
Model-Based Design of Context-Sensitive Interactive
Applications: a Discussion of Notations

Jan Van den Bergh
Expertise Centre for Digital Media

Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek, Belgium
Jan.VandenBergh@luc.ac.be

Karin Coninx
Expertise Centre for Digital Media

Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek, Belgium
Karin.Coninx@luc.ac.be

ABSTRACT
Model-based design of user interfaces can be a viable al-
ternative for other user interface specifications especially in
the case of multi-platform and even more so in the case of
context-sensitive interactive applications. In this paper we
look at several notations used in model-based design method-
ologies and analyse them according to requirements we de-
termined for the notations. In order to get an overview of
how well different approaches are able to support the design
context-sensitive interactive applications, we determine a set
of models that are relevant for this type of applications and
organise them visually in such a way that the level of support
for different models and the relations between them could be
shown adaquately. The resulting information is sequentially
used to determine areas where work is needed to design bet-
ter notations for the involved models using a review of sev-
eral notations used for model-based design of user interface
or interactive systems.

Author Keywords
Model-based user interface design, context-sensitive inter-
active systems, graphical notation

ACM Classification Keywords
D.2.1. [Requirements/Specifications]: Languages, D.2.2
[Design Tools and Techniques]: User Interfaces, H.5.2 [User
Interfaces]: Theory and methods

INTRODUCTION
The ever increasing diversity of devices and users and the
parallel evolution of more personalisation and more general,
the adaptation to context has renewed the attention given
to model-based design of user interfaces. This evolution,
however, has not produced many broadly accepted models
and notations. This in contrast to the world of system de-
sign where the Unified Modeling Language (UML [12]) has
emerged as the modeling notation of choice. There also does

c©ACM, 2004. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in TAMODIA ’04 Proceedings of the 3rd
annual conference on Task models and diagrams http://dx.doi.
org/10.1145/1045446.1045456

not seem to be an accepted method for integration of user in-
terface modeling with system modeling.

Several notations for model-based design of user interfaces,
and more generally interactive systems, have been proposed.
They all use several models to support the design process.
The names, contents and number of these models vary greatly.
Despite of this, several models seem to come back in most
approaches.

In this paper, we determine a set of requirements for a no-
tation for model-based design of context-sensitive user in-
terfaces. Some requirements cover the qualitative aspects of
a possible notation. This because the use of a notation is
highly dependent, not only on the supported semantics, but
also on its usability – how it represents the information in
the model as noted by Paterno in [19]. Other requirements
handle the information that should be representable for the
design of context-sensitive models. These requirements are
reflected in a visual representation of the ideal configuration
of models.

To get a better overview how well current model-based tech-
niques are fit to design context-sensitive user interfaces, and
more generally context-sensitive interactive applications, we
compare the presented requirements with the coverage of
models of some recent and some well known notations. The
results of this comparison are than used to determine the ar-
eas where some important work still needs to be done re-
garding the notation of the models and where incremental
work should suffice.

QUALITATIVE REQUIREMENTS
This section discusses the qualitative requirements we set for
a model representation for the design of user interfaces:

understandable The notation should be relatively easy to
understand and should be perceivable by as many people
as possible. It is very difficult to evaluate how “under-
standable” a notation is. We will split this requirement
is two parts: being build on aproven basis and having a
publicly available specification.

divide and conquer In graphical notations, different aspects
of the specification should be the focus of different dia-
grams. An abstract user interface description has different



aspects that are difficult to combine understandably in a
single diagram. Different diagrams, using (partially) the
same symbols can be easier to understand than a single
model that shows everything. Different diagrams can also
be used to clarify some information that is already present
in another diagram. For textual notations, a clear separa-
tion of the information of the different models is also an
advantage.

not isolated The different models represent different aspects
of a user interface but the information they describe is still
dependent on the relations with other models; unlinked
information is unused information and should not be de-
scribed.

expressive The requirement for the notation to be under-
standable should not reduce the capacity of the notation
to express complex models and/or relationships. Com-
plex behaviour that is not relevant to the model should not
be represented as such, but as simple as possible without
loosing too much information.

tool support The notation should be supported by a tool. A
tool can provide the necessary constraints that ensure that
the information presented in possibly different diagrams
are consistent. A tool can also allow the designer to hide
certain information in a diagram can be temporarily hid-
den when desired.

