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ABSTRACT 

 

The research in this paper is based on the paper “D.W. Aksnes and G. Sivertsen. The effect of 

highly cited papers on national citation indicators. Scientometrics 59(2), 213-224, 2004” 

where one states that “the few highly cited papers account for the highest share of the 

citations in the smallest fields”. 

 

This, at first sight, evident property is examined in the theoretical models that exist in the 

literature. We first define exactly what we mean by “size of a field” (i.e. when is a field 

“smaller” or “larger” than another one). We show that there are two, non-equivalent possible 

definitions. Next we define exactly the possible property under study. This leads us again to 
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two possible, non-equivalent formulations. Hence, in total, there are four different 

formulations to consider. 

 

We show, by giving counterexamples, that none of these four formulations are true in general. 

We also express conditions (in Lotkaian and Zipfian informetrics), under which the property 

of Aksnes and Sivertsen is true. 

 

All these results are not only valid in the papers-citations relationships but in any informetric 

source-item relationship. In this connection we present formulae describing the share of items 

of highly productive sources as a function of the parameters of the system (e.g. the size of the 

system). 

 

 

I.  Introduction 

 

It is clear and well-known that informetric (and more generally sociometric, econometric, 

webometric,…) data are highly skewed in the sense that few sources produce many items and 

many sources produce few items. This is expressed in informetrics by authors writing 

(“producing”) papers, by journals containing articles or even by articles receiving (or giving) 

citations. In webometrics (to be considered as that part of informetrics devoted to the metrics 

of the web and other social networks) one has skewness of data on websites and their in- or 

outlinks (i.e. hyperlinks pointing to or from the website, respectively). The earliest notices (at 

the end of the 19
th

 century and in the beginning of the 20
th

 century) of this type of skewness 

were made in econometrics expressing inequality in production, income or wealth. We refer 

to Lotka (1926) (author-paper relation), Bradford (1934) (journal-article relation) or even 

Pareto (1985) (in econometrics) for historical references and to Egghe and Rousseau (1990a) 

and Egghe (2005) for general references. 

 

In econometrics one expresses this skewness by defining so-called good concentration (or 

inequality) measures such as the ones of Gini and Theil (see e.g. Gini (1909), Theil (1967)) or 

again Egghe and Rousseau (1990a) or Egghe (2005) for applications in the field of 

informetrics. Another way of studying this inequality is to look at the top-sources, i.e. at the 

sources that produce most items and to look at their impact on the total production. This 
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approach (and in the context of articles-citations (to these articles)) was followed in Aksnes 

and Sivertsen (2004) (see also Aksnes (2003)) where one studies the impact of highly cited 

papers on national citation indicators. More concretely one studies the effect (or rather the 

share) of the most cited article (or 5 most cited articles) in the totality of citations received by 

all articles in the field. Here several fields were selected. 

 

Basic to both approaches (with inequality measures or by looking at the impact of the top – 

say k – sources) are the underlying frequency distributions of sources versus items in each 

field. By this we mean, for each field 

- their rank-frequency function g : for each r 1,...,T=  (the total number of sources), 

( )g r  is the number of items in (or produced by) the source on rank r, where sources 

are ranked in decreasing order of number of items. Classical examples for g are a 

decreasing power law (i.e. the law of Zipf) or its generalization : the law of 

Mandelbrot. We do not go into this matter now but we will do so in the sequel. 

- Their size-frequency function f : for each ( )mj 1,... ,f j=  is the number of sources 

with j items ( mj =  being the maximum number of items in a source). The most 

classical example of such a function is a decreasing power law, i.e. the law of Lotka. 

Also here we do not go into this matter now but we will do so in the sequel. 

