of finite differences are preferred, yielding derivative
terms dk−1

dtk−1 Φ(y) as vectors of size M without the prohibitive memory cost of the
tensors, thereby retaining the communication benefits of a single-stage method. This
Jacobian-free philosophy is fundamental to the work presented in this thesis. For
its specific application to ODE systems, a remedy based on suitable interpolation is
analyzed in [Paper III].
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Lax–Wendroff (LW) procedure
In light of the aforementioned information, it is easy to understand why a MOL ap-

proach in combination with a Runge–Kutta (RK) scheme is very attractive. Nonethe-
less, this modular approach is not devoid of limitations [37, 38, 43, 53]:

• Loss of spatio-temporal interactions: Fully separating the numerical dis-
cretizations can result in the loss of certain spatio-temporal interactions, making
it more difficult to capture these details during the approximation process.

• Stability constraints: To ensure good stability properties, strong stability
preserving (SSP) Runge–Kutta schemes (see, for example, [18]) are often pre-
ferred. These methods allow for relatively large CFL4 condition numbers, en-
abling reasonably sized timesteps. However, they are subject to an order barrier:
for orders higher than three, stability properties become less favorable. This ei-
ther imposes a stricter CFL condition or necessitates additional stages in the
algorithm, leading to efficiency losses in both cases.

• Oscillatory behavior and limiting: High-order linear methods are well
known for exhibiting oscillatory behavior near discontinuities. To ensure phys-
ically meaningful results, a limiter is required that maintains high-order ac-
curacy in smooth regions while reverting to first-order accuracy near shocks.
In Runge–Kutta methods, this limiting process must be performed after each
stage. Because this extra step adds computational cost, minimizing the number
of stages can improve performance.

For these reasons, particularly in the last two decades, researchers have dedicated
significant efforts to developing novel methods that overcome these limitations while
maintaining practical applicability. Many of the most successful approaches build
upon a 1960 paper [30] by Peter Lax and Burton Wendroff, who recognized the po-
tential of Taylor methods for numerically solving partial differential equations. Con-
ceptually, the Lax–Wendroff procedure reverses the MOL framework by first selecting
the temporal scheme and then determining the appropriate spatial (and temporal)
discretizations to ensure its effectiveness.

So, if, for example, we would like to maintain high efficiency with low communi-
cation costs, we can directly apply the explicit fourth-order Taylor method eq. (1.5)
on the PDE system,

w(x, tn+1) ≈ w(x, tn) +
4∑

k=1

∆tk

k! ∂k
t w(x, tn),

4The Courant-Friedrichs-Lewy (CFL) number is a dimensionless quantity used in numerical
simulations to describe the relationship between the speed of information, the timestep, and the size
of the mesh (see, e.g., [31]).
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which is approximately correct up to a term O(∆t5) under the assumptions that w and
f(w) are smooth enough. However, now, to create a numerical scheme, something still
has to be done about the continuous spatial variable x and the derivatives ∂k

t w(x, tn).
The latter is resolved in the Lax–Wendroff method by expressing temporal deriva-
tives in terms of spatial derivatives of the fluxes through the Cauchy–Kowalevskaya
procedure, which repeatedly makes use of eq. (1.1). For simplicity, we display the
resulting derivatives for the one-dimensional case and given that f is scalar:

∂2
t w = −

(
f ′(w)∂tw

)
x

,

∂3
t w = −

(
f ′′(w)(∂tw)2 + f ′(w)∂2

t w
)

x
,

∂4
t w = −

(
f ′′′(w)(∂tw)3 + 3f ′′(w)∂tw∂tw)2 + f ′(w)∂3

t w
)

x
.

In here, f ′(w) = ∂f(w)
∂w denotes the Jacobian w.r.t. w, with higher derivatives follow-

ing the same notation. If one then recursively substitutes the time derivatives into
one another, only spatial derivatives ∂x are left. Next, one could, for example, apply a
discontinuous Galerkin discretization to obtain a complete numerical scheme. Alter-
natively, one could also decide to partially transition t-derivatives into x-derivatives
with the intention of maintaining mixed derivatives and applying a finite difference
approach.

Among the most acknowledged methods that use some variant of the Lax–
Wendroff procedure are the ADER (Arbitrary order using DERivatives) methods;
see, e.g., [14–16, 42, 47, 48] and the references therein. Also, higher-order exten-
sions of the Lax–Wendroff procedure using WENO and discontinuous Galerkin (DG)
reconstructions are very popular [19, 25, 32, 36–38].

Upon closer examination, the above formulas are very similar to the tensor formu-
las eqs. (1.6) for ODE systems. In fact, they can be viewed as an extension to hyper-
bolic PDEs. It is therefore not surprising that applying the Cauchy–Kowalevskaya
procedure is at least as challenging to work with as in the ODE case, especially since
the values f ′(w), f ′′(w) and f ′′′(w), which are generally tensors, are demanded in soft-
ware implementations either exactly or through an approximation. Given the often
intricate structure of the flux function f(w), one resorts frequently to highly complex
symbolic calculations.

Multistage multiderivative solvers When weighing the ups and downs of
the classical Method of Lines and Lax–Wendroff procedures, it is natural to aim for
a balanced method that extracts the best out of both. That is, preferably we keep
the amount of stages low, and thus static data transfer at a lower amount, whilst
retaining high convergence order through the use of additional temporal derivatives.
Such methods exist, and they are aptly named multistage multiderivative solvers,
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or sometimes multistage Runge–Kutta (MDRK) methods. The general form of an
m-derivative, s-stage MDRK method can, in ODE format, be written as

Y
[n]

l := yn−1 +
m∑

k=1
∆tk

s∑
ν=1

a
{k}
lν

dk−1

dtk−1 Φ(Y [n]
ν ), l = 1, 2, . . . , s,

yn := yn−1 +
m∑

k=1
∆tk

s∑
l=1

b
{k}
l

dk−1

dtk−1 Φ(Y [n]
l ),

where the coefficients a
{k}
lν and b

{k}
l (k = 1, . . . , m and l, ν = 1, . . . , s) fully constitute

the method. It is easy to see that the RK4 method (1.3)-(1.4) and the fourth-order
Taylor method (1.5) are specific versions of an MDRK method. The first one is
obtained by setting m = 1 and s = 4, whereas the latter can be retrieved by setting
m = 4 and s = 1 (having only a single stage which is equal to the update).

In particular, keeping our focus on fourth order timestepping methods, a popular
explicit fourth order 2DRK4 method [6] utilizes two derivatives to compute two stages

Y
[n]

1 := yn,

Y
[n]

2 := yn + ∆t

2 Φ(Y [n]
1 ) + ∆t2

8
d
dt

Φ(Y [n]
1 ),

which are in turn used to compute a fourth-order update

yn+1 := yn + ∆tΦ(Y [n]
1 ) + ∆t2

(
1
6

d
dt

Φ(Y [n]
1 ) + 1

3
d
dt

Φ(Y [n]
2 )

)
.

Not only is the fourth order achieved, the linear stability properties are exactly the
same as those of the RK4 method [43, §2.3.2].

This 2DRK method by itself illustrates the potential that MDRK methods possess
and opens up a plethora of schemes that can be tweaked to favor data transfer and
communication over floating-point operations, or the other way around, depending
on the problem at hand. And, it does not stop at MDRK methods. General Linear
Methods (GLMs), see for example the books of Butcher and Jackiewicz [4, 23], addi-
tionally add multiple steps (thus not only tn and tn+1, but more time instances) into
the numerical scheme, which creates further room for designing schemes that balance
between convergence orders, stability, memory, and efficiency. The only major differ-
ence between a GLM and an MDRK method is that, instead of directly using yn and
yn+1, high-order approximations to some linear combination of the solution y and its
derivatives are calculated. For further details, compare [Paper I] and [Paper II].

In the example above, only methods of order four were considered. However, there
is no particular reason to restrict this choice. As expected, for even higher orders,
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additional stages and/or derivatives must be incorporated, bringing us back to the
symbolic implementation of the Jacobians f (k)(w) for k ≥ 1. One could argue that,
although being very slow, obtaining symbolic formulas is a non-recurring task, as one
can simply store the resulting outcome in code and use these for any future simulation.
However, that is not completely true. The fact of the matter is that there is no single
perfect flux function f(w) that is utilized for all different flow settings. The flux
function f(w) depends on the equations at hand, and it differs depending on whether
soil flow, low Mach air flow, or other fluid flows are considered. Not only this, also
necessary equations of state used within f are not always explicitly given, e.g., for
difficult media the equation of state relating pressure to density, energy, and velocity
is given as a spline-reconstruction from data. Also, f changes if certain chemical
elements are accounted for, or if alternative viscosity models are used. So there is a
lot of variability in the flux function f(w) in respect to flow dynamics.

Aside from the modelling aspect, numerically, there can also be various reasons
as to why computing symbolic formulas possibly is not a single-time task. Similar
as to how there is no single perfect flux function, there is also no absolute algorithm
that reigns for all simulations. Preferably, the algorithm of choice cleverly manages to
exploit the inherent dynamics of the problem to improve stability and efficiency of the
computations. One such approach, for example, is by applying an Implicit-Explicit
(IMEX) scheme that splits the flux function into separate parts, one of which is
treated implicitly, and the other being treated explicitly [3]. In case of an additive
splitting, this looks like f(w) = fI(w) + fE(w). And, as expected, both fI(w) and
fE(w) are handled separately in the symbolic calculations for the derivatives ∂k

t w.
Whether developing new splittings, or whether picking a particular splitting out of
the inventory of IMEX methods, it is not preferable being delayed by the necessity of
the symbolic arithmetic that is needed as a pre-processing step on top of the actual
numerical simulation itself. Likely, it is because of these inconvenient calculations of
flux derivatives that MD schemes have not been put much to practice, regardless of
their nearly century old history – for a detailed overview, see [43].

Jacobian-free approach From a theoretical standpoint, an integrated mechanism
capable of automatically approximating w̃(k) ≈ ∂k

t w within the algorithm would be
highly beneficial, allowing users to focus on the numerical scheme itself. Such a mech-
anism should be mathematically expressible, ensuring that control is maintained for
analyzing convergence and evaluating the stability effects on the scheme. There is a
potential downside to this approach however, that being the computational overhead
introduced by the additional operations required for the approximation. Fortunately,
advances in modern hardware capabilities mitigate these concerns, enabling tech-
niques that were once deemed impractical. For instance, [53] proposed an explicit
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method based on recursive finite differences to bypass symbolic flux derivative com-
putations. Finite differences are particularly well-suited for mathematical analysis,
as demonstrated by Carrillo and Parés in [5], who in 2019 extended this method into
the compact approximate Taylor (CAT) method, which improves upon the stability
properties of the former.

The CAT method is a Jacobian-free approach, as it avoids the computation of the
Jacobian ∂f(w)

∂w and higher order tensors that arise from the introduction of the deriva-
tives ∂k

t w. Their work is based on Taylor methods, and thus relies on obtaining high
efficiency solely through the use of higher order derivatives. In contrast, traditional
time-integrators do not use ∂2

t w and higher order derivatives, yet obtain higher orders
of convergence through the inclusion of either stages or previous steps. In [Paper I]
and [Paper II] we try to strike a balance between these two. That is, by tinkering
with the inclusion of multiple derivatives (MD), multiple stages and/or multiple steps,
further flexibility is introduced, which enables the development of schemes that are
both more stable and more efficient. Given that the primary aim of these studies is
to assess practical applicability, only explicit schemes are considered.

In [Paper I], the CAT approach is extended by the inclusion of multiple stages.
These methods, referred to as MDRKCAT methods, draw their name from the con-
nection to traditional multistage integrators, commonly known as Runge–Kutta (RK)
methods. A von Neumann stability analysis revealed that these methods have a high
dependency both on the amount of stages and derivatives used, having the potential
to either significantly improve or severely compromise their stability properties. Con-
sequently, this finding underscores the importance of carefully selecting a well-tuned
set of parameters to define the MDRK scheme.

The MDRKCAT methods are further expanded upon in [Paper II] that applies the
same Jacobian-free strategy to multiderivative general linear methods (MDGLMs).
As explained earlier, higher efficiency of integrators can as well be achieved by the
inclusion of previous steps, as in a multistep method. To bridge the gap between mul-
tistage and multistep methods, General Linear Methods (GLMs) were introduced [23].
Unlike traditional methods that produce a single output, a GLM generates a collec-
tion of vectors, typically approximations of linear combinations of the time derivatives
∂k

t w. As a result, MDGLMs show an added dependency on the time derivatives, aris-
ing both from their explicit use within the scheme and from their influence on the
output vectors. This dependency makes Jacobian-free approaches particularly conve-
nient and well-suited. Specifically in [Paper II], compact approximate MDGLMs that
exhibit strong-stability preserving properties are constructed. These methods have
two external stages, use up to four derivatives (thus ∂4

t w) and achieve convergence of
up to order nine.
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Jacobian-free approach for stiff equations The methods presented in [Paper I]
and [Paper II], although being promising, might not be sufficient for the simulation
of any fluid flow as they are explicit. Often, the dynamics of the flows are determined
by factors that operate at different time scales. Think for example about a plant
in the open; the blowing wind hitting the plant might have a much greater speed in
comparison to the speed at which water droplets evaporate from that plant. However,
both play an effective role in the flow dynamics of that ecosystem.

Such differences in time scales often lead to ordinary differential equations (ODEs)
or PDEs that are described to be stiff [21, 46]. While there is no single definition
of stiffness, it is often described heuristically as a property of equations that re-
quire excessively small timesteps for explicit time-integrators to maintain stability.
When timesteps are too large, numerical solutions may exhibit strong oscillations.
Conversely, sufficiently small timesteps ensure stability but make the method compu-
tationally slow. Several contributing factors might explain this behavior, for example
in relation to fluid flow, this can occur when viscous effects are taken into consid-
eration. Viscosity, being diffusive by nature, behaves fundamentally differently from
advective flow, leading to stringent stability requirements that demand impractically
small timesteps. This limitation makes explicit methods less appealing.

Implicit methods do not suffer that fate in relation to stiff problems, they maintain
much better stability regardless of using larger timesteps. However, as the name sug-
gests, the approximate solution is given implicitly in the numerical scheme. Therefore,
in order to obtain an explicit solution w(x, t), additional computational procedures
are inevitable. An often employed tactic to extract w is by linearization of the implicit
equations via Newton’s method in combination with a solver for the resulting matrix
system. When timesteps are very restrictive, the computational cost of these actions
can be worthwhile.

As a next step in this thesis, it therefore makes sense to try devising and under-
standing implicit multiderivative methods, particularly in a stiff setting. Directing
focus toward ODEs simplifies the analysis, as there are no spatial effects involved.
However, it is not necessarily a huge restriction; many ODEs, having a large number
of equations, arise from a spatial discretization of a PDE. For example, conservation
laws with diffusive effects can be cast into ODEs of the form

y′(t) = Φ(y) := F (y) + 1
ε

G(y),

with ε ≪ 1 a small positive parameter that introduces the stiffness. In [Paper III]
we study Jacobian-free implicit multiderivative Runge–Kutta (MDRK) methods for
ODEs in the above form, based on the approximate implicit Taylor method by Baeza
et al. [1].
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The inclusion of higher-order derivatives in relation to eq. (1.3) leads to two unde-
sirable outcomes: (1) each added k-th derivative introduces very small power terms
εk, and (2) the complexity of the derivative formulas increases rapidly with each suc-
cessive order (see eqs. (1.6)). These drawbacks become particularly evident when
using Newton’s method as a nonlinear solver: the condition number of the Newton
matrix grows exponentially with each additional derivative, and the matrix must be
derived from intricate formulas that require tensor calculations.

[Paper III] extensively investigates the origins of these issues and proposes a res-
olution. First, by introducing an additional equation to the ODE system for each
derivative, the derivatives are incorporated as part of the unknown solution. This
approach distributes the ε-dependencies among the newly added equations, thereby
mitigating the exponential growth in the condition number. Second, by applying
a Jacobian-free method, similar to those described in [Paper I] and [Paper II], the
need for complicated formulas or tensor calculations is eliminated. Together, these
strategies demonstrate notable advantages in numerical results compared to more
conventional methods, especially in cases where higher-order derivatives dominate
the system’s behavior. However, this approach is not universally optimal, because
adding new relations increases the overall system size, leading to greater computa-
tional costs and potentially diminishing returns for simpler problems. A takeaway
from [Paper III] is the need to define a clear criterion for transitioning between the
proposed resolution and conventional approaches to ensure optimal performance.

Outline of the thesis The results of the doctoral research are presented as a cu-
mulative thesis, meaning that the main findings are reported in one-to-one copies of
the published papers. Chapter 2 compiles the published papers, organizing them in
the order outlined in the introduction. The first two papers focus on the Jacobian-free
approach, with the first applying it to explicit multiderivative Runge–Kutta methods
and the second to explicit general linear methods. The third paper explores the ap-
plication of implicit multiderivative methods, specifically addressing the conditioning
of the linearized system arising from Newton’s method when these techniques are
applied to stiff problems. The thesis concludes in Chapter 3 with a summary of the
findings and recommendations for future research.
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Published papers

This thesis is based on the following publications:

[Paper I] J. Chouchoulis, J. Schütz, and J. Zeifang, Jacobian-free explicit multi-
derivative Runge-Kutta methods for hyperbolic conservation laws, Jour-
nal of Scientific Computing 90.96 (2022), https://link.springer.
com/article/10.1007/s10915-021-01753-z.

[Paper II] A. Moradi, J. Chouchoulis, R. D’Ambrosio, and J. Schütz, Jacobian-free
explicit multiderivative general linear methods for hyperbolic conservation
laws, Numerical Algorithms (2024), https://doi.org/10.1007/s1107
5-024-01771-6.

[Paper III] J. Chouchoulis and J. Schütz, Jacobian-free implicit MDRK methods
for stiff systems of ODEs, Applied Numerical Mathematics 196 (2024),
pp. 45–61, https://www.sciencedirect.com/science/article/pii/
S0168927423002672.

On the following pages, the papers are presented in the same order as listed above.
The styling and formatting of each paper have been preserved exactly as they appeared
in their original journals. As a result, many commonly used mathematical symbols
may vary between papers and other chapters of this thesis. Due to the substantial
amount of specialized syntax required to introduce the concepts, readers are advised
to proceed carefully when reading and comparing the papers.
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Abstract
Based on the recent development of Jacobian-free Lax–Wendroff (LW) approaches for solv-
ing hyperbolic conservation laws (Zorio et al. in J Sci Comput 71:246–273, 2017, Carrillo
and Parés in J Sci Comput 80:1832–1866, 2019), a novel collection of explicit Jacobian-
free multistage multiderivative solvers for hyperbolic conservation laws is presented in this
work. In contrast to Taylor time-integration methods, multiderivative Runge–Kutta (MDRK)
techniques achieve higher-order of consistency not only through the excessive addition of
higher temporal derivatives, but also through the addition of Runge–Kutta-type stages. This
adds more flexibility to the time integration in such a way that more stable and more efficient
schemes could be identified. The novel method permits the practical application of MDRK
schemes. In their original form, they are difficult to utilize as higher-order flux derivatives
have to be computed analytically. Here we overcome this by adopting a Jacobian-free approx-
imation of those derivatives. In this paper, we analyze the novel method with respect to order
of consistency and stability. We show that the linear CFL number varies significantly with
the number of derivatives used. Results are verified numerically on several representative
testcases.

Keywords Hyperbolic conservation laws · Multiderivative Runge–Kutta · Lax–Wendroff ·
Finite differences

Mathematics Subject Classification 65M06 · 65M08 · 65M12 · 35L65

B Jeremy Chouchoulis
jeremy.chouchoulis@uhasselt.be

Jochen Schütz
jochen.schuetz@uhasselt.be

Jonas Zeifang
jonas.zeifang@uhasselt.be

1 Faculty of Sciences & Data Science Institute, Hasselt University, Agoralaan Gebouw D,
3590 Diepenbeek, Belgium

123



96 Page 2 of 24 Journal of Scientific Computing (2022) 90 :96

1 Introduction

In this work, we present a novel discretization method for the numerical approximation of
one-dimensional hyperbolic conservation laws on domain Ω ⊂ R,

wt + f (w)x = 0, on (x, t) ∈ Ω × (0, Tend], (1)

w(x, 0) = w0(x).

Our primary interest is on temporal integration. In recent years, there has been quite some
progress on the further development of themultiderivative paradigm for temporal integration,
see, e.g., [5,6,11,27,30] and the references therein. Assume that one is given a scalar ODE,
e.g.,

y′(t) = Φ(y) (2)

for some flux function Φ. Multiderivative schemes make use of not only Φ, but also of the
quantities y′′(t) ≡ Φ ′(y)Φ(y), y′′′(t) ≡ . . . and so on. Using this approach, one can derive
stable, high-order and storage-efficient schemes very easily [28]. This can be extended to
partial differential equations (PDEs) with a time-component, such as Eq. (1), depending
on the method either directly through the method-of-lines-discretization [27] or through a
Lax–Wendroff procedure, see, e.g., [3,4,16,18,22,36]. The Lax–Wendroff method expresses
temporal derivatives of the unknown function w in terms of the fluxes through the Cauchy–
Kowalevskaya procedure. As an example, we consider – for simplicity given that f is scalar
– the second time-derivative of w. Due to Eq. (1), there holds

wt t = −( f (w)x )t = −( f (w)t )x , (3)

and

f (w)t = f ′(w)wt = − f ′(w) f (w)x ;
hence

wt t = (
f ′(w) f (w)x

)
x = 2 f ′(w) f ′′(w)w2

x + f ′(w)2wxx . (4)

Already at this stage, one can see that this approach is very tedious as it necessitates highly
complex symbolic calculations.

Still, the potential LW-methods bear is very well recognized among researchers. Over
the last two decades, plenty of authors have put effort into developing high-order variants
of the LW-method for nonlinear systems. Particularly the ADER (Arbitrary order using
DERivatives) methods, see, e.g., [8–10,29,33,34] and the references therein, gained a lot of
interest. Also, higher-order extensions of the LW-method using WENO and discontinuous
Galerkin (DG) reconstructions were investigated [13,15,19,22–24].

Our essential intent of this paper is to make explicit multistage multiderivative solvers
more accessible as a means to solve PDEs. Although such solvers have been theoretically
studied since the early 1940’s (see [30] for an extensive review), the schemes have not been
put much to practice, which is most likely due to the necessary cumbersome calculation of
flux derivatives. In [3], Carrillo and Parés have, based on the earlier work [36], developed the
compact approximate Taylor (CAT) method to circumvent having to symbolically compute
flux derivatives. By means of an automatic procedure, the higher-order temporal derivatives
of w, such as in Eq. (4), are approximated. Their work is based on Taylor methods, i.e., time
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integration is given by

w(x, tn+1) = w(x, tn) +
r∑

k=1

Δtk

k! ∂kt w(x, tn) + O(Δtr+1).

In this work, we extend their approach to more general multiderivative integration methods,
more precisely, to multiderivative Runge–Kutta (MDRK) methods.

The paper is structured in the following manner: In Sect. 2 multiderivative Runge–Kutta
(MDRK) time integrators for ODEs are introduced, given that they form the central mecha-
nism of this work. Thereafter, in Sect. 3 we shortly revisit the Jacobian-free approach of the
CAT method and introduce the explicit Jacobian-free MDRK solver for hyperbolic conser-
vation laws, termed MDRKCAT. After describing the numerical scheme, in Sect. 4 we prove
consistency, and in Sect. 5 analyze linear stability. Via several numerical cases we verify and
expand on the theoretical results in Sect. 6. At last, we draw our conclusions and discuss
future perspectives in Sect. 7.

2 Explicit Multiderivative Runge–Kutta Solvers

We start by considering the system of ODEs defined by Eq. (2) in which Φ is a function
of the solution variable y ∈ Rm. In order to apply a time-marching scheme, we discretize
the temporal domain with a fixed timestep Δt by iterating N steps such that Δt = Tend/N .
Consequently, we define the time levels by

tn := nΔt 0 ≤ n ≤ N .

Remark 1 Note that, although the fully space-time-discrete algorithm (Alg. 1) seems to have
a multistep flavour, this is ultimately not the case. It is therefore of no necessity to consider
a uniform timestep, which is also demonstrated numerically in Sect. 6.

The central class of time integrators in this work are explicit multiderivative Runge–Kutta
(MDRK) methods. These form a natural generalization of classical explicit Runge–Kutta
methods by adding extra temporal derivatives of Φ(w). The additional time derivatives can
be recursively calculated via the chain rule, there holds

dk

dtk
Φ (y) = dk−1

dtk−1

(
Φ ′(y)ẏ

) = dk−1

dtk−1

(
Φ ′(y)Φ(y)

)
.

For a more detailed description, we refer to [30]. To present our ideas, let us formally define
the MDRK scheme as follows:

Definition 1 [30, Definition 2] An explicit q-th order accurate r-derivative Runge–Kutta
scheme using s stages (rDRKq-s) is any method which can be formalized as

yn,l := yn +
r∑

k=1

Δtk
l−1∑

ν=1

a(k)
lν

dk−1

dtk−1Φ
(
yn,ν

)
, l = 1, . . . ,s,

where yn,l is a stage approximation at time tn,l := tn + clΔt . The update is given by

yn+1 := yn +
r∑

k=1

Δtk
s∑

l=1

b(k)
l

dk−1

dtk−1 Φ(yn,l) .
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Scheme R(z)

2DRK3-2
∑3

k=0
zk

k!

2DRK4-2
∑4

k=0
zk

k!

2DRK5-3
∑5

k=0
zk

k!
+ z6

600

3DRK5-2
∑5

k=0
zk

k!
+ z6

900

3DRK7-3
∑7

k=0
zk

k!
+ c8z8 + c9z9

4DRK6-2
∑6

k=0
zk

k!
+ z7

6480
+ z8

77760

Fig. 1 Regions of absolute stability R := {z ∈ C | |R(z)| ≤ 1} and stability functions R(z) for the two-
derivative schemes 2DRK3-2, 2DRK4-2, 2DRK5-3 [5], the three-derivative schemes 3DRK5-2 and 3DRK7-3
[21] and the four-derivative scheme 4DRK6-2 (see Appendix A). Except for 3DRK5-2 and 4DRK6-2, all
schemes contain parts of the imaginary axis. Note that in the stability function of 3DRK7-3, we have defined

c8 := 1
23520 −

√
2

70560 and c9 := 11
1481760 −

√
2

246960

The given coefficients a(k)
lν and b(k)

l determine the scheme; they are typically summarized in
an extended Butcher tableau.

Remark 2 Note that standard Taylor methods can be cast in the framework of Definition 1
through setting s = 1, a(k)

11 = 0 and b(k)
1 = 1/k! (k = 1, . . . ,r). The multiderivative Runge–

Kutta schemes used in this work can be found through their extended Butcher tableaux in
Appendix A.

Remark 3 The stability regions of the used Runge–Kutta methods are visualized in Fig. 1,
see [5,14,21] for more details. Note that except for 3DRK5-2 and 4DRK6-2, all schemes
contain parts of the imaginary axis.

3 Multiderivative Runge–Kutta Solvers for Hyperbolic Conservation
Laws

Discretizing the spatial part of the hyperbolic conservation law (1) necessitates a discretization
of the domain Ω . Hence, consider

{x1, . . . , xM }
to be a uniform partition of Ω into M cells of size Δx . A natural extension of Definition 1
applied to Eq. (1) can then be expressed as

w
n,l
i := wn

i −
r∑

k=1

Δtk
l−1∑

ν=1

a(k)
lν Dx D

k−1
t f (wn,ν

i ) , (6a)

wn+1
i := wn

i −
r∑

k=1

Δtk
s∑

l=1

b(k)
l Dx D

k−1
t f (wn,l

i ), (6b)
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for l = 1, . . . ,s; with Dx and Dt being suitable approximations to ∂x and ∂t to be explained
in the sequel. Contrary to the complete Cauchy-Kovalevskaya procedure as outlined for the
second derivative in (4), only one time derivative of the solution is transformed into a spatial
derivative (see (3)).

The core focus of this paper is to avoid the explicit use of Jacobians of the flux function f .
Jacobians of f arise due to the usage of higher temporal derivatives, see, e.g., Eq. (4). In this,
we follow the compact approximate Taylor (CAT) approach outlined in [3]. Since the CAT
method heavily relies on discrete differentiation, first a small part is devoted to introducing
the fundamental notation. Thereafter the method is described and applied to Eq. (6).