MODEL REQUIREMENTS
Besides the notational requirements, model requirements —
which models can be represented using the notation — are at
least as important. The kind of models used in different ap-
proaches varies, however a useful categorisation is presented
in [8]:

Application Model This model is also called concepts model[2]
or domain model[17, 19]. In general a user interface is
used to present or modify data. This data has a certain
type and a certain structure that can heavily influence the
way the different parts of the user interface are presented.
The domain model is usually highly related to the task
model, since most tasks involve the presentation or ma-
nipulation of data. The domain model is also used to bind
the user interface to the functional core of the application.

Abstract Presentation Model The abstract presentation model
describes the organisation of the user interface. It de-
scribes the structural aspect of the user interface; the way
different interaction components are organized in a single
presentational unit that can be graphical or speech-based.
This model provides modality and toolkit independent in-
formation.

Concrete Presentation Model The concrete presentation model
translates the information described in the abstract pre-
sentation model to concrete instantiations for a specific
modality.

Task/Dialog Model The task model and the dialogue model
are two separate models at different levels of abstractions
and useful in different stages of analysis and design. They

largely cover the same information: the organisation of
the user’s interaction with the application. While the task
model concentrates on the tasks/activities that need to be
performed, the dialogue model concentrates more on how
these activities are organized in the user interface; which
set of tasks is available at a certain moment in time and
thus form a dialogue and how dialogues are interconnected.

For the construction of context-sensitive user interfaces these
models do not describe all the necessary information, there-
fore other information is still needed. Calvary et al. [2]
proposed a reference framework for plastic user interfaces;
user interfaces that can adapt to the context in which they
are used while maintaining usability. The reference frame-
work is used to show how and when certain conceptual mod-
els (concepts, tasks, interactors, environment, user and plat-
form) are used in the development cycle that consists of arti-
facts at different levels of abstraction. From abstract to con-
crete these artifacts are: task and concepts, abstract user in-
terface (platform independent description of interface), con-
crete user interface (platform dependent description of infer-
face) and final user interface (interface rendered at applica-
tion runtime).

The user, environment and platform model, presented in the
reference framework are grouped, as they all describe infor-
mation periferal to the interaction of a user with an appli-
cation, into the context model. We believe that inclusion of
services as in the environment should also be included in the
context model [20]; their availability or absence can have se-
rious effects on the user interface of an application. The de-
scription of services is also significantly different from other
entities in the environment and can therefore be considered
as a separate first-class element in the context description.

Besides the models themselves, the links between the mod-
els are also important. Both are shown in figure 1. Black
lines denote the separation of the models as well as possi-
ble links between the models they separate. The following
important possible relations can be observed in the figure:

• The abstract presentation (APM) is independent of the
context (CM) and thus has no link with the context. This
position is also taken by other approaches. The abstract
user interface descriptions generated by the TERESA-tool [16]
do not contain context dependent features, although the
abstract presentation can be different for certain contexts.
This difference is cause by another model; the task model
that is dependent on the context.
The APM does have relations with the concrete presen-
tation model (CPM), the domain model (DM), required
to generate user interfacesthat can take advantage of the
characteristics of a certain platform and to relate the user
interface to the functional core of the application.

• The task and dialog model (TDM) have relations with the
context; some tasks are only relevant in certain contexts
and other tasks are carried out differently in different con-
texts. The choice for relations between these two models
is supported by Coutaz and Rey [6] and Dey [10] who
state that the context is relevant for the interaction of a



Figure 1: Reference for models in design of context-
sensitive interactive applications and a proposed config-
uration of notations

user with the system. The model that defines this interac-
tion is the TDM.
The task model also has relations with the domain model
— tasks manipulate certain objects/artifacts — and the ab-
stract presentation model — the user needs some interface
to interact with the computing system.