 

Both functions f and g are different expressions of the same phenomenon: the production 

distribution in a field. Their relation is as follows: let the source on rank r have j items. Then, 

by definition of f and g ( 1g-  denotes the inverse function of g and primes (such as in j'  and 

r '  also further on) denote dummy variables) 

 

 ( ) ( )
m

'

1 '

j j

r g j f j


-

=

= = å  (1) 

 

(see also formula (I.3) in Egghe (2005)). Indeed, 

 

 ( )
m

'

'

j j

f j


=

å  (2) 
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is the cumulative number of sources with a number of items larger than or equal to j. Since 

sources are ranked decreasingly according to their number of items and since the source on 

rank r has j items (by notation) we indeed have that (2) equals r. But, by definition, 

 

 ( )j g r= , (3) 

 

the number of items in the source on rank r, hence, supposing g to be injective (we will see in 

the sequel that we can take g to be strictly decreasing, hence injective), 

 

 ( )1r g j-= . (4) 

 

Hence (1) follows. 

 

The functions f and g lead to inequality studies as invented in econometrics; for this see 

Egghe and Rousseau (1990a,b) or Egghe (2005), Chapter IV. The functions f and g also yield 

the other approach of studying inequality by looking at the top sources (as done in Aksnes and 

Sivertsen (2004)). Indeed we have the following formulae: the total number of items: 

 

 ( ) ( )
m

' '

T
' ' '

r 1 j 1

A g r jf j


= =

= =å å  (5) 

 

The total number of items in the r top sources equals 

 

 ( ) ( )
m

' '

r
' ' '

r 1 j j

g r jf j


= =

=å å  (6) 

 

since (3) (or (4)) is valid. Hence the division of (6) by (5) yields the share of items of the top r 

sources in the total item production. 

 

It is now clear that, with the above machinery, we can study the impact of highly cited papers 

on the national citation output in different fields, as was done in Aksnes and Sivertsen (2004) 

and therefore conjecturing the following property: 
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Conjecture (Aksnes and Sivertsen (2004) p. 217): 

The few highly cited papers account for the highest shares of the citations in the smallest 

fields. 

 

This conjecture, intuitively, is true since the smallest fields have the least papers. It is clear 

that the above conjecture can be, more generally, rephrased as follows: 

 

Generalized conjecture: 

The few highly productive sources account for the highest shares of the items in the smaller 

systems. 

 

With “system” we mean any source-item production situation as described above and called 

in Egghe (1990), Egghe and Rousseau (1990a) and Egghe (2005) an information production 

process (IPP). 

 

The study of the above conjecture is the topic of this paper. First of all, in the next section, the 

used terms and the conjecture itself will be rephrased in order to obtain a mathematically 

exact framework: we will define “field size” by using sources or items (non-equivalent 

definitions) and we will give two – as we will show in section III – non-equivalent, exact 

formulations of the conjecture, one using the function f and one using the function g. Hence, 

in total, we consider four different formulations of the above conjecture. 

 

We will also use, from now on, the continuous equivalent formulations of formulae (1)-(6), 

the validity of which we will prove in the Appendix: there we will present self-contained 

proofs of all the results needed in the sequel. 

 

In the third section we show, by presenting counterexamples using Lotkaian and Zipfian 

functions, that none of the four conjectures is true in general. We also, however, provide 

mathematical conditions (on the parameters of the Lotkaian and Zipfian functions) in order to 

have the validity of these conjectures, hereby also showing that the rank-frequency version of 

the conjecture is not equivalent with the size-frequency version. 
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II.  Exact formulations 

 

II.1  Comparing field (or IPP) sizes 

It is clear that there are two natural ways of expressing the size of a field or an IPP: by 

expressing the size of T, the total number of sources or by expressing the size of A, the total 

number of items. We define 

 

Definition II.1.1 (source-sense) 

Given two IPPs, we say that the first one is smaller than the second one in the source-sense if 

 

 1 2T T<  (7) 

 

where ( )iT i 1,2=  denotes the total number of sources in IPP i. 

 

Definition II.1.2 (item-sense) 

Given two IPPs, we say that the first one is smaller than the second one in the item-sense if 

 

 1 2A A<  (8) 

 

where ( )iA i 1,2=  denotes the total number of items in IPP i. 