3.1 Discrete Differentiation

In this short section, we fix the notation on using finite differencing [1,25,26]. Considering
central differences, the (2p + 1)-point Lagrangian polynomials are given by

L p, j (ω) :=
p∏

r=−p
r �= j

ω − r

j − r
, j = −p, . . . , p. (7)

It is well-known that these polynomials can be used to interpolate ϕ : R → R in the points
xi−p, . . . , xi+p through

Piϕ(x) :=
p∑

j=−p

L p, j

(
x − xi
Δx

)
ϕ(xi+ j ). (8)

Similarly, from the 2p-point Lagrangian polynomials

	p, j (ω) :=
p∏

r=−p+1
r �= j

ω − r

j − r
, j = −p + 1, . . . , p, (9)

(note that the index of the product begins at r = −p + 1) we obtain the unique polynomial
of degree 2p − 1 interpolating ϕ in the points xi−p+1, . . . , xi+p through

Qiϕ(x) :=
p∑

j=−p+1

	p, j

(
x − xi
Δx

)
ϕ(xi+ j ). (10)

In the sequel, we use a similar notation as in [3]:

Definition 2 [3] For the k-th derivative 0 ≤ k ≤ 2p, we define the following quantities:

δkp, j := L(k)
p, j (0), j = − p, . . . , p,

γ
k,m
p, j := 	

(k)
p, j (m), j = − p + 1, . . . , p, m = −p + 1, . . . , p.

Note that the k-th derivatives L(k)
p, j (0) and 	

(k)
p, j (m) are derived analytically from Eqs. (7) and

(9), respectively.

Approximate derivatives can thus be derived from

(Piϕ)(k)(xi ) = 1

Δxk

p∑

j=−p

δkp, jϕ(xi+ j ), (11a)
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(Qiϕ)(k)(xi+m) = 1

Δxk

p∑

j=−p+1

γ
k,m
p, j ϕ(xi+ j ), (11b)

with m = −p + 1, . . . , p. Since we are working in a discrete context, we define the linear
operator counterparts of Eqs. (11a) and (11b) as

P(k) : R2p+1 → R, v 
→ 1

Δxk

p∑

j=−p

δkp, jv j ,

Q(k)
m : R2p → R, w 
→ 1

Δxk

p∑

j=−p+1

γ
k,m
p, j w j .

Remark 4 The spatial index i is neglected for the linear operators as its direct dependency on
the node xi is lost, cf. Eqs. (8) and (10). Notice also that Q(k)

m takes vectors in R2p as input,
whereas P(k) takes vectors in R2p+1 as input.

A non-centered 2p-point finite difference method to approximate ∂kt w(xi , tn+m) for
m = −p + 1, . . . , p can therefore be written as

Q(k)
m w〈n〉

i = 1

Δtk

p∑

r=−p+1

γ
k,m
p, j wn+r

i ,

with vector notation

w〈n〉
i :=

⎛

⎜
⎝

w
n−p+1
i

...

w
n+p
i

⎞

⎟
⎠ . (12)

The angled brackets represent the local stencil function

〈·〉 : Z → Z2p : n 
→ (
n − p + 1, . . . , n + p

)T
(13)

throughout this paper, and will be considered for both the spatial index i as the temporal
index n. Note that the position of the angled bracket (top or bottom) determines whether
derivation is w.r.t. time (top) or space (bottom).

To put the scheme into conservation form, in [36] auxiliary centered coefficients have been
introduced. Here, the operators P(k) for k ≥ 1 are written as differences of new ‘half-way
point’ interpolation operators.

Definition 3 [36] Define λk−1
p, j via the relations

δkp,p =: λk−1
p,p , (14a)

δkp, j =: λk−1
p, j − λk−1

p, j+1, j = −p + 1, . . . , p − 1, (14b)

δkp,−p =: −λk−1
p,−p+1. (14c)

Remark 5 The relations given in Eq. (14) make up an overdetermined system, yet provide a
unique solution λk−1

p, j obtained from Eqs. (14a) and (14b), see [36, Theorem 2].

Notice the shift between k and k − 1. This is justified because we enforce a first order
derivative relation for the approximation (Piϕ)(k)(xi ) by splitting the operator as

(Piϕ)(k)(xi ) =
(
Λ(k−1)ϕ

)
(xi+1/2) − (

Λ(k−1)ϕ
)
(xi−1/2)

Δx
, (15)
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Table 1 A summary of the defined interpolation operators scaled and shifted to fit the uniform mesh locally
at xi

Functional Linear

(Piϕ)(k) P(k)v k-th derivative of the Lagrangian interpolation

polynomial in the nodes xi−p, . . . , xi+p

(Qiϕ)(k) Q(k)
m v k-th derivative of the Lagrangian interpolation

polynomial in the nodes xi−p+1, . . . , xi+p(
Λ(k−1)ϕ

)
(xi+1/2) Λ(k−1)v (k − 1)-th derivative of a half-way interpolation

at xi+1/2 using the nodes xi−p+1, . . . , xi+p

with the difference coefficients defined by Eq. (14)

in which Λ(k−1) is an operator mapping to P2p−1 so that

(
Λ(k−1)ϕ

)
(xi+1/2) := 1

Δxk−1

p∑

j=−p+1

λk−1
p, j ϕ(xi+ j ).

The linear operator alternative is defined by

Λ(k−1) : R2p −→ R, v 
→ 1

Δxk−1

p∑

j=−p+1

λk−1
p, j v j . (16)

An overview of all the defined interpolation operators is given in Table 1.

3.2 A Jacobian-Free MDRK Scheme

With all the building blocks at our disposal, we can now describe how the final class of meth-
ods, that we call MDRKCAT, is assembled. Starting from Eq. (6), we define the conservative
updates of the solution via

w
n,l
i := wn

i − Δt

Δx

(
Fn,l
i+1/2 − Fn,l

i−1/2

)
l = 1, . . . ,s , (17a)

wn+1
i := wn

i − Δt

Δx

(
Fn
i+1/2 − Fn

i−1/2

)
, (17b)

in which the numerical fluxes are given by

Fn,l
i+1/2 =

r∑

k=1

Δtk−1
l−1∑

ν=1

a(k)
lν Λ(0)(̃fν)(k−1)

i,〈0〉 , l = 1, . . . ,s, (18a)

Fn
i+1/2 =

r∑

k=1

Δtk−1
s∑

l=1

b(k)
l Λ(0)(̃f l)(k−1)

i,〈0〉 . (18b)

For the calculation of f̃ (k−1)
i,〈0〉 the compact approximate Taylor (CAT) procedure [3] is used

and the flux derivatives can be calculated according to Eq. (16) by

Λ(0)̃f (k−1)
i,〈0〉 :=

p∑

j=−p+1

λ0p, j f̃
(k−1)
i, j .
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f̃ (k−1)
i, j ≈ ∂k−1

t f (w)(xi+ j , tn) indicates the local approximations for the time-derivatives of
the flux and are given by

f̃ (k−1)
i, j := Q(k−1)

0 (fT )
k−1,〈n〉
i, j , j = −p + 1, . . . , p.

They rely on the approximate flux values (fT )
k−1,n+r
i, j ≈ f (w(xi+ j , tn+r )). In other words,

we take the (k − 1)-st discrete temporal derivative in xi+ j using approximate fluxes

(fT )
k−1,n+r
i, j := f

(

wn
i+ j +

k−1∑

m=1

(rΔt)m

m! w̃
(m)
i, j

)

,

for j, r = −p + 1, . . . , p. The only thing that is left to define are the quantities w̃
(m)
i, j ≈

∂m

∂tm w(xi+ j , tn). Their approximation makes heavy use of the Cauchy–Kovalevskaya identity

∂mt w = −∂x∂
m−1
t f (w), they are hence approximated by

w̃
(m)
i, j := −Q(1)

j f̃ (m−1)
i,〈0〉 , j = −p + 1, . . . , p.

Via the described steps, the vectors f̃ (k−1)
i,〈0〉 are recursively obtained, see also [3].

Definition 4 For a more precise terminology, we define the specific r-derivative, q-th order,
s-stage MDRKCAT method as rDRKCATq-s.

A summary of the rDRKCATq-s procedure to obtain the stage values is given in Alg. 1.
Note that the flux at the left half-way point is obtained either from a shift of the index, i.e.
Fn
i−1/2 = Fn

i−1+1/2 or is given by the boundary condition.

Algorithm 1 Stages of rDRKCATq-s, an r-derivative, q-th order, s-stage MDRKCAT
method

Stage solution (l = 2, . . . ,s):

for j = −p + 1 to p do

( f̃ l−1)
(0)
i, j = f (wn,l−1

i+ j )

end

Fn,l
i+1/2 =

l−1∑

ν=1
a(1)
lν Λ(0)(̃fν)

(0)
i,〈0〉

for k = 2 to r do

Get ( f̃ l−1)
(k−1)
i, j via CAT procedure.

Fn,l
i+1/2 += Δtk−1

l−1∑

ν=1
a(k)
lν Λ(0)(̃fν)

(k−1)
i,〈0〉

end

w
n,l
i = wn

i − Δt
Δx

(
Fn,l
i+1/2 − Fn,l

i−1/2

)

CAT procedure [3] (k = 2, . . . ,r):

for j = −p + 1 to p do

w̃
(k−1)
i, j = −Q(1)

j f̃(k−2)
i,〈0〉

= − 1
Δx

p∑

r=−p+1
γ
1, j
p,r f̃ (k−2)

i,r

for r = −p + 1 to p do

(
fT

)k−1,n+r
i, j = f

(

wn
i+ j +

k−1∑

m=1

(rΔt)m

m! w̃
(m)
i, j

)

end

f̃ (k−1)
i, j = Q(k−1)

0
(
fT

)k−1,〈n〉
i, j

= 1
Δtk−1

p∑

r=−p+1
γ
k−1,0
p,r

(
fT

)k−1,n+r
i, j

end
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4 Consistency Analysis

In this section, we show that the rDRKCATq-s methods are consistent. The order of con-
sistency is, as to be expected, the minimum of the underlying Runge–Kutta order (q) and the
order of the interpolation (2p). Let us make the following two important assumptions:

Assumption 1 We assume both f and w to be smooth functions in C∞. Furthermore, we
assume that Δt and Δx are asymptotically comparable in size, i.e.,

O(Δt) = O(Δx).

Throughout this section, we use the following notation to reduce the number of function
arguments:

∂kt f (w)i+ j ≡ ∂kt f (w(xi+ j , t
n)).

Whenever possible, similar notation is used for other functions. The time index n is onlymen-
tioned when necessary. We immediately state the main result and thereafter, in a successive
form, deduce the necessary lemmas upon which its proof relies.

Theorem 1 The consistency order of an explicit rDRKCATq-s method is given by
min(2p, q). Here, q is the consistency order of the underlying MDRK method, while the
stencil to update w(xi , tn) is given by {i − p, i − p + 1, . . . , i + p}.
Proof The proof relies on Lemmas that will be proven in the sequel. In Lemma 1, it is shown
that the numerical flux difference gives the correct flux up to an order of 2p. We can hence
substitute the exact solution w(x, t) into Eq. (17b), which immediately gives the requested
result due to the fact that the Runge–Kutta update is an integration scheme of order q + 1:

w(xi , t
n+1) − w(xi , t

n) + Δt

Δx

(
Fn
i+1/2 − Fn

i−1/2

)

= w(xi , t
n+1) − w(xi , t

n) +
r∑

k=1

Δtk
s∑

l=1

b(k)
l ∂x∂

k−1
t f (w)

n,l
i + O(Δx2p+1)

= O(Δtq+1) + O(Δx2p+1).

��
Remark 6 Since the convergence order is min(2p, q), the optimal choice w.r.t. computational
efficiency is to set p = �q/2�. Hence, “rDRKCATq-s” does not contain the variable p.

Lemma 1 The update numerical flux (18b) satisfies

Fn
i+1/2 − Fn

i−1/2

Δx
=

r∑

k=1

Δtk−1
s∑

l=1

b(k)
l ∂x∂

k−1
t f (w)

n,l
i + O(Δx2p) .

An analogous result holds for the stage flux (18a).

Proof From Lemmas 3 and 4, we obtain that for k > 1 and l = 1, . . . ,s there holds

( f̃ l)(k−1)
i, j = ∂k−1

t f (w)
n,l
i+ j + η(k−1)

p

(
R(k−1)

f ,t

)n,l
i+ j · Δt2p−k+1

+ ξ
(k−1)
p, j

(
R(k−1)

f ,x

)n,l
i · Δx2p−k+1 + O(Δx2p−k+2),
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with η
(k−1)
p and ξ

(k−1)
p, j real-valued coefficients; and R(k−1)

f ,x , R(k−1)
f ,t smooth functions of space

and time. The above formula is put into use by substituting it into the numerical flux (18b):

Λ(0)(̃f l)(k−1)
i,〈0〉 − Λ(0)(̃f l)(k−1)

i−1,〈0〉
Δx

=

(
Λ(0)∂k−1

t f (w)
)n,l

i+1/2
−

(
Λ(0)∂k−1

t f (w)
)n,l

i−1/2

Δx

+ Δt2p−k+1 · η(k−1)
p

(
Λ(0)R(k−1)

f ,t

)n,l
i+1/2 − (

Λ(0)R(k−1)
f ,t

)n,l
i−1/2

Δx

+ Δx2p−k+1 ·
(
R(k−1)

f ,x

)n,l
i − (

R(k−1)
f ,x

)n,l
i−1

Δx

p∑

j=−p+1

λ0p, jξ
(k−1)
p, j

︸ ︷︷ ︸
O(1)

+ 1

Δx
O(Δx2p−k+2)

(15)=
(
Pi∂

k−1
t f (w)

)(1)
(xi , t

n,l)

+ Δt2p−k+1 · η(k−1)
p

(
Pi R

(k−1)
f ,t

)(1)
(xi , t

n,l) + O(Δx2p−k+1)

= ∂x∂
k−1
t f (w)

n,l
i + O(Δx2p−k+1).

Please note that the term
((

R(k−1)
f ,x

)n,l
i − (

R(k−1)
f ,x

)n,l
i−1

)
/Δx can be interpreted as a finite

difference approximation of the derivative of the smooth function Rk−1
f ,x and therefore remains

bounded, i.e., is O(1). ��
Before we regard the consistency analysis of the CAT steps in Lemmas 3 and 4, the

follwing identity on the difference coefficients is described.

Lemma 2 Consider a local stencil index j = −p + 1, . . . , p. Then there holds for
k = 1, . . . , 2p − 1:

p∑

r=−p+1

γ
k, j
p,r (r − j)s = k!δs,k, s = 0, . . . , 2p − 1.

The symbol δs,k here represents the Kronecker-delta function.

Proof We consider a mesh centered around xi = 0 with spatial size Δx = 1. The operator
Qi exactly interpolates the polynomial function ϕ(x) := (x − j)s for s = 0, . . . , 2p − 1
such that Eq. (10) becomes

(x − j)s = Qiϕ(x) =
p∑

r=−p+1

	p,r (x)ϕ(r) =
p∑

r=−p+1

	p,r (x)(r − j)s .

Deriving the above relation k times in x and thereafter evaluating in x = j gives the result.
�

Now we can provide a consistency proof for the CAT procedure in Algorithm 1. To this
purpose we establish the following notation for the exact Taylor approximation in time of
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order k ∈ N,

T k
i, j (τ ) :=

k∑

m=0

τm

m! ∂
m
t w(xi+ j , t

n). (19)

It is the k-th order approximation of w(xi+ j , tn + τ). The proof itself is built in a similar
fashion as [3, Theorem 2] and [36, Proposition 1].

Lemma 3 For k = 1 the steps of the CAT algorithm (Algorithm 1, right side) satisfy

w̃
(1)
i, j = ∂twi+ j + ξ

(1)
p, j

(
R(1)

w

)
i · Δx2p−1 + O(Δx2p),

f̃ (1)
i, j = ∂t f (w)i+ j + η(1)

p

(
R(1)

f ,t

)
i+ j · Δt2p−1 + ξ

(1)
p, j

(
R(1)

f ,x

)
i · Δx2p−1 + O(Δx2p),

with real-valued coefficients ξ
(1)
p, j , η

(1)
p ; and smooth functions

(
R(1)

w

)
i ,

(
R(1)

f ,t

)
i+ j ,

(
R(1)

f ,x

)
i .

(Please note again that (·)i stands for function-evaluation at x = xi .)

Proof A straightforward computation on w̃
(1)
i, j , using the Taylor expansion of f (w), reveals

that

w̃
(1)
i, j = −Q(1)

j f̃ (0)i,〈0〉 = − 1

Δx

p∑

r=−p+1

γ
1, j
p,r f̃ (0)

i,r

= − 1

Δx

p∑

r=−p+1

γ
1, j
p,r f (w(xi+r , t

n))

= − 1

Δx

p∑

r=−p+1

γ
1, j
p,r

⎛

⎝
2p∑

s=0

((r − j)Δx)s

s! ∂sx f (w)i+ j + O(Δx2p+1)

⎞

⎠

= − 1

Δx

2p−1∑

s=0

Δxs

s! ∂sx f (w)i+ j

⎛

⎝
p∑

r=−p+1

γ
1, j
p,r (r − j)s

⎞

⎠

−
⎡

⎣ 1

(2p)!

⎛

⎝
p∑

r=−p+1

γ
1, j
p,r (r − j)2p

⎞

⎠ ∂
2p
x f (w)i + O(Δx)

⎤

⎦ Δx2p−1

+ O(Δx2p)

Lemma 2= −∂x f (w)i+ j + ξ
(1)
p, j

(
R(1)

w

)
i · Δx2p−1 + O(Δx2p)

= ∂twi+ j + ξ
(1)
p, j

(
R(1)

w

)
i · Δx2p−1 + O(Δx2p),

in which we define ξ
(1)
p, j and

(
R(1)

w

)
i by

ξ
(1)
p, j := −1

(2p)!
p∑

r=−p+1

γ
1, j
p,r (r − j)2p,

(
R(1)

w

)
i := ∂

2p
x f (w)i .

The succeeding step of the method evaluates the flux f in an approximate Taylor series. We
find,
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(fT )
1,n+r
i, j = f

(
w(xi+ j , t

n) + (rΔt)w̃(1)
i, j

)

(19)= f
(
T 1
i, j (rΔt) + (rΔt)ξ (1)

p, j

(
R(1)

w

)
i · Δx2p−1 + O(Δx2p+1)

)

= ( f ◦ T 1
i, j )(rΔt)

+ ( f ′ ◦ T 1
i, j )(rΔt) ·

[
(rΔt)ξ (1)

p, j

(
R(1)

w

)
i

]
· Δx2p−1 + O(Δx2p+1)

= ( f ◦ T 1
i, j )(rΔt)

+ ( f ′ ◦ T 1
i, j )(0) ·

[
(rΔt)ξ (1)

p, j

(
R(1)

w

)
i

]
· Δx2p−1 + O(Δx2p+1)

= ( f ◦ T 1
i, j )(rΔt) + f ′(w)i

[
(rΔt)ξ (1)

p, j

(
R(1)

w

)
i

]
· Δx2p−1 + O(Δx2p+1).

Consequently, we can find for the temporal interpolation of the fluxes:

f̃ (1)
i, j = Q(1)

0 (fT )
1,〈n〉
i, j = 1

Δt

p∑

r=−p+1

γ 1,0
p,r (fT )

1,n+r
i, j

= 1

Δt

p∑

r=−p+1

γ 1,0
p,r

⎡

⎣
2p∑

s=0

(
(rΔt)s

s!
ds( f ◦ T 1

i, j )

dτ s
(0)

)

+ O(Δx2p+1)

⎤

⎦

+ f ′(w)i

⎛

⎝
p∑

r=−p+1

γ 1,0
p,r r

⎞

⎠

︸ ︷︷ ︸
=1, Lemma 2

ξ
(1)
p, j

(
R(1)

w

)
i · Δx2p−1 + O(Δx2p)

= 1

Δt

2p−1∑

s=0

Δt s

s!

⎛

⎝
p∑

r=−p+1

γ 1,0
p,r r

s

⎞

⎠

︸ ︷︷ ︸
=δ1,s , Lemma 2

ds( f ◦ T 1
i, j )

dτ s
(0)

+ 1

(2p)!

⎛

⎝
p∑

r=−p+1

γ 1,0
p,r r

2p

⎞

⎠

︸ ︷︷ ︸
=:η(1)

p

d2p( f ◦ T 1
i, j )

dτ 2p
(0)

︸ ︷︷ ︸
=:

(
R(1)

f ,t

)
i+ j

·Δt2p−1

+ ξ
(1)
p, j f ′(w)i

(
R(1)

w

)
i︸ ︷︷ ︸

=:
(
R(1)

f ,x

)
i

·Δx2p−1 + O(Δx2p)

= d( f ◦ T 1
i, j )

dτ
(0) + η(1)

p

(
R(1)

f ,t

)
i+ j · Δt2p−1 + ξ

(1)
p, j

(
R(1)

f ,x

)
i · Δx2p−1 + O(Δx2p)

= ∂t f (w)i+ j + η(1)
p

(
R(1)

f ,t

)
i+ j · Δt2p−1 + ξ

(1)
p, j

(
R(1)

f ,x

)
i · Δx2p−1 + O(Δx2p).

��

Via induction one can generalize this result.

Lemma 4 For k = 2, . . . , 2p − 1 the steps of the CAT algorithm (Alg. 1, right side) satisfy

w̃
(k)
i, j = ∂kt wi+ j + ξ

(k)
p, j

(
R(k)

w

)
i · Δx2p−k + O(Δx2p−k+1),
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f̃ (k)
i, j = ∂kt f (w)i+ j + η(k)

p

(
R(k)

f ,t

)
i+ j · Δt2p−k

+ ξ
(k)
p, j

(
R(k)

f ,x

)
i · Δx2p−k + O(Δx2p−k+1),

with

η(k)
p := 1

(2p)!

⎛

⎝
p∑

r=−p+1

γ k,0
p,r r

2p

⎞

⎠ , ξ
(k)
p, j := −

p∑

r=−p+1

γ
1, j
p,r ξ (k−1)

p,r ,

(
R(k)

w

)
i := (

f ′(w)i
)k−1

∂
2p
x f (w)i ,

(
R(k)

f ,t

)
i+ j := d2p( f ◦ T k

i, j )

dτ 2p
(0),

(
R(k)

f ,x

)
i := f ′(w)i

(
R(k)

w

)
i .

5 Von Neumann Stability of rDRKCATq-sMethods

The original CAT procedure was developed with the intention to create a scheme which
linearly reduces back to high-order Lax–Wendroff methods. As a consequence, the scheme
is CFL-1 stable for linear equations [3, Theorem 1]. In this section, we discuss the stability
properties of the rDRKCATq-s scheme presented in this work.

Theorem 2 (MDRK-LW scheme) Explicit rDRKCATq-s methods for the linear advection
flux f (w) = αw reduce to the numerical scheme

w
n,l
j = wn

j +
r∑

k=1

(−1)kαkΔtk
(

l−1∑

ν=1

a(k)
lν P(k)wn,ν

〈 j〉

)

, l = 1, . . . ,s, (20a)

wn+1
j = wn

j +
r∑

k=1

(−1)kαkΔtk
(

s∑

l=1

b(k)
l P(k)wn,l

〈 j〉

)

, (20b)

with P(k)wn,l
〈 j〉 the centered difference approximation of the k-th spatial derivative.

The proof is similar to [3, Theorem 1] and is hence left out. In this form it is possible to
perform a von Neumann stability analysis (see for example [25,32]). That is, we fill in the
Fourier modewn

j = W(tn)eiκx j with wave number κ ∈ Z and search for the the amplification
factors via the relations

W(tn,l) := gn,l(κ)W(tn) and W(tn+1) := g(κ)W(tn).

Doing so gives an additional recurrence relation.

Proposition 1 The amplification factors obtained from a von Neumann analysis on the
MDRK-LW scheme Eq. (20) are defined by the recurrence relations

gn,l(κ) = 1 +
r∑

k=1

(−1)kσ k P(k)(κ)

(
l−1∑

ν=1

a(k)
lν gn,ν(κ)

)

, l = 1, . . . ,s, (21a)

g(κ) = 1 +
r∑

k=1

(−1)kσ k P(k)(κ)

(
s∑

l=1

b(k)
l gn,l(κ)

)

, (21b)
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Table 2 Amplification factors g(κ) of the consideredMDRKschemes (seeAppendixA) and the corresponding
CFL values σ∗ up to four decimals obtained from |g(κ)| ≤ 1

Scheme g(κ) CFL

2DRKCAT3-2 1 − σ P(1) + 1
2
σ2 2

3
P(1)P(1) + 1

3
P(2)

)
− 1

6
σ3 P(1)P(2) 1.2954

2DRKCAT4-2 1 − σ P(1) + 1
2
σ2 P(2) − 1

6
σ3 P(1)P(2) + 1

24
σ4 P(2)P(2) 1.4718

2DRKCAT5-3 1 − σ P(1) + 1
2
σ2 P(2) − 1

6
σ3 P(1)P(2) + 1

24
σ4 P(2)P(2) 1.0619

− 1
120

σ5 P(1)P(2)P(2) + 1
600

σ6 P(2)P(2)P(2)

3DRKCAT5-2 1 − σ P(1) + 1
2
σ2 P(2) − 1

6
σ3 P(3) + 1

24
σ4 P(1)P(3) 0.4275

− 1
120

σ5 P(2)P(3) + 1
900

σ6 P(3)P(3)

3DRKCAT7-3 1 − σ P(1) + 1
2
σ2 P(2) − 1

6
σ3 P(3) + 1

24
σ4 P(1)P(3) 0.2300

− 1
120

σ5 P(2)P(3) + 1
720

σ6 P(3)P(3) − 1
5040

σ7 P(1)P(2)P(3)

+
(

1
23520

−
√

2
70560

)
σ8 P(2)P(3)P(3) −

(
11

1481760
−

√
2

246960

)
σ9 P(3)P(3)P(3)

4DRKCAT6-2 1 − σ P(1) + 1
2
σ2 P(2) − 1

6
σ3 P(3) + 1

24
σ4 P(4) 0.8563

− 1
120

σ5 P(1)P(4) + 1
720

σ6 P(2)P(4) − 1
6480

σ7 P(3)P(4) + 1
77760

σ8 P(4)P(4)

with wave number κ ∈ Z, σ := αΔt
Δx the corresponding CFL number and

P(k)(κ) :=
p∑

r=−p

δkp,r e
irκΔx . (22)

The term P(k)(κ) can be interpreted as the k-th derivative of the centered (2p + 1)-point
Lagrangian interpolation Eq. (11a) using Fourier basis

{
eilχ | l ∈ Z

}
with the grid frequency

χ = κΔx .
In Table 2 we display the amplification factors g(κ) for the considered MDRK schemes

summarized earlier in Fig. 1. Of main interest w.r.t. to these amplification factors is to obtain
a critical CFL value σ ∗ ∈ R+ such that

|g(κ)| ≤ 1 ⇔ αΔt

Δx
≤ σ ∗.

We have used the Symbolic Math Toolbox in MATLAB [20] along with a bisection method
on the CFL variable σ in Eq. (21b) to numerically obtain a σ ∗:

– In our approach we take Δx = 1; only the frequency of g(κ) is influenced by Δx , there
is no change in absolute value. Assume we would compare mesh sizes Δx and Δx̃ , then

P(k)(κ) =
p∑

r=−p

δkp,r e
irκΔx =

p∑

r=−p

δkp,r e
ir

(
κ Δx

Δx̃

)
Δx̃ = P(k)(̃κ),

where κ̃ := κ Δx
Δx̃ . Thus behavior of g(κ) is the same up to a recalibration of the frequency

space.
– Via the toolbox, the value max |g(κ)| is calculated on a uniform 1000-cell mesh of

κ ∈ [−π, π]. This domain suffices for this purpose, since for Δx = 1 all terms P(k)(κ)

in Eq. (22) are 2π -periodic.

The critical CFL values σ ∗ up to four decimals are shown in Table 2. Notice that the
two-derivative schemes improve the linear stability, whereas the other schemes reduce the
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stability compared to the original CAT method. To put this observation into perspective, let
us point out that the CAT algorithm uses 2p derivatives, and thus is based on high-order
Lax–Wendroff methods with r even. If, only for the sake of discussion, we take uneven r,
we get another picture. Forr = 1, we obtain the forward-time central-space scheme, which is
infamous for being unconditionally unstable [17] and for odd r > 1, we obtain CFL numbers
smaller than one. Hence, we can make some important observations:

– Most importantly we can conclude that a method of lines (MOL) viewpoint is inade-
quate. Solely regarding the stability regions R in Fig. 1 would give the idea that the
3DRKCAT7-3 scheme provides the best stability. This is clearly not the case since the
even-derivative schemes are shown to be better in terms of stability.

– Choosing even order derivatives gives better results than choosing an odd number of
derivatives, i.e. the two- and four-derivative schemes show better stability than the three-
derivative schemes. This is in very good agreement with the observations on the original
CAT method.

– In contrast to Taylor-methods, where only the number of derivatives can be prescribed,
MDRK methods have more free parameters, such as the number of derivatives and the
number of stages. We observe that stages and derivatives highly influence the stability
properties of theMDRKCATmethod. This allows the identification ofwell-suitedMDRK
schemes and gives more flexibility compared to original Taylor-methods.

6 Numerical Results

In this section, we show numerical results validating our analytical findings. By means of
several continuous test cases ranging from scalar PDEs to the system of Euler equations, we
show that the expected orders of convergence are obtained. For brevity, we do not include
flux limiting techniques to this work; hence, we avoid setups where shock formation occurs.
Note that flux limiting can be incorporated in a straightforward way as in [3].