• The concrete presentation model is linked with the context
since the concrete presentation can depend on the plat-
form (e.g. mobile phone or desktop system), the user (e.g.
a beginner or an expert in a certain domain) or even the
environment (e.g. sound alerts can be disabled when the
user is a meeting).

The gray areas in figure 1 denote the graphical representa-
tions of the involved models, while the gray outline shows
the wanted coverage of a textual notation and the support-
ing tool(s). An important thing to note is that the graphical
representation should cover most but not all of the data in a
model instance.

The next section will discuss the notations of different model-
based design environments and methodologies and which
models they cover to what extend using the graphical rep-
resentation used in figure 1. Both graphical notations and
textual notations are discussed.

MODELS IN EXISTING APPROACHES
Figure 2 gives an overview of which models and which rela-
tionships between those models are supported by the various
approaches. The coverage of graphical notations is shown
by gray regions while the coverage of textual notations is
shown by gray outlines. The discussion of graphical and tex-
tual representations will be interleaved to better show differ-
ences between the textual and the graphical notations. The
different approaches support the context model to different
degrees and thus table 1 is provided to better understand the
differences. A discussion of the qualitative properties of the
notations is provided in table 2 with extra explanation in the
text, where needed.

One of the most well-known graphical notations of model-
based design is the ConcurTaskTrees (CTT) notation of Pa-

tero [18]. The notation is a pure hierarchical task notation
that also reflects the temporal relations between tasks at the
same level in the same subtree. The related XML notation,
using TERESA XML, however allows much more informa-
tion to be specified (see figure 2(a)). This information can
include objects that are manipulated, objects that are used
to interact with the application including the platforms on
which they may be available. TERESA XML also supports
the expression of an abstract user interface, which can be
(semi-)automatically derived from the task model and asso-
ciated information. The abstract user interface (AUI) de-
scription supports more or less the same reference models
as the task notation, however, it is specific for a certain plat-
form and thus does not include platform information. The
TERESA tool [16] supports editing of the CTT-model and
can optionally show only tasks that are relevant for a certain
platform. The AUI-model is (semi-)automatically generated
from CTT and minimal editing is supported. The support for
the domain model is also minimal.

Clerckx et al. [5] proposed a variant on the CTT with ex-
plicit representation of the context-sensitive parts using de-
cision nodes based on the ideas expressed in [21], result-
ing in a presentation that has limited support for context in-
formation. The graphical notation is supported by the tool
DynaMo-AID [4] that has richer support for models: it al-
lows the designer to precisely define in which context which
tasks can be carried out using a decision tree that is linked
with the decision nodes in the graphical presentation. The
abstract presentation model as well as a limited description
of the domain objects are also supported as is shown in fig-
ure 2(b). DynaMo-AID enables to generate a concrete proto-
type of the modeled application using a variety of back-ends.
During the execution of the prototype, the context described
in the models can be manipulated. No details are available
on the exact notation used for the textual description of the
model.

In earlier work [28] we also presented the Contextual Con-
curTaskTrees, an extension to the CTT where the context
is no longer considered to be some target, but can also be
an active part of the interaction. This is realised by the intro-
duction of the context task, a “task” that can be performed by
any actor in the ongoing interaction or by someone or some-
thing in the environment and that has a peripheral effect on
the execution of the task. The resulting model coverage can
be seen in figure 2(c).

ArtStudio is a tool for model-based design, developed by
Thevenin for his PhD [26]. It supports the graphical spec-
ification of a task model (based on CTT), an abstract pre-
sentation model (notation using interaction-task notation of
CTT and rectangles to symbolise groupings, interactor spec-
ification is done in separate model) and domain model (us-
ing UML). All models are also described in an XML format
(see also figure 2(d)). The specification of a separate in-
teraction model feels unnatural. The abstract user interface
description consequentially feels very limited; all interactors
use the same representation with their name under it and are
grouped using rectangular boxes.



