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INTRODUCTION

Let L be a finite-dimensional Lie algebra over a field k of characteristic zero and

let U(L) be its enveloping algebra with quotient division ring D(L). Let P be a

commutative Lie subalgebra of L. In [O2] the necessary and sufficient condition on

P was given in order for D(P ) to be a maximal (commutative) subfield of D(L).

In particular, this condition is satisfied if P is a commutative polarization (CP)

with respect to any regular f ∈ L∗ and the converse holds if L is ad-algebraic.

The purpose of this paper is to study Lie algebras admitting these CP’s and to

demonstrate their widespread occurrence.

First we have the following characterisation if L is completely solvable: P is a CP

of L if and only if there exists a descending chain of Lie subalgebras

L = Ln ⊃ . . . ⊃ Lj+1 ⊃ Lj ⊃ . . . ⊃ Lp = P

such that dim Lj = j with increasing index, i.e. i(Lj) = i(Lj+1) + 1, j :

p, . . . , n−1 (Theorem 1.11). In low dimension this phenomenon appears frequently.

In fact, in a case by case study of indecomposable nilpotent Lie algebras of dimension

at most seven we discover that Lie algebras without CP’s are rather exceptional: 1

(out of 9) in dimension at most 5; 3 (out of 22) in dimension 6 and 26 (out of 130) in

dimension 7. These will be listed in section 3, in which we also prove that nonabelian
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Lie algebras having a nondegenerate, invariant bilinear form do not admit any CP

(Theorem 3.2).

Suppose k is algebraically closed. Then for a Lie algebra L to admit a CP P has

the following advantage: in U(L) the primitive ideals I(f), with regular f ∈ L∗,

can all be constructed using the same polarization P , since I(f) is the kernel of the

(twisted) induced representation σ = ind∼(f |P , L) [D, 10.3.4]. If in addition P is

an ideal of L (a so called CP-ideal of L) then the representation σ is irreducible (in

the completely solvable case P even turns out to be a Vergne polarization). Also,

the semi-center Sz(U(L)) of U(L) is contained in U(P ) (Corollary 4.4). Moreover,

a standard technique using Grassmannians shows that if L is solvable with a CP,

then it also has a CP-ideal (Theorem 4.1).

In section 5, we look for CP-ideals in some Frobenius Lie algebras (i.e. Lie algebras

of index zero [O1]). For instance, let x ∈ L be a principal nilpotent element of

a semi-simple Lie algebra L with centralizer P . Then the normalizer F of P is a

Frobenius Lie algebra by a recent result of Panyushev [P2], in which P is a CP-ideal

(Theorem 5.7). Next, let A be a finite dimensional associative algebra over k with

a unit. A becomes a Lie algebra g for the Lie bracket [a, b] = ab − ba, a, b ∈ A

and V = A becomes a g-module by left multiplication. Consider the semi-direct

product L = g ⊕ V . Then the following are equivalent (Proposition 5.6):

(1) A is a Frobenius algebra

(2) L is a Frobenius Lie algebra

(3) V is a CP-ideal of L

(4) D(V ) is a maximal subfield of D(L).

A similar result can be obtained if A is a finite dimensional left symmetric alge-

bra (Example 5.4) or if A is a finite dimensional simple Novikov algebra over k,

char(k) = p > 2.

CP-ideals also occur naturally in the nilradical N of any parabolic Lie subalgebra of

a simple Lie algebra L of type Ar or Cr. As a bonus we obtain an explicit formula

for the index i(N) of N (Theorem 6.2).

Finally, section 7 deals with some CP-preserving extensions.
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1. PRELIMINARIES AND GENERAL RESULTS

Let L be a Lie algebra over a field k of characteristic zero with basis x1, . . . , xn.

Let f ∈ L∗ and consider the alternating bilinear form Bf on L sending (x, y)

into f([x, y]). For any subset A of L we denote by A⊥ or Af the subspace

{x ∈ L | f([x, a]) = 0 for all a ∈ A}

We also put L(f) = L⊥ and i(L) = min
f∈L∗

dim L(f), the index of L. Note that

L(f) is a Lie subalgebra of L containing the center Z(L) of L. We recall from [D,

1.14.13] that

i(L) = dim L − rankR(L)([xi, xj ])

where R(L) is the quotient field of the symmetric algebra S(L) of L. In particular,

dim L − i(L) is an even number.

Furthermore, f is called regular if dim L(f) = i(L). It is well- known that the

set L∗
reg of all regular elements of L∗ is an open dense subset of L∗ for the Zariski

topology.

DEFINITION 1.1 [D, 1.12.7] A Lie subalgebra P of L is called a polarization

w.r.t. f ∈ L∗ if f([P, P ]) = 0 and dim P = 1
2
(dim L + dim L(f)), in other

words P is a maximal totally isotropic subspace of L (equipped with Bf). If in

addition P is commutative then f is regular by the following observation.

LEMMA 1.2 (see Theorem 14 of [O2]). Let P be a commutative Lie subalgebra

of L; h1, . . . , hm a basis of P and x1, . . . , xn a basis of L. Then the following

conditions are equivalent:

(a) dim P = 1
2
(dim L + i(L)), i.e. P is a CP (commutative polarization) of L

w.r.t. each f ∈ L∗
reg.

(b) P = P f w.r.t. some f ∈ L∗ (such an f is necessarily regular)

(c) rankR(L)([hi, xj ]) = dim L − dim P

LEMMA 1.3 Let P and M be Lie subalgebras of L such that P ⊂ M ⊂ L.

Then the following conditions are equivalent:

(1) P is a CP of L
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(2) P is a CP of M and i(M) = i(L) + dim L − dim M .

Under these conditions the following hold:

f ∈ L∗
reg ⇒ f |M ∈ M∗

reg

Proof. (1) ⇒ (2). Take any f ∈ L∗
reg. Then P = P f . Put g = f |M ∈ M∗.

W.r.t. Bg we have:

P g = {x ∈ M | g([x, P ]) = 0} = {x ∈ M | f([x, P ]) = 0}
= M ∩ P f = M ∩ P = P.

Hence P is a CP of M and g ∈ M∗
reg by Lemma 1.2. In particular,

1
2
(dim M + i(M)) = dim P = 1

2
(dim L + i(L))

Consequently, i(M) = i(L) + dim L − dim M .

(2) ⇒ (1). P is commutative and

dim P = 1
2
(dim M + i(M))

= 1
2
(dim M + i(L) + dim L − dim M)

= 1
2
(dim L + i(L))

Hence, P is a CP of L.

The following is a direct application of [D, Lemma 1.12.2].

LEMMA 1.4. Let M be a Lie subalgebra of L of codimension one. Let f ∈ L∗

and put g = f |M ∈ M∗. Then we distinguish two cases:

(i) If L(f) ⊂ M then L(f) is a hyperplane in M(g).

(ii) If L(f) 6⊂ M then M(g) = L(f) ∩ M is a hyperplane in L(f).

REMARK 1.5. In [O2] we introduced the notion of the Frobenius semiradical

F (L) of a Lie algebra L, namely

F (L) =
∑

f∈L∗

reg

L(f)
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This is a characteristic ideal of L containing the center Z(L) of L. It seems to play

a natural role in the study of commutative polarizations. For instance if L admits

a CP P , then F (L) ⊂ P and hence is commutative [O2, p.710].