The measure for the accuracy in this section is the scaled l1-error at time t N ≡ Tend

‖w(Tend) − wN‖1 := Δx
M∑

i=1

|w(xi , Tend) − wN
i |,

w : t 
→ w(t) being a function of time returning a vector of exact solution values (or a
reference solution) in the nodes x1, . . . , xM , andwN being the vector of approximations wN

i
at t N . For systems, the sum of the l1-errors corresponding to the separate solution variables is
considered. All displayed convergence plots begin at M = 8 cells and double the amount of
cells with each iteration. In order to enforce the adopted CFL value σ , the local eigenvalues
λneig,i of the Jacobian w.r.t. w

n
i are computed. By means of the relation

Δtn := σΔx

maxi |λneig,i |

the timestep is then computed. As the maximum eigenvalue in the computational domain
varies over time, a non-constant timestep is prescribed. This highlights the ability of the
novel method to use varying timestep sizes, see Rem. 1.
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Fig. 2 Convergence order of the CAT and explicit MDRKCAT methods applied to Burgers equation on the
cosine wave w0(x) = 1

4 cos(πx) up to Tend = 0.8 with CFL σ = 0.5. The 2DRKCAT5-3, 3DRKCAT5-2
and 4DRKCAT6-2 schemes behave in a very alike manner. For large Δt and large p, we have observed
stability problems for the CAT method. Those divergent results of the CAT method have been omitted in the
convergence plot

6.1 Burgers Equation

First, we consider Burgers equation

∂tw + ∂x

(
w2

2

)
= 0,

with the cosine-wave initial condition with periodic boundary conditions

w(x, 0) = 1

4
cos(πx) on x ∈ [0, 2] , (23)

to certify the accuracy min(2p, q) obtained in Thm. 1. Since the cosine-wave Eq. (23) has
both positive and negative values, the characteristic lines must cross and a shock is formed
at some point. The breaking time of the wave [17,35] is at t∗ = 4

π
. Hence we set the final

time to Tend = 0.8, well before shock formation.
Using the characteristic lines solution, l1-errors have been calculated for the CAT-pmeth-

ods (p = 1, . . . , 6) and the MDRKCAT methods (Appendix A). The results with CFL
σ = 0.5 are visualized in Fig. 2. All expected convergence orders are obtained; order 2p for
the CAT-pmethods and at least order q of theMDRK schemes. The schemes 2DRKCAT5-3,
3DRKCAT5-2 and 3DRKCAT7-3 behave better than expected. This is caused by the fact
that the spatial order of accuracy is higher than the temporal one; and spatial errors dominate
the overall behavior at least for ‘large’ Δt . We have observed similar behavior also for other
schemes where 2p > q . Given that CAT methods have been designed as a natural general-
ization of Lax–Wendroff methods with an even-order accuracy, odd-order MDRK schemes
take advantage here.We expect this behavior to becomemore apparent when computing with
finer machine precision. Convergence plots such as in Fig. 2 will then manifest as a stretched
out S-curve.

Further, we notice that for higher values of p and larger values Δt , the CAT methods tend
to be less stable. Unstable results have been left out in Fig. 2 for p = 4, 5 and 6. Even though
CAT methods have been shown to be linearly stable under a CFL-1 condition [3], rapid
divergence is observed well before shocks are formed for larger values of p at regions where
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Fig. 3 Burgers equation applied to w0(x) = 1
4 e

cos(πx)+sin(πx) up to Tend = 0.3 with CFL σ = 0.5. Left:
3DRKCAT7-3 solution usingM = 8192 cells, less nodal points are shown for better visual distinctness. Right:
convergence order of the explicit MDRKCAT methods

the derivative of the solution w′(x) is large in absolute value. The MDRKCAT methods used
in this work do not suffer this fate.

Next, we perform a similar study having the initial solution,

w(x, 0) = 1

4
ecos(πx)+sin(πx) on x ∈ [0, 2] ,

with periodic boundary conditions. Having a steeper peak than the cosine (23), the breaking
time will be earlier. We find t∗ = 4

πe , and choose Tend = 0.3 accordingly.
In Fig. 3 the final solution at Tend = 0.3 is visualized and accuracy is studied in the

convergence plots, solely focused on the MDRKCAT method. The behavior is very similar
to the previous case, except that the 3DRKCAT7-3 scheme is driven back faster to order 7.

6.2 Buckley–Leverett Equation

Next, we consider the Buckley–Leverett flux [17],

f (w) = 4w2

4w2 + (1 − w)2
.

This flux is non-convex and introduces more nonlinearities compared to the Burgers flux. We
consider the initial condition

w(x, 0) = 1 − 3

4
cos2

(π

2
x
)

on x ∈ [−1, 1].

The typical Buckley–Leverett profile consists of a shock wave followed directly by a rarefac-
tion wave. We set Tend = 0.1 to remain continuous and be able to calculate the exact solution
via its characteristics. The solution and convergence plots are visualized in Fig. 4 with CFL
σ = 0.5. We notice that the numerical solution tends toward the expected Buckley–Leverett
profile. All schemes converge with the expected accuracy in a similar way as for Burgers
equation.
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Fig. 4 Buckley–Leverett equation applied to w0(x) = 1− 3
4 cos2

(
π
2 x

)
up to Tend = 0.1 with CFL σ = 0.5.

Left: 3DRKCAT7-3 solution using M = 8192 cells, less nodal points are shown for better visual distinctness.
Right: convergence order of the explicit MDRKCAT methods

6.3 One-Dimensional Euler Equations

Finally, we consider the Euler equations of gas dynamics

∂tw + ∂x f (w) = 0,

in which

w =
⎛

⎝
ρ

ρu
E

⎞

⎠ , f (w) =
⎛

⎝
ρu

ρu2 + p
u(E + p)

⎞

⎠ ,

with ρ the density, u the velocity, E the energy and p the pressure. The system is closed via
the equation of state for an ideal gas

p = (γ − 1)

(
E − 1

2
ρu2

)
,

with γ being the ratio of specific heats, assumed to be 1.4 [17,35].
First we initialize the primitive variables (ρ, u, p) such that the Euler equations describe

the linear advection of a density profile. To this end, we take

ρ(x, 0) = 1 + 0.3 sin(πx) on x ∈ [0, 4] ,
and set both u(x, 0) and p(x, 0) to be one. Periodic boundary conditions are used and Tend
is set to 0.8. In Fig. 5 the corresponding convergence plots are displayed with CFL σ = 0.5.
Immediately starting from the coarsest meshes the expected convergence orders are obtained.

Secondly, we consider the initial condition

w(x, 0) = 1

4

⎛

⎝
3
1
3

⎞

⎠ + sin(πx)

2

⎛

⎝
1
1
1

⎞

⎠ on x ∈ [0, 2],
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Fig. 5 Convergence order of the
explicit MDRKCAT methods
applied to
ρ0(x) = 1 + 0.3 sin(πx),
u0(x) = p0(x) = 1 on x ∈ [0, 4]
up to Tend = 0.8 with σ = 0.5
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Fig. 6 MDRKCAT 1D Euler solution of ρ0(x) = 0.75 + 0.5 sin(πx), (ρu)0(x) = 0.25 + 0.5 sin(πx) and
E0(x) = 0.75 + 0.5 sin(πx) up to Tend = 0.2 with σ = 0.5. The 3DRKCAT7-3 scheme has been used on
M = 4096 cells; less nodal points are shown for better visual distinctness

with periodic boundary conditions and Tend = 0.2 for w to remain continuous. In Fig. 6 the
solution is visualized for the 3DRKCAT7-3 scheme with p = 4, CFL σ = 0.5 on M = 4096
cells.

In order to inspect accuracy, a reference solution has been computed via a discontinuous
Galerkin (DG) method. We have used third-order polynomials in space, and a third-order
strong-stability-preserving Runge–Kutta method in time [12]. The reference computation
was executed on 10240 cells with a CFL number of σ = 0.15.

Convergence plots have been generated in Fig. 7 using CFL σ = 0.15. All expected orders
were obtained. For smallerΔx , the l1-error converges towards approximately 2·10−11, which
is the accuracy of the reference DG solution.

Akin to the earlier cases, a CFL value of σ = 0.5 was attempted for the construction
of the convergence plots. However not all simulations were stable, more specifically the
3DRKCAT7-3 scheme using p = 4 diverged for M = 8, 16, 32 and 64 cells.
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Fig. 7 Convergence order of the
explicit MDRKCAT methods
applied to
ρ0(x) = 0.75 + 0.5 sin(πx),
(ρu)0(x) = 0.25 + 0.5 sin(πx)
and E0(x) = 0.75 + 0.5 sin(πx)
up to Tend = 0.2 with σ = 0.15.
Very similar behavior can be seen
between the 2DRKCAT3-2 and
the 2DRKCAT4-2 schemes. The
same can be said for the 5th order
MDRKCAT schemes and
4DRKCAT6-2. For comparison,
l1-errors of a DG code with basis
functions in P3 and P4 and CFL
σ = 0.1 are visualized
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DG-P3

DG-P4

In order to better grasp the efficiency of the MDRKCAT methods, in the same Fig. 7
convergence plots have been generated by means of a DG code that uses polynomial basis
functions in P3 and P4 for each cell respectively. A fourth order SSP-RK scheme [31, order
4, p.21] has been used as time integrator. The same amount of cells M = 8, . . . , 1024 has
been used as for the MDRKCAT runs, the CFL σ = 0.1 with a maximum eigenvalue of 1.5
so that Δt = Δx σ

1.5 . The l1-errors, computed at cell-midpoints, have been generated relative
to the earlier mentioned order three SSP-DG reference solution.

Overall, the MDRKCAT methods compare well with the DG solutions. A large discrep-
ancy can be noticed in the manner at which the expected convergence order is achieved;
the MDRKCAT methods gradually head toward order min(2p, q) with each refinement,
whereas the DG solvers achieve convergence already going from 32 to 64 cells. This is to be
expected: By definition the MDRKCAT methods only approximate the time derivatives of
the flux ∂k−1

t f (w). Hence the achieved accuracy is intertwined with the mesh resolution of
the problem at hand. For a lower amount of cells M the numerical flux Fn

i+1/2 at the faces
can thus not be an accurate representation, whereas the DG solvers calculate the fluxes at the
half-way points i + 1/2 on the basis of the exact flux f (w). As soon as enough cells M are
used to finely represent the initial data, full advantage can be taken of the CAT method.

Moreover, the difference between the methods should be brought into perspective by
studying the amount of effective spatial degrees of freedom (DOF) and the effective spatial
size that influences the order of accuracy. DG methods make use of numerical integration
points on each cell for the integration of the solution variable multiplied with the chosen
basis functions [7]. This illustrates why the DG solvers more quickly capture the expected
convergence order and why a direct comparison of the DG schemes and the MDRKCAT
schemes is difficult in Fig. 7. The actual amount of spatial DOF used by rDRKCATq-s
schemes is (2p + 1)M ; each node uses its own local stencil in the calculations. However, as
explained in [3], the local stencils aremerely amanner to assure that theCATmethods linearly
reduce back to Lax–Wendroff schemes. The same accuracy is achieved by the approximate
Taylor methods in [36] of which the CAT procedure is established. Summing up, we can
conclude that the novel rDRKCATq-s schemes compare well with a state-of-the-art DG
solver in terms of accuracy.
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7 Conclusion and Outlook

In this paper we have formulated a family of Jacobian-free multistage multiderivative solvers
for hyperbolic conservation laws, so-called MDRKCAT methods. Following the Compact
Approximate Taylor (CAT) method in [3], instead of computing the exact flux deriva-
tive expressions, local approximations for the time derivatives of the fluxes are obtained
recursively. There are many advantages by virtue of this procedure: no costly symbolic com-
putations are needed; andwe hope that manymultiderivative Runge–Kutta (MDRK) schemes
can now actually be of practical use.

Both theoretically and numerically it is proven that the desired convergence order
min(2p, q) is achieved, 2p being the spatial order and q the temporal order. Universally
among the different test cases the spatial accuracy is seen to be dominant. A comparison
with SSP-DG methods for the Euler equations shows that MDRKCAT methods compare
well with state-of-the-art schemes in terms of accuracy.

A von Neumann analysis revealed that the stability of the MDRKCAT methods depends
heavily on the number of stages and the underlying high-order Lax–Wendroff method. The
latter one solely utilizes centered differences for the spatial discretization. Consequently, odd-
derivative Runge–Kutta schemes seem less adequate in conjuction with the CAT algorithm.

In the future, there are two main routes to follow: extend and apply the scheme to more
challenging settings and to further examine the stability properties of the novel scheme.
Concerning more challenging settings the investigation of multidimensional hyperbolic con-
servation laws with (possibly) unstructured meshes and parabolic PDEs with viscous effects
are attractive. In order to accomplish such extensions it might be interesting to combine
MDRKCAT methods with DG techniques [27]. Presumably, also implicit MDRK schemes
need to be considered to take care of the diffusive effects. A possible starting point could
be the implicit variant of the approximate Taylor methods, which have been recently devel-
oped for ODEs in [2]. Concerning the stability properties of the scheme one could think of
exploring more types of MDRK schemes, possibly with SSP properties [6,11]. Moreover, at
the same time, it will be possible to identify more efficient schemes.
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A Butcher Tableaux

In this section, we show the multiderivative Runge–Kutta methods used in this work through
their Butcher tableaux. We use three two-derivative methods taken from [5], see Tables 3,
4 and 5; two three-derivative methods taken from [21], see Tables 6 and 7; and one four-
derivative method, constructed for this paper, see Table 8. This last scheme has been derived
from the idea that it should be of form

yn,l = yn +
r−1∑

k=1

(clΔt)k

k! Φ(k−1) (
yn

) + Δtr
l−1∑

ν=1

a(r)
lν Φ(r−1) (

yn,ν
)
,

for l = 1, . . . ,s, with update

yn+1 = yn +
r−1∑

k=1

Δtk

k! Φ(k−1) (
yn

) + Δtr
s∑

l=1

b(r)
l Φ(r−1)(yn,l).

These forms have also been used in [5] and [21].

Table 3 2DRK3-2:Third order
two-derivative Runge–Kutta
scheme using two stages [5]

0 0 0 0 0
1 1 0 1/2 0

2/3 1/3 1/6 0

Table 4 2DRK4-2:Fourth order
two-derivative Runge–Kutta
scheme using two stages [5]

0 0 0 0 0
1/2 1/2 0 1/8 0

1 0 1/6 1/3

Table 5 2DRK5-3:Fifth order
two-derivative Runge–Kutta
scheme using three stages [5]

0 0 0 0 0 0 0
2/5 2/5 0 0 2/25 0 0
1 1 0 0 −1/4 3/4 0

1 0 0 1/8 25/72 1/36

Table 6 3DRK5-2:Fifth order
three-derivative Runge–Kutta
scheme using two stages [21]

0 0 0 0 0 0 0
2/5 2/5 0 2/25 0 4/375 0

1 0 1/2 0 1/16 5/48

Table 7 3DRK7-3:Seventh order three-derivative Runge–Kutta scheme using three stages [21]. The coef-

ficients are given by c2 = 3−√
2

7 , c3 = 3+√
2

7 , a(3)
32 = 122+71

√
2

7203 , b(3)
1 = 1

30 , b
(3)
2 = 1

15 + 13
√
2

480 ,

b(3)
3 = 1

15 − 13
√
2

480

0 0 0 0 0 0 0 0 0 0
c2 c2 0 0 c22/2 0 0 c32/6 0 0
c3 c3 0 0 c23/2 0 0 c32/6 − a

(3)
32 a

(3)
32 0

1 0 0 1/2 0 0 b
(3)
1 b

(3)
2 b

(3)
3
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Table 8 4DRK6-2:Sixth order
four-derivative Runge–Kutta
scheme using two stages

0 0 0 0 0 0 0 0 0
1/3 1/3 0 1/18 0 1/162 0 1/1944 0

1 0 1/2 0 1/6 0 1/60 1/40
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21. Ökten Turacı, M., Öziş, T.: Derivation of three-derivative Runge–Kutta methods. Numer. Algorithms

74(1), 247–265 (2017)
22. Qiu, J.: Development and comparison of numerical fluxes for LWDG methods. Numer. Math. Theory

Methods Appl. 1(4), 435–459 (2008)
23. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time

discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)
24. Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations.

SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)
25. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)

123



96 Page 24 of 24 Journal of Scientific Computing (2022) 90 :96

26. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. Dover Books on Mathematics. Dover
Publications, Mineola (2001)

27. Schütz, J., Seal, D.C., Jaust, A.: Implicit multiderivative collocation solvers for linear partial differential
equations with discontinuous Galerkin spatial discretizations. J. Sci. Comput. 73, 1145–1163 (2017)

28. Schütz, J., Seal, D.C., Zeifang, J.: Parallel-in-time high-order multiderivative IMEX methods. J. Sci.
Comput. 90, 54 (2022)

29. Schwartzkopff, T.,Dumbser,M.,Munz,C.-D.:ADER: ahigh-order approach for linear hyperbolic systems
in 2D. J. Sci. Comput. 17, 231–240 (2002)

30. Seal, D.C., Güçlü, Y., Christlieb, A.: High-order multiderivative time integrators for hyperbolic conser-
vation laws. J. Sci. Comput. 60, 101–140 (2014)

31. Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability-preserving time discretization
methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

32. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. Society for
Industrial and Applied Mathematics, Philadelphia (2004)

33. Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. J. Sci. Comput. 17(1), 609–618
(2002)

34. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput.
Phys. 204(2), 715–736 (2005)

35. Whitham, G.: Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts,
Monographs and Tracts. Wiley, New York (2011)

36. Zorío, D., Baeza, A., Mulet, P.: An approximate Lax–Wendroff-type procedure for high order accurate
schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123



Paper II:
Jacobian-free Explicit Multiderivative General Linear

Methods for Hyperbolic Conservation Laws





Numerical Algorithms
https://doi.org/10.1007/s11075-024-01771-6

ORIG INAL PAPER

Jacobian-free explicit multiderivative general linear
methods for hyperbolic conservation laws

Afsaneh Moradi1 · Jeremy Chouchoulis2 · Raffaele D’Ambrosio1 ·
Jochen Schütz2

Received: 22 November 2023 / Accepted: 23 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Westudy explicit strong stability preserving (SSP)multiderivative general linearmeth-
ods (MDGLMs) for the numerical solution of hyperbolic conservation laws. Sufficient
conditions forMDGLMs up to four derivatives to be SSP are determined. In this work,
we describe the construction of two external stage explicit SSP MDGLMs based on
Taylor series conditions, and present examples of constructedmethods up to order nine
and three internal stages along with their SSP coefficients. It is difficult to apply these
methods directly to the discretization of partial differential equations, as higher-order
flux derivativesmust be calculated analytically.We hence use a Jacobian-free approach
based on the recent development of explicit Jacobian-free multistage multiderivative
solvers (Chouchoulis et al. J. Sci. Comput. 90, 96, 2022) that provides a practical
application of MDGLMs. To show the capability of our novel methods in achieving
the predicted order of convergence and preserving required stability properties, several
numerical test cases for scalar and systems of equations are provided.
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1 Introduction

In this work, we construct a novel class of high-order time integration schemes to
solve one-dimensional hyperbolic conservation laws of form

Yt + f (Y )x = 0, (1)

where Y is a conserved physical quantity and f is a flux function. The numerical
approximation of such systems faces challenges when the exact solution becomes
discontinuous, which can happen even if the initial profile is smooth. There exist a
variety of successful approaches for developing high-resolution spatial discretizations
capable of handling the presence of a discontinuity and shocks, see, e.g., [13, 44, 47, 49]
and references therein for an overview. One of the most commonly used approaches in
developing these schemes is the methods of lines (MOL) technique which decouples
the spatial and temporal discretizations and reduces the partial differential equation
(PDE) (1) to the semi-discrete form

y′(t) = Φ(y). (2)

The termΦ(y) is typically computed using a conservative spatial discretization Dx

applied to the flux f ,
Φ(y) = Dx (− f (y)).

Commonly used spatial discretizations have special nonlinear stability properties
(e.g., total variation stability or positivity preservation) if combined with the for-
ward Euler method. Mathematically, this means that when the semi-discretized (2) is
advanced using a first-order forward Euler method, the resulting numerical solution
satisfies the following strong stability property if only the time-step Δt is sufficiently
small:

‖yn + ΔtΦ(yn)‖ ≤ ‖yn‖, 0 ≤ Δt ≤ ΔtFE, (3)

where‖·‖ is a normor semi-norm.Rather than usingfirst-order time-steppingmethods,
we are interested in using higher-order time-stepping while still satisfying the strong
stability property, i.e.,

‖yn+1‖ ≤ ‖yn‖, (4)

under a modified time-step limit, Δt ≤ C ΔtFE. Methods that achieve (4) under the
assumption that (3) holds, are called strong stability preserving (SSP)methods [43]; the
coefficient C is referred to as the SSP coefficient [21]. Significant effort has been put
into developing different classes of SSP methods with large enough SSP coefficients,
such as SSP linear multistep methods (LMMs), Runge–Kutta (RK) methods, two-
derivative RKmethods, general linear methods (GLMs), and second-derivative GLMs
to maximize the SSP coefficient, see, e.g., [8, 14, 19–21, 24–26, 28, 31]. In this paper,
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we aim to explore a novel class of SSP methods with higher derivatives: explicit
multiderivative general linear methods (MDGLMs) up to four derivatives. Indeed,
higher derivatives of the unknown solutions y are used in the method’s formulation.
While GLMs rely on only evaluating Φ, for multiderivative GLMs, we also make use
of the quantities1

Φ̇(y) := y′′(t) ≡ Φ ′(y)Φ(y), Φ̈(y) := y′′′(t) ≡ . . . , (5)

and so on. In the case of two-derivative methods, preserving just the forward Euler
condition (3) is not enough, and another condition involving the second derivative is
required. Considering a second-derivative condition in the form

‖yn + Δt2Φ̇(yn)‖ ≤ ‖yn‖, Δt ≤ α̂ΔtFE, (6)

Christlieb et al. [14] obtained SSP two-derivative RK methods up to order six
preserving the strong stability properties of the forward Euler condition (3) along
with the second-derivative condition (6). Here, the constant α̂ > 0 is associated with
the stability condition of the second derivative and forward Euler terms. Building
upon that work, Moradi et al. [31] developed the SSP approach to construct SSP
second-derivativeGLMs (SGLMs) as a class ofmultistepmultistage second-derivative
time-stepping methods, further studied in [32–37]. To accomplish the present work,
we use, as before, the forward Euler and second-derivative conditions, but add to them
Taylor series conditions for both third and fourth derivatives, and derive sufficient
conditions for multiderivative GLMs to be SSP. By using multiple derivatives, the
order of convergence can be increased without adding more stages. We focus on the
construction of two and three-stage methods up to four derivatives.

For such schemes, the calculation of temporal derivatives (5) directly from their
definition tends to be computationally prohibitive. A commonly used approach to
compute these time derivatives is a Lax–Wendroff (LW) type of approach [29], which
expresses temporal derivatives of the unknown function y in terms of the fluxes through
the Cauchy–Kowalevskaya procedure. The main drawback of this procedure comes
from the fact that it results in highly complex symbolic calculations which increase
computational costs andmake amodular implementation more difficult. Nevertheless,
LWmethods have a great deal of potential that is well-known among researchers, and
there have been considerable efforts on developing high-order variants of LWmethods
for nonlinear systems. For example the ADER (Arbitrary order using Derivatives)
methods attracted a lot of attention, see, e.g., [16–18, 42, 45, 46] and references
therein. To get rid of complex symbolic calculations of flux derivatives, Carrillo and
Parés in [9] have developed the compact approximate Taylor (CAT) procedure based
on Taylor series methods and Chouchoulis et al. in [11] extended this approach to
the class of multiderivative Runge–Kutta (MDRK) methods and presented a novel
collection of explicit Jacobian-free MDRK solvers for hyperbolic conservation laws.
In this paper, after introducing SSP multiderivative GLMs, to avoid the necessary

1 The dot (·) stands for the time derivative d/dt , whereas the prime (′) stands for the Jacobian of the
vector-valued Φ w.r.t. y.
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cumbersome calculation of flux derivatives, we extend the idea of the Jacobian-free
technique to SSP multiderivative GLMs and present a new class of explicit Jacobian-
free SSP multiderivative GLMs for hyperbolic conservation laws.

The structure of the paper is as follows. In Section 2, we introduce multideriva-
tive GLMs for ODEs along with the necessary and sufficient conditions for such
methods to be of order p and stage order q. Thereafter, in Section 3, sufficient
conditions for multiderivative GLMs up to four derivatives to be SSP are derived,
and examples of constructed SSP third-derivative GLMs up to order seven and SSP
fourth-derivativeGLMsup to order nine are given.After a short reviewof the Jacobian-
free approach of the CAT method and MDRK solvers, we introduce the explicit
Jacobian-freeMDGLMs for hyperbolic conservation laws, referred to asCAMDGLM,
in Section 4. To verify our theoretical results, we present several numerical cases in
Section5. Finally,we close thisworkwith conclusions and a spotlight for futurework in
Section 6.

2 Explicit multiderivative general linear methods

The class of general linear methods (GLMs) was first introduced by Butcher [5] for
the numerical solution of ODEs defined by (2) in whichΦ is a function of the solution
variable y ∈ Rd . GLMs are a large family of schemes, containing traditional methods
including RK methods and LMMs. The introduction of GLMs opened the possibility
of developing new methods that were neither RK methods, nor LMMs, nor minor
alterations of these methods, see, for instance, [6, 27].

GLMs are characterized by four integers (p, q, r , s) and four matrices indicated
by A{1} ∈ Rs×s , U ∈ Rs×r , B{1} ∈ Rr×s , and V ∈ Rr×r . Here, p and q are order
and stage order of the method, respectively, r is the number of input and output
approximations, and s is the number of internal stages. Let Y [n] be an approximation
of stage order q to the vector y(tn−1 + ch), i.e.,

Y [n]
l = y(tn−1 + clΔt) + O(Δtq+1), l = 1, 2, . . . , s. (7)

and the vector Φ(Y [n]) denotes the first derivative stages values, where
c = [c1 c2 · · · cs]T is the abscissa vector. A GLM used for the numerical approxima-
tion of the solution (2), on the uniform grid {tn}Nn=0, t

n = t0 + nh, n = 0, 1, · · · , N ,
is defined by

Y [n]
l =

r
∑

ν=1

ulv y
[n−1]
v + �t

l−1
∑

ν=1

a{1}
lν �(Y [n]

ν ), l = 1, 2, . . . , s, (8a)

y[n]
l =

r
∑

ν=1

vlν y
[n−1]
v + �t

s
∑

ν=1

b{1}
lν �(Y [n]

ν ), l = 1, 2, . . . , r . (8b)
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Here, y[n−1]
v is an approximation of order p to some linear combination of the

solution y and its derivatives at time tn−1, i.e.,

y[n−1]
v =

p
∑

κ=0

wvκ y
(κ)(tn−1)�tκ + O(�t p+1), v = 1, 2, . . . , r (9)

for real parameterswvκ . As themethod is of order p, this implies that the output values
y[n]
v fulfill

y[n]
v =

p
∑

κ=0

wvκ y
(κ)(tn)�tκ + O(�t p+1), v = 1, 2, . . . , r . (10)

Algebraic analysis of order of GLMs (8) was developed by Butcher [6], see also
[27]. Set

ω0 = e −Uw0, ωκ = cκ

κ! − A{1}cκ−1

(κ − 1)! −Uwκ,

ω̂0 = w0 − Vw0, ω̂κ =
κ
∑

l=0

wl

(κ − l)! − B{1}cκ−1

(κ − 1)! − Vwκ,

where κ = 1, 2, . . . , p, e = [1 1 . . . 1]T ∈ Rs , and ci := [ci1 . . . cis]T . It will be
always assumed that w0 = e = [1 1 . . . 1]T ∈ Rr , so that the stage preconsistency
condition ω0 = 0, or Uw0 = e, and the preconsistency condition ω̂0 = 0, or Vw0 =
w0, are automatically satisfied. A GLM (8) has order p and stage order q = p if and
only if ωκ = 0, and ω̂κ = 0, κ = 1, . . . , p.

There has been a great deal of research on numerical methods for solving systems
of ODEs which use the second derivative of the solution, y′′(t) ≡ Φ ′(y)Φ(y), as part
of their integration formula, see, e.g., [10, 12, 23]. The family of second derivative
general linear methods (SGLMs) was first introduced by Butcher and Hojjati in [7]
and was later investigated by Abdi et al. in [1–4], just to name a few. In recent years,
there has been some progress on developing a multiderivative RK framework for
temporal integration, for instance see [11, 12, 14, 38, 41] and references therein. By
following this direction, the main class of time-stepping methods in this work are
explicit multiderivative general linear methods (MDGLMs) as a generalization of
GLMs by adding extra-temporal derivatives of Φ(y) up to, at most, four derivatives.
It is crucial to note that these temporal derivatives can be recursively calculated via
the chain rule, so that

dk

dtk
Φ(y) = dk−1

dtk−1

(

Φ ′(y)Φ(y)
)

.