(a) TERESA (b) DynaMo-AID (c) Contextual ConcurTaskTrees

(d) ArtStudio (e) Mobi-D MIM, MIMIC (f) XIML

(g) Wisdom (h) UMLi (i) USIXML

Figure 2. Models used in various model-based design approaches



Notation User Platform Environment
TERESA (T: AUI, G)
TERESA (T: CTT) X
DynaMo-AID (G) Y Y Y
DynaMo-AID (T) X X X
Contextual CTT Y Y Y
ArtStudio X
MIM X
Wisdom X
UMLi
Ximl/MIMIC X x x
USIXML X X X
G: graphical, T: textual
X: supported, Y: indicated, x: could be supported

Table 1. Supported parts of context

Mobi-D [24] supports model-based design of user interfaces
and uses five models to accomplish this: user, task and do-
main model as abstract models and dialogue and presenta-
tion model as concrete models. Mobi-D does not support au-
tomatic conversion between the models, but rather supports
the user in making the conversion. All models and mappings
are specified with a single textual notation, Mecano Interface
Model (MIM), using MIMIC [22]. The tools of Mobi-D do
not have a graphical representation of the supported models,
although suggestions for the concrete presentation model are
made graphically.

The model coverage of MIM is shown in figure 2(e), the to-
tal coverage of MIMIC is similar to that of XIML since both
languages are generic modeling languages whose expres-
siveness can partly be defined by the user of the language.
The total possible coverage of both MIMIC and XIML is
shown as a dashed outline in respectively figure 2(e) and
2(f); a designer might make instantiations of all models and
all relations between the models. The predefined models and
relations are covered by the full gray outline. XIML [23] can
be considered to be the XML-based successor of MIMIC; it
has similar goals and a similar set of predefined models. In-
stead of full gray areas, as in the other figures, an hatched
gray area is used to denote that part of the flexibility comes
from possible extentions by the user of the notation; both
MIMIC and XIML are meta languages. The platform model
and environment model are marked as “could be supported”
in table 1 because they are not supported by the models al-
ready defined in XIML, but could probably implemented us-
ing the fact that XIML is a meta-language.

Some of the approaches that have an abstract user interface
model and also have a graphical representation are based on
UML. The Wisdom-approach [17] is a model-based design
methodology and accompagning notation for software de-
sign in small software compagnies or small groups in greater
enterprises. The notation is a UML profile, meaning that
it can be expressed completely by UML, but provides sev-
eral extra stereotypes 1 with a corresponding notation. For

1Stereotypes are used in UML to describe additional constraints to
existing UML classes for specific purposes and are the primary way

the abstract user interface description, two models are used:
the dialogue model expressed by a UMLified version of the
ConcurTaskTrees notation and the presentation model that
visualizes the user interface structure possibly containing
five different basic elements — input element and input col-
lection, output element and output collection, and action —
organised a hierarchy of containers. The covered reference
models can be seen in figure 2(g). In contrast with the fig-
ures for TERESA XML and the graphical CTT notation, this
figure contains several grey ellipses indicating different di-
agrams used by the Wisdom notation, and some grey rect-
angles indicating links between diagrams that can be visual-
ized.

Although the notation used by the Wisdom approach has
its merits, it suffers from the fact that the UMLified nota-
tion of the ConcurTaskTrees is not as readable as the origi-
nal [19]. Some other diagrams also do not feel natural due to
the limitations of UML 1.3 [13], most notably the inability
to specify structured classes, used for creating this presenta-
tion. We can also see that several models cover information
in the same model in our representation, this due to the use
of different models in different stages in the Wisdom design
methodology. An extra tool, CanonScetch [3], enables the
design of the abstract presentations using a graphical presen-
tation, called Canonical Abstract Prototypes, that is closer
what developers are used to when making a user interface
design using GUI builders as Qt Designer [27].