PROPOSITION 1.6. Let M be a Lie subalgebra of L of codimension one,

f ∈ L∗ and g = f |M ∈ M∗. Then we have:

(1) either i(M) = i(L) + 1 or i(M) = i(L) − 1

(2)





f ∈ L∗

reg

i(M) = i(L) + 1
⇔





g ∈ M∗

reg

L(f) ⊂ M

(3)





f ∈ L∗

reg

L(f) 6⊂ M
⇔





g ∈ M∗

reg

i(M) = i(L) − 1

(4) i(M) = i(L) + 1 ⇔ F (L) ⊂ M

(5) Suppose i(M) = i(L) + 1 and let P be a Lie subalgebra of M . Then

P is a CP of L ⇔ P is a CP of M

(6) Suppose i(M) = i(L)−1. If H is a CP (respectively a CP- ideal) of L, then

H ∩ M is a CP (resp. a CP-ideal) of M and dim(H ∩ M) = dim H − 1.

Proof.

(1) Choose ϕ ∈ L∗
reg such that γ = ϕ|M ∈ M∗

reg. Suppose L(ϕ) ⊂ M

then

i(M) = dim M(γ) = dim L(ϕ) + 1 = i(L) + 1

by (i) of Lemma 1.4. On the other hand, if L(ϕ) 6⊂ M then

i(M) = dim M(γ) = dim L(ϕ) − 1 = i(L) − 1

by (ii) of Lemma 1.4.

(2) ⇒:

Suppose L(f) 6⊂ M . By (ii) of Lemma 1.4

i(M) ≤ dim M(g) = dim L(f) − 1 = i(L) − 1
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Contradiction. Therefore L(f) ⊂ M . Hence,

i(M) − 1 = i(L) = dim L(f) = dim M(g) − 1

by (i) of Lemma 1.4. Hence i(M) = dim M(g), i.e. g ∈ M∗
reg.

⇐:

By (i) of Lemma 1.4 L(f) ⊂ M implies that

i(L) ≤ dim L(f) = dim M(g) − 1 = i(M) − 1

So, i(M) ≥ i(L) + 1. By (1), i(M) = i(L) + 1 and therefore

i(L) = dim L(f), i.e. f ∈ L∗
reg.

(3) ⇒:

L(f) 6⊂ M implies that

i(M) ≤ dim M(g) = dim L(f) − 1 = i(L) − 1

by (ii) of Lemma 1.4. Hence, by (1), i(M) = i(L) − 1 which forces

i(M) = dim M(g), i.e. g ∈ M∗
reg.

⇐:

Since i(M) 6= i(L) + 1 it follows from (2) that L(f) 6⊂ M . Hence,

i(L) − 1 = i(M) = dim M(g) = dim L(f) − 1

by (ii) of Lemma 1.4. Consequently, dim L(f) = i(L), i.e. f ∈ L∗
reg.

(4) ⇒ follows from (2).

⇐ Choose f ∈ L∗
reg such that g = f |M ∈ M∗

reg. Then

L(f) ⊂ F (L) ⊂ M . Using (2) it follows that i(M) = i(L) + 1.

(5) Clearly, i(M) = i(L) + dim L − dim M . Now use Lemma 1.3.

(6) Suppose i(M) = i(L) − 1. Hence, by Lemma 1.3 H 6⊂ M . Then

dim(H ∩ M) = dim H − 1. H ∩ M is abelian and

dim(H ∩ M) = 1
2
(dim L + i(L)) − 1 = 1

2
(dim M + i(M))

Consequently, H ∩ M is a CP (resp. a CP-ideal) of M .
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EXAMPLES 1.7.

(1) Let E be a nonzero endomorphism of an n-dimensional vector space V over k.

Consider the Lie algebra L = kE⊕V with Lie brackets [E, v] = Ev and

in which V is a commutative ideal. L is solvable and i(L) = n−1. Clearly,

i(V ) = n = i(L) + 1 and V is a CP-ideal of L by (5) of Proposition 1.6.

(2) Let L be a Frobenius Lie algebra (i.e. i(L) = 0) and M a Lie subalgebra of

L of codimension one. Then i(M) = 1 (= i(L) + 1).

(3) Let M be a Lie subalgebra of codimension one in a nonabelian Lie algebra L

with F (L) = L. Then, i(M) = i(L) − 1 and L does not have any CP’s

(by Proposition 1.6 and Remark 1.5). For instance, let L be the diamond Lie

algebra with basis t, x, y, z and nonvanishing brackets [t, x] = −x [t, y] =

y and [x, y] = z. Clearly, i(L) = 2 and M = [L, L] = 〈x, y, z〉 is

an ideal of codimension one in L with i(M) = 1. Put f = x∗ ∈ L∗
reg

and g = f |M ∈ M∗. Then, L(f) = 〈y, z〉 ⊂ M , i(M) = i(L) − 1 and

g /∈ M∗
reg. Also, P1 = 〈y, z〉 is a CP of M . But there is no CP P of L

such that P ∩M = P1 (in fact L does not admit any CP since F (L) = L).

See also Theorem 3.2 and (2) of Examples 3.3.

DEFINITION 1.8 A Lie algebra L is called square integrable if L(f) = Z(L)

for some f ∈ L∗, i.e. i(L) = dim Z(L).

In the nilpotent case these Lie algebras are precisely the Lie algebras of simply

connected Lie groups admitting square integrable representations [MW, p.450-453].

PROPOSITION 1.9 Let L be a Lie algebra having an element u ∈ L such that

its centralizer M = C(u) has codimension one in L. Then we have

(i) i(M) = i(L) + 1

(ii) L has a CP if and only if M has a CP

(iii) If L is square integrable then so is M .

REMARK 1.10. Note that C(u) is an ideal of codimension one of L if either

u is a noncentral semi-invariant of L (i.e. for a suitable λ ∈ L∗\{0} : [x, u] =

λ(x)u, x ∈ L) or [u, L] is a one dimensional subspace of the center Z(L) (such
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an u always exists if L is nilpotent and dim Z(L) = 1 < dim L). In that situation,

if L has a CP-ideal then the same holds for C(u).

Proof of the proposition.

(i) Take x ∈ L\C(u) and choose f ∈ L∗ such that f |M is regular and

such that f([x, u]) 6= 0. Then C(u) = uf (since both have the same

dimension and C(u) ⊂ uf). Then L(f) = Lf ⊂ uf = M . It follows by

(2) of Proposition 1.6 that i(M) = i(L) + 1 and f ∈ L∗
reg.

(ii) First, let P be a commutative Lie subalgebra of M . Then,

P is a CP of L if and only if P is a CP of M

by (5) of Proposition 1.6. Next, let P be a CP of L such that P 6⊂ M . Then

dim(P ∩ M) = dim P − 1 and u /∈ P ∩ M (otherwise [u, P ] = 0 and

thus P ⊂ C(u) = M).

Finally, P1 = (P ∩ M) ⊕ ku is a CP of M since it is commutative and

dim P1 = dim P = 1
2
(dim L + i(L)) = 1

2
(dim M + i(M))

(iii) Clearly, Z(L) ⊂ C(u) = M and u ∈ Z(M)\Z(L). Hence,

Z(L) ⊕ ku ⊂ Z(M). Therefore,

i(M) ≥ dim Z(M) ≥ dim Z(L) + 1 = i(L) + 1

As i(M) = i(L) + 1 we may conclude that i(M) = dim Z(M), i.e. M is

square integrable.

THEOREM 1.11 Let P be a commutative Lie subalgebra of a completely sol-

vable Lie algebra L. Then the following conditions are equivalent:

(1) P is a CP (resp. CP-ideal) of L.