 

A simple example, from Lotkaian informetrics, shows that the above definitions are not 

equivalent 

 

Example II.1.3: 

Given 1A 1,000=  and 1T 500=  we have, by Proposition A.3 in the Appendix that the Lotka 

function [ ) { }( )j 1, x ||1 xÎ + ¥ º £  

 

 ( )1 3

1,000
f j

j
=  
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satisfies the requirements (A10) and (A11). Indeed: 

 

 1 1
1

1 1

2A T
3

A T


-
= =

-
 

 

 1 1
1

1 1

A T
C 1,000

A T
= =

-
 

 

We now look for an IPP satisfying 
2 1A 900 A= <  and 2 1T 600 T= > . For this we need, 

again according to Proposition A.3 

 

 2 2
2

2 2

2A T
4

A T


-
= =

-
 

 

 2 2
2

2 2

A T
C 1,800

A T
= =

-
 

 

Hence the Lotka function [ )( )j 1,Î + ¥  

 

 ( )2 4

1,800
f j

j
=  

 

satisfies the requirements (A10) and (A11). 

 

Conclusion: 

The above example shows that there exist IPPs for which 1 2A A>  but for which 1 2T T< . 

 

Notice that in the above example 1 2C C< . The next proposition shows that if 1 2C C>  we 

have that Definition II.1.1 implies Definition II.1.2 (if we use functions of the type (A9), i.e. 

Lotkaian functions with m = ¥ ). 
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Proposition II.1.4: 

If 

 

 1 2C C> , 

 

then 

 

 1 2 1 2T T A A< Þ <  (9) 

 

Proof: 

Using formulae (A14) and (A15) we have that 

 

 1 2
1 2

1 2

C C
T T

1 1 
< Û <

- -
 

 

 1 2
1 2

1 2

C C
A A

2 2 
< Û <

- -
 

 

which is equivalent with (since 1 2, 2  >  and since 1 2C ,C 0>  obviously) 

 

 1 2 1 2 1 2 1 2T T C C C C < Û - < -  (10) 

 

 1 2 1 2 1 2 1 2A A C 2C C 2C < Û - < -  (11) 

 

Using that 1 2C C- < -  we have that 1 2 1 2T T A A< Þ < .                          

 

We now give examples that the reverse direction in (9) is not true, given 1 2C C>  and also 

that the reverse of Proposition II.1.4 is not true. 

 

Examples II.1.5: 

1. In Proposition II.1.4, relation (9) is not an equivalency. Indeed take 1T 2,000= , 

1C 4,000= , so, by (A14), 1 3 = . Take 2T 1,000= , 2C 1,100= , so, by (A14), 
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2 2,1 = . By (A15) we have 1A 4,000=  and 
2A 11,000= . Hence 1 2C C> , 

1 2A A< but 1 2T T> . 

2. The reverse of Proposition II.1.4 is not true. Indeed take 1T 500= , 1A 1,000= , 

2 1T 600 T= > , 2 1A 1,200 A= > . By (A13) we have 1 2C 1,000 C 1,200= < = . 

 

From the above results it is clear that “size” needs to be defined exactly since there are many 

cases where 1 2T T<  and 1 2A A>  or vice-versa. Definitions II.1.1 and II.1.2 provide this 

exactness. 

 

We will now express, in a mathematically exact way, the (generalized) conjecture given in the 

previous section. 

 

II.2  Conjectures 

 

Let us have a first IPP with 1T  sources, 1A  items, with rank-frequency function 1g  and size-

frequency function 1f . Let us have a second IPP with corresponding notation 2T ,  2A ,  2g  and 

2f . 

 

Conjecture II.2.1 (Rank-frequency version): 

Let 1 2T T<  (alternatively: let 1 2A A< ), then, for ( ] { }1 1r 0,T x || 0 x TÎ º < £ : 

 

 ( ) ( )1 2r r >  (12) 

 

where for i 1,2=  

 

 ( )
( )

r
' '

i
0

i

i

g r dr
r

A
 =

ò
 (13) 
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Comment: 

It is clear from the preceding subsection that Conjecture II.2.1 comprises two, non-equivalent, 

assertions: one supposing 1 2T T<  and one supposing 1 2A A< . Each time we can prove the 

validity of this assertion we must clearly indicate whether the result is true in case 1 2T T<  or 

in case 1 2A A< . For a counterexample to the above conjecture we will try to give a 

counterexample comprising both cases 1 2T T<  and 1 2A A< . 