UMLi [9] is an extension of UML that introduces extra con-
cepts to UML in order to make the standard activity diagram
suitable for representing the task model (or dialogue model)
and introduces a new diagram, the user interface diagram, to
represent the presentation model, resulting in the model cov-
erage in figure 2(h). UMLi supports inputters, displayers,
editors and actionInvokers as basic abstract interaction com-
ponents. These components can be organized in containers
and ultimately belong to a free container, which corresponds
to a window or a dialogue in a graphical user interface. The
extended activity diagram, which was presented as a task
model, has been criticised [19] for being too low level for
this purpose, but is nevertheless very comprehensible and
perhaps better suited as a dialogue model. The extended ac-
tivity diagram also includes explicit links with the domain
and abstract presentation model.

A drawback of UMLi is that it extends the UML Metamodel
and thus can only be supported by a tool especially designed
for the notation. ARGOi [7] is such a tool that is publically
available. This in contrast to the Wisdom method that only
uses standard UML mechanisms and extends the notation
using stereotypes ensuring a broad tool support. UMLi is the
only model-based approach that is discussed here, offering
no explicit provisions for context modeling (although e.g.
user modeling has be done using UML [17]). It is mentioned
here, because it is the only approach that gives special care
to the definition of links between the the task/dialogue model
and the domain and abstract presentation model.

to extend the UML notation.



USIXML [1, 15] is an XML-based specification for the de-
scription of user interfaces in the widest sense of the term.
In contrast to XIML and MIMIC, it chooses to define an ex-
act framework instead of a more generic approach. It is fo-
cussed on business applications and tries to be as complete
as possible in the definition of all the models that are con-
sidered to be relevant. The language allows the specification
of domain, task, abstract user interface, concrete user inter-
face and context models. Mappings and transformations be-
tween the different models can be explicitly defined in sepa-
rate models: mapping, transformation and rule-term model.
It is one of the most complete and in-depth specifications
available as can be seen in figure 2(i).

The great amount of tools available for USIXML as seen
in table 2 should be put in perspective: not all tools sup-
port USIXML completely and most are special purpose tools
built especially for USIXML at UCL (Université Catholique
de Louvain) except TERESA that only supports the concrete
presentation.

CONCLUSIONS AND FUTURE WORK
Multiple approaches towards model-based design of user in-
terfaces are found in litterature. In this paper, we presented
requirements for a notation that supports model-based de-
sign of context sensitive user interfaces. These requirements
consisted of the models that should be supported and some
qualitative properties of the notations for such models. We
then discussed several notations keeping these requirements
in mind.

Based on the discussion we can conclude that while most
notations are understandable and have tool support for the
models they support, much work is needed before we can
claim that model-based design can greatly ease the design of
context-sensitive applications:

• While there seems a great level of agreement over the ba-
sics of a notation for the task model, the ConcurTaskTrees
notation is used (and extended) in several approaches [5,
11, 28]. There is still some work to see whether and
how to integrate context information in the task notation.
Should this be left for tool support and the underlying
notation or made explicit in the graphical representation?
Should the presentation of context information be included
in the task model and how?

• Most approaches do not have a context model, although
they support context the definition of context information
to some degree and those that cover almost all sub-models
of the context model are very constrained in the amount
of context they support. A more powerful context model
is needed, possibly based on the work of Henricksen and
Indulska [14], on the Context Ontology Language [25] or
on emerging context ontologies, such as in [20].

• Support for graphical notations is still limited. Many ap-
proaches only have graphical notations for only one or
two models and the models that have graphical notations
for their models have received valid critics on some of
their notations. Some more work is needed to ensure ex-

pressive and understandable graphical notations for all the
needed models including the necessary links. The use of
expressive and understandable graphical notations can be
an important for a designer to get a clear understanding
and overview of a model.