(2) There exists a descending series of Lie subalgebras (resp. ideals) of L.

L = Ln ⊃ . . . ⊃ Lj+1 ⊃ Lj ⊃ . . . ⊃ Lp = P

8



dim Lj = j, with increasing index (i.e. i(Lj) = i(Lj+1) + 1).

Proof. Let P be a Lie subalgebra (resp. ideal) of L. P (resp. L) acts on the

quotient space L/P . Application of Lie’s theorem to this action shows the exis-

tence of Lie subalgebras (resp. ideals) Lj of L such that L = Ln ⊃ . . . ⊃ Lp = P

with dim Lj = j.

(1) ⇒ (2). Now suppose P is a CP of L.

Then, by Lemma 1.3, P is also a CP for each Lj and

i(Lj) = i(L) + (n − j) = i(L) + (n − (j + 1)) + 1

= i(Lj+1) + 1

(2) ⇒ (1)

By induction on j we show that P is a CP of Lj. This is trivial for j = p. Next,

let j ≥ p + 1. Then P is a CP of Lj−1 and also of Lj since i(Lj−1) = i(Lj) + 1

by (5) of Proposition 1.6.

COROLLARY 1.12. Let L be a completely solvable Frobenius Lie algebra of

dimension 2n having a CP P . Then L can be obtained from the n- dimensional

abelian Lie algebra P with n successive extensions as described in Theorem 1.10.

LEMMA 1.13. Let P be a CP (resp. a CP-ideal) of a Lie algebra L, A an ideal

of L contained in P and f ∈ L∗
reg such that f(A) = 0. Then P/A is a CP

(resp. a CP-ideal) of the Lie algebra L/A and

i(L/A) = i(L) − dim A

Proof. Let ϕ : L → L/A be the quotient homomorphism. As f(A) = 0

there is a g ∈ (L/A)∗ such that g ◦ ϕ = f . Clearly, P/A is an abelian Lie

subalgebra (resp. ideal) of L/A. It suffices to show that (P/A)g = P/A.

(P/A)g = {ϕ(x) ∈ L/A | g([ϕ(x), ϕ(P )]) = 0, x ∈ L}
= ϕ({x ∈ L | f([x, P ]) = 0}
= ϕ(P f) = ϕ(P ) = P/A

as P f = P . So, by Lemma 1.2 P/A is a CP (resp. CP-ideal) of L/A and

g ∈ (L/A)∗reg. Therefore, dim P/A = 1
2
(dim L/A + i(L/A)) and

i(L/A) = 2 dim P/A − dim L/A

9



= 2(dim P − dim A) − (dim L − dim A)

= (2 dim P − dim L) − dim A = i(L) − dim A

2. CP’S IN SQUARE INTEGRABLE NILPOTENT LIE ALGEBRAS

The following lemma is easy to verify.

LEMMA 2.1. Suppose L is a direct product of Lie algebras; L = L1 × L2.

Then we have the following:

(1) i(L) = i(L1) + i(L2) and Z(L) = Z(L1) × Z(L2).

(2) L is square integrable if and only if the same holds for L1 and L2.

(3) L has a CP (resp. CP-ideal) if and only if the same holds for L1 and L2.

PROPOSITION 2.2. Let L be a square integrable nilpotent Lie algebra over

IC, of dimension n at most seven. Then L admits a CP-ideal.

Proof. By Lemma 2.1 we may assume that L is indecomposable. In particular,

1 ≤ dim Z(L) = i(L) < dim L.

We now distinguish the following cases:

(1) i(L) = 1. Then n is 3, 5 or 7. Let m be the maximum dimension of all

abelian ideals of L. Then by [Mo, p.161] and [O2, p.706] we have the following

inequalities:

1

2
(
√

8n + 1 − 1) ≤ m ≤ 1

2
(dim L + i(L)) =

1

2
(n + 1)

This implies that m = 1
2
(dim L + i(L)) in case n = 3, 5 or 7, showing the

existence of a CP-ideal in L.

(2) i(L) = 2. Then n = 6 (The case n = 4 does not occur since L

is indecomposable). We select from Morozov’s classification of 6-dimensional

nilpotent Lie algebras those that are indecomposable, square integrable and of

index 2; in each {e1, . . . , e6} is a basis of L. The numbering is Morozov’s

[Mo, p.168].
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4. [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e6

5. [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5 [e2, e3] = γe6, γ 6= 0

6. [e1, e2] = e6, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5

7. [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6

8. [e1, e2] = e3 + e5, [e1, e3] = e4, [e2, e5] = e6

9. [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e6

10. [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5, [e2, e3] = γe6,

γ 6= 0

11. [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6

In each one of these, P = 〈e3, e4, e5, e6〉 is a CP- ideal, since P is an abelian

ideal and dim P = 4 = 1
2
(dim L + i(L)).

(3) i(L) = 3. Then n = 7 (The case n = 5 does not occur since L is

indecomposable).

We have the following possibilities according to Seeley’s classification of 7-

dimensional nilpotent Lie algebras. We maintain the same notation as in

[See]. In particular {a, b, c, d, e, f, g} is a basis of L. In each case we exhibit

a commutative ideal P of dimension 5 (= 1
2
(dim L + i(L))).

In the following 3 Lie algebras we take P = 〈a, d, e, f, g〉
3 7B: [a, b] = e, [b, c] = f , [c, d] = g

3 7C : [a, b] = e, [b, c] = f , [c, d] = e, [b, d] = g

3 7D: [a, b] = e, [b, d] = g, [c, d] = e, [a, c] = f

In the following 3 we take P = 〈c, d, e, f, g〉
3, 5, 7A: [a, b] = c, [a, c] = e, [a, d] = g, [b, d] = f

3, 5, 7B: [a, b] = c, [a, c] = e, [a, d] = g, [b, c] = f

3, 5, 7C: [a, b] = c, [a, c] = e, [a, d] = g, [b, c] = f , [b, d] = e

REMARK 2.3 Among the Lie algebras described in Proposition 2.2 there is one

which is characteristically nilpotent, namely 1, 2, 4, 5, 7N with basis {a, b, c, d, e, f, g}
and nonzero brackets: [a, b] = c, [a, c] = d, [a, d] = g, [a, e] = f , [a, f ] = g,

[b, c] = e, [b, d] = f , [b, e] = ξg, [b, f ] = g, [c, d] = g, [c, e] = −g with

ξ 6= 0, 1. [See, p.493]. In this case take P = 〈d, e, f, g〉.

11



3. LIE ALGEBRAS WITHOUT CP’S

First we want to show that the restriction on the dimension in Proposition 2.2 cannot

be removed.

EXAMPLES 3.1

(i) Let L be the 8-dimensional Lie algebra over k with basis {e1, . . . , e8} and

nonvanishing brackets: [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7, [e1, e5] =

−e8, [e2, e3] = e8, [e2, e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] =

−e7, [e4, e6] = −e8.

L is characteristically nilpotent [DL]. L is also square integrable of index 2,

but it does not admit a CP-ideal (and not any CP’s either, see section 4).