Consider 0 ≤ t0 < t1 < · · · < t N = T f to be a uniform partition of the temporal

domain with a fixed timestep Δt = T f −t0

N . We define MDGLMs as follows:
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Definition 1 Explicit m-derivative general linear methods of order p and stage order
q are r -value and s-stage methods of the form

Y [n]
l =

r
∑

ν=1

ulv y
[n−1]
v +

m
∑

k=1

�tk
l−1
∑

ν=1

a{k}
lν

dk−1

dtk−1�(Y [n]
ν ), l = 1, 2, . . . , s, (12a)

y[n]
l =

r
∑

ν=1

vlν y
[n−1]
v +

m
∑

k=1

�tk
s
∑

ν=1

b{k}
lν

dk−1

dtk−1�(Y [n]
ν ), l = 1, 2, . . . , r . (12b)

Here, similar to the class of GLMs, Y [n]
l is an approximation of stage order q to the

solution y of (2) at time tn−1 + clΔt , and y[n−1]
v is an approximation of order p to

some linear combination of the solution y and its derivatives at time tn−1, which are
defined by (7) and (9), respectively. As the method is of order p, this implies that the
output values y[n]

v fulfill (10). For the sake of convenience, we represent MDGLMs
through a partitioned (s + r) × (ms + r) Butcher tableau:

[

A{1} A{2} · · · A{m} U
B{1} B{2} · · · B{m} V

]

,

where A{k} := [a{k}
lν ]s×s and similarly for B{k}, U , and V .

2.1 Order and stage order conditions

To derive order conditions for the stages and the output values using a straightforward
application of Taylor’s theorem, let us denote the vectors

Z := [1 z · · · z p]T , ecz = [ec1z ec2z · · · ecs z],

and introduce the matrix W as

W := [w0 w1 . . . wp],

with wκ := [w1κ w2κ . . . wrκ ]T for κ = 0, 1, . . . , p. The necessary and sufficient
conditions for MDGLMs to be of order p and stage order q = p or q = p − 1,
respectively, are given in the following theorem:

Theorem 1 Suppose that y[n−1]
l satisfies (9). Then, the m-derivative GLM (12) of

order p and stage order q = p satisfies (7) and (10) iff

ecz =
m
∑

k=1

zk A{k}ecz +UW Z + O(z p+1),

(13)
ezW Z =

m
∑

k=1

zk B{k}ecz + VW Z + O(z p+1).
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The m-derivative GLM (12) of order p and stage order q = p− 1 satisfies (7) and
(10) iff

ecz =
m
∑

k=1

zk A{k}ecz +UW Z

+
(

cp

p! −
m
∑

k=1

A{k} cp−k

(p − k)! −Uwp

)

z p + O(z p+1), (14)

ezW Z =
m
∑

k=1

zk B{k}ecz + VW Z + O(z p+1).

Here, the exponential is applied component-wise to a vector.

It should be noted that the proofs are simple generalizations of those given for
SGLMs [2, 7], and are hence neglected here. In line with what has been done for
GLMs and SGLMs, it can be clarified that (13) and (14) are equivalent to

cκ

κ! − A{1} cκ−1

(κ − 1)! − A{2} cκ−2

(κ − 2)! − · · · − A{m} cκ−m

(κ − m)! −Uwκ = 0, κ = 0, 1, . . . , q,

and

κ
∑

j=0

wκ− j

j ! − B{1} cκ−1

(κ − 1)! − B{2} cκ−2

(κ − 2)! − · · · − B{m} cκ−m

(κ − m)! − Vwκ = 0, κ = 0, 1, . . . , p,

for q = p or q = p − 1, respectively.

3 SSP conditions for multiderivative GLMs

3.1 Monotonicity theory for multiderivative GLMs

Following the formulation of SGLMs introduced in [31], to determine sufficient con-
ditions for multiderivative GLMs (12) to be SSP, we reformulate (12) as

Y [n]
l =

r
∑

ν=1

slν y
[n−1]
ν +

m
∑

k=1

�tk
s+r
∑

ν=1

t {k}lν
dk−1

dtk−1�(Y [n]
ν ), l = 1, 2, . . . , s + r ,

y[n]
l = Y [n]

s+l , l = 1, 2, . . . , r , (15)

where n = 1, 2, . . . , N . This method is characterized by the matrices T {k} = [t {k}lν ] ∈
R(s+r)×(s+r), k = 1, 2, . . . ,m, and S = [slν] ∈ R(s+r)×r defined by

T {k} =
(

A{k} 0
B{k} 0

)

, and S =
(

U
V

)

.
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In a similar manner to [26, 31], we assume that the components of the matrix S
fulfill the condition

r
∑

ν=1

slν = 1, l = 1, 2, . . . , s + r .

We will say that an explicit m-derivative GLM (15) is monotonic if

∥

∥Y [n]
l

∥

∥ ≤ max
1≤ν≤r

∥

∥y[n−1]
ν

∥

∥, for l = 1, 2, . . . , s + r . (16)

To obtain the strong stability conditions formultiderivative GLMs up to four deriva-
tives, let us to introduce the vector

Φ(Y [n]) :=
[

Φ(Y [n]
1 )T Φ(Y [n]

2 )T · · · Φ(Y [n]
s+r )

T
]T

, k = 1, 2, . . . ,m,

and similarly for dk−1

dtk−1 Φ(Y [n]). To preserve (16), the forward Euler condition (3) and
the second-derivative condition (6) are needed together with two further conditions
that include third- and fourth-order temporal derivatives. These are given as Taylor
series conditions, i.e.,

∥

∥

∥

∥

Y [n] + ΔtΦ(Y [n]) + Δt2

2
Φ̇(Y [n]) + Δt3

6
Φ̈(Y [n])

∥

∥

∥

∥

≤ ∥∥Y [n]‖, ∀Δt ≤ αΔtFE

(17)
and

∥

∥

∥

∥

Y [n] + ΔtΦ(Y [n]) + Δt2

2
Φ̇(Y [n]) + Δt3

6
Φ̈(Y [n]) + Δt4

24

...

Φ(Y [n])
∥

∥

∥

∥

≤ ∥∥Y [n]∥
∥,

∀Δt ≤ α̃ΔtFE.

(18)

Here, α, and α̃ are scaling factors that compare the stability condition of the m-
derivative method, for m = 3 and m = 4 respectively, to that of the forward Euler
method. Using these conditions, we are able to formulate sufficient conditions so that
a fourth-derivative GLM satisfies the desired monotonicity condition under a given
timestep.

Theorem 2 Given spatial discretizationsΦ, Φ̇, Φ̈, and
...

Φ that satisfy the forwardEuler
condition (3), the second-derivative condition (6) and Taylor series conditions (17)
and (18), respectively, a multiderivative GLM of the form (15) with m = 4 preserves
the strong stability property

∥

∥Y [n+1]∥
∥ ≤ ∥∥Y [n]∥

∥ under the timestep restriction Δt ≤
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βΔtFE if it satisfies the conditions

RS ≥ 0,

βR
(

T {1} − 6β2

α2 T
{3} + 24β

α̃
(
β2

α2 − β2

α̃2 )T
{4}
)

≥ 0,
β2

α̂2R
(

T {2} − 3β
α
T {3} + 12β

α̃
(
β
α

− β
α̃
)T {4}

)

≥ 0,

6β3

α3R
(

T {3} − 4β
α̃
T {4}

)

≥ 0,

24 β

α̃4RT {4} ≥ 0,

(19)

where

R =
(

I + βT {1} + β2

α̂
T {2} + 3

β3

α3α̂2

(

2α̂2 − 2αα̂2 − α2
)

T {3}

+
(

24
β4(1 − α̃)

α̃4 + 12
β4 (̃α − α)

αα̂2α̃2 + 24
β4 (α − 1)

α̃α3

)

T {4}
)−1

,

for some β > 0. In the above conditions, the inequalities are to be understood
component-wise.

Proof Considering the method (15) with m = 4 and adding βT {1}Y [n], ̂β2T {2}Y [n],
(

6β
3 − 6ββ

2 − 3̂β2β
)

T {3}Y [n], and
(

24˜β3(˜β − β) + 12˜β̂β2(β − ˜β) + 24˜ββ
2
(β − β)

)

T {4}Y [n] to both sides, results in

(

I + βT {1} + ̂β2T {2} +
(

6β
3 − 6ββ

2 − 3̂β2β
)

T {3}

+
(

24˜β3(˜β − β) + 12˜β̂β2(β − ˜β) + 24˜ββ
2
(β − β)

)

T {4}) Y [n]

=Sy[n−1] + β
(

T {1} − 6β
2
T {3} + 24˜β(β

2 − ˜β2)T {4})
(

Y [n] + Δt

β
Φ(Y [n])

)

+ ̂β2
(

T {2} − 3βT {3} + 12˜β(β − ˜β)T {4})
(

Y [n] + Δt2

̂β2
Φ̇(Y [n])

)

+ 6β
3
(

T {3} − 4˜βT {4})
(

Y [n] + Δt

β
Φ(Y [n]) + Δt2

2β
2 Φ̇(Y [n]) + Δt3

6β
3 Φ̈(Y [n])

)

+ 24˜β4T {4}
(

Y [n] + Δt
˜β

Φ(Y [n]) + Δt2

2˜β2
Φ̇(Y [n]) + Δt3

6˜β3
Φ̈(Y [n]) + Δt4

24˜β4

...

Φ(Y [n])
)

.
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Supposing that the matrix in front of Y [n] on the left-hand side is invertible and
setting

R =
(

I + βT {1} + ̂β2T {2} +
(

6β
3 − 6ββ

2 − 3̂β2β
)

T {3}

+
(

24˜β3(˜β − β) + 12˜β̂β2(β − ˜β) + 24˜ββ
2
(β − β)

)

T {4})−1
,

G =βR
(

T {1} − 6β
2
T {3} + 24˜β(β

2 − ˜β2)T {4}) ,

H =̂β2R
(

T {2} − 3βT {3} + 12˜β(β − ˜β)T {4}) ,

J =6β
3
R
(

T {3} − 4˜βT {4}) , L = 24˜β4RT {4},

we obtain

Y [n] =RSy[n−1] + G
(

Y [n] + Δt

β
Φ(Y [n])

)

+ H
(

Y [n] + Δt2

̂β2
Φ̇(Y [n])

)

+ J

(

Y [n] + Δt

β
Φ(Y [n]) + Δt2

2β
2 Φ̇(Y [n]) + Δt3

6β
3 Φ̈(Y [n])

)

+ L
(

Y [n] + Δt
˜β

Φ(Y [n]) + Δt2

2˜β2
Φ̇(Y [n]) + Δt3

6˜β3
Φ̈(Y [n]) + Δt4

24˜β4

...

Φ(Y [n])
)

.

An easy computation shows that R + G + H + J + L = I . In combination with
the fact that the elements of G, H, J, L, and RS are all non-negative, and using

‖Syn−1‖ ≤
r
∑

ν=1

slν max
j

‖y[n−1]
j ‖ ≤ max

j
‖y[n−1]

j ‖, l = 1, 2, . . . , s + r ,

these five terms describe a convex combination of terms which are SSP, and the
resulting value is SSP as well:

∥

∥Y [n]∥
∥ ≤RS

∥

∥

∥

∥

y[n−1]
∥

∥

∥

∥

+ G

∥

∥

∥

∥

Y [n] + Δt

β
Φ(Y [n])

∥

∥

∥

∥

+ H

∥

∥

∥

∥

Y [n] + Δt2

̂β2
Φ̇(Y [n])

∥

∥

∥

∥

+ J

∥

∥

∥

∥

Y [n] + Δt

β
Φ(Y [n]) + Δt2

2β
2 Φ̇(Y [n]) + Δt3

6β
3 Φ̈(Y [n])

∥

∥

∥

∥

+ L

∥

∥

∥

∥

Y [n] + Δt
˜β

Φ(Y [n]) + Δt2

2˜β2
Φ̇(Y [n]) + Δt3

6˜β3
Φ̈(Y [n]) + Δt4

24˜β4

...

Φ(Y [n])
∥

∥

∥

∥

,
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under the time-step restrictions Δt ≤ βΔtFE, Δt ≤ α̂̂βΔtFE, Δt ≤ αβΔtFE and
Δt ≤ α̃˜βΔtFE. Equating these four timestep restrictions leads to the optimal timestep,
i.e., we require β = α̂̂β = αβ = α̃˜β. Therefore, for ̂β = β

α̂
, β = β

α
, and ˜β = β

α̃
,

the SSP conditions (19) ensure that G ≥ 0, H ≥ 0, J ≥ 0, L ≥ 0, and RS ≥ 0
component-wise and the method (15) with m = 4 preserves the strong stability con-
dition

∥

∥Y [n+1]∥
∥ ≤ ∥∥Y [n]∥

∥ under the timestep restriction Δt ≤ βΔtFE. 	

This theorem provides sufficient conditions for fourth-derivative GLMs to be SSP

for any Δt ≤ βΔtFE. It should be noted that SSP conditions for third-derivative
GLMs can be derived by setting T {4} = 0 in (19). Similar to [14, 31], the search
for optimal SSP MDGLMs can be cast into an optimization problem with the aim of
maximizing the SSP coefficient C = max β subject to the SSP conditions (19) and
order conditions (13) (for methods of order p = q) or (14) (for methods of order
p = q + 1) as inequality and equality constraints, respectively.

3.2 Optimal SSPmultiderivative GLMs

In this section, we develop optimal SSP third- and fourth-derivative GLMs and their
corresponding SSP coefficients, and compare with SSP third-derivative RK methods
developed in [39]. The value of the SSP coefficient C is a function of the parameters
α̂, α, and α̃, which depend on the spatial discretizations for the first, second, third,
and fourth derivatives. Following the existing publications on SSP second-derivative
methods, e.g., in [14], we consider the convection equation Yt = Yx . Φ is defined to
be the original first-order upwind method

Φ(yn)i := yni+1 − yni
Δx

≈ Yx (xi ), (20)

and Φ̇ is defined via the second-order centered discretization to Yxx as

Φ̇(yn)i := yni+1 − 2yni + yni−1

Δx2
≈ Yxx (xi ). (21)

Both approaches were proved to be total variation diminishing (TVD) [14] in the
following sense:

yn+1 = yn + ΔtΦ(yn), is TVD for Δt ≤ Δx (22)

yn+1 = yn + Δt2Φ̇(yn), is TVD for Δt ≤
√
2

2
Δx . (23)

To determine the values of α and α̃ for the same problem, we consider the following
discretization schemes to approximate third- and fourth-order temporal derivatives

Φ̈(yn)i = yni+2 − 3yni+1 + 3yni − yni−1

Δx3
≈ Yxxx (xi ), (24)
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...

Φ(yn)i = yni+2 − 4yni+1 + 6yni − 4yni−1 + yni−2

Δx4
≈ Yxxxx (xi ). (25)

Using these discretizations, we can directly compute the values of α and α̃ for
which the Taylor series conditions (17) and (18) are TVD. That is, with α̃ := Δt

Δx ≥ 0,
for the fourth-derivative Taylor series condition, we observe that

∥

∥yn+1∥
∥

T V =
∥

∥

∥

∥

(

α̃3

6
+ α̃4

24

)

yni+2 +
(

α̃ + α̃2

2
− α̃3

2
− α̃4

6

)

yni+1

+
(

1 − α̃ − α̃2 + α̃3

2
+ α̃4

4

)

yni +
(

α̃2

2
− α̃3

6
− α̃4

6

)

yni−1 + α̃4

24
yni−2

∥

∥

∥

∥

T V

≤∥∥yn∥∥T V

provided that

α̃ + α̃2

2 − α̃3

2 − α̃4

6 ≥ 0,

1 − α̃ − α̃2 + α̃3

2 + α̃4

4 ≥ 0,

α̃2

2 − α̃3

6 − α̃4

6 ≥ 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⇐⇒ α̃ ≤ 0.73205....

In a similar way, setting α := Δt
Δx and plugging the above definitions of Φ, Φ̇, and

Φ̈ into the third-order Taylor condition (17), we have

α + α2

2 − α3

2 ≥ 0,

1 − α − α2 + α3

2 ≥ 0,

α2

2 − α3

6 ≥ 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⇐⇒ α ≤ 0.68889....

Considering the values of α̂ =
√
2
2 , α = 0.68889 and α̃ = 0.73205, we are able to

derive SSP third-derivative GLMs (when T {4} = 0) and fourth-derivative GLMs by
solving an optimization problem with objective function of the form

min −β, (26)

subject to inequality constraints corresponding to the SSP conditions (19), depending
on the value of β and the coefficient matrices of the methods, and equality constraints
corresponding to the order and stage order conditions (13) (for methods of order
p = q) or (14) (for methods of order p = q + 1). In this work, we restrict our
attention to MDGLMs (15) with s = 2 and s = 3 internal stages and r = 2 external
stages of order p, with stage order q = p and q = p−1. We assume that the matrices
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A{k} ∈ Rs×s , k = 1, 2, . . . ,m, are strictly lower triangular, i.e.,

A{k} =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
a{k}
21 0
...

. . .
. . .

a{k}
s−1,1

. . .
. . . 0

a{k}
s,1 a{k}

s,2 · · · a{k}
s,s−1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

To ensure zero-stability, we also assume that the matrix V is a rank one matrix of
the form V = evT with e = [1 1]T , v = [v1 v2]T and vT e = 1.

Solving the optimization problem (26) using the MATLAB function fmincon
choosing the sequential programming (“sqp”) algorithm,we derive the following novel
third- and fourth-derivative GLMs that are provably SSP in the sense of Theorem 2:

– The third-derivative methods SSP 3DGLMp-s, with p = q = 4, 5, and s = 2.
– The third-derivative methods SSP 3DGLMp-s, with p = q+1 = 6, 7, and s = 3.
– The fourth-derivative methods SSP 4DGLMp-s, with p = q = 4, 5, 6, and s = 2.
– The fourth-derivative method SSP 4DGLM7-s, with p = q + 1 = 7 and s = 2.
– The fourth-derivative methods SSP 4DGLMp-s, with p = q + 1 = 6, 7, 8, 9, and
s = 3.

The twelve developed methods are listed in the Appendix. The coefficients are
rather cumbersome, as explained, they stem from a numerical optimization routine.
The coefficients can therefore also be downloaded at https://www.uhasselt.be/nl/wie-
is-wie/jochen-schuetz or obtained from the corresponding author upon reasonable
request.

In Table 1, we report the obtained values of SSP coefficients β for the constructed
schemes, as well as the SSP coefficient of the SSP 2DGLMmethods developed in [31]
and SSP 3DRK methods studied in [39], which reveals that multiderivative methods
enable the attainment of higher-order accuracy with a minimal number of stages. In
this table, dashes indicate that such methods cannot be constructed due to the lack of
free parameters for solving both order and stage order conditions.

4 Multiderivative GLMs for hyperbolic conservation laws

On the uniform partition of the domain Ω with M cells of the size Δx , i.e.,
{x1, . . . , xM }, multiderivative GLMs (12) applied to (1) can be expressed as

Y [n]
i,l =

r
∑

ν=1

ulv y
[n−1]
i,v −

m
∑

k=1

�tk
l−1
∑

ν=1

a{k}
lν Dx D

k−1
t f (Y [n]

i,ν ), l = 1, 2, . . . , s, , (27a)
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y[n]
i,l =

r
∑

ν=1

vlv y
[n−1]
i,v −

m
∑

k=1

�tk
s
∑

ν=1

b{k}
lν Dx D

k−1
t f (Y [n]

i,ν ), l = 1, 2, . . . , r , (27b)

where n = 1, 2, . . . , N , and i = 1, 2, . . . , M . Here, Dx and Dt stand for suitable
approximations of ∂x and ∂t . This section aims to avoid using Jacobians of the flux
function f that occur as a result of higher temporal derivatives used in the formulation
of our methods. To do this, we follow the Jacobian-free technique outlined in [11].
This technique is based on the compact approximate Taylor (CAT) approach proposed
in [9] as an extension to the work in [50]. These techniques heavily rely on discrete
differentiation. In what follows, we introduce the required notations and describe the
Jacobian-free technique when applied to MDGLMs (27) in the sequel.

4.1 Discrete differentiation

The aim of this part is to fix some notation on using finite differences similar as in [9,
11]. We will use two families of interpolatory formulas: the numerical approximations
for the k-th derivative based on (2p + 1)-point stencils and 2p-point stencils.

Assuming that {xi } are the points of a uniform mesh of step Δx , the first family
based on a (2p + 1)-point stencil is given by

(Piϕ)(k)(xi ) := 1

Δxk

p
∑

j=−p

δkp, jϕ(xi+ j ), (28)

where Piϕ are the Lagrangian interpolation polynomials of degree 2p interpolating
ϕ : R → R at the 2p + 1 points xi−p, . . . , xi+p; and δkp, j are related to the Lagrange

Table 1 SSP coefficients β of the two and three stage SSP second, third and fourth derivative GLMs of
order p and stage order q = p and q = p − 1

p = q = SSP 2DGLM SSP 3DRK SSP 3DGLM SSP 4DGLM

s = 2

4 4 0.738 1.120 1.119 1.436

5 5 − 0.679 0.755 1.223

6 6 − − − 1.013

7 6 − − − 0.775

s = 3

6 5 − 0.677 0.589 1.819

7 6 − − 0.282 1.344

8 7 − − − 0.826

9 8 − − − 0.328

SSP 2DGLM and SSP 3DRK were developed in [31] and [39], respectively,and are added for references
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polynomials

L p, j (ω) :=
p
∏

r=−p
r �= j

ω − r

j − r
, j = −p, . . . , p (29)

through
δkp, j := L(k)

p, j (0), j = −p, . . . , p.

Wewill also use the following numerical differentiation formulas based on a 2p-point
stencil,

(Qiϕ)(k)(xi+m) := 1

Δxk

p
∑

j=−p+1

γ
k,m
p, j ϕ(xi+ j ), (30)

that approximate the k-th derivative at the points xi +mΔx ,m = −p+1, . . . , p. Here,
Qiϕ are the Lagrangian interpolation polynomials of degree 2p − 1 interpolating ϕ

at the 2p points xi−p+1, . . . , xi+p , and γ
k,m
p, j are related to the Lagrange polynomials

�p, j (ω) :=
p
∏

r=−p+1
r �= j

ω − r

j − r
, j = −p + 1, . . . , p (31)

through
γ
k,m
p, j := �

(k)
p, j (m), j,m = −p + 1, . . . , p.

The corresponding linear operators to (28) and (30) are defined by

P(k) : R2p+1 → R, v �→ 1

Δxk

p
∑

j=−p

δkp, jv j ,

Q(k)
m : R2p → R, w �→ 1

Δxk

p
∑

j=−p+1

γ
k,m
p, j w j .

In order to have the method in conservation form, auxiliary centered coefficients
λk−1
p, j have been introduced in [50] via the relations

δkp,p =:λk−1
p,p ,

δkp, j =:λk−1
p, j − λk−1

p, j+1, j = −p + 1, . . . , p − 1,

δkp,−p =: − λk−1
p,−p+1.

Considering these auxiliary centered coefficients allows for an alternative form for
(28) as differences of new ‘half-way point’ interpolation operators:

(Piϕ)(k)(xi ) =
(

Λ(k−1)ϕ
)

(xi+1/2) − (Λ(k−1)ϕ
)

(xi−1/2)

Δx
, (32)

123



Numerical Algorithms

with Λ(k−1) as an operator mapping to P2p−1 given by

(

Λ(k−1)ϕ
)

(xi+1/2) := 1

Δxk−1

p
∑

j=−p+1

λk−1
p, j ϕ(xi+ j ). (33)

For a detailed description of interpolation operators, we refer to [9, 11] and the
references therein.

4.2 Jacobian-free MDGLMs

With the aim of assembling the class of compact approximate MDGLMs (CAMDGLMs),
we define the conservative form of the solution via

Y [n]
i,l :=

r
∑

ν=1

ulν y
[n−1]
i,ν − �t

�x

(

˜F [n]
i+1/2,l − ˜F [n]

i−1/2,l

)

, l = 1, 2, . . . , s, (34a)

y[n]
i,l :=

r
∑

ν=1

vlν y
[n−1]
i,ν − �t

�x

(

F [n]
i+1/2,l − F [n]

i−1/2,l

)

, l = 1, 2, . . . , r , (34b)

where the numerical fluxes are given by

˜F [n]
i+1/2,l =

m
∑

k=1

�tk−1
l−1
∑

ν=1

a{k}
lν �(0)(˜f

ν
)
(k−1)
i,〈0〉 , l = 1, 2, . . . , s (35a)

F [n]
i+1/2,l =

m
∑

k=1

�tk−1
s
∑

ν=1

b{k}
lν �(0)(˜f

ν
)
(k−1)
i,〈0〉 , l = 1, 2, . . . , r . (35b)

Here, the angled brackets stand for the local stencil function

〈·〉 : Z → Z2p : w �→ (w − p + 1, . . . , w + p)T ,

and will be used for both the spatial index i and temporal index n. As in [11], to
compute˜f (k−1)

i,〈0〉 , we use the compact approximate Taylor (CAT) procedure [9] and
hence, the flux derivatives are computed by the linear operator alternative of (32)
determined by

Λ(0)̃f (k−1)
i,〈0〉 :=

p
∑

j=−p+1

λ0p, j
˜f (k−1)
i, j ,

in which
˜f (k−1)
i, j := Q(k−1)

0 (fT )
k−1,〈n〉
i, j , j = −p + 1, . . . , p

are local approximations for the temporal derivatives of the flux and depend on the
approximate flux values (fT )

k−1,n+r
i, j ≈ f (Y [n+r ]

i+ j ). Indeed, the following approximate
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flux is taken to approximately evaluate the (k − 1)-st discrete temporal derivative in
xi+ j :

(fT )
k−1,n+r
i, j := f

(

Y [n]
i+ j +

k−1
∑

�=1

(rΔt)�

�! ˜Y (�)
i, j

)

, j, r = −p + 1, . . . , p.

All that remains to be defined are the quantities ˜Y (�)
i, j ≈ ∂�

∂t�
Y [n]
i+ j . To do this, we

make use of the Cauchy–Kovalevskaya identity

∂�
t y = −∂x∂

�−1
t f (y),

so, we have
˜Y (�)
i, j := −Q(1)

j
˜f (�−1)
i,〈0〉 , j = −p + 1, . . . , p.

A summary of the compact approximatemDGLMp-s procedure to obtain the stage
values is provided in Algorithm 1. It should be noted that the flux at the left half-way
point is determined by a shift of the index, i.e., ˜F [n]

i−1/2,l = ˜F [n]
i−1+1/2,l or is given by

the boundary condition.
Following [11], the expected order is theminimumof the underlyingmultiderivative

GLMs and the order of the interpolation (2p). Assuming that both f and y are smooth
functions in C∞, and O(Δt) = O(Δx), we have the following theorem stating the
order of Jacobian-free MDGLMs.

Theorem 3 The order of an explicit compact approximate mDGLMp-s is given by
min(2p, p) where p is the order of the underlying MDGLM, while the stencil to
update y(xi , tn) in the CAT procedure is given by {i − p, i − p + 1, . . . , i + p}.

Algorithm 1 Stages of compact approximate mDGLMp-s, an m-derivative, p-th
order, s-stage CAMDGLM.

Stage solution (l = 2, . . . , s):

for j = −p + 1 to p do

(˜f l−1)
(0)
i, j = f (Y [n]

i+ j,l )

end

˜F [n]
i+1/2,l =

l−1
∑

ν=1
a{1}
lν �(0)(˜fν)

(0)
i,〈0〉

for k = 2 to r do

Get (˜fl−1)
(k−1)
i, j via CAT procedure.

˜F [n]
i+1/2,l += �tk−1

l−1
∑

ν=1
a{k}
lν �(0)(˜fν)

(k−1)
i,〈0〉

end

Y [n]
i,l =

2
∑

ν=1

ulν y
[n−1]
i,ν − �t

�x

(

˜F [n]
i+1/2,l − ˜F [n]

i−1/2,l

)

CAT procedure [9] (k = 2, . . . ,m):

for j = −p + 1 to p do

˜Y (k−1)
i, j = −Q(1)

j
˜f(k−2)
i,〈0〉

= − 1
�x

p
∑

r=−p+1
γ
1, j
p,r
˜f(k−2)
i,r

for r = −p + 1 to p do

(fT )
k−1,n+r
i, j = f

(

Y [n]
i+ j +

k−1
∑

�=1

(r�t)�

�! ˜Y (�)
i, j

)

end

˜f(k−1)
i, j = Q(k−1)

0 (fT )
k−1,〈n〉
i, j

= 1
�tk−1

p
∑

r=−p+1
γ
k−1,0
p,r (fT )

k−1,n+r
i, j

end
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The proof is similar to [11, Theorem 1], and is hence left out.

