Model Selection for Regression Analyses with
Missing Data

M. Aerts!, N. Hens! and G. Molenberghs!

L Center for Statistics, Limburgs Universitair Centrum, Universitaire Campus,
B-3590 Diepenbeek, Belgium

Abstract: The Akaiki Information Criterion, AIC, is one of the leading selec-
tion methods for regression models. In case of partially missing covariates with
missingness probability depending on the response, regression estimates based
on the so-called complete cases are known to be biased. In this contribution it
is shown that model selection using AIC-values based on the complete cases can
lead to the choice of wrong or less optimal models. In analogy with the weighted
Horvitz-Thompson estimator, we propose a weighted version of AIC. It is shown
that this weighted AIC criterion improves model choices.

Keywords: Akaiki Information Criterion; Missing Data; Model Selection; Wei-
ghted Likelihood

1 Introduction

Let (z1,21,Y1), -, (Tn, Zn, Yn) be a sample where y denotes a response vari-
able and x and z covariate variables. Here we focus on the case that, for a
fixed value of z and z, the response y is normally distributed with variance
o?. Suppose we want to select an optimal model from a set of K candi-
date models for the mean function pu(x, z) = E(y|z, z). A well-established
method is selecting the model k& which minimizes the AIC criterion (Akaike
1973, Linhart and Zucchini 1986, Burnham and Anderson 1998, Hurvich
and Tsai 1989):

AIC = —2log(likelihood of model k) + 2 x (# parameters of model k),
(1)
where the likelihood is evaluated at the corresponding ML-estimator. For
a normal error structure, this simplifies to (ignoring some constant terms,
not depending on k):
AIC = nlog 62 + 2py, (2)

where 67 is the ML variance estimator based on model k and pj is the
number of regression coefficients in model k.

In a missing data context, covariate x or response y may be missing. We
assume z is always observed. Let §; = 1 if the ith observation is completely
observed and §; = 0 otherwise. Furthermore, let the selection probabilities
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m; = P(8; = 1|ys, x4, 2;) reflect the missing at random (MAR) missingness
mechanism (Rubin 1976). So, m; = P(d; = 1|y;, 2;) in the missing covariate
case and m; = P(d; = 1]x;, 2;) in case the response y is subject to missing-
ness. For missing covariate data, Flanders and Greenland (1991) and Zhao
and Lipsitz (1992) suggested a weighted estimator in the spirit of Horvitz
and Thompson (1952), based on the weighted likelihood or weighted least
squares criterion for the complete cases (CC) with weights equal to 1/7;,
where 7; is an appropriate estimator for the selection probabilities 7;. Wang
et al. (1997) proposed to use a nonparametric kernel smoother to estimate
the selection probabilities while fitting the regression curve with a paramet-
ric model and Wang et al. (1998) proposed a weighted local linear estimator
for p(x) while using local linear estimates for 7 (y;).

Model selection for incomplete data has not received much attention in
the literature. Cavanaugh and Shumway (1998) derived and investigated a
variant of AIC motivated by the same principle as the ‘predictive divergence
of incomplete observations’. Hens, Aerts and Molenberghs (2004) proposed
modifications of several model selection criteria using weighting likelihood
ideas and compared it to “model selection after imputation” methods. A
similar weighted Akaiki information criterion in the context of robust model
selection and robust regression models has been proposed by Agostinelli
(2002).

2 Modified AIC criterion

We focus on the weighted AIC criterion applied to normal response data
as described in the previous section. Weighting in (2) each complete case
contribution to the loglikelihood with weight 1/7; leads to the criterion

AICw = (> 6i/#:)log o7y, + 2pi (3)

i=1

where 63y, is the ML variance estimator based on the weighted (normal)
likelihood.

3 Unknown weights

In some settings (e.g. a two-stage design), the selection probabilities are
known and do not have to be estimated. In many missing data problems,
however, the unknown weights 7;, which can be considered as nuisance
parameters, have to be estimated. This estimator has to be consistent,
otherwise it will adversely affect the model selection procedure. So if we
estimate 7; with a parametric model, we are faced with an additional model
selection problem. Hens, Aerts and Molenberghs (2004) suggest the use
of a nonparametric estimator, e.g. a kernel smoother as used in Wang et
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al. (1998). In the next section we illustrate the applicability of the method
in a small simulation study.

4 Simulation Study and Discussion

Observations for a continuous explanatory variable X are generated from
a uniform distribution on the interval [0, 10], Z observations are generated
from a Bernoulli distribution with probability 0.50. Conditionally upon X,
Y observations are generated from a normal distribution with mean p(z) =
—3+3z+522 and variance 02 = exp(5). X observations are then turned into
‘missing’ with conditional probability 7 (z) = [1+exp{1-0.009(y—300)}]~ .
We generated 1000 different samples {Y;,i = 1,...,n} with a fixed design
{zi,2;,1 = 1...,n} of sample size n = 100. For each sample, 8 different
regression models were fit, i.e. all submodels of Y = g + 51X + 32 X2 +
B3Z + s X Z.

Model 1 X Z X,.X?2 X,Z X,X%, X.Z, X, X2
Method z X7 Z,XZ
ALL 0 125 0 647 30 128 13 57
cC 0 340 0 432 71 75 38 44
TW 0 197 0 366 74 116 69 178
EW 0 269 0 422 73 97 52 87
E2 0 220 0 396 78 103 66 137

TABLE 1. Simulation study with 8 candidate models: number of AIC selected
models

Method Correct Incorrect

ALL 832 168
CC 551 449
™W 660 340
EW 606 394
EW2 636 364

TABLE 2. Simulation study with correctly and incorrectly classified models: num-
ber of AIC selected models

Table 1 shows, for each candidate model, the number of times it is has
been selected as best model by the AIC criterion (2) or (3), for 5 different
methods: ALL stands for an unweighted analysis based on all data (as if
no data were missing); CC for an unweighted analysis on the complete
cases only (excluding the observations with a missing X-value); TW for a
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weighted analysis with true known missingness probabilities 7(z); EW for
a weighted analysis with kernel estimated probabilities 7(z) using a fixed
bandwidth and finally, EW2 for a weighted analysis with kernel estimated
probabilities using a cross-validation data-driven choice of the smoothing
parameter.

A comparison of the first two rows shows the effect of ignoring the miss-
ingness by using an unweighted AIC criterion on the complete cases. The
weighted criterion (3) improves the selection of correct models, as shown
in the last three rows of Table 1 and Table 2. In Table 2, all more complex
models containing the true model as a submodel are collapsed in a category
“correct model”.

The last two lines illustrates the importance of using a data-driven smooth-
ing parameter, when estimating the missingness probabilities 7(z).
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