Proof. Suppose L has a CP-ideal P . So, P is a 5-dimensional abelian ideal

of L. Now take the linear functional f = e∗7 ∈ L∗, which is regular. Put

A = ke8 ⊂ Z(L). This is a 1-dimensional ideal of L contained in P and

f(A) = 0. By Lemma 1.13 Q = P/A is a CP-ideal of L/A. Clearly,

L/A is a 7- dimensional nilpotent Lie algebra of index 1, with basis x1 =

e1 + A, . . . , x7 = e7 + A. So, Q is a 4-dimensional abelian ideal of L/A. One

verifies that there are λ, µ ∈ k, not both zero such that Q is generated by

λx1 + µx4, x5, x6, x7. Then P is generated by λe1 + µe4, e5, e6, e7, e8. But

this contradicts the fact that P is commutative, since

[λe1 + µe4, e5] = −λe8 and [λe1 + µe4, e6] = −µe8

(ii) Let V be a vector space over k with basis e1, . . . , en; n ≥ 2. Take the

vector space
2∧

V with basis eij = ei ∧ ej , i < j. Next, consider the Lie

algebra

L = V ⊕
2∧

V

with nonvanishing brackets [ei, ej ] = eij , i < j. Clearly, [L, L] =
2∧

V =

Z(L). So, L is 2-step nilpotent of dimension n + 1
2
n(n − 1) = 1

2
n(n + 1).

Let x, y ∈ V . Then it is easy to see that

[x, y] = 0 ⇔ x, y are linearly dependent over k (∗)

12



Next, we take n to be even. Then, rankR(L)([ei, ej]) = n. This implies that

i(L) = dim L − n =
1

2
n(n − 1) = dim Z(L)

i.e. L is square integrable.

Finally, take n = 4. Then dim L = 10, dim Z(L) = i(L) = 6 and
1
2
(dim L + i(L)) = 8. But, because of (∗), L has no 8-dimensional abelian Lie

subalgebra containing Z(L), i.e. L has no CP’s. The same holds for all even

n ≥ 4, using a similar argument.

THEOREM 3.2 Let L be a Lie algebra having a nondegenerate, invariant bilinear

form b. Then F (L) = L. In particular, L does not admit a CP unless L is abelian.

Proof. Take y ∈ L and consider the map ϕy sending each x ∈ L into

b(x, y). Clearly, ϕy ∈ L∗ and the map ϕ : L → L∗ sending y into ϕy is an

isomorphism of L-modules. Consequently, y and ϕy have the same stabilizer in L,

i.e. C(y) = L(ϕy).

Next, put Ω = ϕ−1(L∗
reg). Then,

F (L) =
∑

f∈L∗

reg

L(f) =
∑

y∈Ω
L(ϕy) =

∑
y∈Ω

C(y)

Clearly, F (L) contains Ω, which is an open dense subset of L for the Zariski topology

since ϕ is a linear isomorphism. Consequently, F (L) = L.

EXAMPLES 3.3

(1) L semi-simple (take b to be the Killing form of L).

(2) The diamond Lie algebra with basis t, x, y, z and nonvanishing brackets

[t, x] = −x, [t, y] = y and [x, y] = z. Let b be the symmetric bilinear

form with nonzero entries b(t, z) = 1 and b(x, y) = −1.

(3) Let g5 be the 5-dimensional nilpotent Lie algebra over k with basis x1, . . . , x5

and nonvanishing brackets [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5.

Let b be the symmetric bilinear form with nonzero entries:

b(x1, x5) = b(x3, x3) = 1 and b(x2, x4) = −1

13



(4) Let g6 be the 6-dimensional 2-step nilpotent Lie algebra with basis x1, . . . , x6

and nonvanishing brackets [x1, x2] = x6, [x1, x3] = x4, [x2, x3] = x5.

Let b be the symmetric bilinear form with nonzero entries:

b(x1, x5) = b(x3, x6) = 1 and b(x2, x4) = −1

(see [B1, p.133])

(5) Consider the semi-direct product L = sl(2, k) ⊕ W2, where W2 is the 3-

dimensional irreducible sl(2, k)-module. L also admits a nondegenerate, in-

variant, symmetric bilinear form.

PROPOSITION 3.4 Among all the different types of indecomposable nilpotent

Lie algebras over IC of dimension n ≤ 7, only the following 30 Lie algebras do not

have a CP:

1) n = 5: g5 (see (3) of Examples 3.3)

2) n = 6: From Morozov’s classification [Mo, p.168] the Lie algebras 3(∼=g6),

21 and 22.

3) n = 7: From Seeley’s classification [See]: 2, 5, 7K ; 2, 5, 7L; 2, 4, 7D;

2, 4, 7E; 2, 4, 7G; 2, 4, 7H ; 2, 4, 7J ; 2, 4, 7K ; 2, 4, 7Q; 2, 4, 7R;

2, 3, 5, 7C ; 2, 3, 5, 7D; 2, 3, 4, 5, 7B; 2, 3, 4, 5, 7C ; 2, 3, 4, 5, 7D;

2, 3, 4, 5, 7F ; 2, 3, 4, 5, 7G; 1, 3, 5, 7S, ξ = 1; 1, 3, 4, 5, 7H ;

1, 2, 4, 5, 7C; 1, 2, 4, 5, 7F ; 1, 2, 4, 5, 7H ; 1, 2, 4, 5, 7K ; 1, 2, 4, 5, 7L;

1, 2, 4, 5, 7N , ξ = 1; 1, 2, 3, 4, 5, 7I , ξ = 0

Note that the infinite families fail to have a CP only for exceptional values of

the parameter ξ.

Proof: This is done case by case, considering only the ones that are not square

integrable (Proposition 2.2). Usually, CP’s are easy to spot by looking at the multi-

plication table. To prove that a Lie algebra L has no CP’s is more difficult however.

This can be achieved by using Proposition 1.9 or by showing that F (L) is not com-

mutative. For instance, take L = 1, 2, 4, 5, 7N , ξ = 1. See Remark 2.3 for its Lie

brackets. One verifies that F (L) = 〈a − b, c, d, e, f, g〉, which is not commutative.

REMARK 3.5 Having a CP is not preserved under degeneration (for a definition

we refer to [GO1] or [GO2]). Indeed, g5, which has no CP’s (see 3 of Examples
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3.3), is a degeneration of the Lie algebra h5 with basis x1, . . . , x5 over IC and

nonzero brackets [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5 and [x2, x3] = x5

for which 〈x3, x4, x5〉 is a CP. On the other hand, the Lie algebra j5 with the

same basis and nonzero brackets [x1, x2] = x3 and [x1, x3] = x4 admits a CP

(namely 〈x2, x3, x4, x5〉) and is a degeneration of g5 [GO1, p.323].

4. CP-IDEALS

These are by far the most interesting CP’s. The following shows that they occur as

often as ordinary CP’s, at least in the solvable case.

THEOREM 4.1 Let L be solvable and k algebraically closed. Let m be the

maximum dimension of all abelian ideals of L. Clearly, m ≤ 1
2
(dim L + i(L))

[O2, p. 706]. Then the following are equivalent:

(1) L admits a CP

(2) L admits a CP-ideal

(3) m = 1
2
(dim L + i(L))

Proof. It suffices to show that (1) ⇒ (2), since (2) ⇒ (1) and (2) ⇔ (3)

are clear. Let G be the adjoint algebraic group of L, i.e. the smallest algebraic

subgroup of AutL such that L(G) contains adL [D, 1.1.14]. Clearly, adL and

hence its algebraic hull L(G) are solvable (since they have the same derived algebra

[Ch, p.173], which is nilpotent). Therefore G is a solvable connected group. Next

put p = 1
2
(dim L+i(L)). Then the set C of all CP’s is a nonempty (by assumption)

closed subset of the Grassmannian Gr(L, p), which is an irreducible and complete

algebraic variety [D, 1.11.8-9]. Hence C is also complete. Now G acts morphically

on C, mapping each CP H on g(H), g ∈ G. By Borel’s theorem, G has a fixed

point P in C [Bo, p.242]. So, g(P ) = P for all g ∈ G. In particular, adx(P ) ⊂ P

for all x ∈ L. Consequently, P is a CP-ideal of L.