4.3 A Jacobian-free starting procedure

Due to the structure of the input vector of a multiderivative GLM, a starting procedure
is needed to approximate the initial vector y[0] using sufficient output information.
As mentioned in Section 2, see (9), the components of the input vector y[0]

i,ν , i =
1, 2, . . . , M , are approximations of order p to the linear combinations of the solution
y and its derivatives at the point (xi , t0), i.e.,

y[0]
i,ν =

p
∑

κ=0

wνκ∂κ
t y(xi , t

0) + O(�t p+1). (36)

To calculate higher derivatives ∂κ
t y(xi , t

0) directly, we use the Cauchy-Kovalevskaya
identity

∂κ
t y(xi , t

0) = −∂x∂
κ−1
t f (y(xi , t

0)),

once again, and the approximate Taylor procedure [9] to derive the expression of the
initial vector y[0]. The flux derivatives can be computed by

∂κ
t y(xi , t

0) ≈ ỹ(κ)
i := −P(1)

˜f (κ−1)
〈i〉 ,

in which the approximations ˜f (κ−1)
i+ j ≈ ∂κ−1

t f (y(xi+ j , t0)) are given by

˜f (κ−1)
i+ j := P(κ−1)(fT )

κ−1,〈0〉
i+ j , j = −p, . . . , p,

with

(fT )
κ−1,r
i+ j := f

(

y(xi+ j , t
0) +

κ−1
∑

�=1

(rΔt)�

�! ỹ(�)
i+ j

)

,

for r = −p, . . . , p. Via the described steps, the values ˜f (κ−1)
i+ j are recursively obtained.

A summary of the approximate Taylor (AT) procedure to obtain time-derivatives
∂

(κ)
t y(xi , t0) is provided in Algorithm 2.

5 Numerical results

In this section,we shownumerical experiments verifying the SSP theory, accuracy, and
monotonicity properties of the constructed methods. To accomplish this, we consider
several linear and nonlinear test cases with both smooth and discontinuous initial
data. For accuracy tests, setups, where shock formation occurs, are avoided to obtain
the expected order of convergence. Hence, we do not need to apply flux-limiting
techniques in convergence studies. For monotonicity studies, on the other hand, it is
vital to check the behavior of the numerical solutions close to a discontinuity or shock,
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Algorithm 2 Values of initial vector y[0] obtained via an approximate Taylor proce-
dure.

Time derivatives:

for j = −p to p do

˜f (0)
i+ j = f (y(xi+ j , t

0))

end

∂t y(xi , t
0) = − 1

Δx

p
∑

j=−p

δ1p, j
˜f (0)
i+ j

for κ = 2 to p do

Get ˜f (κ−1)
i+ j via AT procedure.

∂κ
t y(xi , t

0) =

− 1

Δx

p
∑

j=−p

δ1p, j
˜f (κ−1)
i+ j

end

AT procedure [9] (κ = 2, . . . , p):

ỹ(κ−1)
i+ j = −P(1)̃f(κ−2)

〈i〉

= − 1
Δx

p
∑

r=−p
δ1p,r

˜f (κ−2)
i+r

for r = −p to p do

(fT )
κ−1,r
i+ j =

f

(

y(xi+ j , t
0) +

κ−1
∑

�=1

(rΔt)�

�! ỹ(�)
i+ j

)

end

˜f (κ−1)
i+ j = P(κ−1) (fT )

κ−1,〈0〉
i+ j

= 1
Δtκ−1

p
∑

r=−p
δκ−1
p,r (fT )

κ−1,r
i+ j

which may produce strong non-physical numerical oscillations. To avoid the latter, we
shall use flux limiters as in [9]. The van Albada flux limiter function is used here.

To measure accuracy, we use the scaled L1-error at the final time t N ≡ T f given
by

‖y(T f ) − y[n]‖ := Δx
M
∑

i=1

|y(xi , T f ) − yNi |,

where y(T f ) represents a vector of reference solution values in the spatial grids
x1, x2, . . . , xM at time T f ; and yN stands for the vector of approximations yNi at
time t N .

In what follows, we perform several numerical experiments on a variety of 1d
(scalar/systems of) conservation laws: Linear transport, Burgers, Buckley–Leverett,
and Euler equations are used. In these test cases, both spatial and temporal grids are
refined simultaneously by means of the relation

Δt := σΔx

maxi |λeig,i| ,

where σ and λeig,i stand for a chosen CFL number, and the local eigenvalues of the
Jacobian w.r.t initial value, respectively. For stable timestepping, we set σ ≤ β, with
β the obtained SSP coefficients of the new schemes. In all the test cases with smooth
initial data, the expected order of convergence is preserved for the proposed Jacobian-
free SSP multiderivative GLMs.

5.1 SSP property on the linear transport equation

To assess the TVD characteristics of the methods proposed in this study, we calculate
the maximum observed rise in total variation during each computational step. This
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rise is defined through

max
1≤n≤N

(

‖yn+1‖T V − ‖yn‖T V
)

. (37)

Our primary objective is to identify the time step at which this maximum rise
becomes significant, surpassing the threshold of 10−10. We consider the linear advec-
tion problem:

∂t Y − ∂xY = 0,

with domain x ∈ [−2, 2] and periodic boundary conditions. The initial condition is a
step function defined as

Y0(x) =
{

1 if − 1
2 ≤ x ≤ 1

2 ,

0 otherwise.

We compute the spatial derivatives up to four using (20), (21), (24), and
(25), respectively. As this testcase is meant to demonstrate the SSP abilities of
our developed methods, we do not use both the CAT procedure and flux lim-
iters in this subsection. Using a fixed grid size Δx = 1

75 and a time-step
Δt = CFL · Δx , where the value of CFL ranges from 0.02 until reaching a point
beyond which the TVD property is violated, we advance each method by N = 50
time-steps.We then compare the performance of the developed time-steppingmethods
against non-SSP methods from the literature. In particular, we compare against the
third-derivative method with p = 5 and s = 2 developed in [38], a third-derivative
RK method with p = 7 and s = 3, and a fourth-derivative RK method with p = 6
and s = 2, the latter two derived in [11].

Figures 1 and 2 display the maximum per-step increase in total variation (37) for
each CFL value Δt

Δx . First of all, it can be observed that the SSP schemes perform
indeed as the name suggests, they preserve the total variation until a certain threshold
CFL value, where a sudden ’shock’ occurs in the total variation of the solution. It can
be also seen from the picture that the β-value presented in Table 1 is typically way
too pessimistic, the CFL threshold value is in all cases larger than the computed β,
with the exception of 4DGLM6-3, where machine accuracy issues seem to play a role
(note that the increase is smaller than 10−12 for this case for Δt

Δx < 1.819).
Furthermore, our novel methods behave way better than themethods from literature

which are not SSP, at least in the sense that the total variation is preserved.

5.2 Convergence and numerical stability studies

Problem 1 We consider again a linear advection problem ∂t Y+∂xY = 0with periodic
boundary conditions and smooth sine-wave initial condition

Y (x, 0) = 1

4
sin(πx), x ∈ [0, 2]. (38)
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Fig. 1 Comparison of the rise in total variation as a function of the CFL number for third-derivative GLMs
and RK methods

Adopting the Jacobian-free technique described in Algorithm 1, we apply the explicit
SSP 3DGLMs and 4DGLMs constructed in this work together with the SSP 2DGLMs
obtained in [31] to this problem. In order to calculate the L1-error for theCAMDGLMs,
we run the simulation up to T f = 0.8 with co-refinement of the spatial and temporal
grids. The results with different values of CFL corresponding to each method are
visualized inFigs. 3 and4, indicating that all expected convergence orders,min(2p, p),
are achieved. The compact approximate 3DGLM5-2 and 3DGLM6-3 behave in a very
alike manner.

To show the capability of the constructedmethods in preserving the stability proper-
ties near the appearanceof shocks,weapply two stage compact approximateMDGLMs
of order four with flux limiter technique: FL-2DGLM4-2, FL-3DGLM4-2 and FL-

Fig. 2 Comparison of the rise in total variation as a function of the CFL number for fourth-derivative GLMs
and RK methods
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Fig. 3 Convergence order of explicit compact approximate SSP2DGLMs (left) and 3DGLMs (right) applied
to the linear transport equation on the sine wave Y0(x) = 1

4 sin(πx) up to T f = 0.8

4DGLM4-2, to the above-mentioned transport equation with initial condition

Y (x, 0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 0 ≤ x < 0.2

2, 0.2 ≤ x < 0.7

1, 0.7 ≤ x ≤ 1

(39)

and run the simulation up to T f = 1.0 with M = 100 points and CFL values σ = 0.8
and σ = 0.5. The numerical simulations are shown in Fig. 5 where the van Albada flux
limiter function is used. As it is clear, for σ = 0.8 the results given by FL-3DGLM4-
2 and FL-4DGLM4-2 maintain stable near the discontinuities while FL-2DGLM4-2
with the same CFL value show strong oscillations. However, it can be seen from Fig. 5
(right) that for σ = 0.5, the FL-2DGLM4-2 behaves way better, yet, some slight
oscillations still occur.

Fig. 4 Convergence order of explicit compact approximate SSP 4DGLMs applied to the linear transport
equation on the sine wave Y0(x) = 1

4 sin(πx) up to T f = 0.8
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Fig. 5 Comparison of the performance of compact approximate MDGLMs of the same order for linear
transport equation with initial condition (39), σ = 0.8 (left), σ = 0.5 (right) and T f = 1

Problem 2 We consider Burger’s equation

∂t Y + ∂x

(

Y 2

2

)

= 0,

with the sine-wave initial condition (38) and periodic boundary conditions on
the spatial domain x ∈ [0, 2]. As observed in [30, 48], a shock is formed at
t∗ = 4

π
≈ 1.27. To certify the theoretical accuracy of min(2p, p), we set the final

time to T f = 0.8, before shock formation. As in the previous test case, we apply
CAMDGLMs to this problem and run the simulations up to T f = 0.8 to obtain
L1-errors when both the temporal and spatial grids are refined simultaneously. The
obtained results are shown in Figs. 6 and 7. The orders coincide in all cases with the
expected one, min(2p, p). For the methods 3DGLM5-2 and 4DGLM5-2, the con-
vergence order is slightly better than expected. Here the spatial order of accuracy is
higher than the temporal one, and the spatial error dominates the overall behavior.

Fig. 6 Convergence order of explicit compact approximate SSP 2DGLMs and 3DGLMs applied to Burgers
equation on the sine wave Y0(x) = 1

4 sin(πx) up to T f = 0.8
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Fig. 7 Convergence order of explicit compact approximate SSP 4DGLMs applied to Burgers equation on
the sine wave Y0(x) = 1

4 sin(πx) up to T f = 0.8

Next, the same problem with all the same parameters but different initial condition

Y (x, 0) = 1

4
exp(cos(πx) + sin(πx)),

is solved using FL-2DGLM4-2, FL-3DGLM4-2 and FL-4DGLM4-2. Using σ = 0.8
and σ = 0.5, a resolution ofM = 100 points and T f = 1.0, after shock formation –the
breaking time is t∗ = 4

πe [11]– the numerical results are depicted in Fig. 8 revealing
that for σ = 0.8 (left side) the third-derivative and fourth-derivative GLMs with flux
limiter function exhibit smooth behavior close to the shock while second-derivative
GLM of the same order shows oscillations. It can also be seen from this figure (right
side) that for σ = 0.5 all the methods behave correctly.

Problem 3 Next, we consider the Buckley–Leverett flux [30]

∂t Y + ∂x

(

Y 2

Y 2 + a(1 − Y )2

)

= 0,

Fig. 8 Comparison of the performance of compact approximate MDGLMs of the same order for Burgers equ-
ation with initial condition Y0(x)= 1

4 exp(cos(πx)+sin(πx)), σ =0.8 (left), σ =0.5 (right) and T f =1.0
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Fig. 9 Convergence order of explicit compact approximate SSP2DGLMsand3DGLMsapplied toBuckley–
Leverett equation with initial condition Y0(x) = 1 − 3

4 cos2( π
2 x) up to T f = 0.1

with a = 1/4. This equation models a two-phase flow through a porous medium. For
this problem, we consider the initial condition

Y (x, 0) = 1 − 3

4
cos2

(π

2
x
)

,

with periodic boundary conditions on domain x ∈ [−1, 1]. As a first test in this
subsection, we set T f = 0.1, so that we have a continuous solution which enables
us to compute the exact solution via its characteristics. As in previous test cases, we
refine both temporal and spatial grids concurrently and calculate the L1-errors for
CAMDGLMs. The convergence results are plotted in Figs. 9 and 10; the expected
order of convergence are attained. Better performance than expected is observed for
methods 2DGLM5-3, 3DGLM5-2, 4DGLM5-2, and 4DGLM7-3, as a result of the
spatial order of accuracy being higher than the temporal one. Indeed, bearing in mind
that the compact approximate approach has been investigated as a natural extension

Fig. 10 Convergence order of explicit compact approximate SSP 4DGLMs applied to Buckley–Leverett
equation with initial condition Y0(x) = 1 − 3

4 cos2( π
2 x) up to T f = 0.1
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of Lax–Wendroff methods with an even-order accuracy, in most of the test cases when
2p > p, the odd-order MDGLMs take advantage and behave similar to the methods
of order 2p.

In a similar way as for the previous examples, we conclude this test case by solving
the same problem with all the same parameters except for the final time, which we
set to T f = 0.4, after shock appearance, and CFL numbers σ = 0.8 and σ = 0.5.
Using two stage multiderivative GLMs of order four with the van Albada flux limiter
function, we obtain numerical solutions with a quite similar behavior to those for the
Burgers equation, as can be seen in the left side of Fig. 11: FL-3DGLM4-2 and FL-
4DGLM4-2 indicate smooth behavior while 2DGLM4-2 shows numerical instability.
The right side of this figure presents the behavior of the numerical solutions forσ = 0.5
indicating that all of the methods preserve the required stability property near shock.

Problem 4 Finally, we consider the nonlinear system of Euler equations defined by

∂t Y + ∂x f (Y ) = 0,

with

Y =
⎛

⎝

ρ

ρν

E

⎞

⎠ , f (Y ) =
⎛

⎝

ρν

ρν2 + P
ν(E + P)

⎞

⎠ ,

where ρ stands for the density, E is the total energy, ν is the velocity, and P is the
pressure given by

P = (γ − 1)

(

E − 1

2
ρν2
)

,

with γ = 1.4, for ideal gas [30, 48]. We consider the following initial condition

Y (x, 0) = 1

4

⎛

⎝

3
1
3

⎞

⎠+ sin(πx)

2

⎛

⎝

1
1
1

⎞

⎠ ,

Fig. 11 Comparison of the performance of compact approximateMDGLMs of the same order for Buckley–
Leverett equation with initial condition Y0(x) = 1− 3

4 cos2( π
2 x), M = 100, σ = 0.8 (left), σ = 0.5 (right)

and T f = 0.4
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Fig. 12 Convergence order of explicit compact approximate SSP 2DGLMs and 3DGLMs applied to Euler
equationswithρ0(x) = 0.75+0.5 sin(πx), (ρν)0(x) = 0.25+0.5 sin(πx) and E0(x) = 0.75+0.5 sin(πx)
on x ∈ [0, 2] up to T f = 0.2 with σ = 0.15

on x ∈ [0, 2] with periodic boundary conditions and T f = 0.2. To examine the
accuracy of constructed methods for this test problem, a reference solution has been
computed via a third-order discontinuous Galerkin (DG) method in space and a third-
order SSP RK method in time [21] using M = 10240 cells and a CFL number of
σ = 0.15. The L1-errors for CAMDGLMs are calculated at final time T f = 0.2. The
convergence results are visualized in Figs. 12 and 13. It is clear from these figures
that all expected orders were obtained. Very similar behavior can be seen between the
methods that use the same p.

As in the previous test cases, running the simulations for each methods with their
corresponding CFL values, we observed that not all simulations were stable. Indeed,
3DGLMs and 4DGLMs with s = 2 diverged for M = 16, 32 and 64, and with s = 3
diverged for M = 16, 32, 64 and 128. In the case of 3DGLM7-3 and 4DGLM9-3, we

Fig. 13 Convergence order of explicit compact approximate SSP 4DGLMs applied to Euler equations with
ρ0(x) = 0.75+0.5 sin(πx), (ρν)0(x) = 0.25+0.5 sin(πx), and E0(x) = 0.75+0.5 sin(πx) on x ∈ [0, 2]
up to T f = 0.2 with σ = 0.15
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also observed divergence for M = 16, 32 and 64 (when the case is 4DGLM9-3) for
CFL value σ = 0.15.

6 Conclusions

In this paper, following an introduction to multiderivative GLMs, we studied the
monotonicity theory of multiderivative GLMs and derived sufficient conditions for
multiderivative GLMs to be SSP. Solving an optimization problem with the aim of
maximizing SSP coefficients and subject to the order and SSP conditions as equality
and inequality constraints, respectively, we obtained high-order explicit SSP multi-
derivative GLMs with two external stages and s = 2 and s = 3 internal stages up
to four derivatives and order nine for hyperbolic conservation laws. Such methods
involve cumbersome calculation of the flux derivatives. To conquer this flaw, based
on recent developments of explicit Jacobian-free multistage multiderivative solvers in
[11], we adopted a Jacobian-free technique for multiderivative GLMs in which time
derivatives of fluxes use local approximations based on discrete differentiations recur-
sively. Aside from not requiring costly symbolic computations, by this Jacobian-free
approach, higher-order multiderivative GLMs can be of more practical use in solving
PDEs. Through a variety of numerical test cases, it is shown that the desired conver-
gence order min(2p, p) is attained, where 2p stands for the spatial order and p for
temporal order.

In future works, the novel schemewill be extended and applied to more challenging
settings, for instance, a combination of MDGLMs and discontinuous Galerkin tech-
niques [40] is of high interest. In the case of problems with diffusion, very small local
mesh sizes are often needed and hence, acceptable time-steps become very small. In
order to take care of these diffusive effects, or other “stiff” effects such as the singular
perturbance that comes from low-Mach equations, the class of implicit and IMEXSSP
MDGLMs with A- and L-stability properties will be considered.

Appendices

A Coefficients of third-derivative GLMs

Here, we give the coefficient matrices of the constructed third-derivative GLMs for
s = 2 and s = 3. The coefficient matrices of two stage methods take the form

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 u11 u12

a{1}
21 0 a{2}

21 0 a{3}
21 0 u21 u22

b{1}
11 b{1}

12 b{2}
11 b{2}

12 b{3}
11 b{3}

12 1 − v v

b{1}
21 b{1}

22 b{2}
21 b{2}

22 b{3}
21 b{3}

22 1 − v v

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
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and three stage methods take the following form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 u11 u12

a{1}
21 0 0 a{2}

21 0 0 a{3}
21 0 0 u21 u22

a{1}
31 a{1}

32 0 a{2}
31 a{2}

32 0 a{3}
31 a{3}

32 0 u31 u32

b{1}
11 b{1}

12 b{1}
13 b{2}

11 b{2}
12 b{2}

13 b{3}
11 b{3}

12 b{3}
13 1 − v v

b{1}
21 b{1}

22 b{1}
23 b{2}

21 b{2}
22 b{2}

23 b{3}
21 b{3}

22 b{3}
23 1 − v v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

1. SSP 3DGLM4-2

a{1}
21 = 0.481524563110426, a{2}

21 = 0.107666492481270, a{3}
21 = 0.021992397120078, b{1}

11 = 0.498435904450369,

b{1}
12 = 0.522530753430964, b{1}

21 = 0.410124141823035, b{1}
22 = 0.463432449474462, b{2}

11 = 0.095786801825143,

b{2}
12 = 0.152075022730067, b{2}

21 = 0.137529315089621, b{2}
22 = 0.088062569968302, b{3}

11 = 0.018694337702556,

b{3}
12 = 0.027732589352203, b{3}

21 = 0.015749712492286, b{3}
22 = 0.005659319478742, u11 = 0.935650184213693,

u12 = 0.064349815786307, u21 = 0.886315321544333, u22 = 0.113684678455667, v = 0.142233555463516,

c1 = 0.525747892280569, w10 = 1.0, w11 = 0.535233702910286, w12 = 0.136943388092356,

w13 = 0.027743278545692, w14 = 0.002690489400088, w20 = 1.0, w21 = 0.387823636326451,

w22 = 0.156555488157499, w23 = −0.027002414204259, w24 = 0.010351227670424.

2. SSP 3DGLM5-2

a{1}
21 = 0.444563089345968, a{2}

21 = 0.220433797971554, a{3}
21 = 0.047199086888770, b{1}

11 = 0.677030364676214,

b{1}
12 = 0.109344513124094, b{1}

21 = 0.600001026747633, b{1}
22 = 0.643878289010242, b{2}

11 = 0.187812461430404,

b{2}
12 = 0.167420842533560, b{2}

21 = 0.335797629018218, b{2}
22 = 0.027367894432842, b{3}

11 = 0.019973582828875,

b{3}
12 = 0.014734064127359, b{3}

21 = 0.076346090518484, b{3}
22 = 0.007807990410220, u11 = 0.691735860871995,

u12 = 0.308264139128005, u21 = 0.362379132344019, u22 = 0.637620867655981, v = 0.466935628326092,

c1 = 0.404754745681296, w10 = 1.0, w11 = 0.263722533967065, w12 = 0.065333656992811,

w13 = 0.027169926386350, w14 = 0.002545864356240, w15 = −0.001260324593837, w20 = 1.0,

w21 = 0.721226971924633, w22 = 0.119117224325207, w23 = −0.025117506961899, w24 = −0.002085128124951,

w25 = 0.003121799371033.

3. SSP 3DGLM6-3

a{1}
21 = 0.315517321907129, a{1}

31 = 0.758864601103138, a{1}
32 = 0.067336415726727, a{2}

21 = 0.076494847917531,

a{2}
31 = 0.165996492414755, a{2}

32 = 0.131818841412823, a{3}
21 = 0.026098214000471, a{3}

31 = 0.010407236225120,

a{3}
32 = 0.011694043676070, b{1}

11 = 0.466407769409968, b{1}
12 = 0.588029782942878, b{1}

13 = 0.090753993408768,

b{1}
21 = 0.714352536776548, b{1}

22 = 0.004057520548612, b{1}
23 = 0.043314290009643, b{2}

11 = 0.101470387228004,

b{2}
12 = 0.309600095382871, b{2}

13 = 0.003137222126554, b{2}
21 = 0.208922227866803, b{2}

22 = 0.036586254679526,

b{2}
23 = 0.023218417766703, b{3}

11 = 0.016855407713879, b{3}
12 = 0.051517368037844, b{3}

13 = 0.001065531053630,

b{3}
21 = 0.035888517238621, b{3}

22 = 0.000525893188072, b{3}
23 = 0.007526287669863, u11 = 0.429393552342717,

u12 = 0.570606447657283, u21 = 0.714766096918914, u22 = 0.285233903081086, u31 = 0.373124486427176,

u32 = 0.626875513572824, v = 0.378628332116197, c1 = 0.195376324234861, c2 = 0.620324656318555,

w10 = 1.0, w11 = 0.414185180122275, w12 = 0.089420710803121, w13 = −0.015802200386162,

w14 = −0.001623142712040, w15 = 0.000303750873378, w16 = 0.218129334015903, w20 = 1.0,

w21 = 0.030717981695463, w22 = −0.033842454301531, w23 = 0.014069844764195, w24 = 0.001327849153771,

w25 = −0.000224421436006, w26 = 0.217923761039387.
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4. SSP 3DGLM7-3

a{1}
21 = 0.379665884421877, a{1}

31 = 0.515488221507126, a{1}
32 = 0.008239732993902, a{2}

21 = 0.060210073470162,

a{2}
31 = 0.114667967793747, a{2}

32 = 0.010050929935034, a{3}
21 = 0.027175182796611, a{3}

31 = 0.093175561916561,

a{3}
32 = 0.008173511911974, b{1}

11 = 1.107792953001359, b{1}
12 = 0.090330329859403, b{1}

13 = 0.000000066635348,

b{1}
21 = 0.664653168823024, b{1}

22 = 0.309711371128129, b{1}
23 = 0.015546721568938, b{2}

11 = 0.189649927487829,

b{2}
12 = 0.600387177342980, b{2}

13 = 0.000000000094460, b{2}
21 = 0.107129004361048, b{2}

22 = 0.214103657229089,

b{2}
23 = 0.018964113794848, b{3}

11 = 0.003171262661914, b{3}
12 = 0.067436297519191, b{3}

13 = 0.000000000076816,

b{3}
21 = 0.006076703572795, b{3}

22 = 0.000052086287613, b{3}
23 = 0.015421809057899, u11 = 0.050799054224709,

u12 = 0.949200945775291, u21 = 0.271811785253415, u22 = 0.728188214746585, u31 = 0.848358688706512,

u32 = 0.151641311293488, v = 0.951545856064458, c1 = 0.310210488718125, c2 = 0.735893895336771,

w10 = 1.0, w11 = 0.507845599546811, w12 = 0.239955454479258, w13 = −0.006520488569236,

w14 = −0.005551486351131, w15 = 0.000113698479916, w16 = 0.000223765806822, w17 = 1.999940921849224,

w20 = 1.0, w21 = 0.299633511570792, w22 = 0.037848427850458, w23 = 0.005590515047944,

w24 = 0.000703599013788, w25 = 0.000019134996526, w26 = −0.000010671520193, w27 = 2.0.

B Coefficients of Fourth-derivative GLMs

Here, we give the coefficients matrices of the constructed fourth-derivative GLMs for
s = 2 and s = 3. The coefficient matrices of two stage methods take the form

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 u11 u12

a{1}
21 0 a{2}

21 0 a{3}
21 0 a{4}

21 0 u21 u22

b{1}
11 b{1}

12 b{2}
11 b{2}

12 b{3}
11 b{3}

12 b{4}
11 b{4}

12 1 − v v

b{1}
21 b{1}

22 b{2}
21 b{2}

22 b{3}
21 b{3}

22 b{4}
21 b{4}

22 1 − v v

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

and three stage methods take the following form

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0 u11 u12

a
{1}
21 0 0 a

{2}
21 0 0 a

{3}
21 0 0 a

{4}
21 0 0 u21 u22

a
{1}
31 a

{1}
32 0 a

{2}
31 a

{2}
32 0 a

{3}
31 a

{3}
32 0 a

{4}
31 a

{3}
32 0 u31 u32

b
{1}
11 b

{1}
12 b

{1}
13 b

{2}
11 b

{2}
12 b

{2}
13 b

{3}
11 b

{3}
12 b

{3}
13 b

{4}
11 b

{4}
12 b

{4}
13 1 − v v

b
{1}
21 b

{1}
22 b

{1}
23 b

{2}
21 b

{2}
22 b

{2}
23 b

{3}
21 b

{3}
22 b

{3}
23 b

{4}
21 b

{4}
22 b

{4}
23 1 − v v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

1. SSP 4DGLM4-2

a{1}
21 = 0.492502401255857, a{2}

21 = 0.121549058540707, a{3}
21 = 0.019860332137553, a{4}

21 = 0.002469334621926,

b{1}
11 = 0.493035280152582, b{1}

12 = 0.519129890196680, b{1}
21 = 0.492159016664885, b{1}

22 = 0.507134722289626,

b{2}
11 = 0.120822362679484, b{2}

12 = 0.118796068553098, b{2}
21 = 0.121514758761671, b{2}

22 = 0.129069521144118,

b{3}
11 = 0.019733454185988, b{3}

12 = 0.020130886150193, b{3}
21 = 0.019811609177391, b{3}

22 = 0.021899025203918,

123



Numerical Algorithms

b{4}
11 = 0.002452844681870, b{4}

12 = 0.002512408254589, b{4}
21 = 0.002463116135828, b{4}

22 = 0.002754839201374,

u11 = 0.043647614240132, u12 = 0.956352385759868, u21 = 0.054763091495361, u22 = 0.945236908504639,

v = 0.945129564550485, c1 = 0.507354526641232, w10 = 1.0, w11 = 0.519664150763746,

w12 = 0.117804247188642, w13 = 0.020428440495935, w14 = 0.002458895114308, w20 = 1.0,

w21 = 0.506792719368996, w22 = 0.129201783102532, w23 = 0.021827294362888, w24 = 0.002774578642803.

2. SSP 4DGLM5-2

a{1}
21 = 0.500492666826293, a{2}

21 = 0.114756600078513, a{3}
21 = 0.018148178751572, a{4}

21 = 0.002714589878061,

b{1}
11 = 0.431186537508394, b{1}

12 = 0.404171392100681, b{1}
21 = 0.483662234321112, b{1}

22 = 0.560179604710392,

b{2}
11 = 0.081227126476428, b{2}

12 = 0.047086826677170, b{2}
21 = 0.109480320931676, b{2}

22 = 0.135274055565348,

b{3}
11 = 0.013178225742208, b{3}

12 = 0.008882729874764, b{3}
21 = 0.017492912408121, b{3}

22 = 0.025272005673387,

b{4}
11 = 0.001589026148517, b{4}

12 = 0.000129548838296, b{4}
21 = 0.002446465182670, b{4}

22 = 0.003740837321860,

u11 = 0.088185135295424, u12 = 0.911814864704576, u21 = 0.176145583277641, u22 = 0.823854416722359,

v = 0.789711162108572, c1 = 0.517845671243588, w10 = 1.0, w11 = 0.327746943580494,

w12 = 0.050980139124519, w13 = 0.011125839350588, w14 = −0.001282009647015, w15 = 0.000603507965945,

w20 = 1.0, w21 = 0.536230853002924, w22 = 0.142119178095184, w23 = 0.024306987806757,

w24 = 0.003410108652328, w25 = 0.000281973075456.

