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Abstract. – The training of multilayered neural networks in the presence of different types of
noise is studied. We consider the learning of realizable rules in nonoverlapping architectures.
Achieving optimal generalization depends on the knowledge of the noise level, however its
misestimation may lead to partial or complete loss of the generalization ability. We demonstrate
this effect in the framework of online learning and present the results in terms of noise robustness
phase diagrams. While for additive (weight) noise the robustness properties depend on the
architecture and size of the networks, this is not so for multiplicative (output) noise. In this
case we find a universal behaviour independent of the machine size for both the tree parity and
committee machines.

The essential ingredients brought by the Statistical Mechanics [1]-[3] approach to the the-
ory of learning are the consideration of large networks (the thermodynamic limit) and the
possibility of performing averages over the disorder introduced by the random nature of the
training data. Statistical Mechanics aims at describing typical behaviour and thus complements
Computational Learning Theory [4] results.

Of the different learning scenarios that can be studied we will concentrate on online learning
in networks with threshold units [5]-[10]. In this framework only the latest from a sequence
of examples is used for updating the network parameters. It reduces the storage needs and
computational effort since examples are not presented repeatedly. This does not necessarily
translate into poor performance since its simplicity has permitted to devise optimized learning
algorithms which compete well with memory-based offline schemes.

(∗) The ordering of the authors has been determined randomly.
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As these optimized algorithms depend on certain usually unknown parameters, they may be
thought only as useful for the derivation of lower bounds to generalization errors. However, the
constructive nature of the optimization procedure points out the relevant features necessary for
efficient learning. Whether an arbitrarily constructed ad hoc algorithm performs satisfactorily,
hinges on how well it reproduces the set of relevant characteristics.

The fact that the bounds are only saturated if the correct values of the parameters are used
suggests that the next step in algorithm design should concentrate on methods to estimate them
efficiently. Any measure of this efficiency has to take into account how robust the algorithms
are with respect to parameter precision.

Our aim in this letter is to investigate this question of robustness in the context of feedfor-
ward multilayer neural networks learning a rule in the presence of noise. We have studied two
different architectures, the tree parity machine (TPM) and the tree committee machine (TCM)
with K hidden units, and the types of noise that we consider are characterized by just a single
parameter, the noise level. The influence of noisy data in supervised learning has been studied
by several authors [2], [9]-[16].

We present results in terms of “robustness diagrams”, which show the regions in the space of
true vs. estimated noise level where different learning behaviour is obtained. These diagrams
are rich in structure with transitions among perfect, imperfect, and impossible learning.

We consider the case where the teacher and student networks have the same architecture;
in the absence of noise this corresponds to perfectly realizable rules. The machines with
nonoverlapping receptive fields which we will study are composed of K ∼ O(1) branches, each
with N/K input units and weight vectors (B1,B2, . . . ,BK) for the teacher and (J1,J2, . . . ,JK)
for the student. For each input vector ξ = (ξ1, ξ2, . . . , ξK) the teacher furnishes the correct
classification label ΣB which is given by

ΣB(ξ) =



K∏
k=1

σkB , for the TPM ,

sign

(
K∑
k=1

σkB

)
, for the TCM ,

(1)

where σkB = sign(Bk · ξk) denotes the internal representations in the teacher hidden units. The
student input-output relations ΣJ (ξ) are defined in the same fashion but with Jk substituting
for Bk.

When learning, the student uses at time µ the information contained in the input-output pair
(ξµ, Σ̃µ

B), where, due to noise, the example label Σ̃µ
B may differ from the correct classification

Σµ
B = ΣB(ξµ). We consider one of two different stochastic mechanisms responsible for this

corruption. We first study the effect of multiplicative (output) noise and then that of additive
(weight) noise.

In this paper we consider the inputs to be vectors with i.i.d. random components with zero
mean and unit variance. The success of learning is measured by the probability of disagreement
between the student and the teacher on an independently drawn such vector. The generalization
error is defined as eg = 〈Θ(−ΣJΣB)〉ξ, which compares the student output to the true rule,

while the prediction error ep =
〈
Θ(−ΣJ Σ̃B)

〉
ξ,Σ̃B

is an average over the input distribution

and the stochastic noise process.
Online learning proceeds by updating the student parameters at each time step µ according to

Jµ+1
k = Jµk +

1

N
Fkξ

µ
k . (2)
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This is modified Hebbian learning [1] where the modulation functions Fk define the particular
learning algorithm.