REMARK 4.2 (a) The number m is an important characteristic of a Lie algebra,

often used in classifications.

(b) It is now easy to see that the 8-dimensional Lie algebra (i) of 3.1 has no CP’s

(go over to the algebraic closure of k and use Theorem 4.1).
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THEOREM 4.3 Let P be an ideal of a Lie algebra L and let P be a polarization

of L with respect to some f ∈ L∗. Then we have

(1) If f ∈ L∗
reg then P is solvable (in fact P ′′ = 0). If in addition L is

Frobenius or nilpotent of index one, then P is a CP-ideal of L.

(2) If k is algebraically closed and f ∈ L∗
reg, then the induced representation

ind(f |P , L) is simple.

(3) If L is completely solvable then P is a Vergne polarization. In particular,

ind(f |P , L) is absolutely simple.

Proof.

(1) Take x ∈ L and y, y′ ∈ P , then

f([x, [y, y′]]) = f([[x, y], y′]) + f([y, [x, y′]])

= 0 since P is an ideal

and f([P, P ]) = 0.

Hence, [y, y′] ∈ L(f). Therefore, P ′ = [P, P ] ⊂ L(f). This implies that

P ′′ = 0 since L(f) is abelian by [D,1.11.7]. Now, suppose L is Frobenius,

i.e. i(L) = 0. Then L(f) = 0 which forces [P, P ] = 0. On the other

hand, if L is nilpotent of index 1, then dim L(f) = 1. We may assume that

f 6= 0. Clearly, [P, P ] 6= L(f) since f([P, P ]) = 0 and f(L(f)) 6= 0

[BC, p.89]. So, we conclude that [P, P ] = 0.

(2) By [RV, p.395] or [D, 10.5.7] there exists a solvable polarization H of L w.r.t.

f such that H ∩ P is a solvable polarization of P w.r.t. f |P and such that

the twisted induced representation ind∼(f |H, L) is simple. First we observe

that

dim H = 1
2
(dim L + dim L(f)) = dim P (•)

Similarly,

dim(H ∩ P ) = 1
2
(dim P + dim P (f |P )) = dim P
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since P (f |P ) = {x ∈ P | f([x, P ]) = 0} = P . It follows that H ∩ P = P ,

i.e. P ⊂ H . Hence, by (•), we see that P = H .

Consequently, ind∼(f |P , L) is simple. Finally, ind∼(f |P , L) = ind(f |P , L)

because P is an ideal of L [D, 5.2.1].

(3) L being completely solvable, we can find a flag of ideals of L:

L = Ln ⊃ . . . ⊃ Lp ⊃ . . . ⊃ L1 ⊃ L0 = (0)

such that Lp = P where p = dim P . Put fi = f |Li
and Pj =

∑
i≤j

Li(fi).

Then Pn is the so called Vergne polarization w.r.t. this flag and f ∈ L∗ [BGR,

9.4]. We claim that P = Pn. Clearly,

Li(fi) = {x ∈ Li | f([x, Li]) = 0} = Li ∩ L⊥
i

In particular, Lp(fp) = Lp ∩ L⊥
p = P ∩ P⊥ = P since P = P⊥ w.r.t.

f ∈ L∗. This implies that P ⊂ Pn. On the other hand consider Lj(fj).

If j ≤ p, then Lj(fj) ⊂ Lj ⊂ Lp = P .

If j > p, then P = Lp ⊂ Lj implies that Lj(fj) = Lj ∩ L⊥
j ⊂ L⊥

j ⊂ P⊥ =

P . Consequently, Pn =
n∑

j=1
Lj(fj) ⊂ P .

COROLLARY 4.4 Let P be a CP-ideal of a Lie algebra L and take any

f ∈ L∗
reg. Then,

1. If k is algebraically closed, then ind(f |P , L) is simple.

2. If L is completely solvable, then P is a Vergne polarization w.r.t. f and any

flag of ideals containing P . In particular, ind(f |P , L) is absolutely simple.

3. (a) Sz(U(L)) ⊂ U(P ) and Sz(D(L)) ⊂ D(P ) where Sz(U(L)) =
⊕

λ

U(L)λ is the semi-center of U(L). Similarly for Sz(D(L)). This

generalizes [D, 6.1.6].

(b) Put ∧(L) = {λ ∈ L∗ | U(L)λ 6= 0} and L∧ =
⋂

λ∈∧(L)
ker λ. Then,

P ⊂ L∧.

Proof. (1) and (2) follow directly from Theorem 4.3.

(3) Let u ∈ U(L)λ be any semi-invariant with weight λ ∈ ∧(L), i.e. [x, u] =
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λ(x)u for all x ∈ L.

Now, take x ∈ P . Then adx(L) ⊂ P and (adx)2 = 0 since P is a com-

mutative ideal of L. So, adx is nilpotent. This implies that λ(x) = 0 and

[x, u] = 0. Consequently, x ∈ L∧ which shows (b) and also u ∈ C(U(P )) =

U(P ). Therefore, Sz(U(L)) ⊂ U(P ). Similarly for Sz(D(L)) ⊂ D(P )

(since C(D(P )) = D(P )).

REMARK 4.5 The previous corollary does not hold for arbitrary CP’s of L. For

example, let L be the 2-dimensional Lie algebra over an algebraically closed field

k with basis x, y and nonzero bracket [x, y] = y. L is Frobenius and f ∈ L∗

with f(x) = 0 and f(y) = 1 is regular. Clearly, P = kx is a CP of L w.r.t.

f ∈ L∗. But ind∼(f |P , L) is not simple [BGR, p.95]. Also, y is a semi-invariant

of L but y /∈ U(P ).

The following, which we recall from [O2, p.708], describes how CP-ideals naturally

arise in certain semi-direct products.

PROPOSITION 4.6. Let g be a Lie algebra with basis {x1, . . . , xm} and

let V be a g-module with basis {v1, . . . , vn} with dimg ≤ dim V . For each

f ∈ V ∗ we put

g(f) = {x ∈ g | f(xv) = 0 for all v ∈ V }

the stabilizer of f . Consider the semi-direct product L = g ⊕ V in which

[x, v] = xv, x ∈ g, v ∈ V and in which V is an abelian ideal. Then the

following are equivalent:

(1) D(V ) (= R(V )) is a maximal subfield of D(L)

(2) V is a CP-ideal of L

(3) i(L) = dim V − dim g

(4) rankR(V )(eivj) = dim g

(5) g(f) = 0 for some f ∈ V ∗
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REMARK 4.7 If k is algebraically closed, g a simple Lie algebra, acting irre-

ducibly on V , then the conditions of the proposition are satisfied if and only if

dim g < dim V . [AVE, p.196].

The following shows that if a Lie algebra L admits a CP-ideal then its structure

comes close to that of the semi-direct product considered in Proposition 4.6.

COROLLARY 4.8 Let V be a commutative ideal of L. Clearly, the Lie algebra

g = L/V acts on V . Consider the semi-direct product L1 = g ⊕ V . Then,

V is a CP of L ⇔ V is a CP of L1

In that case, i(L1) = i(L).