3. SSP 4DGLM6-2

a{1}
21 = 0.517293370447585, a{2}

21 = 0.133925352925481, a{3}
21 = 0.027371115505543, a{4}

21 = 0.004940436426576,

b{1}
11 = 0.562577084182751, b{1}

12 = 0.421763934840916, b{1}
21 = 0.572954574408108, b{1}

22 = 0.478728558134980,

b{2}
11 = 0.163935914431203, b{2}

12 = 0.100241069539339, b{2}
21 = 0.170412942747712, b{2}

22 = 0.165570428503403,

b{3}
11 = 0.035658092350845, b{3}

12 = 0.016327465256022, b{3}
21 = 0.037215832658113, b{3}

22 = 0.035849937970705,

b{4}
11 = 0.005287177412273, b{4}

12 = 0.002944889939538, b{4}
21 = 0.006694878863016, b{4}

22 = 0.000000025053928,

u11 = 0.991894960507822, u12 = 0.008105039492178, u21 = 0.677452760618707, u22 = 0.322547239381293,

v = 0.232528801933385, c1 = 0.461531427232185, w10 = 1.0, w11 = 0.460985616742624,

w12 = 0.105968926131271, w13 = 0.016230449697124, w14 = 0.001904410077557, w15 = 0.000179896607685,

w16 = 0.000011946083550, w20 = 1.0, w21 = 0.528327730262044, w22 = 0.172187361061285,

w23 = 0.035327454889158, w24 = 0.000197418142938, w25 = 0.000484463733041, w26 = 0.000194265652679.

4. SSP 4DGLM7-2

a{1}
21 = 0.499507160885063, a{2}

21 = 0.119968933288827, a{3}
21 = 0.017081896566529, a{4}

21 = 0.004031320198658,

b{1}
11 = 0.666614451332563, b{1}

12 = 0.303306256194171, b{1}
21 = 0.576409644843040, b{1}

22 = 0.462190555937428,

b{2}
11 = 0.183560532895898, b{2}

12 = 0.155207228786631, b{2}
21 = 0.259780581201447, b{2}

22 = 0.034723177133322,

b{3}
11 = 0.031183451078632, b{3}

12 = 0.041000165610189, b{3}
21 = 0.057101861689900, b{3}

22 = 0.010915027907463,

b{4}
11 = 0.001433739889497, b{4}

12 = 0.004322242467946, b{4}
21 = 0.001529153305801, b{4}

22 = 0.002575963845641,

u11 = 0.618158814106136, u12 = 0.381841185893864, u21 = 0.688026611571673, u22 = 0.311973388428327,
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v = 0.437966138773607, c1 = 0.505291324039624, w10 = 1.0, w11 = 0.479066664889029,

w12 = 0.127521779354434, w13 = 0.041705623460671, w14 = 0.003986082383866, w15 = −0.000245284111217,

w16 = 0.000137223973872, w17 = 0.210228581679632, w20 = 1.0, w21 = 0.547746158142762,

w22 = 0.127882876390368, w23 = −0.011206034972369, w24 = 0.000660308249256, w25 = 0.001115949397675

w26 = −0.000161611421203, w27 = 0.210270682891451.

5. SSP 4DGLM6-3

a{1}
21 = 0.374778451641205, a{2}

21 = 0.063406760818824, a{3}
21 = 0.008463987299019, a{4}

21 = 0.000850022276759,

a{1}
31 = 0.357597546030056, a{2}

31 = 0.062908428776938, a{3}
31 = 0.008164853981020, a{4}

31 = 0.000653850758305,

a{1}
32 = 0.325477000217070, a{2}

32 = 0.046441087898065, a{3}
32 = 0.005297221144835, a{4}

32 = 0.000532701706906,

b{1}
11 = 0.334959394295523, b{1}

12 = 0.315171444182360, b{1}
13 = 0.410190435750393, b{1}

21 = 0.349958069221630,

b{1}
22 = 0.292876373365019, b{1}

23 = 0.258165929344463, b{2}
11 = 0.060633404000675, b{2}

12 = 0.041104145868688,

b{2}
13 = 0.041008760892016, b{2}

21 = 0.055477164332920, b{2}
22 = 0.047166235937992, b{2}

23 = 0.051817450556552,

b{3}
11 = 0.007643277336581, b{3}

12 = 0.004674306560848, b{3}
13 = 0.005497486923106, b{3}

21 = 0.007256291024332,

b{3}
22 = 0.005093765887795, b{3}

23 = 0.006947776401714, b{4}
11 = 0.000621015210638, b{4}

12 = 0.000470045478575,

b{4}
13 = 0.000552841163009, b{4}

21 = 0.000622129834196, b{4}
22 = 0.000341706070841, b{4}

23 = 0.000698685934132,

u11 = 0.630474771711679, u12 = 0.369525228288321, u21 = 0.573012085130541, u22 = 0.426987914869459,

u31 = 0.601083078559332, u32 = 0.398916921440668, v = 0.378614942286516, c1 = 0.321608164825949,

c2 = 0.687231609392625, w10 = 1.0, w11 = 0.380481257618408, w12 = 0.048570228152514,

w13 = 0.003531837263071, w14 = 0.000965597584732 w15 = −0.000093904905574, w16 = 0.837871652069336,

w20 = 1.0, w21 = 0.221160355321244, w22 = 0.057082983028313, w23 = 0.008977334456590,

w24 = −0.000441185296213, w25 = 0.000237808975927, w26 = 0.837823139921717.

6. SSP 4DGLM7-3

a{1}
21 = 0.350457763059077, a{2}

21 = 0.059030590724736, a{3}
21 = 0.006167354392834, a{4}

21 = 0.000820001027662,

a{1}
31 = 0.387500300301159, a{2}

31 = 0.084838889640679, a{3}
31 = 0.012031303235926, a{4}

31 = 0.000492349845276,

a{1}
32 = 0.312881241973284, a{2}

32 = 0.056243073304936, a{3}
32 = 0.009017317429851, a{4}

32 = 0.001125124849635,

b{1}
11 = 0.369607055094061, b{1}

12 = 0.403154224734759, b{1}
13 = 0.127967119709400, b{1}

21 = 0.390879999306208,

b{1}
22 = 0.239443987884715, b{1}

23 = 0.494290470310205, b{2}
11 = 0.058565784856034, b{2}

12 = 0.104280749110758,

b{2}
13 = 0.008303419949253, b{2}

21 = 0.087915116062722, b{2}
22 = 0.058148914188203, b{2}

23 = 0.049797213094552,

b{3}
11 = 0.006572057700620, b{3}

12 = 0.018705647077826, b{3}
13 = 0.001466993217758, b{3}

21 = 0.012839897311860,

b{3}
22 = 0.006947653665000, b{3}

23 = 0.008829144278492, b{4}
11 = 0.000610929864500, b{4}

12 = 0.002527896988956,

b{4}
13 = 0.000199724984841, b{4}

21 = 0.000420835098031, b{4}
22 = 0.000858837048376, b{4}

23 = 0.001202326356901,

u11 = 0.558164113618959, u12 = 0.441835886381041, u21 = 0.589995146907839, u22 = 0.410004853092161,

u31 = 0.537204663265761, u32 = 0.462795336734239, v = 0.443402333155673, c1 = 0.294925929008912,

c2 = 0.638257167504055, w10 = 1.0, w11 = 0.196005034140514, w12 = 0.013033449258411,

w13 = 0.007614583616032, w14 = −0.001144243875588, w15 = −0.000104282181364, w16 = 0.000081762590702,

w17 = 0.749648748323158, w20 = 1.0, w21 = 0.419891092103421, w22 = 0.081966742096937,

w23 = 0.000057305547194, w24 = 0.002158981114169, w25 = 0.000173822525851, w26 = −0.000101220718724,

w27 = 0.749692058749461.
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7. SSP 4DGLM8-3

a{1}
21 = 0.175790178224457, a{2}

21 = 0.053976619001249, a{3}
21 = 0.014560267078991, a{4}

21 = 0.002914857159230,

a{1}
31 = 0.193854979888018, a{2}

31 = 0.027727867380224, a{3}
31 = 0.005382677196853, a{4}

31 = 0.001097886442691,

a{1}
32 = 0.344954266207200, a{2}

32 = 0.013247065452726, a{3}
32 = 0.001182532004156, a{4}

32 = 0.000163946507126,

b{1}
11 = 0.350470082796973, b{1}

12 = 0.207739507894165, b{1}
13 = 0.323978091749971, b{1}

21 = 0.336851998589390,

b{1}
22 = 0.379664713420180, b{1}

23 = 0.475765720663504, b{2}
11 = 0.055651506187291, b{2}

12 = 0.102852985251848,

b{2}
13 = 0.027042199636409, b{2}

21 = 0.114564248168959, b{2}
22 = 0.121907339183384, b{2}

23 = 0.134966509007059,

b{3}
11 = 0.005747532077953, b{3}

12 = 0.007546452267841, b{3}
13 = 0.007094916636282, b{3}

21 = 0.030041698640272,

b{3}
22 = 0.027573371342666, b{3}

23 = 0.038269689121708, b{4}
11 = 0.001039724633659, b{4}

12 = 0.000079054390091,

b{4}
13 = 0.001572203392119, b{4}

21 = 0.003491131979020, b{4}
22 = 0.006063710347766, b{4}

23 = 0.002985797295388,

u11 = 0.991567328795643, u12 = 0.008432671204357, u21 = 0.184632179631794, u22 = 0.815367820368206,

u31 = 0.678379155693658, u32 = 0.321620844306342, v = 0.379923611962994, c1 = 0.364072745591117,

c2 = 0.790089277348930, w10 = 1.0, w11 = 0.361457818520213, w12 = 0.064938219272829,

w13 = 0.007747210371254, w14 = 0.000708041762913, w15 = 0.000054105005786, w16 = 0.000003491031849,

w17 = 0.000000163872239, w18 = 0.982635662271492, w20 = 1.0, w21 = 0.671552568752178,

w22 = 0.223400791323222, w23 = 0.042813264929839, w24 = 0.003555229580558, w25 = −0.000040886308458,

w26 = −0.000026939548375, w27 = 0.000000679871749, w28 = 0.982637254619139.

8. SSP 4DGLM9-3

a{1}
21 = 0.568808081207977, a{2}

21 = 0.048114396995161, a{3}
21 = 0.010788380615035, a{4}

21 = 0.006008124562918,

a{1}
31 = 0.344187432821678, a{2}

31 = 0.042382496857406, a{3}
31 = 0.003582825049991, a{4}

31 = 0.000689205385252,

a{1}
32 = 0.340398899955966, a{2}

32 = 0.014335262109803, a{3}
32 = 0.000313906335632, a{4}

32 = 0.000145276246639,

b{1}
11 = 0.982954717825614, b{1}

12 = 0.014490770169346, b{1}
13 = 0.013584892713300, b{1}

21 = 0.443809258398672,

b{1}
22 = 0.135975551664887, b{1}

23 = 0.118857631207925, b{2}
11 = 0.212259343381131, b{2}

12 = 0.273158542191652,

b{2}
13 = 0.002916848832074, b{2}

21 = 0.142520928035879, b{2}
22 = 0.136853198913849, b{2}

23 = 0.018625818520990,

b{3}
11 = 0.018327446754578, b{3}

12 = 0.002170604033030, b{3}
13 = 0.002168545523328, b{3}

21 = 0.056096865472845,

b{3}
22 = 0.096389327446308, b{3}

23 = 0.012468767290534, b{4}
11 = 0.000413806824034, b{4}

12 = 0.000000761021627,

b{4}
13 = 0.001208578960785, b{4}

21 = 0.006136911418370, b{4}
22 = 0.033053608345553, b{4}

23 = 0.004291265251185,

u11 = 0.957045804986185, u12 = 0.042954195013815, u21 = 0.684034016720173, u22 = 0.315965983279827,

u31 = 0.929009329287935, u32 = 0.070990670712065, v = 0.035309880170621, c1 = 0.324171924094799,

c2 = 0.807694415324405, w10 = 1.0, w11 = 0.337590296565330, w12 = 0.046071695897029,

w13 = 0.001607713367915, w14 = 0.000143963069728, w15 = 0.000063618469522, w16 = 0.000006654666131,

w17 = −0.000000395816761, w18 = −0.000000198789037, w19 = 0.986560378780447, w20 = 1.0,

w21 = 0.025202357128554, w22 = 0.196744343505741, w23 = 0.096360260165478, w24 = 0.007504764895165,

w25 = −0.000722929866516, w26 = −0.000110745594193, w27 = 0.000010556807649, w28 = 0.000004499558562,

w29 = 0.986558896598726.
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In this work, an approximate family of implicit multiderivative Runge-Kutta (MDRK) time 
integrators for stiff initial value problems is presented. The approximation procedure is based 
on the recent Approximate Implicit Taylor method (Baeza et al., 2020 [7]). As a Taylor method 
can be written in MDRK format, the novel family constitutes a multistage generalization. Two 
different alternatives are investigated for the computation of the higher order derivatives: either 
directly as part of the stage equation, or either as a separate formula for each derivative added 
on top of the stage equation itself. From linearizing through Newton’s method, it turns out that 
the conditioning of the Newton matrix behaves significantly different for both cases. We show 
that direct computation results in a matrix with a conditioning that is highly dependent on 
the stiffness, increasing exponentially in the stiffness parameter with the amount of derivatives. 
Adding separate formulas has a more favorable behavior, the matrix conditioning being linearly 
dependent on the stiffness, regardless of the amount of derivatives. Despite increasing the Newton 
system significantly in size, through several numerical results it is demonstrated that doing so can 
be considerably beneficial.

1. Introduction

We are interested in developing stable and efficient implicit multiderivative time integrators, see, e.g., [1–9] and the references 
therein, for stiff ordinary differential equations (ODEs)

𝑦′(𝑡) = Φ(𝑦), (1)

where Φ∶ ℝ𝑀 →ℝ𝑀 is the flux and 𝑦 ∶ ℝ+ → ℝ𝑀 the unknown solution variable. In our case, stiffness is introduced through a 
variable 𝜀 ≪ 1 into the flux, which is given by

Φ𝑖(𝑦) = 𝑓𝑖(𝑦1,… , 𝑦𝑀 ) +
𝑔𝑖(𝑦1,… , 𝑦𝑀 )

𝜀
, 1 ≤ 𝑖 ≤𝑀, (2)

for smooth functions 𝑓𝑖 and 𝑔𝑖 that do not explicitly depend on 𝜀. Multiderivative methods not only take into account the first 
derivative 𝑦′(𝑡), but as well higher order time derivatives

𝑦(𝑘)(𝑡) ∶= d𝑘

d𝑡𝑘
𝑦(𝑡) .

Repeatedly making use of the ODE system (1) leads to the formulas

* Corresponding author.

E-mail addresses: jeremy.chouchoulis@uhasselt.be (J. Chouchoulis), jochen.schuetz@uhasselt.be (J. Schütz).
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𝑦(2) = Φ′(𝑦)𝑦(1) , (3a)

𝑦(3) = Φ′′(𝑦) ∙
[
𝑦(1)|𝑦(1)]+Φ′(𝑦)𝑦(2) , (3b)

𝑦(4) = Φ′′′(𝑦) ∙
[
𝑦(1)|𝑦(1)|𝑦(1)]+ 3Φ′′(𝑦) ∙

[
𝑦(1)|𝑦(2)]+Φ′(𝑦)𝑦(3) , (3c)

and so forth. (Please note that, for the ease of presentation, we have not explicitly stated the 𝑡-dependency of 𝑦(𝑘).) The bullet operator 
is the tensor action, i.e.,

Φ′′′ ∙ [𝑢|𝑣|𝑤] ∶=
𝑀∑

𝑗,𝑘,𝑙=1

𝜕3Φ
𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙

𝑢𝑗𝑣𝑘𝑤𝑙 , (4)

where 𝑢, 𝑣, 𝑤 ∈ ℝ𝑀 . Already at this introductory level, it can be seen that it is quite cumbersome to explicitly put all the terms 
used in (3) into an algorithm. Furthermore, plugging Φ𝑖(𝑦) into (3) reveals that 𝑦(𝑘) = (𝜀−𝑘). As a result, the derivatives 𝑦(𝑘) tend 
to become extremely large with each added order of the derivative, potentially leading to a huge disparity in values handled in a 
multiderivative solver. Therefore, one can expect the typical limitations associated to floating-point arithmetic. In particular, the 
algebraic system of equations that results from the nonlinear timescheme is strongly influenced. It is shown numerically in this work 
that the conditioning of the linearized equation system behaves as (𝜀−𝑘) if no algorithmic measures are taken.

In 2018, Baeza et al. [6] have constructed a recursive algorithm on the basis of centered finite differences that approximates 
the derivatives 𝑦(𝑘), accordingly named the Approximate Taylor (AT) method. This approach directly stems from a recursive finite 
difference scheme that was designed for the circumvention of the Cauchy-Kovalevskaya procedure in the context of hyperbolic 
conservation laws [10]. In order to deal with stiffness and strict timestepping restrictions, more recently Baeza et al. [7] extended the 
AT method with an implicit variant, named the Approximate Implicit Taylor method. To simplify the computation of the Newton-

Jacobian, [7] suggests including additional equations into the ODE system for the calculation of the derivatives 𝑦(𝑘). We show that 
this as well can improve the conditioning of the Jacobian compared to the (𝜀−𝑘) behavior that is achieved by directly incorporating 
(3).

In this work, we generalize the approximate implicit Taylor method to more general multiderivative Runge-Kutta (MDRK) 
schemes. This improves the solution quality significantly. While a Taylor method has order of convergence (Δ𝑡𝑘), with 𝑘 denoting 
the maximally used derivative, MDRK schemes can achieve the same order through less derivatives by incorporating more stages. 
Furthermore, we thoroughly investigate multiple ways of solving the resulting algebraic system of equations. Although all methods 
are equivalent with infinite machine precision, we observe that numerically, the methods differ quite significantly.

First, in Sect. 2 traditional MDRK time integrators for ODEs are introduced, highlighting the variety of ways to compute the time 
derivatives 𝑦(𝑘), among which a review of the AT procedure is given. Next, Sect. 3 is devoted to understanding the stability of the 
linear system obtained from applying Newton’s method. In settings with timesteps large compared to the stiffness parameter 𝜀, we 
show that the Newton-Jacobian has a condition number that grows exponentially with the amount of derivatives. As an alternative for 
the traditional MDRK approach, in Sect. 4, along the lines of the approximate implicit Taylor method, we introduce the MDRK-DerSol 
approach, where the derivatives are computed as solution variables via new relations in a larger ODE system. We verify numerically 
that the Newton-Jacobian of this bigger system has a more favorable conditioning asymptotically for 𝜀 going to 0. Subsequently, in 
Sect. 5, we compare the developed method to more classical schemes for stiff ODEs. Finally, our conclusions are summarized and 
future endeavors are explored in Sect. 6.

2. Implicit multiderivative Runge-Kutta solvers

In order to apply a time-marching scheme to Eq. (1), we discretize the temporal domain with a constant1 timestep Δ𝑡 and iterate 
𝑁 steps such that Δ𝑡 = 𝑇end∕𝑁 . Consequently, we define the time levels by

𝑡𝑛 ∶= 𝑛Δ𝑡, 0 ≤ 𝑛 ≤𝑁.
The central class of time integrators in this work are implicit MDRK methods. By adding extra temporal derivatives of Φ(𝑦), these form 
a natural generalization of classical implicit Runge-Kutta methods. To present our ideas, let us formally define the MDRK scheme as 
follows:

Definition 1 (Kastlunger, Wanner [1, Section 1]). A 𝑞-th order implicit 𝚛-derivative Runge-Kutta scheme using 𝚜 stages (𝚛DRK𝑞-𝚜) is 
any method which can, for given coefficients 𝑎(𝑘)𝑙𝜈 , 𝑏(𝑘)𝑙 and 𝑐𝑙 , be formalized as

𝑦𝑛,𝑙 ∶= 𝑦𝑛 +
𝚛∑
𝑘=1

Δ𝑡𝑘
𝚜∑
𝜈=1
𝑎(𝑘)𝑙𝜈

d𝑘−1

d𝑡𝑘−1
Φ(𝑦𝑛,𝜈) , 𝑙 = 1,… ,𝚜, (5a)

where 𝑦𝑛,𝑙 is a stage approximation of 𝑦 at time 𝑡𝑛,𝑙 ∶= 𝑡𝑛 + 𝑐𝑙Δ𝑡. The update is given by

1 A fixed Δ𝑡 is used for solving any ODE system described within this work. Nevertheless, all presented methods can readily be applied with a variable timestep 
Δ𝑡𝑛 if needed.
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𝑦𝑛+1 ∶= 𝑦𝑛 +
𝚛∑
𝑘=1

Δ𝑡𝑘
𝚜∑
𝑙=1
𝑏(𝑘)𝑙

d𝑘−1

d𝑡𝑘−1
Φ(𝑦𝑛,𝑙) . (5b)

Typically, the values of 𝑎(𝑘)𝑙𝜈 , 𝑏(𝑘)𝑙 and 𝑐𝑙 are summarized in an extended Butcher tableau, see Appendix A for some examples.

As can be seen from Eq. (3), at least the 𝑘-th order Jacobian tensor

Φ𝑘(𝑦) = 𝜕𝑘Φ
𝜕𝑦𝑘

(𝑦) (6)

is needed for the derivation of d𝑘
d𝑡𝑘Φ. For systems of ODEs, Φ𝑘 is an 𝑀 ×… ×𝑀 (𝑘-times) tensor. The generalization of (3), named 

Faá Di Bruno’s formula (see [7, Prop. 1]), can therefore be very expensive. A more sensible way to obtain the time derivatives of Φ
is from the recursive relation

d𝑘
d𝑡𝑘

Φ(𝑦) =
[
d𝑘−1Φ(𝑦)
d𝑡𝑘−1

]′
𝑦(1) . (7)

The prime symbol denotes the Jacobian derivative with respect to 𝑦. Here, the quantities 
[
d𝑘−1Φ
d𝑡𝑘−1

]′
are 𝑀 ×𝑀 matrices, regardless 

of 𝑘.

Remark 1. Although Faá Di Bruno’s formula is mathematically equivalent to the recursive relation (7), numerical results do in 
actuality differ. Due to the many tensor actions with Φ𝑘 in Faá Di Bruno’s formula, numerical computations are much more prone to 
round-off errors. To illustrate this, we will apply both Faá Di Bruno’s formula, as in (3), and the recursive relation (7). We refer to 
the tensors Φ𝑘 with the wording “Exact Jacobians” (EJ) from hereon.

2.1. Approximating the time derivatives

Despite the availability of the recursive relation (7), the Jacobian derivatives w.r.t. 𝑦 within this relation can nevertheless be quite 
intricate to deal with. And as such, avoiding Jacobian derivation by hand often leads to the use of symbolic computing software to 
allow the user to focus directly on the numerical procedure. There are two major downsides here, first, it being that symbolic software 
is computationally expensive, and secondly, not always feasible to apply. For large numerical packages for example, generally it is not 
desirable to significantly alter vital portions of code. To overcome symbolic procedures completely, a high-order centered differences 
approximation strategy has recently been developed by Baeza et al. [6,7] to obtain values

𝑦(𝑘) = 𝑦(𝑘) +(Δ𝑡𝚛−𝑘+1) = d𝑘−1

d𝑡𝑘−1
Φ(𝑦) +(Δ𝑡𝚛−𝑘+1) , (8)

for 𝑘 = 2, … , 𝚛. An overview of the method is given here; first, necessary notation is introduced.

Definition 2. For any number 𝑝 ∈ ℕ, define the locally centered stencil function having 2𝑝 + 1 nodes by means of angled brackets

⟨⋅⟩∶ ℤ→ℤ2𝑝+1 ∶ 𝑧↦
(
𝑧− 𝑝, … , 𝑧+ 𝑝

)𝑇 . (9)

In this manner it is possible to write the vectors

𝐲⟨𝑛⟩ ∶=
⎛
⎜⎜⎝

𝑦𝑛−𝑝

⋮
𝑦𝑛+𝑝

⎞
⎟⎟⎠

and 𝑦(𝐭⟨𝑛⟩) ∶=
⎛
⎜⎜⎝

𝑦(𝑡𝑛−𝑝)
⋮

𝑦(𝑡𝑛+𝑝)

⎞
⎟⎟⎠
. (10)

Such representation allows us to concisely write down approximations 𝑦(𝑘) to 𝑦(𝑘). Let 𝑘 = 1, … , 𝚛 be the derivative order of interest 
which we would like to approximate.

Lemma 1 (Carrillo, Parés [11, Proposition 4], Zorío et al. [10, Proposition 2]). For 𝑘 ≥ 1 and 𝑝 ≥ ⌊ 𝑘+12 ⌋ (𝑝 ∈ℕ), there exist 2𝑝 +1 quantities 
𝛿𝑘𝑝,𝑗 ∈ℝ for 𝑗 = −𝑝, … , 𝑝, such that the linear operator

𝑃 (𝑘) ∶ ℝ2𝑝+1 →ℝ, 𝐯↦ 1
Δ𝑡𝑘

𝑝∑
𝑗=−𝑝

𝛿𝑘𝑝,𝑗𝑣𝑗 (11)

approximates the 𝑘-th derivative up to order 𝜔 ∶= 2𝑝 − 2⌊ 𝑘−12 ⌋, i.e.

𝑃 (𝑘)𝑦(𝐭⟨𝑛⟩) = 𝑦(𝑘)(𝑡𝑛) +(Δ𝑡𝜔) . (12)

The linear operator 𝑃 (𝑘), however, is difficult to apply in practice, since it introduces additional unknown values 𝑦(𝑡𝑛+1), … , 𝑦(𝑡𝑛+𝑝)
into the stencil. In order to bypass the issue of creating more unknowns, in [6,7,10] a recursive strategy that includes Taylor 
approximations into the centered difference operator is incorporated. This gives the following computations of the values 𝑦(𝑘) :
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Fig. 1. An overview of the different MDRK approaches applied in this work. In here 𝑀 represents the size of the ODE system being solved, 𝚛 and 𝚜 represent the 
amount of derivatives and the amount of stages, respectively, of the MDRK scheme (Definition 1). For both DIMDRK and FSMDRK schemes (Subsect. 2.2) the size of 
the linear system resulting from applying Newton’s method is displayed. In comparison to the other Direct approaches, EJ-Direct necessitates the most computations 
through tensor calculations, making it less fit for efficient time integration. Moreover, we found that using rec-Dersol leads to algebraic systems with extremely large 
condition numbers in relation to the other DerSol procedures; rec-Dersol hence turned out to be less suited for stiff equations than the others.

𝑦(1) ∶= Φ(𝑦𝑛),

𝑦(𝑘) ∶= 𝑃 (𝑘−1)𝚽𝑘−1,⟨𝑛⟩
𝑇 , 2 ≤ 𝑘 ≤ 𝚛 ,

(13)

in which

Φ𝑘−1,𝑛+𝑗𝑇 ∶= Φ

(
𝑦𝑛 +

𝑘−1∑
𝑚=1

(𝑗Δ𝑡)𝑚

𝑚!
𝑦(𝑚)

)
(14)

is an approximation to Φ 
(
𝑦(𝑡𝑛+𝑗 )

)
. By adopting the recursive Taylor approach (13)-(14) into Definition 1, we acquire a novel family 

of time-marching schemes:

Definition 3 (AMDRK method). The 𝚛DRK𝑞-𝚜 scheme (Definition 1) in which the time derivatives d𝑘−1
d𝑡𝑘−1 Φ(𝑦) are approximated by 

using the formulas (13)-(14) is called the Approximate MDRK method, denoted by the short-hand notation 𝐴𝚛DRK𝑞-𝚜.

Without proof – it is very similar to related cases, see for example [6] in the context of explicit Taylor schemes for ODEs and [12]

for explicit MDRK schemes applied to hyperbolic PDEs – we state the order of convergence:

Theorem 2. The consistency order of an 𝐴𝚛DRK𝑞-𝚜 method is min(2𝑝+ 1, 𝑞), the variable 𝑞 being the consistency order of the underlying 
MDRK method, and 𝑝 denoting the use of the 2𝑝 + 1 points 

{
𝑡𝑛−𝑝,… , 𝑡𝑛+𝑝

}
in Eq. (13).