In the thermodynamic limit the generalization and prediction error become simple monotonic
functions of the overlaps [17], [18]

ρk =
Jk ·Bk

JkBk
, (3)

where Jk and Bk are the lengths of the respective branch weight vectors. Without loss of
generality we take Bk = 1 in the following. This suggests looking at the evolution of the
overlaps ρk and the Jk in the course of learning, which can be obtained from eq. (2). As
N → ∞ , these are self-averaging quantities with respect to the randomness in the training
data. In terms of the continuous time α = µ/N the dynamics is then described by a set of 2K
first-order ordinary differential equations [8]:

dρk
dα

= ρk

〈
Fk

Jk

(
yk

ρk
− xk −

Fk

2KJk

)〉
ξ,Σ̃B

, (4)

dJk
dα

= Jk

〈(
(Fk)2

2KJ2
k

+
Fkxk

Jk

)〉
ξ,Σ̃B

, (5)

where the normalized internal fields are xk = Jk · ξk/Jk and yk = Bk · ξk. In the following
we assume symmetric initial conditions ρk = ρ and Jk = J for all k; this symmetry clearly
will be preserved by the dynamics. Due to the above-mentioned monotonicity, the optimal
generalization ability is achieved for the modulation function F ?k which maximizes the rate
dρk/dα, which is given by [8]

F ?k = KJk

〈(
yk

ρk
− xk

)〉
yk|Σ̃B,{xi}

. (6)

Here, the average is to be performed over the conditional probability of the unknown teacher
internal field yk in branch k, given the set of all {xi}i=1,...K , the noisy training label Σ̃B, and
the noise level. Note that the resulting learning prescription is nonlocal, in the sense that infor-
mation about all other branches of the student is used when updating one of the Jk according
to eq. (2). Whereas this formal prescription is machine independent, it actually incorporates
the specific details of the architecture in the way that it uses the available information.

The use of the optimal weight function requires explicit knowledge of both the actual noise
level and the teacher-student overlap ρ, which in general are not immediately accessible. To
address these issues, adaptive algorithms for online estimation of these quantities have been
proposed in [9], [19].

We first consider what has been termed output noise [12]. In this case, each example is
independently subject to a random inversion of the training label according to the conditional
probability

P
(
Σ̃µ
B | Σ

µ
B

)
= λoδ(Σ̃

µ
B,−Σ

µ
B) + (1− λo)δ(Σ̃µ

B, Σ
µ
B) . (7)

The maximal inversion rate λo = 1/2 would correspond to completely uncorrelated labels which
contain no information about the rule.

In this model, the dependence on the random inputs in eq. (2) is only through the student
and teacher internal fields, which by the central-limit theorem are Gaussian correlated random
variables with zero means,

〈
x2
k

〉
=
〈
y2
k

〉
= 1 and 〈xkyk〉 = ρk. In addition, the average over

the data corruption has to be performed explicitly according to eq. (7).
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Although the optimized modulation functions for the TPM and TCM are different (for a
comparison see [16], [20]), they share certain common behaviours. A universal characteristic
we want to stress is that the resulting optimal algorithms for the TCM and TPM, for any K,
present the same asymptotical behaviour, independently of the architecture and hidden layer
size. For details see [8]-[10], [16]. For sufficiently large α the generalization errors decrease like

eg(α) =
2

I(λo)

1

α
, (8)

where I(λo) = (1− 2λo)2
∫

Dte−t
2

/Ĥ(t) and Dt = (2π)−1/2 exp[−t2/2]dt, H(t) =
∫∞
t

Dx and

Ĥ(t) = λo + (1− 2λo)H(t).
In order to approximate the optimal behaviour obtained with F ?k (K,λo) given by eq. (6), a

constant estimate Λo could be used in its stead, but the performance of the training algorithm
which uses the modulation function Fk = F ?k (K,Λo) depends critically on the quality of this
estimation.

Three regimes, as shown in fig. 1 a), can be identified by analysis of the fixed-point properties
of dρ/dα as a function of ρ. An overestimation of the unknown noise level (Λo > λo) still
enables the system to achieve perfect generalization in the limit α → ∞. The generalization
error decays as C(λo, Λo)/α where the coefficient C for given λo attains its minimal value
2/I(λo) at Λo = λo. This phase of asymptotically perfect generalization extends into the
region of underestimated noise levels (Λo < λo) and is bounded by the solid line in fig. 1 a)
which is numerically obtained from the condition 1/C(λo, Λo) = 0. We call this phase the
robust learning regime; outside this region, i.e. for worse underestimation of the noise level, the
ability to generalize perfectly is lost. The boundary shows the continuous transition where the
fixed point ρ = 1 of eq. (4) becomes repulsive and signals the appearance of a new attractive
fixed point at an intermediate value of ρ and eg > 0. This phase of imperfect learning extends
all the way to the origin (λo = Λo = 0), thus for any nonzero noise level total confidence
(Λo = 0) of the student on the teacher information will impair its ability to extract the rule
completely.