ACKNOWLEDGEMENTS
Our research is partly funded by the Flemish government
and European Fund for Regional Development. The Co-
DAMoS (Context-Driven Adaptation of Mobile Services) project
IWT 030320 is directly funded by the Flemish Institute for
the Promotion of the Scientific-Technological Research in
the Industry (IWT – Vlaanderen).

REFERENCES
1. UsiXML. http://www.usixml.org.

2. Gaëlle Calvary, Joëlle Coutaz, David Thevenin,
Quentin Limbourg, Nathalie Souchon, Laurent
Bouillon, and Jean Vanderdonckt. Plasticity of user
interfaces: A revised reference framework. In
Proceeding of TaMoDia 2002, pages 127–134, 2002.

3. Pedro F. Campos and Nuno J. Nunes. Canonscetch: a
user-centered tool for canonical abstract prototyping. In
Pre-proceedings of EHCI/DSV-IS’2004, pages
108–126, July 11–13 2004.

4. Tim Clerckx, Kris Luyten, and Karin Coninx.
Dynamo-aid: a design process and a runtime
architecture for dynamic model-based user interface
development. In Pre-Proceedings of EHCI /
DSV-IS’2004, pages 142–160, July 11–13 2004.

5. Tim Clerckx, Kris Luyten, and Karin Coninx.
Generating context-sensitive multiple device interfaces
from design. In Pre-proceedings of CADUI 2004, pages
288–301, 2004.

6. Joëlle Coutaz and Gaëtan Rey. Foundations for a
Theory of Contextors. In Christophe Kolski and Jean
Vanderdonckt, editors, CADUI 2002, volume 3, pages
13–33. Kluwer Academic, 2002. Invited talk.

7. Paulo Pinheiro da Silva. ARGOi Modelling Tool.
http://www.cs.man.ac.uk/img/umli/
software.html.

8. Paulo Pinheiro da Silva. User interface declarative
models and development environments: a survey. In
Proceedings of DSVIS 2000, pages 207–226, 2000.

9. Paulo Pinheiro da Silva and Norman W. Paton. Object
modelling of user interfaces in umli. IEEE Software,
20(4):62–69, July–August.

10. Anind K. Dey. Providing Architectural Support for
Building Context-Aware Applications. PhD thesis,
College of Computing, Georgia Institute of
Technology, December 2000.

11. Anke Dittmar and Peter Forbrig. The influence of
improved task models on dialogues. In
Pre-Proceedings of CADUI’2004, pages 1–14, 2004.



Notation understandable split not isolated expressive tools
base spec

CTT graphical hierarchical, Pu only task model links through unclear which task CTTE (1))
(G) LOTOS operators tool for which platform TERESA (2)
TERESA CTT XML Pu all information limited spec- most information in CTTE (1)
(T) is organised ification of model, context is TERESA (2)

around tasks other models platform
TERESA AUI XML Pu presentation and no relations intra-dialogue TERESA (2)
(T) dialogue model with other events cannot be

integrated models specified
CTT, decision hierarchical, Pu* only task model links through decision nodes mark DynaMo-AID
node (G) CTT tool context dependent

tasks
CCTT (G) context task Pu* only task model links should explicit notion no

unintuitive be through which context is
hierarchical tool involved

ArtStudio (G) TM: tree based Pu separate in underlying no interactor ArtStudio
DM: UML specification description? specification

of models in abstract UI
MIM (T) uses MIMIC / separate sections links through complex applic- Mobile

for models design model ations realised TIMM, U-Tel
model editors

MIMIC (T) C++ syntax Pu not applicable not tested with MIM see MIM
applicable

XIML (T) XML Li ? ? >= MIMIC N/A
UMLi (G) UML Pu TDM -> DM rather low-level ARGOi (3)

TDM -> AM
Wisdom (G) UML, Pu different links between UML tools

UML-ified diagrams for diagrams CanonScetch
CTT diff. models

USIXML (T) XML, Pu separate links through limited for GraphiXML (4)
CTT (T), specification dedicated context VisiXML
UAPROF of models models specification FlashiXML
vocabulary Tcl-Tk UsiXML