Remark 2. Note that the variable 𝑝 is not defined in the terminology “𝐴𝚛DRK𝑞-𝚜”. Since the consistency order is min(2𝑝 + 1, 𝑞), the 
optimal choice w.r.t. computational efficiency is to set 𝑝 = ⌊𝑞∕2⌋. Throughout this paper 𝑝 is chosen along this line of reasoning for 
all numerical results.

Remark 3. If Φ is a linear function in 𝑦, then the procedure in (13)-(14) is exact, see [13, Proposition 1]. This also means that (linear) 
stability properties such as 𝐴− and 𝐿-stability are not influenced by the approximate Taylor approach.

2.2. Specific MDRK schemes

As is the case for standard Runge-Kutta methods, the (A)𝚛DRK𝑞-𝚜 method has a lot of flexibility in choosing the coefficients 𝑎(𝑘)𝑙𝜈
and 𝑏(𝑘)𝑙 . We put spotlight on two varying implementations of the (A)𝚛DRK𝑞-𝚜 method:

• Full Storage MDRK (FSMDRK):

Under the assumption that the Butcher tableau consists of dense matrices, all 𝚜 stages are coupled and must be solved simultane-

ously. This approach can be applied for any existing MDRK scheme, but might not be efficient as it often leads to large systems 
of equations.
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• Diagonally Implicit MDRK (DIMDRK):

If each stage 𝑙 only depends on previous stages 𝜈 = 1, … , 𝑙 − 1, and is only implicit in itself, it can be more efficient to solve for 
each stage one at a time.

In Appendix A the extended Butcher tableaux used in this paper are displayed, three families are considered:

• Taylor schemes (Tables A.3-A.4):

The explicit and implicit Taylor method can be reformulated as a single-stage MDRK scheme. This respectively leads to the 
Approximate Explicit Taylor methods in [6] and the Approximate Implicit Taylor methods in [7]. Having only one stage, the 
FSMDRK and DIMDRK approaches are equivalent.

• Hermite-Birkhoff (HB) schemes (Tables A.5-A.10):

The coefficients are obtained from the Hermite-Birkhoff quadrature rule [8,14] which integrates a Hermite polynomial that also 
takes derivative data into account, with possibly a varying amount of derivative data per point. By taking equispaced abscissa 
𝑐𝑙 , the resulting tableau is fully implicit whilst having a fully explicit first stage. Hence, for 𝚜 > 2, stages 2 to 𝚜 should be solved 
with an FSMDRK method.

• Strong-Stability Preserving (SSP) schemes (Tables A.11-A.12):

In [9], Gottlieb et al. have constructed implicit multiderivative SSP schemes. The tableaux are diagonally implicit, and therefore 
each stage can be solved for one after another. Both the DIMDRK and FSMDRK approach are thus valid, with the DIMDRK 
approach likely being more efficient.

In the first row of Fig. 1 an overview of the thus far presented MDRK methods is given, with differences focused around the 
computations of the derivatives 𝑦(𝑘). As all of these MDRK methods exclusively solve the Eqs. (5a)-(5b), we refer to them as “Direct” 
in this work.

2.3. Nonlinear solver

The implicit (A)MDRK scheme (Definitions 1 and 3) requests a nonlinear solver, irrespective of whether the derivatives are 
either calculated exactly through (3), recursively obtained with (7) or approximated by means of (13)-(14). In case that a single 
stage 𝑌 = 𝑦𝑛,𝑙 (with 𝑙 = 1, … , 𝚜) is considered, as for DIMDRK schemes, or all the unknown stages are combined into a single vector 
𝑌 =

(
𝑦𝑛,1,… , 𝑦𝑛,𝚜

)
as in the FSMDRK approach, it is possible to write the stage equation(s) (5a) as

𝐹 (𝑌 ) = 0 , (15)

and then choose any nonlinear solver of preference. Computationally, solving Eq. (15) is the most expensive portion of the numerical 
method. Hence, it is vital for the efficiency of the overall method to well understand the behavior of the selected solver. In this paper 
we use Newton’s method, and thus require the Jacobian matrix 𝐹 ′(𝑌 ). Given an initial value 𝑌 [0], the linearized system

𝐹 ′(𝑌 [𝑖])Δ𝑌 [𝑖] = −𝐹 (𝑌 [𝑖]), 𝑌 [𝑖+1] = 𝑌 [𝑖] + Δ𝑌 [𝑖] (16)

is solved for 𝑖 = 0, … , 𝑁iter − 1 or until some convergence criteria are satisfied. In this work, criteria are invoked on the residuals,

‖𝐹 (𝑌 [𝑖])‖2 < 10−𝑛tol or
‖𝐹 (𝑌 [𝑖])‖2
‖𝐹 (𝑌 [0])‖2

< 10−𝑛tol0 , (17)

where 𝑛tol, 𝑛tol0 ∈ ℕ. Under the assumptions that 𝑌 [0] is in a neighborhood close enough to the exact solution 𝑌 , and the Jacobian 
matrix is nonsingular, Newton’s method converges quadratically [14, Theorem 7.1].

Remark 4. In what follows, we avoid the superscript index 𝑖 whenever possible, and instead write 𝐹 ′(𝑌 ) or even 𝐹 ′.

Remark 5. The term ‘Jacobian-free’ in the title of this work does not refer to Newton’s method, so 𝐹 ′(𝑌 [𝑖]) is computed exactly, it 
rather refers to the approximation of 𝑦(𝑘) in (3) by 𝑦̃(𝑘) in (13).

3. Newton stability of direct (A)MDRK methods

In order to investigate the conditioning of the Newton-Jacobian 𝐹 ′(𝑌 ) in the linearized Newton system (16), we consider the 
Pareschi-Russo (PR) problem [15], given by

𝑦′1(𝑡) = −𝑦2, 𝑦′2(𝑡) = 𝑦1 +
sin(𝑦1) − 𝑦2

𝜀
, 𝑦(0) =

(𝜋
2
,1
)
. (18)

Let us first verify that the consistency order given in Theorem 2 is achieved and compare it with the exact MDRK method as in 
Definition 1 (using relation (7)). In Fig. 2, convergence plots are shown for five different MDRK schemes (three Hermite-Birkhoff 
and two SSP, see Appendix A). Final time is set to 𝑇end = 5; the coarsest computation uses 𝑁 = 4 timesteps. To separate convergence 
order from stiffness, 𝜀 is set to 1. We can clearly see that the AMDRK method achieves the appropriate convergence orders for all the 
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Fig. 2. Pareschi-Russo problem, 𝜀 = 1: Convergence of the AMDRK scheme (Definition 3) and the MDRK scheme (Definition 1). The final time is set to 𝑇end = 5, 
timesteps start from 𝑁 = 4. Three Hermite-Birkhoff schemes and two SSP schemes are considered, see Appendix A.

Fig. 3. Pareschi-Russo problem, 𝜀 = 10−3 : Convergence of the AMDRK scheme (Definition 3) and the MDRK scheme (Definition 1). The final time is set to 𝑇end = 5, 
timesteps start from 𝑁 = 4. Three Hermite-Birkhoff schemes and two SSP schemes are considered, see Appendix A. For 𝑁 = 4 the HB-I4DRK8-2s scheme diverges, 
hence no node is shown.

considered schemes. Also, when compared to their exact MDRK counterpart, differences are barely visible. Only for high values of 
Δ𝑡 and large orders of consistency, differences are visible.

When stiffness is increased by decreasing 𝜀 to 𝜀 = 10−3, see Fig. 3, the same methods as well show convergence for Δ𝑡 → 0. 
However, due to order reduction phenomena, it is more difficult to observe the appropriate order here. Above all, for values 𝜀 ≪ Δ𝑡, 
the scheme HB-I4DRK8-2s (Table A.10) has not properly converged in the Newton iterations; for 𝑁 = 4 the AMDRK method diverges 
immediately, hence there being no node in the left plot of Fig. 3, whereas the exact MDRK method shows a large error.

3.1. Numerical observations of the Newton conditioning

So, even though all three approaches (3), (7) and (13)-(14) for calculating the derivatives 𝑦(𝑘) yield valid high-order algorithms, 
numerically we observe stability issues for stiff problems 𝜀 ≪Δ𝑡. More specifically, when 𝜀 ≪Δ𝑡, the Newton-Jacobian 𝐹 ′(𝑌 ) is badly 
conditioned. In Table 1 we display the arithmetic mean of the condition numbers in the 1-norm w.r.t. the Newton iterations,

𝜇
(
cond(𝐹 ′)

)
∶=

𝑁iter∑
𝑖=1

cond(𝐹 ′(𝑌 [𝑖]))

𝑁iter

,
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Fig. 4. DIMDRK schemes applied as a Direct method (Fig. 1) to the PR problem (18). The average condition number in the 1-norm of the Newton Jacobian obtained 
from the last RK-stage is shown for different values of 𝜀. The behavior cond(𝐹 ′) =(𝜀−𝚛) is observed, 𝚛 being the amount of derivatives. A single timestep (𝑁 = 1) of 
size 𝑇end = 1.25 (Δ𝑡 = 1.25) has been considered with tolerances, Eq. (17), set to 10−12 under a maximum of 1000 iterations.

which we have obtained from solving Eq. (18) with the approximate implicit Taylor method of order 𝚛 = 3 for different values of 𝜀. 
To account for large timesteps, only a single step 𝑁 = 1 of size Δ𝑡 = 1 was applied. Newton tolerances, Eq. (17), were set to 10−12
under a maximum of 10000 iterations.

In order to put the obtained condition numbers into perspective, the empirical orders w.r.t. 𝜀

EO𝜀 ∶=

log

(
𝜇
(
cond(𝐹 ′

𝜀 )
)

𝜇
(

cond(𝐹 ′
10𝜀)

)
)

log(10)
(19)

are additionally computed (where 𝐹 ′
𝜀 denotes 𝐹 ′ for a particular value of 𝜀). In this case, the experimental order seems to equal the 

order (𝚛 = 3 here) of the implicit Taylor method. And in fact, the same behavior is observed for any amount of derivatives 𝚛 used. 
That means, we numerically observe the asymptotic behavior

cond(𝐹 ′) =(𝜀−𝚛) (20)

to hold true for any order of the implicit Taylor scheme. As a result of bad conditioning, in Table 1 we can therefore observe that 
the (A)MDRK methods do not converge for Pareschi-Russo’s equation (18) when 𝜀 = 10−5. In general, when considering any DIMDRK 
scheme, the same derivative-dependent behavior holds true for any implicit stage. In Fig. 4 we plot the condition number for the 
final stage of different DIMDRK schemes.

The FSMDRK implementation shows a behavior similar to the DIMDRK implementation, see Fig. 5. An intuitive reasoning can be 
found in the block-matrix structure of the Newton-Jacobian. Due to the stages all being solved for at once, the Jacobian reads as

𝐹 ′(𝑌 ) = 𝜕
𝜕𝑌

⎡
⎢⎢⎣

𝐹1
⋮
𝐹𝚜

⎤
⎥⎥⎦
=
⎡
⎢⎢⎢⎣

𝜕𝑌1𝐹1 … 𝜕𝑌𝚜𝐹1
⋮ ⋱ ⋮

𝜕𝑌1𝐹𝚜 … 𝜕𝑌𝚜𝐹𝚜

⎤
⎥⎥⎥⎦
, (21)

with 𝜕𝑌𝜈 𝐹𝑙 the partial derivative of the 𝑙-th stage equation w.r.t. the 𝜈-th stage variable 𝑌𝜈 . This block-structure assures a dependency 
of cond(𝐹 ′) on the conditioning cond(𝜕𝑌𝜈 𝐹𝑙) of the separate blocks. Hence, if cond(𝜕𝑌𝜈 𝐹𝑙) = (𝜀−𝚛), as is often the case from what is 
observed in the DIMDRK implementation for an 𝚛-derivative scheme, the complete Jacobian likely also behaves at least as (𝜀−𝚛).
Remark 6. If the first stage is explicit, s.t. 𝑦𝑛,1 = 𝑦𝑛, we make the assumption that the FSMDRK approach instead solves for 𝑌 =(
𝑦𝑛,2,… , 𝑦𝑛,𝚜

)
. The Hermite-Birkhoff schemes (Tables A.5-A.10) are good examples of RK-schemes with an explicit first stage.

Moreover, when we consider other problems with a similar dependency on a small non-dimensional value 𝜀 as for the PR problem 
(18), then as well (𝜀−𝚛) behavior is observed. Similar condition number plots alike the ones in Figs. 4 and 5 have been obtained for 
van der Pol and Kaps problems described in [16].

Remark 7. Albeit mathematically equivalent, in Table 1 we can numerically see different results between using exact Jacobians (in 
the sense that we apply Faá die Bruno’s formula) and using recursive formulas for calculating the derivatives 𝑦(𝑘).
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Table 1

Newton statistics of the implicit Taylor method of order 3 applied for a single timestep (𝑁 = 1) of size 𝑇end = 1 (Δ𝑡 = 1) to the PR problem (18). Tolerances, Eq. (17), 
were set to 10−12 under a maximum of 10000 iterations. Left: The amount of iterations 𝑁iter and the average condition number in the 1-norm of the Newton-Jacobian 
𝜇
(
cond(𝐹 ′)

)
. EO𝜀 is the experimental order of the average w.r.t. 𝜀 according to Eq. (19). For 𝜀 = 10−5 , none of the methods converged, with A-Direct diverging at 702 

iterations. Right: The first 330 iterations of A-Direct. We can observe that for 𝜀 = 10−5 the scheme becomes unstable and diverges eventually at iteration 702.

Method 𝜀 𝑁iter 𝜇
(
cond(𝐹 ′)

)
EO𝜀

A-Direct

1 5 4.45 ⋅ 100

10−1 6 2.89 ⋅ 102 1.81
10−2 34 2.69 ⋅ 105 2.97
10−3 75 2.71 ⋅ 108 3.00
10−4 226 2.51 ⋅ 1011 2.97
10−5 702 8.20 ⋅ 1014 3.51

EJ-Direct

1 5 3.44 ⋅ 100

10−1 7 2.78 ⋅ 102 1.91
10−2 124 3.00 ⋅ 105 3.03
10−3 45 5.57 ⋅ 108 3.27
10−4 10000 6.58 ⋅ 1010 2.07
10−5 10000 2.70 ⋅ 1013 2.61

rec-Direct

1 5 3.44 ⋅ 100

10−1 7 2.78 ⋅ 102 1.91
10−2 124 3.00 ⋅ 105 3.03
10−3 45 5.57 ⋅ 108 3.27
10−4 10000 6.32 ⋅ 1010 2.05
10−5 10000 3.31 ⋅ 1013 2.72

Fig. 5. FSMDRK schemes applied as a Direct method (Fig. 1) to the PR problem (18). The average condition number in the 1-norm of the Newton Jacobian is shown 
for different values of 𝜀. The behavior cond(𝐹 ′) = (𝜀−𝚛) is observed, 𝚛 being the amount of derivatives. A single timestep (𝑁 = 1) of size 𝑇end = 1.25 (Δ𝑡 = 1.25) has 
been considered with tolerances, Eq. (17), set to 10−12 under a maximum of 1000 iterations.

3.2. Conditioning of a two-variable ODE system

Eq. (18), but also van der Pol and Kaps equation, can be put into the form

𝑦′1(𝑡) = 𝑓1(𝑦1, 𝑦2) (22)

𝑦′2(𝑡) = 𝑓2(𝑦1, 𝑦2) +
𝑔(𝑦1, 𝑦2)

𝜀
, (23)

in which 𝑓1, 𝑓2 and 𝑔 are smooth functions. In order to get a basic understanding of how the condition number of the Newton-Jacobian 
behaves in terms of 𝜀, we consider the simplified system

𝑦′1(𝑡) = 𝑦2, 𝑦′2(𝑡) = 𝛼𝑦1 +
𝑔(𝑦1, 𝑦2)

𝜀
, 0 ≤ 𝑡 ≤ 𝑇 , (24)

where 𝛼 ∈ℝ and 𝑔 ∶ℝ2 →ℝ is smooth. We are interested in the analytical form of the Newton-Jacobian obtained from the (A)MDRK 
method in the case that 𝜀 ≪Δ𝑡.
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Example 1. Applying implicit Taylor order 𝚛 = 2 to the system of ODEs (24) yields a system 𝐹 = (𝑦𝑛1, 𝑦
𝑛
2)
𝑇 with

𝐹 =
⎡
⎢⎢⎢⎣

𝑦𝑛+11 − Δ𝑡𝑦𝑛+12 + Δ𝑡2
2

(
𝛼𝑦𝑛+11 + 𝑔𝑛+1

𝜀

)

𝑦𝑛+12 − Δ𝑡
(
𝛼𝑦𝑛+11 + 𝑔𝑛+1

𝜀

)
+ Δ𝑡2

2

(
𝛼𝑦𝑛+12 +

𝜕𝑦1
𝑔𝑛+1

𝜀 𝑦𝑛+12 +
𝜕𝑦2

𝑔𝑛+1

𝜀 (𝛼𝑦𝑛+11 + 𝑔𝑛+1

𝜀 )
)

⎤
⎥⎥⎥⎦
. (25)

Note that 𝑔𝑛+1 has been defined as 𝑔(𝑦𝑛+11 , 𝑦𝑛+12 ).

Proposition 3. Assume that 𝑔 and all its partial derivatives are (1), and assume that 𝜀 ≪ Δ𝑡. Then, the Newton-Jacobian 𝐹 ′ obtained from 
solving the system of ODEs (24) with the implicit Taylor method of order 𝚛 = 2 behaves in the 1-norm as

‖𝐹 ′‖1 =
(
Δ𝑡2

𝜀2

)
, and cond(𝐹 ′) =(

𝜀−1
)
.

Remark 8 (part 1). The behavior shown in Proposition 3 is not what we observe from the numerical experiments in Figs. 4 and 5, 
where we obtained cond(𝐹 ′) =(𝜀−2) for two-derivative schemes. There is no contradiction here though. We reason in part 2 of this 
remark that, often, an order of 𝜀 is gained through the determinant det(𝐹 ′).

Proof of Proposition 3. For simplicity, the notation (𝑢, 𝑣) = (𝑦1, 𝑦2) will be used in what follows. From the construction of 𝐹 as given 
in Eq. (25), it is apparent that the Newton-Jacobian satisfies

‖𝐹 ′‖1 =
(
Δ𝑡2

𝜀2

)
,

under the assumption that 𝜀 ≪Δ𝑡. For the behavior of the inverse matrix 𝐹 ′−1 we make use of the identity 𝐴−1 = 1
det(𝐴) adj(𝐴). As 𝐹 ′

is a 2 × 2 matrix, its adjugate is obtained from simply shuffling terms and possibly adding a minus sign. Consequently, the behavior 
of its norm remains unaffected w.r.t. 𝜀 and Δ𝑡. The determinant can be explicitly computed as

det(𝐹 ′) = 1 + 1
4
Δ𝑡4

𝜀3
(
𝜕𝑢𝑔𝜕𝑣𝑣𝑔 − 𝜕𝑣𝑔𝜕𝑢𝑣𝑔

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐷𝑔

𝑔 +(𝜀−2) . (26)

So in total:

cond(𝐹 ′) = ‖𝐹 ′‖1 ⋅ ‖𝐹 ′−1‖1 =
‖𝐹 ′‖1‖ adj(𝐹 ′)‖1

|det(𝐹 ′)| =
(
Δ𝑡2

𝜀2

)

(
𝜀3

Δ𝑡4

)

(
Δ𝑡2

𝜀2

)
=(𝜀−1) ,

under the assumption that 𝜀 ≪Δ𝑡. □

Remark 8 (part 2). In equation (26) we observe that det(𝐹 ′) = 
(
Δ𝑡4
𝜀3

)
under the assumption that 𝜀 ≪Δ𝑡. In many cases we nonethe-

less observe det(𝐹 ′) =(𝜀−2):
1. The values are mainly decided by 𝑔(𝑦1, 𝑦2) and a function of partial derivatives which we have denoted 𝐷𝑔(𝑦1, 𝑦2). In case of the 

PR-problem (18), 𝛼 = 1 and 𝑔(𝑦1, 𝑦2) = sin(𝑦1) − 𝑦2. Therefore, any mixed partial derivatives of 𝑔, or second partial derivative of 
𝑔 w.r.t 𝑦2 equals 0. So for the PR-problem 𝐷𝑔 = 0.

2. In general, it does not need to hold true that 𝐷𝑔 = 0. The van der Pol problem (as in [16]) for instance has 𝑔(𝑦1, 𝑦2) = (1 − 𝑦21)𝑦2 − 𝑦1, 
and therefore yields 𝐷𝑔 = 2𝑦1(1 − 𝑦21). Here, a clarification can be given by the (very) harsh restriction set in Proposition 3 that 
𝑔 and all its partial derivatives are (1), which typically is not true. For well-prepared initial conditions and an asymptotically 
consistent algorithm, 𝑔 =(𝜀) [17].

A similar type of effect takes place for a higher amount of derivatives 𝚛; the resulting conditioning is (𝜀−𝚛).
4. Derivatives as members of the solution

One of the main issues for the (𝜀−𝚛) conditioning of the direct (A)MDRK method is the fact that with each higher derivative 𝑦(𝑘) , 
the order of 𝜀 increases simultaneously. Such behavior is to be expected due to a built-in dependency on the lower order derivatives, 
i.e.

𝑦(1) = Φ(𝑦),

𝑦(𝑘) = Ψ𝑘(𝑦, 𝑦(1),… , 𝑦(𝑘−1)), 2 ≤ 𝑘 ≤ 𝚛 .
(27)

The operator Ψ𝑘 is then either the relation that uses the Exact Jacobians (EJ) as in (3), so that

Ψ2 =Φ′(𝑦)𝑦(1) , (28a)
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Ψ3 =Φ′′(𝑦) ∙
[
𝑦(1)|𝑦(1)]+Φ′(𝑦)𝑦(2) , (28b)

Ψ4 =Φ′′′(𝑦) ∙
[
𝑦(1)|𝑦(1)|𝑦(1)]+ 3Φ′′(𝑦) ∙

[
𝑦(1)|𝑦(2)]+Φ′(𝑦)𝑦(3) , (28c)

and so forth, or either is given recursively from (7), so that

Ψ𝑘+1 =
[
d𝑘−1Φ(𝑦)
d𝑡𝑘−1

]′
𝑦(1) , (29)

for 𝑘 = 1, … , 𝚛 − 1.

Example 2 (part 1). Consider the implicit Taylor scheme of order 𝚛 = 3, then there is only a single stage 𝑌 = 𝑦 to solve for. In terms 
of the relations (27), the Newton system 𝐹 (𝑦) = 0 simply writes as

𝑦−Δ𝑡Φ(𝑦) + Δ𝑡2
2

Ψ2 −
Δ𝑡3
6

Ψ3 − 𝑦𝑛 = 0 . (30)

From the above example it is clear that computing 𝐹 ′(𝑌 ) necessitates deriving the formulas Ψ𝑘 with respect to 𝑦,

𝜕𝑦(𝑘)

𝜕𝑦
= 𝜕𝑦Ψ𝑘 +

𝑘−1∑
𝑚=1

𝜕𝑦(𝑚)Ψ𝑘 ⋅
𝜕𝑦(𝑚)

𝜕𝑦
. (31)

It is exactly because of this recursive dependency on lower order derivatives that the order of 𝜀 increases in cond(𝐹 ′). A similar 
recursion holds true when calculating the approximate values 𝑦(𝑘) with the recursive formulas (13)-(14).

In order to better understand the 𝜀-behavior, we investigate a linear problem in the sequel. To reduce the complexity of involved 
formulas, we only consider scalar problems (𝑚 = 1) in this section.

4.1. 𝜀-scaled Dahlquist test equation

We consider an 𝜀-scaled Dahlquist test problem

𝑦′ = 𝜆
𝜀
𝑦, 𝑦(0) = 1, (32)

with the exact solution 𝑦(𝑡) = e(𝜆∕𝜀)𝑡. As the equation is linear, the AMDRK method (A-Direct) coincides with the MDRK method that 
uses EJ (EJ-Direct), see for example [13, Proposition 1].2 The rationale behind the observed behavior follows immediately from the 
next lemma.

Lemma 4. The derivatives 𝑦(𝑘) and their Jacobians 𝜕𝑦𝑦(𝑘) of the 𝜀-scaled Dahlquist test are (𝜀−𝑘), i.e.
𝑦(𝑘) = d𝑘−1

d𝑡𝑘−1
Φ =

(𝜆
𝜀

)𝑘
𝑦 =(𝜀−𝑘), 𝜕𝑦(𝑘)

𝜕𝑦
=
[
d𝑘−1Φ
d𝑡𝑘−1

]′
=
(𝜆
𝜀

)𝑘
=(𝜀−𝑘) .

It would be better for the conditioning of the Jacobian to unfold the 𝜀-dependency through its recursion given by Ψ𝑘 in Eqs. (27). 
When applying EJ (and thus also for AMDRK) there holds,

Ψ𝑘 =
𝜆
𝜀
𝑦(𝑘−1) , (33)

whereas recursion (rec-Direct) gives the relation

Ψ𝑘 =
(𝜆
𝜀

)𝑘−1
𝑦(1) , (34)

for 𝑘 = 1, … , 𝚛. Already here we can notice that the first out of these two is more favorable, as it unfolds the 𝜀-dependency more 
thoroughly.

4.2. Recursive dependencies as additional system equations

In order to achieve such an unfolding of the 𝜀-dependency, Baeza et al. [7] suggest to take the derivatives as members of the 
solution. Instead of directly solving for 𝑌 , additionally, the independent unknowns

𝑧𝑘 ≈ 𝑦(𝑘) , 1 ≤ 𝑘 ≤ 𝚛, (35)

are sought for using the same recursive dependencies

2 The AMDRK method approximates the derivatives 𝑦(𝑘) on the basis of finite differences. For linear problems finite differences are exact.
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𝑧1 = Φ(𝑧0),

𝑧𝑘 =Ψ𝑘(𝑧0, 𝑧1,… , 𝑧𝑘−1), 2 ≤ 𝑘 ≤ 𝚛,
(36)

where we have defined 𝑧0 ∶= 𝑌 . In contrast to the single relation 𝐹 (𝑌 ) = 0, we now solve the 𝚛 + 1 relations as a bigger system 
 (𝑧) = 0, with 𝑧 ∶= (𝑧0, 𝑧1,… , 𝑧𝚛). In summary, the recursive dependency in one single formula is traded off for a larger system 
containing the 𝚛 additional relations given by (36).

Example 2 (part 2). For the third order Taylor scheme (30),

𝑧0 − Δ𝑡𝑧1 +
Δ𝑡2
2
𝑧2 −

Δ𝑡3
6
𝑧3 − 𝑦𝑛 = 0 , (37)

and

 (𝑧) =

⎡
⎢⎢⎢⎢⎣

𝑧0 − Δ𝑡𝑧1 +
Δ𝑡2
2 𝑧2 −

Δ𝑡3
6 𝑧3 − 𝑦

𝑛

Φ(𝑧0) − 𝑧1
Ψ2(𝑧0, 𝑧1) − 𝑧2

Ψ3(𝑧0, 𝑧1, 𝑧2) − 𝑧3

⎤
⎥⎥⎥⎥⎦
. (38)

The Jacobian is now less clustered, in our example

 ′(𝑧) =

⎡⎢⎢⎢⎢⎣

1 −Δ𝑡 Δ𝑡2
2 −Δ𝑡3

6
Φ′(𝑧0) −1 0 0
𝜕𝑧0Ψ2 𝜕𝑧1Ψ2 −1 0
𝜕𝑧0Ψ3 𝜕𝑧1Ψ3 𝜕𝑧2Ψ3 −1

⎤⎥⎥⎥⎥⎦
. (39)

In the case of the 𝜀-scaled Dahlquist test (32), the relations (33) and (34) respectively yield

 ′
EJ
(𝑧) =

⎡
⎢⎢⎢⎢⎣

1 −Δ𝑡 Δ𝑡2
2 −Δ𝑡3

6
− 1
𝜀 −1 0 0
0 − 1

𝜀 −1 0
0 0 − 1

𝜀 −1

⎤
⎥⎥⎥⎥⎦

and  ′
rec(𝑧) =

⎡
⎢⎢⎢⎢⎣

1 −Δ𝑡 Δ𝑡2
2 −Δ𝑡3

6
− 1
𝜀 −1 0 0
0 − 1

𝜀 −1 0
0 1

𝜀2
0 −1

⎤
⎥⎥⎥⎥⎦
. (40)

Regarding AMDRK schemes, Baeza et al. [7] introduce the scaled unknowns 𝑧𝑘 ≈Δ𝑡𝑘−1𝑦(𝑘), 1 ≤ 𝑘 ≤ 𝚛. With this choice, analogous 
relations

𝑧1 = Φ(𝑧0),

𝑧𝑘 = Ψ̃𝑘(𝑧0, 𝑧1,… , 𝑧𝑘−1), 2 ≤ 𝑘 ≤ 𝚛,
(41)

are found on the basis of the formulas (13)-(14), namely

Ψ̃𝑘 ∶= Δ𝑡𝑘−1𝑃 (𝑘−1)𝚽𝑘−1,⟨𝑛⟩
𝑇 . (42)

In here,

Φ𝑘−1,𝑛+𝑗𝑇 ∶= Φ

(
𝑧0 + Δ𝑡

𝑘−1∑
𝑚=1

𝑗𝑚

𝑚!
𝑧𝑚

)
, (43)

for 𝑗 = −𝑝, … , 𝑝. Note the slight redefinition of Φ𝑘−1,𝑛+𝑗𝑇 in contrast to Eq. (14) to account for the Δ𝑡 dependency of the Ψ̃𝑘. For a 
specific example of the AMDRK method, and its Jacobian ̃ ′(𝑧), we refer the reader to [7, Subsection 4.2].