It can be proved that imperfect learning will occur unless Λo is less than 2λo − 1/2 where
dρ/dα|ρ=0 becomes negative. The corresponding dashed line in fig. 1 a) marks the onset of
a third phase characterized by total lack of generalization corresponding to ρ = 0 being an
attractive fixed point.

It is rather remarkable that the phase boundaries are independent of the machine architecture.
Thus, the robustness properties of the TCM and the TPM are the same and independent of K
in the presence of multiplicative noise; details of the proof will be presented in a forthcoming
publication [21]. Of course, for K = 1 both architectures reduce to the simple single-layer
perceptron for which the same diagram holds.

However, this universality does not generally carry over to other types of noise in the training
set. To show this, we consider in the following the corruption of examples by weight noise in
the parity machine. The same behaviour would arise in the presence of input noise or of
additive noise in the internal fields of the teacher.

The effect of weight noise is that for each training example µ the true teacher vectors {Bk}

are replaced by normalized random vectors {B̃µ
k} uniformly distributed on the cones defined

by Bk · B̃
µ
k = ω. The probability for a given example’s label being inverted by this process

is strongly dependent on its actual teacher fields {yk}. For given ω the inversion rate λw, the
expected fraction of flipped training labels averaged over the input distribution, is given by

λw =
1

2

[
1−

(
1−

2

π
arccosω

)K]
, (9)
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Fig. 1. – Robustness diagrams in terms of estimated (Λ) vs. true (λ) inversion rates for the TPM and
the TCM in the presence of output noise (a) and for weight noise in the TPM (b). Performance is
optimal on the diagonal. Solid lines separate the robust learning regime from the region of imperfect
learning. Dashed lines correspond to the boundaries between the latter and the regions of total lack
of generalization. In a) the diagram is the same for all K (TCM and TPM), in b) curves are shown
for a TPM with K = 1, 2, 3 (solid lines: from bottom to top, dashed lines: from left to right).

as can be seen from the equivalence of this expression to the generalization error of a student
with branch overlaps ρk = ω [16]. Note that the same weight noise level ω results in different
inversion rates for different network sizes K. Even if the inversion rate is perfectly known, the
asymptotic decay of the generalization error is significantly slower than in the previous case:
eg ∝ 1/

√
α. This has been found for the simple perceptron previously [9]. Furthermore it is

not universal, because the coefficient is K-dependent for fixed λw or fixed ω.
In fig. 1 b) we present the robustness diagram of the TPM in the presence of weight noise

in terms of the true inversion λw and a constant estimate Λw. The latter corresponds to the
inversion rate that would result if the weight noise level were Ω in analogy to eq. (9).

Qualitatively, the diagram resembles the one for output noise in that the same three phases
can be found. However, the phase boundaries are K-dependent, as shown in fig. 1 b) for
K = 1, 2, 3. The structure of the problem in the presence of output noise permits to factor out
a common kernel, independent of K and architecture, which is responsible for the fixed-point
properties in the vicinity of ρ = 1. The problem is not factorizable in the same manner in
the case of weight noise. Note also, that the boundaries between the regions of perfect and
imperfect generalization here approach the origin λw = Λw = 0 with a nonzero slope, in
contrast to the case of output noise. On the other hand, in the large noise limit the robustness
diagrams coincide for both types of noise.

The transition line between the region of imperfect learning and the phase with total lack
of generalization can be calculated analytically: Ω = 21/Kω. This result is K-dependent also
in terms of the inversion rates, as displayed in fig. 1 b) for K = 1, 2, 3.

Loss of generalization due to noise has been found in other models [13], [22]. Efficient ad hoc
algorithms can be interpreted as more or less crude approximations of the optimal scheme for
a certain noise level. Our analysis explains why there will exist an actual noise level for which
a nonadaptive ad hoc algorithm will fail. This suggests the use of adaptive algorithms which
include the determination of unknown parameters in the learning process in order to avoid the
deterioration due to their misestimation.

In a forthcoming publication [21] we will present, besides the details of this work, analo-
gous studies for nonoptimal ad hoc algorithms and different network architectures as well as
further work into the online determination of unavailable parameters. This step is necessary in
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order to devise practical learning schemes which are guaranteed to work under more general
circumstances.

Note that the observed boundaries distinguish different behaviours of a dynamical system.
Nevertheless, the same program can be carried out in the framework of offline learning where
corresponding boundaries will truly separate equilibrium phases.
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