Proof. Let g ∈ L∗ and put f = g|V ∈ V ∗. Then, we claim that g(f) =

V g/V . Indeed,

x = x + V ∈ g(f) ⇔ f([x, V ]) = 0

⇔ f([x, V ]) = 0

⇔ g([x, V ]) = 0

⇔ x ∈ V g ⇔ x ∈ V g/V

We now proceed with the proof

⇒: dim V = 1
2
(dim L + i(L)). Also, V g = V for some g ∈ L∗ by Lemma

1.1. Hence, g(f) = 0. By Proposition 4.6 V is a CP of L1 and

i(L1) = dim V − dim g = dim V − (dim L − dim V )

= 2 dim V − dim L = i(L).

⇐: By Proposition 4.6, g(f) = 0 for some f ∈ V ∗. Next, choose g ∈ L∗

such that f = g|V . Then, V g/V = g(f) = 0. So, V g = V which by

Lemma 1.2 implies that V is a CP of L.

5. CP-IDEALS IN CERTAIN FROBENIUS LIE ALGEBRAS

Let L be a Frobenius Lie algebra with a CP-ideal P . Take any f ∈ L∗
reg and

assume that k is algebraically closed. Then I(f) = 0 by [O1, p.42]. So, by
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Corollary 4.4 ind(f |P , L) is a faithful irreducible representation of U(L). Next,

let x1, . . . , xm, y1, . . . , ym be a basis of L such that y1, . . . , ym is a basis of P .

Then det([xi, yj]) ∈ S(P ) is a nonzero semi- invariant under the action of AutL

[O1,p.28]. It is also known that Frobenius Lie algebras give rise to constant solutions

for the classical Yang- Baxter equation [BD].

The following is a special case of Proposition 4.6.

COROLLARY 5.1 Let g be a Lie algebra and V a g-module such that dim g

= dim V . Consider the semi- direct product L = g ⊕ V . Then the following are

equivalent:

(1) R(V ) is a maximal subfield of D(L)

(2) V is a CP-ideal of L

(3) L is Frobenius

(4) g(f) = 0 for some f ∈ V ∗

EXAMPLE 5.2 Let g be Frobenius and let V = g be the adjoint representation.

EXAMPLE 5.3 The above condition is satisfied if g is reductive over an alge-

braically closed field k and V ∗ is a prehomogeneous g-module (i.e. V ∗ has an open

g-orbit) with dim g = dim V . These modules have been studied extensively by the

Japanese school since 1977 [SK], [KKTI].

EXAMPLE 5.4 Let A be a left-symmetric algebra (LSA), i.e. a finite dimensional

vector space provided with a bilinear product A × A → A, (a, b) → ab which

satisfies

a(bc) − (ab)c = b(ac) − (ba)c (∗)

for all a, b, c ∈ A. There is an extensive literature on LSA’s, see for example

[H], [Seg]. Vinberg used LSA’s to classify convex homogeneous cones [V]. A left-

symmetric algebra is Lie-admissable. This means that A becomes a Lie algebra,

which we denote by g, for the Lie bracket [a, b] = ab − ba, a, b ∈ A. Using (∗)
we observe that

[a, b]c = (ab)c − (ba)c = a(bc) − b(ac).
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Therefore, A becomes a g-module, which we denote by V , for the bilinear map

g × V → V, (x, v) → xv

Now, suppose A contains a nonzero element f ∈ A which is not a right zero

divisor of A. Let V ∗ be the dual module of V . Identifying the module V ∗∗ with V ,

we may consider f to be an element of (V ∗)∗. Clearly, the stabilizer g(f) = {x ∈
g | xf = 0} = 0 by assumption.

Finally, using Corollary 5.1 we may conclude that the semi-direct product

L = g ⊕ V ∗ is a Frobenius Lie algebra in which V ∗ is a CP-ideal.

REMARK 5.5 In characteristic p > 2 a similar result can be obtained if A is a

finite dimensional simple Novikov algebra and where V is a certain irreducible A-

module. We recall that a nonassociative k-algebra is said to be a left Novikov algebra

if A is left symmetric, satisfying the identity (ab)c = (ac)b for all a, b, c ∈ A.

In characteristic zero E. Zelmanov showed that finite dimensional simple Novikov

algebras are all one- dimensional [Z]. Recently simple Novikov algebras and their

irreducible modules have been determined by M. Osborn and X. Xu [Os], [X].

We now focus on a special case, which provides an interesting link between Frobenius

algebras and Frobenius Lie algebras.

PROPOSITION 5.6 Let A be a finite dimensional associative algebra over k

with a unit element. A becomes a Lie algebra g for the Lie bracket [a, b] = ab− ba,

a, b ∈ A, and V = A becomes a g-module by left multiplication. Consider the

semi-direct product L = g ⊕ V . Then the following conditions are equivalent:

(1) A is a Frobenius algebra

(2) L is a Frobenius Lie algebra

(3) V is a CP-ideal of L

(4) R(V ) is a maximal subfield of D(L)

Proof. In view of Corollary 5.1 it suffices to show that (1) is equivalent with

g(f) = 0 for some f ∈ V ∗. So, take f ∈ V ∗. Then

g(f) = {a ∈ A | f(ab) = 0 for all b ∈ A}
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Clearly, g(f) = 0 if and only if the bilinear map A × A → k, (a, b) → f(ab)

is nondegenerate, i.e. A is a Frobenius algebra [CR, Theorem 61.3].

Finally, we devote our attention to certain Frobenius Lie subalgebras of a semi-

simple Lie algebra.

THEOREM 5.7 Let L be a semi-simple Lie algebra of rank r over k, k alge-

braically closed, and let x be a principal nilpotent element of L (i.e. the centralizer

C(x) of x in L has dimension r). Then the normalizer F of C(x) in L is a solvable

Frobenius Lie subalgebra of L in which C(x) is a CP-ideal.

Proof. It is well known that C(x) is abelian [K]. Clearly, C(x) is an ideal of

F . In 1991 R. Brylinski and B. Kostant showed that dimF = 2r and that

F/C(x), and hence also F , is solvable [BK]. Recently, D. Panyushev proved that

F is Frobenius [P2, Theorem 5.5].

6. CP-IDEALS IN THE NILRADICAL OF PARABOLIC LIE

SUBALGEBRAS OF A SIMPLE LIE ALGEBRA

THEOREM 6.1 Let B be a Borel subalgebra of a simple Lie algebra L over k,

k algebraically closed, of rank r and let N be the nilradical of B. Then,

(1) N admits a CP ⇔ L is of type Ar or Cr.

In these 2 cases N has a CP-ideal P , which is an ideal of B.

(2) P is also a CP-ideal of B in case L is of type Cr, r ≥ 1.

Proof. The information on i(N), i(B) in table 1 is obtained from [E1], [E2].

Also, we know that i(N) + i(B) = r [P2, 1.5].
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dim N i(N) i(B) 1
2
(dim N + i(N)) m

A2t t ≥ 1 t(2t + 1) t t t(t + 1) t(t + 1)

A2t+1 t ≥ 0 (t + 1)(2t + 1) t + 1 t (t + 1)2 (t + 1)2

B3 9 3 0 6 5

Br r ≥ 4 r2 r 0 1
2
r(r + 1) 1

2
r(r − 1) + 1

Cr r ≥ 2 r2 r 0 1
2
r(r + 1) 1

2
r(r + 1)

D2t t ≥ 2 2t(2t − 1) 2t 0 2t2 t(2t − 1)

D2t+1 t ≥ 2 2t(2t + 1) 2t 1 2t(t + 1) t(2t + 1)

E6 36 4 2 20 16

E7 63 7 0 35 27

E8 120 8 0 64 36

F4 24 4 0 14 9

G2 6 2 0 4 3

Table 1

The idea is to compare the maximum dimension m of abelian Lie subalgebras of

N , computed by Malcev [Ma, p.216] with the number 1
2
(dim N + i(N)). Then

N contains a CP if and only if these numbers coincide. According to the table this

occurs precisely if L is of type Ar or Cr.