As a counterpart to the “Direct” MDRK methods in Section 2, we denote the MDRK approach in which the derivatives are taken 
as members of the solution by “DerSol”. A summary of the six different MDRK approaches is presented in Fig. 1. From the specific 
Taylor example that we have investigated in this section, there are two important observations to be made:

• Most importantly, compared to  ′
EJ

and  ′
rec, no second order Jacobian Φ′′ occurs for the approximate procedure. From (42)-(43)

it can be observed that the AMDRK method solely relies on finite difference computations of Φ. Hence, Φ′ is sufficient for 
retrieving partial derivatives of Ψ̃𝑘. If the problem is not scalar anymore (𝑚 > 1) no tensor calculations are needed, whereas such 
calculations cannot be avoided for an exact MDRK scheme.

• Starting from three derivatives, the matrices  ′
EJ

and  ′
rec are not the same anymore, i.e.  ′

rec will only fill up the first two columns 
(and the diagonal), whereas  ′

EJ
has a full lower-triangular submatrix. In the numerical results below it will be demonstrated 

that there is significantly different behavior in the conditioning of these Jacobians.

When effectively applying the DerSol approach to several DIMDRK schemes, different orders of 𝜀 can be observed in the condition 
numbers, see Fig. 6. In comparison to the Direct MDRK approach (see Fig. 4), many schemes behave as
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Fig. 6. DIMDRK schemes applied as a DerSol method (Fig. 1) to the PR problem (18). The average condition number in the 1-norm of the Newton Jacobian obtained 
from the last RK-stage is shown for different values of 𝜀. The behavior cond( ′) =(𝜀−1) is observed for the A-DerSol and EJ-DerSol methods, the rec-DerSol methods 
seem to behave as (𝜀−𝚛+1), 𝚛 being the amount of derivatives. A single timestep (𝑁 = 1) of size 𝑇end = 1.25 (Δ𝑡 = 1.25) has been considered with tolerances, Eq. (17), 
set to 10−12 under a maximum of 1000 iterations.

cond( ′) =(𝜀−1) , (44)

confirming the successful unfolding of the 𝜀-dependency through the 𝚛 additional equations in the A-DerSol and (partially) in the EJ-

DerSol approach. The same can not be said for the rec-DerSol approach, where the order seems to behave as (𝜀−𝚛+1). This behavior 
was foreshadowed in the relation (34); exactly one recursion order is resolved, therefore as well unfolding exactly one order in the 
𝜀-dependency. For that reason, it is highly disadvised to apply the rec-DerSol approach for practical purposes.

The EJ-DerSol approach as well does not seem to be flawless when we consider the scheme HB-I4DRK8-2s (Table A.10). Instead, 
the order (𝜀−3) seems to be achieved. In fact, numerically we observe that the scheme tends toward (𝜀−2) up to 𝜀 = 10−8. From 
running all schemes in Fig. 6 up to 𝜀 = 10−8, this behavior appears to be unique among the applied DIMDRK schemes. Even more so, 
when considering different problems (van der Pol and Kaps, see [16]), all the same schemes show (𝜀−1) up to 𝜀 = 10−8, except for 
HB-I4DRK8-2s applied to van der Pol. For both the A-DerSol and the EJ-DerSol approach, around 𝜀 ≈ 10−6 there is a sudden change 
from (𝜀−1) to (𝜀−4) and worse.

This leads us to believe that the observed phenomena of the HB-I4DRK8-2s scheme come as a result of floating-point arithmetic. 
The double-precision format in MATLAB has a machine precision of 2−52 ≈ 2.22 ⋅ 10−16. Given a value 𝜀 = 10−4, a four-derivative 
Runge-Kutta method yields values 𝜀4 = 10−16 in the denominator of 𝑧4 = Ψ3(𝑧0, 𝑧1, 𝑧2, 𝑧3). Albeit the implicit Taylor method of order 4
giving the requested behavior for the condition number, the Butcher coefficients are larger compared with those of the HB-I4DRK8-2s

scheme (see Tables A.4 and A.10). The application of many-derivative schemes to stiff problems having very small values 𝜀 should 
therefore be regarded with sufficient awareness of the machine accuracy being used.

4.3. The (A)MDRK scheme for a general amount of stages

In the most general case, it is not possible to solve for each stage one at a time, an FSMDRK approach is therefore a necessity. 
Thus, there is a need to solve for 𝑌 =

(
𝑦𝑛,1,… , 𝑦𝑛,𝚜

)
at once. This entails that for each stage 𝚛 +1 separate equations have to be solved, 

leading to a Jacobian matrix  (𝑧) of size ((𝚛+ 1)𝚜𝑀)2.
When using the DerSol approach, one has two options in which one can order all the unknown variables. Either all the variables 

of the same stage are grouped together, or either the variables are collected by degree of the derivatives. In this work we have chosen 
to do the ordering in a stage-based manner

𝑧 =
(
𝑧𝑛,1,… , 𝑧𝑛,𝚜

)
, (45)

with for each stage 𝑧𝑛,𝑙 ∶= (𝑧𝑛,𝑙0 , 𝑧
𝑛,𝑙
1 , … , 𝑧𝑛,𝑙𝚛 ). This allows us to obtain an anologous block-structure (21) as in the Direct implementa-

tion:

 ′(𝑧) =
⎡⎢⎢⎣

𝜕𝑧𝑛,11 … 𝜕𝑧𝑛,𝚜1
⋮ ⋱ ⋮

𝜕𝑧𝑛,1𝚜 … 𝜕𝑧𝑛,𝚜𝚜

⎤⎥⎥⎦
, (46)

where each block-matrix 𝜕𝑧𝑛,𝜈𝑙 inside is of size ((𝚛+ 1)𝑀)2 with a similar construction as the matrix (39) in Example 2 (part 2).

Fig. 7 displays the average condition numbers 𝜇
(
cond( ′)

)
for different MDRK schemes. The results are very similar to the ones 

of the DIMDRK implementation in Fig. 6, thus the previous remarks remaining valid pertaining to the FSMDRK implementation. It 
is clear that  ′(𝑧) will quickly grow large for an increasing amount of derivatives 𝚛 and stages 𝚜, and that this consequently has an 
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Fig. 7. FSMDRK schemes applied as a DerSol method (Fig. 1) to the PR problem (18). The average condition number in the 1-norm of the Newton Jacobian is shown 
for different values of 𝜀. The behavior cond( ′) = (𝜀−1) is observed for the A-DerSol and EJ-DerSol methods, the rec-DerSol methods seem to behave as (𝜀−𝚛+1), 𝚛
being the amount of derivatives. A single timestep (𝑁 = 1) of size 𝑇end = 1.25 (Δ𝑡 = 1.25) has been considered with tolerances, Eq. (17), set to 10−12 under a maximum 
of 1000 iterations.

impact on the performance of the MDRK method. Still, it might be beneficial to introduce the additional derivative relations for the 
overall efficiency of the method. As highlighted before w.r.t. the condition of the block-Jacobian (21), here as well cond( ′(𝑧)) is 
strongly dependent on the condition of the separate blocks. If cond(𝜕𝑧𝑛,𝜈𝑙) = (𝜀−1) can be guaranteed, there might be a significant 
difference in the total used amount of Newton iterations compared to the Direct counterpart. Furthermore, there is more certainty 
that the method itself will converge after all, which, for example, is not always the case for A-Direct methods (see Table 1).

5. Numerical results and comparison

In this last section, we aim to show some representative numerical computations, with a special focus on the comparison with 
Radau schemes, which are classical schemes for stiff equations. In here, we use the two- and three-stage schemes RadauIIA-3-2s and 
RadauIIA-5-3s of order three and five, respectively, see [18].

As two representative test cases, we use the Pareschi-Russo equation (18) and van der Pol’s equation

𝑦′1(𝑡) = 𝑦2, 𝑦′2(𝑡) =
(1 − 𝑦1)2𝑦2 − 𝑦1

𝜀
, 𝑦(0) =

(
2,−2

3
+ 10

81
𝜀− 292

2187
𝜀2

)
, (47)

see [19], with 𝜀 = 1 and 𝜀 = 10−4. Results for various integration schemes are plotted in Figs. 8,9. The Newton tolerances were chosen 
dependently on both 𝜀 and the testcase, they have been chosen in a manner that all the schemes converge within at most 1000 
Newton steps. The tolerances have been chosen uniformly over the methods. It can be seen from the numerical results that with 
respect to error versus mesh size, the methods presented in this work behave very well in comparison to the Radau schemes for large 
𝜀 = 1, they behave a bit worse, but still good, for the small 𝜀 = 10−4. Runtime efficiency shows a different story. For large values 
of Δ𝑡, and relatively large error levels, the multiderivative schemes tend to be better for Pareschi-Russo, but not for van der Pol. 
Asymptotically, for Δ𝑡 → 0, the Radau schemes always outperform the multiderivative schemes. For van der Pol and very small 𝜀, 
this is quite significant, while for Pareschi-Russo, the schemes lie at least in the same bulk part.

The results show that the methods can in many cases compete with more classical and established schemes, in particular with 
respect to mesh resolution versus error. However, they can not outperform them yet in terms of runtime. Similar results, in the 
context of a comparison ‘Jacobian-free’ against ‘Jacobian-based’, have been made in [6,7]. Still, the difference is not many orders of 
magnitude, but typically an order-one factor, which is why we have the hope that significant improvements can be made, in particular 
in the context of the predictor-corrector type methods, as already shown in [20,8]. This framework offers a built-in parallel-in-time 
capacity, an advantage that Radau and other schemes do not necessarily have. The more efficient realization of the Jacobian-free 
approach, an adaptive Newton-framework, and many more improvements, are left for future work.

6. Conclusion and outlook

We have developed a family of implicit Jacobian-free multiderivative Runge-Kutta (MDRK) solvers for stiff systems of ODEs. 
These so-called AMDRK methods have been tailored to deal with the unwanted outcomes that come from the inclusion of a higher 
amount of derivatives: (1) each added 𝑘-th derivative yields a power term 𝜀𝑘 in the denominator, and (2) the complexity of the 
formulas for the derivatives increases rapidly with each derivative order.

When adopting Newton’s method as a nonlinear solver, these two negatives become noticeable in the Jacobian: the condition 
number of the Jacobian grows exponentially with each added derivative, as well as the Jacobian having to be obtained from intricate 
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Fig. 8. Convergence results for the Pareschi-Russo equation (18). Top row: 𝜀 = 1, bottom row: 𝜀 = 10−4 . Left are classical convergence results as error over Δ𝑡, while 
on the right, one sees the time-to-solution over Δ𝑡. Final time is set to 𝑇end = 5; timesteps start from 𝑁 = 4.  is in seconds.

formulas that request tensor calculations. In order to manage these negatives, the AMDRK methods have been established along the 
lines of the Approximate Implicit Taylor method in [7].

First, by adding an additional equation to the ODE system for each derivative, the derivatives become a part of the unknown 
solution, which we named MDRK-DerSol. In this manner, the 𝜀-dependencies are distributed among the newly added relations. 
Numerically we have shown that this procedure alleviates the exponential growth in the condition number that is typical for direct 
MDRK methods (correspondingly named MDRK-Direct), for some cases resulting in much less Newton iterations per timestep. Second, 
by recursively approximating the derivatives using centered differences, no complicated formulas or tensor calculation are needed. 
The desired convergence order min(2𝑝 +1, 𝑞) is achieved, 2𝑝 +1 denoting the amount of stencil points used for the centered differences 
and 𝑞 being the order of the MDRK scheme.

Despite the (A)MDRK-DerSol methods for 𝜀 → 0 having a more favorable behavior in the condition number in comparison to 
(A)MDRK-Direct methods, the total system grows in size, and therefore might be less efficient. In order to balance on the one hand 
the amount of Newton iterations per timestep, and on the other hand the computing time that is needed for solving the linear 
system, it might be beneficial in the future to establish a threshold value that switches between (A)MDRK-DerSol and (A)MDRK-

Direct methods. Such threshold can play a significant role when transitioning to parabolic PDEs with viscous effects, where the size 
of linear systems depends on the spatial resolution. A careful consideration w.r.t. efficiency will be needed in the development of 
MDRK-DerSol approaches for PDEs with viscous effects.

The multiderivative approach puts a high demand on the regularity of the right-hand side Φ. While this makes sense from 
a conceptual point of view – multiderivative methods are devised to obtain high orders of accuracy, which necessitates smooth 
solutions 𝑦 and hence smooth Φ(𝑦) – it can be a severe drawback in some applications where Φ is weakly non-smooth; and the 
Jacobians of Φ cannot be computed. One can, e.g., think of the spatial discretization of convective PDEs using some sort of limiting, 
which is typically non-differentiable. The approximate multiderivative approach weakens this issue, as no Jacobians have to be 
computed explicitly. A more thorough analysis of the AMDRK method for weakly non-smooth problems is now ongoing.
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Fig. 9. Convergence results for the van der Pol equation (47). Top row: 𝜀 = 1, bottom row: 𝜀 = 10−4 . Left are classical convergence results as error over Δ𝑡, while on 
the right, one sees the time-to-solution over Δ𝑡. Final time is set to 𝑇end = 0.5; timesteps start from 𝑁 = 4.  is in seconds.

Table A.2

A general extended Butcher tableau 
for a multiderivative Runge-Kutta 
scheme having 𝚛 derivatives and 𝚜
stages. The associated matrices and 
vectors are of size 𝐴(𝑘) ∈ℝ𝚜×𝚜 , 𝑏(𝑘) ∈
ℝ1×𝚜 and 𝑐 ∈ℝ𝚜×1 for 𝑘 = 1, … , 𝚛.

𝑐 𝐴(1) … 𝐴(𝚛)

𝑏(1) … 𝑏(𝚛)
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Appendix A. Butcher tableaux

All the used multiderivative Runge-Kutta methods in this paper are displayed in this section. A typical multiderivative Runge-

Kutta method can be summarized in an extended Butcher tableau of the form as in Table A.2.
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We use the explicit and implicit Taylor method reformulated as RK scheme, two-derivative Hermite-Birkhoff (HB) schemes 
taken from [8] together with new higher-derivative HB-schemes designed along the same line of reasoning, and Strong-Stability 
Preserving schemes taken from [9]. The corresponding Butcher tableaux of the HB schemes have been generated using a short

MATLAB code which can be downloaded from the personal webpage of Jochen Schütz at www .uhasselt .be /cmat or directly from 
http://www.uhasselt.be/Documents/CMAT/Code/generate_HBRK_tables.zip.

Table A.3

𝚛-th order explicit Taylor.

0 0 0 … 0
1 1∕2 … 1∕𝚛!

Table A.4

𝚛-th order implicit Taylor.

1 1 −1∕2 … (−1)𝚛+1∕𝚛!
1 −1∕2 … (−1)𝚛+1∕𝚛!

Table A.5

HB-I2DRK4-2s: Fourth order implicit two-

derivative Hermite-Birkhoff scheme using two 
stages [8].

0 0 0 0 0
1 1∕2 1∕2 1∕12 −1∕12

1∕2 1∕2 1∕12 −1∕12

Table A.6

HB-I2DRK6-3s: Sixth order implicit two-derivative Hermite-Birkhoff scheme using three 
stages [8].

0 0 0 0 0 0 0
1∕2 101∕480 8∕30 55∕2400 65∕4800 −25∕600 −25∕8000
1 7∕30 16∕30 7∕30 5∕300 0 −5∕300

7∕30 16∕30 7∕30 5∕300 0 −5∕300

Table A.7

HB-I2DRK8-4s: Eighth order implicit two-derivative Hermite-Birkhoff scheme using four stages [8].

0 0 0 0 0 0 0 0 0
1∕3 6893∕54432 313∕2016 89∕2016 397∕54432 1283∕272160 −851∕30240 −269∕30240 −163∕272160
2∕3 223∕1701 20∕63 13∕63 20∕1701 43∕8505 −16∕945 −19∕945 −8∕8505
1 31∕224 81∕224 81∕224 31∕224 19∕3360 −9∕1120 9∕1120 −19∕3360

31∕224 81∕224 81∕224 31∕224 19∕3360 −9∕1120 9∕1120 −19∕3360

Table A.8

HB-I3DRK6-2s: Sixth order implicit three-derivative 
Hermite-Birkhoff scheme using two stages.

0 0 0 0 0 0 0
1 1∕2 1∕2 1∕10 −1∕10 1∕120 1∕120

1∕2 1∕2 1∕10 −1∕10 1∕120 1∕120

Table A.9

HB-I3DRK9-3s: Ninth order implicit three-derivative Hermite-Birkhoff scheme using three stages.

0 0 0 0 0 0 0 0 0 0
1∕2 5669∕26880 32∕105 −421∕26880 303∕17920 −1∕32 47∕17920 169∕322560 1∕315 −41∕322560
1 41∕210 64∕105 41∕210 1∕70 0 −1∕70 1∕2520 2∕315 1∕2520

41∕210 64∕105 41∕210 1∕70 0 −1∕70 1∕2520 2∕315 1∕2520
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Table A.10

HB-I4DRK8-2s: Eighth order implicit four-derivative Hermite-Birkhoff scheme using two 
stages.

0 0 0 0 0 0 0 0 0
1 1∕2 1∕2 3∕28 −3∕28 1∕84 1∕84 1∕1680 −1∕1680

1∕2 1∕2 3∕28 −3∕28 1∕84 1∕84 1∕1680 −1∕1680

Table A.11

SSP-I2DRK3-2s: Third order implicit 
two-derivative Strong-Stability Preserv-

ing scheme using two stages [9].

0 0 0 −1∕6 0
1 0 1 −1∕6 −1∕3

0 1 −1∕6 −1∕3

Table A.12

SSP-I2DRK4-5s: Fourth order implicit two-derivative Strong-Stability Preserving scheme using five stages [9].

0.660949255604937 0.660949255604937 0 0 0 0
0.903150646005785 0.660949255604937 0.242201390400848 0 0 0
2.020339810245656 0.660949255604937 0.221847558352979 1.137542996287740 0 0
0.374733308278053 0.060653001401867 0.020022818960029 0.102668776898047 0.191388711018110 0
1.000000000000000 0.060653001401867 0.020022818960029 0.102668776898047 0.191388711018110 0.625266691721946

0.060653001401867 0.020022818960029 0.102668776898047 0.191388711018110 0.625266691721946
−0.177750705279127 0 0 0 0
−0.177750705279127 −0.354733903778084 0 0 0
−0.177750705279127 −0.324923198367868 −0.403963513682271 0 0
−0.016311560509453 −0.029325895786881 −0.036459667895230 −0.161628266349058 0
−0.016311560509453 −0.029325895786881 −0.036459667895230 −0.161628266349058 −0.218859021269943
−0.016311560509453 −0.029325895786881 −0.036459667895230 −0.161628266349058 −0.218859021269943
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Chapter 3
Conclusions and future work

User-friendly multiderivative temporal schemes We have extended the CAT
method [5] for hyperbolic partial differential equations (PDEs) to more general tem-
poral integration schemes. Specifically, we applied it to Multiderivative Runge–Kutta
(MDRK) methods, leading to the development of MDRKCAT1 methods introduced
in [Paper I], and to Multiderivative General Linear Methods (MDGLMs), resulting
in the CAMDGLMs presented in [Paper II]. The CAT method is intrinsically based
on Taylor schemes, requiring p temporal derivatives to achieve convergence order p.
In contrast, MDRK schemes and MDGLMs can attain the same order with fewer
temporal derivatives by employing additional stages or previous steps.

By virtue of the Jacobian-free procedure, which approximates the high-order
derivatives in a multiderivative scheme, numerical timestepping using any combi-
nation of stages, derivatives, and steps becomes practically feasible. In the past,
such methods were often avoided due to the high computational cost of symbolic
differentiation.

However, it is important to clarify that MDRKCAT methods and CAMDGLMs
are not inherently superior to more traditional timestepping schemes. The underlying
quadrature rules still rely on several stages, derivatives and steps, often resulting in
highly involved expressions. The main benefit of Jacobian-free methods lies in the
flexibility they provide for identifying new schemes with the potential to outperform
existing ones. Previously, many of these underlying schemes were rarely considered
due to their computational demands.

In [Paper II], we capitalized on this advantage to develop novel SSP MDGLMs
that incorporate up to four derivatives and achieve a convergence order of nine.

1Perhaps a better naming would have been CAMDRK methods, as the letters “AT” refer to an
Approximate Taylor method.
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Implicit Jacobian-free MDRK methods for stiff ODEs We have done a first
analysis on implicit Jacobian-free MDRK solvers for stiff systems of ordinary differ-
ential equations (ODEs) in [Paper III]. The stiffness in these equations is determined
by a variable ε ≪ 1 into the flux,

Φ(y) := F (y) + 1
ε

G(y),

where F and G do not explicitly depend on ε. The motivation for this analysis
directly stems from the pursuit of applying Jacobian-free MDRK methods to parabolic
PDEs with viscosity effects, such as the Navier-Stokes equations. In such cases,
stiffness emerges due to distinct dynamics operating at different time scales. As a
result, implicit time integration is necessary, since explicit schemes would require
prohibitively small timesteps to maintain stability due to imposed CFL restrictions
(see, for example, [24]).

[Paper III] examines the challenges posed by the variable ε in the inclusion of
higher-order derivatives, characterizes their impact on the conditioning of the lin-
earized matrix system, and proposes a resolution in the form of a novel family
of Jacobian-free MDRK methods. Using Newton’s method as an example for lin-
earization, the study demonstrates that incorporating an additional equation for each
higher-order derivative spreads out the ε-dependencies. This, in turn, numerically
alleviates exponential growth in the condition number, lowering the amount of New-
ton iterations per timestep, and, under suitable conditions, leads to a more efficient
solver.

Improving CFL restrictions In [Paper I], a Von Neumann analysis showed that
there is a strong correlation between the CFL number and the amount of derivatives
that the MDRKCAT method uses, resulting in better conditions for even-derivative
schemes. We believe this stems from the centered-difference approach that is adopted
for the approximation of the higher-order derivatives. Likely, other interpolation
routines (maybe based on popular ENO/WENO schemes [44]) will yield better Von
Neumann stability for explicit odd-derivative schemes.

Yet, for parabolic conservations laws such as the Navier-Stokes equations, CFL
conditions imposed on explicit schemes remain too restrictive. Building on the work in
[Paper III], we are also interested in developing implicit CAT-like methods. However,
an immediate generalization of the family of methods in [Paper III] likely will be
inefficient, as the size of resulting linear systems scales with spatial resolution. Hence,
trading off ε-dependency for additional equations will have to be carefully evaluated.
Introducing a threshold that balances the number of Newton iterations per timestep
with the computational cost of solving the linear system could help optimize this
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trade-off. Another direction worthwhile exploring might be hyperbolization of the
parabolic PDE [26].

Moreover, based on the mathematical form in which the stiffness parameter ε

appears, it can be reasonable to use an IMEX approach. IMEX methods split the
flux in different components, use explicit timestepping for those components that
are independent of ε, and use a tailored (semi-)implicit approach for the stiff compo-
nents. In parts, this approach is pursued in the very novel semi-implicit CAT2 scheme
developed by Macca and Boscarino [33].

Realistic frameworks The overarching goal remains to apply efficient multideriva-
tive methods to accurately simulate real-world scenarios, such as Ecotron experiments.
In pursuit of that goal, many numerical and programming challenges have to be over-
come. For instance, an Ecotron’s non-convex geometry necessitates non-Cartesian
meshes, contrasting with the Cartesian mesh dependence of CAT-like finite difference
approaches. Consequently, key research questions arise emerge:

• Can Jacobian-free multiderivative methods be developed for irregular meshes
(e.g., triangular)?

• And if so, can these methods be integrated into element-based solvers like the
Discontinuous Galerkin method?

Beyond the challenges of geometric discretization, real-world experiments like
those in an Ecotron present fundamental multi-physics problems. The system com-
prises three distinct layers: soil, canopy, and air. Each of these layers is governed by
different physical laws. A complete model would therefore require coupling several
models, for instance, by linking the Navier-Stokes equations for free airflow with the
Richards equation for porous media flow in the soil. Furthermore, because resolv-
ing the intricate canopy geometry directly is computationally infeasible, an effective,
upscaled model must be derived via homogenization. The interfaces between these
distinct physical domains then demand specialized numerical treatment to capture
relevant dynamics.

Additionally, the scale of such simulations imposes substantial computational de-
mands, exceeding the capabilities of general-purpose laptops. Hence, if the intentions
are to perform simulations on high-performance computing (HPC) systems, it might
be beneficial to fully leverage their potential: algorithmically, by employing advanced
parallel-in-time timestep methods [41, 52]; and architecture-wise, through GPU par-
allelization for computational acceleration (see, for instance, [27]).

Humidity modelling For Ecotrons it is very important to model humidity, as the
plant’s behavior in the experiment is strongly influenced by the water cycle. With
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the intent of studying and quantifying the emission, absorption and retention rates
of greenhouse gases, preferably, evapotranspiration is taken into account. In the
following, we present a model for evapotranspiration based on the assumption that
air is a binary mixture of water vapor and dry air [2]. Typically, this is done by
defining the specific humidity yvap := mvap/mtotAir as the mass fraction of vapor in
the complete air, such that

yvap + ydryAir = 1.

Fick’s law tells us how the water vapor and dry air diffuse into one another, which, in
turn, allows us to constitute a conservation law for vapor mass and adjust the heat
flux to account for both components (vapor and dry air). In summary, the “humid
Navier-Stokes” equations can be formulated as

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ (ρyvap)
∂t

+ ∇ · (ρyvapu) = ∇ · (ρDvap∇yvap)

∂ (ρu)
∂t

+ ∇ · (ρu ⊗ u) = ∇ · (−pI + τ )

∂E

∂t
+ ∇ · (Eu) = ∇ ·

(
(−pI + τ ) u + κ∇T + (cpvap − cpdryAir)TρDvap∇yvap

)
,

where Dvap represents the diffusion coefficient of water vapor in the air, cpvap and
cpdryAir signifies the specific heat capacities at constant pressure and κ the thermal
conductivity. Future work should focus on the efficient solution of the humid Navier-
Stokes equations through CAT on unstructured meshes.

Artificial intelligence and machine learning Lastly, from a more general re-
search perspective, recent mathematical and technological advancements in artificial
intelligence — leading to famous large language models such as ChatGPT and Google
Gemini — highlight the value of staying informed about developments in the field of
machine learning. Machine learning is widely recognized for its capability to analyze
observed data and reveal intricate patterns and evolving dynamics.

In Jacobian-free methods, many aspects of the solver involve pattern recognition.
Similarly as to how mesh refinement is used to maintain high numerical accuracy in
regions with rapidly changing dynamics, a machine learning model could potentially
be trained to identify elements requiring higher-order derivatives. This approach
could pave the way for a “variable-derivative” time-integrator, dynamically adjusting
numerical treatment based on local solution behavior. It is highly important to men-
tion that development of such a machine learning model does not have to come fully
out of the blue. Established numerical techniques already exist to address related
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challenges, such as the erroneous oscillations that can arise from high-order schemes
in the presence of sharp gradients. For instance, the a posteriori Multi-dimensional
Optimal Order Detection (MOOD) limiting approach [10, 13, 34] provides a relevant
framework. This method locally inspects each cell against a set of admissibility crite-
ria after a computational step. If the criteria are not met, the solution in that cell is
rejected and recomputed with a progressively lower-order scheme until an acceptable
result is achieved, ultimately defaulting to a robust first-order method if necessary. It
is therefore plausible that pattern recognition techniques, inspired by existing smooth-
ness indicators and admissibility detectors from methods like MOOD, could form the
basis for a powerful and dynamic multi-derivative integration procedure.

Additionally, machine learning may offer a more tractable way to handle stiffness.
Viscous effects, for instance, do not always manifest uniformly across the physical
domain. This is evident from the variety of existing wall models. Machine learning
could help detect stiffness either directly from solution data or through patterns in
local matrix structures, improving solver efficiency and adaptability.

Nonetheless, advancements in the application of machine learning techniques to
computational fluid dynamics (CFD) are progressing rapidly (see for example [49] for a
comprehensive 2024 review). As a first step, we suggest focusing on machine-learning-
assisted numerical methods, which closely resemble traditional CFD approaches but
selectively replace specific solver components to enhance efficiency or accuracy.
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