RecursiXML
TERESA (2)
TransformiXML

G: graphical notation, T: textual notation
(1) available from: http://giove.cnuce.cnr.it/ctte.html
(2) available from: http://giove.cnuce.cnr.it/teresa.html
(3) available from: http://www.cs.man.ac.uk/img/umli/software.html
(4) available from: http://www.usixml.org/index.php?page=grafixml.xml
Pu: publically available, Pu*: underlying textual notation not available, Li: restricted available

Table 2. Qualitative evaluation of existing notations



12. Object Management Group. UML Resource Page.
http://www.uml.org/.

13. Object Management Group. OMG Unified Modeling
Language Specification. June 1999. Version 1.3.

14. Karen Henricksen and Jadwiga Indulska. A software
engineering framework for context-aware pervasive
computing. In Proceedings of PERCOM 2004, pages
77–86, 2004.

15. Quentin Limbourg, Jean Vanderdonckt, Benjamin
Michotte, Laurent Bouillon, Murielle Florins, and
Daniela Trevisan. Usixml: A user interface description
language for context-sensitive user interfaces. In ACM
AVI 2004 Workshop: UIXML 2004, pages 55–62, 2004.

16. Giullio Mori, Fabio Paternò, and Carmen Santoro. Tool
Support for Designing Nomadic Applications. In
Intelligent User Interfaces, pages 141–148, January
12–15 2003.

17. Nuno Jardim Nunes and Joao Falcao e Cunha. Towards
a uml profile for interaction design: the wisdom
approach. In UML 2000, pages 117–132. Springer,
2000.

18. Fabio Paternò. Model-Based Design and Evaluation of
Interactive Applications. Springer, 2000.

19. Fabio Paternò. Towards a uml for interactive systems.
In Proceedings of the EHCI 2001, pages 7–18, 2001.

20. Davy Preuveneers, Jan Van den Bergh, Dennis
Wagelaar, Andy Georges, Peter Rigole, Tim Clerckx,
Yolande Berbers, Karin Coninx, Viviane Jonckers, and
Koen De Bosschere. Towards an extensible context
ontology for ambient intelligence. In Proceedings of
EUSAI 2004, 2004. Accepted for publication.

21. Costin Pribeanu, Quentin Limbourg, and Jean
Vanderdonckt. Task Modelling for Context-Sensitive
User Interfaces. In Chris Johnson, editor, Interactive
Systems: Design, Specification, and Verification,
volume 2220 of LNCS, pages 60–76. Springer, 2001.

22. Angel Puerta. The mecano project: Comprehensive and
integrated support for model-based interface
development. In Computer-Aided Design of User
Interfaces, pages 19–25. Presses Universitaires de
Namur, June 5–7 1996.

23. Angel Puerta and Jacob Eisenstein. Ximl: A common
representation for interaction data. In Proceedings of
the IUI 2004, pages 214–215. ACM Press, 2002.

24. Angel Puerta and David Maulsby. Management of
design knowledge with mobi-d. In Proceedings of
IUI’97, pages 249–252, January 6–9 1997.

25. Thomas Strang, Claudia Linnhoff-Popien, and
Korbinian Frank. CoOL: A Context Ontology
Language to enable Contextual Interoperability. In
Proceedings of DAIS2003, pages 236–247, 2003.

26. David Thevenin. Adaptation en Interaction
Homme-Machine: le Cas de Plasticité. PhD thesis,
Université Joseph Fourier, UFR en Informatique et
Mathématique Appliquées, December 21 2001.

27. Trolltech. Qt Designer. http://www.trolltech.
com/products/qt/designer.html.

28. Jan Van den Bergh and Karin Coninx. Contextual
concurtasktrees: Integrating dynamic contexts in task
based design. In Proceedings of PERCOM workshop
CoMoRea 2004, pages 13–17. IEEE Press, 2004.