Furthermore, we know from [PR, Table 1] that in both types (Ar or Cr) B has

a maximal abelian ideal P of dimension 1
2
(dim N + i(N)). Clearly P ⊂ N .

Therefore P is a CP-ideal of N . This can also be deduced from Theorem 4.1.

(2) Using Lemma 1.3 we see that P is also a CP-ideal of B if and only if

i(N) = i(B) + dim B − dim N

⇔ i(N) − i(B) = r

⇔ i(B) = 0 (since i(N) + i(B) = r).

and this happens when L is of type A1(= C1) or Cr, r ≥ 2.

THEOREM 6.2 Let L be a simple Lie algebra over k, k algebraically closed, of

type Ar or Cr, π a parabolic Lie subalgebra of L. Then the nilradical N of π admits

a CP-ideal P . Furthermore,

(1) suppose L is of type Ar and π of type (p1, . . . , pm). Put n = r + 1 and

p = p1+. . .+pℓ, 1 ≤ ℓ ≤ m, such that

∣∣∣∣∣
ℓ∑

i=1
pi −

n

2

∣∣∣∣∣ is as small as possible.
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Then,

i(N) = 2p(n − p) − 1

2

(

n2 −
m∑

i=1

p2
i

)

(2) suppose L is of type Cr, r ≥ 2, and π of type (p1, . . . , pm). Put ℓ =[
m
2

]
, then

i(N) =
1

2

ℓ∑

i=1

pi(pi + 1)

REMARK 6.3

a) The first formula is new. A recursive formula for i(N) was already established

in [E1]. A different proof for the second formula can also be found in [E1].

b) (made by the referee) A. Joseph already gave a formula for i(N) in an arbitrary

simple Lie algebra, using a maximal subset of strongly orthogonal positive

roots [J, (ii) of Proposition 2.6]. Being applied to Ar or Cr, Joseph’s formula

gives the above explicit expressions.

Proof. (1) Let L = sl(V ) where V is an n- dimensional vector space over k. By

[B2, p.187] we can find a flag F of subspaces of V :

{0} = F0 ⊂ F1 ⊂ . . . ⊂ Fm = V, Fi−1 ⊂
6=

Fi

such that π (respectively its nilradical N) consists of all endomorphisms x ∈ L

such that xFi ⊂ Fi (resp. xFi ⊂ Fi−1) for 1 ≤ i ≤ m. Put pi =

dim(Fi/Fi−1) then π is said to be of type (p1, . . . , pm). Next, choose a basis

e1, . . . , en of V compatible with the flag F (i.e. e1, . . . , ep1
∈ F1\F0, etc.). Then,

N can be considered to be the Lie algebra of matrices of the form as shown in figure

1.
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Figure 1

We may assume, as is the case in figure 1, that p ≤ n
2

(∗). In particular,

p + pℓ+1 > n
2
. As usual we denote by Eij the n × n matrix whose ij-th entry

is 1 and other entries are zero. Let P be the subspace of N generated by all Eij

with 1 ≤ i ≤ p; p + 1 ≤ j ≤ n. So, P consists of matrices of the form

 0 M

0 0



 where M is any p × (n − p) matrix. It is easy to see that P is an

abelian ideal of N . We claim that P is a CP of N . Let f ∈ N∗ be defined by

f(Ep,n−p+1) = . . . = f(E1n) = 1 and zero on all other Eij . We want to show that

P f = P . Therefore we take x ∈ P f . We write

x =
∑
i<j

λijEij + y

where Eij ∈ N\P , λij ∈ k and y ∈ P . We need to demonstrate that each

λi0j0 = 0. There are two cases to distinguish:

(i) j0 ≤ p. Then i0 < j0 ≤ p and s = (n + 1) − i0 > (n + 1) − p > p.

Hence, Ej0s ∈ P and

0 = f([x, Ej0s]) =
∑
i<j

λijf([Eij, Ej0s]) + f([y, Ej0s])

=
∑
i<j

λijf(δjj0Eis − δsiEj0j)
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=
∑

i<j0

λij0f(Eis) −
∑
j>s

λsjf(Ej0j)

= λi0j0

(f(Ej0j) = 0 since j0 + j > i0 + s = n + 1)

(ii) i0 > p and j0 > p1 + . . . + pℓ + pℓ+1 >
n

2
.

By definition of p:

(p1 + . . . + pℓ + pℓ+1) −
n

2
≥ n

2
− p

Hence

j0 ≥ (p1 + . . . + pℓ + pℓ+1) + 1 ≥ n − p + 1

So, t = (n + 1) − j0 ≤ p < i0 and Eti0 ∈ P . Therefore

0 = f([Eti0 , x]) =
∑
i<j

λijf([Eti0 , Eij]) + f([Eti0 , y])

=
∑
i<j

λijf(δi0iEtj − δjtEii0)

=
∑

j>i0

λi0jf(Etj) −
∑
i<t

λitf(Eii0)

= λi0j0

(f(Eii0) = 0 since i + i0 < t + j0 = n + 1).

In both cases: x = y ∈ P . So, P f ⊂ P . Consequently, P f = P as the

other inclusion is obvious by the commutativity of P .

By Lemma 1.2 we may conclude that P is a CP of N and f ∈ N∗
reg.

Finally, from dim P = 1
2
(dim N + i(N)) we obtain:

i(N) = 2 dimP − dim N

= 2p(n − p) − 1

2
(n2 −

m∑
i=1

p2
i )

(2) Let L = sp(V ) where V is a vector space over k of dimension n = 2r provided

with a nondegenerate alternating bilinear form ϕ : V × V → k. There exists an

isotropic flag

{0} = F0 ⊂ F1 ⊂ . . . ⊂ Fm = V

i.e. F⊥
i = Fm−i for 0 ≤ i ≤ m such that π (respectively its nilradical N)

consists of all x ∈ L such that xFi ⊂ Fi (resp. xFi ⊂ Fi−1) for 1 ≤ i ≤ m.
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Put pi = dim(Fi/Fi−1) then it follows that pi = pm+1−i for 1 ≤ i ≤ m.

Following [B2, p.200] we can find a Witt basis of V :

e1, . . . , er, e−r, . . . , e−1

compatible with the given flag and such that ϕ(ei, e−j) = δij.

We now identify each x ∈ L with its matrix with respect to this basis, i.e.

x =



 A B

C D



 where A, B, C, D are r × r matrices such that B = B̂,

C = Ĉ, D = −Â, where the transformation ̂ is the transpose relative to the

second diagonal. If x ∈ N then x is of the form as shown in figure 2.

O

p
1

p
2

p
m

r
1

1
2

3

Figure 2

If m = 2ℓ + 1 then we put r1 = 1
2
pℓ+1 (pℓ+1 is even since

m∑
i=1

pi = n = 2r

and pi = pm+1−i). If m = 2ℓ then we put r1 = 0. π is determined by

the sequence (p1, . . . , pℓ; r1). Note that r =
ℓ∑

i=1
pi + r1. Next, let P be the

subspace of N of matrices of the form



 0 B

0 0



 where B is an r × r matrix

such that B = B̂ and with zero r1 × r1 submatrix in the bottom left corner.

Clearly,

Xεi+εj
= Ei,−j + Ej,−i, 1 ≤ i ≤ r − r1; i ≤ j ≤ r
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form a basis of P which is an abelian ideal of N and dim P = 1
2
[(r2−r2

1)+(r−r1)].

We enlarge this basis to a basis of N by adjoining some vectors of the type

Xεi−εj
= Eij − E−j,−i, i < j

From figure 2 we see that

dim N = 1
2

(

r2 −
ℓ∑

i=1
p2

i − r2
1

)

+ dim P

= (r2 − r2
1) − 1

2

ℓ∑
i=1

p2
i + 1

2
(r − r1)

Next, let f ∈ N∗ be defined by f(X2εi
) = 1 for 1 ≤ i ≤ r− r1 and zero on

all other basis vectors of N . We want to show that P f = P . For this purpose

we take x ∈ P f which we can write as

x =
∑
i<j

λijXεi−εj
+ y

where Xεi−εj
∈ N , λij ∈ k and y ∈ P . Fix any λst, s < t with

Xεs−εt
∈ N . This implies that s ≤ r − r1, t ≤ r. Hence Xεs+εt

∈ P .

Therefore,

0 = f([x, Xεs+εt
]) =

∑
i<j

λijf([Xεi−εj
, Xεs+εt

]) + f([y, Xεs+εt
])

=
∑
i<j

λijf(δjsXεi+εt
+ δjtXεi+εs

)

=
∑
i<s

λisf(Xεi+εt
) +

∑
i<t

λitf(Xεi+εs
)

= 0 + λst

(f(Xεi+εt
) = 0 since i < s < t).

It follows that x = y ∈ P . So, P f ⊂ P . Consequently, P f = P as the

other inclusion is obvious. By Lemma 1.2 we may conclude that P is a CP of N

and f ∈ N∗
reg. Finally,

i(N) = 2 dim P − dim N

= (r2 − r2
1) + (r − r1) − (r2 − r2

1) + 1
2

ℓ∑
i=1

p2
i − 1

2
(r − r1)

= 1
2

(
ℓ∑

i=1
p2

i + (r − r1)

)

= 1
2

ℓ∑
i=1

pi(pi + 1)
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7. CP-PRESERVING EXTENSIONS

PROPOSITION 7.1 Let M be a finite dimensional Lie algebra over k and let

d ∈ DerM be a derivation such that d(Z(M)) 6= 0. Consider the extension

L = M ⊕ kd in which [d, x] = d(x), x ∈ M .

Then we have

(i) i(M) = i(L) + 1.

(ii) L has a CP if and only if M has a CP.

(ii) If L is square integrable, then so is M .

REMARK 7.2 Example (3) of 1.7 shows that the condition on d cannot be

removed.

Proof. Take u ∈ Z(M) such that d(u) 6= 0. Clearly M = C(u). Now

the assertions follow directly from Proposition 1.8.

PROPOSITION 7.3 Let M be a finite dimensional Lie algebra over k and fix z,

a nonzero central element of M . Let S be a 2r-dimensional vector space, provided

with a nondegenerate alternating bilinear form ϕ : S × S → k. Consider the Lie

algebra L = M ⊕ S containing M as an ideal and in which [x, s] = 0 and

[s, t] = ϕ(s, t)z for x ∈ M ; s, t ∈ S. Then we have

(i) H = S ⊕ kz is a Heisenberg Lie algebra

(ii) i(L) = i(M) and Z(L) = Z(M)

(iii) M is square integrable if and only if L is square integrable

(iv) If M allows a CP (resp. a CP-ideal) then the same holds for L.

Proof. (i) It is easy to verify that L is a Lie algebra. There exists a f ∈ L∗
reg

such that f |M ∈ M∗
reg and f(z) 6= 0. We may assume that f(z) = 1 (by

replacing f by
1

f(z)
f). Then for all s, t ∈ S

Bf (s, t) = f([s, t]) = ϕ(s, t)

From the assumption on ϕ, S ∩ S⊥ = 0 and we can find a basis s1, . . . , sr; t1, . . . , tr

of S such that for all i, j:

ϕ(si, sj) = 0 = ϕ(ti, tj) and ϕ(si, tj) = δij
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This implies [si, sj ] = 0 = [ti, tj] and [si, tj ] = δijz for all i, j. Consequently,

H is a Heisenberg Lie algebra.

(ii) First, we notice that M = S⊥. Indeed, M ⊂ S⊥ since f([M, S]) = 0.

For the other inclusion, take x ∈ S⊥, which we decompose as x = m + s with

m ∈ M and s ∈ S. Then, s = x−m ∈ S ∩ S⊥ = {0}. Hence, x = m ∈ M .

As M = S⊥ we deduce from [D,1.12.4] that

M(f |M) = M ∩ M⊥ = S ∩ S⊥ + L⊥ = L(f)

Taking dimensions yields i(M) = i(L). Clearly, the elements of Z(M) commute

with those of M and S. Hence, Z(M) ⊂ Z(L). Conversely, take x ∈ Z(L)

which we can decompose as x = m + s with m ∈ M and s ∈ S. For all

s′ ∈ S:

[s, s′] = [x − m, s′] = [x, s′] − [m, s′] = 0

and hence also ϕ(s, s′) = f([s, s′]) = 0 which implies that s = 0 and so

x = m ∈ M ∩ Z(L) ⊂ Z(M).

(iii) This follows at once from (ii).

(iv) Suppose P1 is a CP of M . Put P2 = ks1 + . . . + ksr and P = P1 ⊕ P2.

Then P is a CP of L since P is commutative and

dim P = dim P1 + dim P2 = 1
2
(dim M + i(M)) + 1

2
dim S = 1

2
(dim L + i(L)).

Finally, if P1 is an ideal of M then P is an ideal of L since

[M, P ] = [M, P1] + [M, P2] = [M, P1] ⊂ P1 ⊂ P

and

[tj , P ] = [tj , P1] + [tj , P2] = [tj , P2]

=
∑
i

k[tj , si] = kz ⊂ Z(M) ⊂ P1 ⊂ P.

PROPOSITION 7.4 Let A be an n-dimensional commutative (associative) Fro-

benius algebra over k and M an m-dimensional Lie algebra over k.

Consider the Lie algebra L = A ⊗k M for which [a ⊗ x, a′ ⊗ y] = aa′ ⊗ [x, y],

a, a′ ∈ A and x, y ∈ M . Then we have

(i) M is square integrable if and only if L is square integrable.

(ii) M is Frobenius if and only if L is Frobenius.
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(iii) If M allows a CP (resp. a CP-ideal) then the same holds for L.

Proof. (i) From [F, p.241-243] we know that i(L) = n.i(M). On the other

hand, Z(L) = A ⊗k Z(M) and so dim Z(L) = n. dim Z(M). Therefore,

i(L) = dim Z(L) if and only if i(M) = dim Z(M).

(ii) This follows from (i) and its proof.

(iii) Let P be a CP (resp. a CP-ideal) of M . Then Q = A⊗k P is a commutative

Lie subalgebra (resp. ideal) of L and

dim Q = n. dim P = n.1
2
(dim M + i(M))

= 1
2
(n. dim M + n.i(M)) = 1

2
(dim L + i(L))
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