 

The above conjecture could be “relaxed” by requiring (13) only for a small range of values of 

r (smaller than ( ]10,T ) (expressing the highest productive sources) but we will see that we can 

prove (13) for all ( ]1r 0,TÎ  or that we can give a counterexample also for small values of r. 

 

Based on Proposition A.1 in the Appendix, we can also formulate another conjecture as 

follows. 

 

Conjecture II.2.2 (Size-frequency version): 

Let 1 2T T<  (alternatively: let 1 2A A< ), then, for ( )( m,1 m,2j 1,min ,  ùÎ úû
, where m,i  is the 

maximal item-density in system ( )i i 1,2= : 

 

 ( ) ( )1 2j j >  (14) 

 

where for i 1,2=  

 

 ( )
( )

m ' ' '

i
j

i

i

jf j dj
j

A



 =
ò

 (15) 

 

Comment: 

It is clear from Proposition A.1 that Conjecture II.2.2 is a good alternative of expressing the 

conjectures mentioned in Section I. One might even think, because of formula (A5) that 

Conjectures II.2.1 and II.2.2 are the same. This is, however, not so. This can be seen as 

follows. Suppose that we have (12): 
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 ( ) ( )1 2r r >  

 

for a certain r 0> . According to Proposition 
1A  we have 

 

 ( ) ( )
m

1

r
' ' ' ' '

1 1
0 j

g r dr jf j dj


=ò ò  (16) 

 

for ( )1 1j g r=  and 

 

 ( ) ( )
m

2

r
' ' ' ' '

2 2
0 j

g r dr jf j dj


=ò ò  (17) 

 

for ( )2 2j g r= . So, if 1 2g g¹  we do not find a single j 1>  such that 

 

 ( ) ( )1 2j j . >  

 

In fact, in the next section we will show that Conjecture II.2.1 and Conjecture II.2.2 are not 

equivalent ! 

 

We are now in a position to study both (or even all 4) conjectures in a mathematically exact 

way. 

 

 

III.  Study of Conjectures II.2.1 and II.2.2. 

 

Since all our results (positive and negative) are based on Lotkaian and Zipfian models (cf. the 

Appendix) we will, first, calculate the fractions   and   in such systems. 

 

III.1  General Lotkaian and Zipfian forms of   and   

We will restrict ourselves to the case of Proposition A.2 since in this case we can prove nice 

results on   and   and since this case also yields all necessary counterexamples. 
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Theorem III.1.1: 

If we have that our IPP is Lotkaian with size-frequency function 

 

[ )f : 1, ++ ¥ ® ¡  

 ( )
C

j f j
j

® =  (18) 

 

( )C 0, 2> >  (cf.(A7)) then we have that 

 

 ( )

2

1r
r

T







-

-æ ö
÷ç= ÷ç ÷çè ø

 (19) 

 

for all [ ] { }r 0,T x || 0 x TÎ º £ £  (for the notation: see formula (A8)) and 

 

 ( )
2

1
j

j


-
=  (20) 

 

for all [ )j 1,Î + ¥ . 

 

Proof: 

Since we have (18) it follows from Proposition A.2 that 

 

 ( )
( )( )

1

1

1

1

C
g r

r 1





-

-

=

-

 

 

Hence 

 

 ( )
2

r
' ' 1

0
g r dr Dr





-

-=ò  (21) 

 

where 
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( )

( ) ( )

1

1

1

1

C 1
D

1 2







 

-

-

-
=

- -

 

 

Hence 

 

 ( )
( )

( )

r
' '

0
T

' '

0

g r dr
r

g r dr
 =

ò

ò
 

 

 ( )

2

1r
r

T







-

-æ ö
÷ç= ÷ç ÷çè ø

, 

 

using (21). For the fraction   we have for all [ )j 1,Î + ¥ : 

 

 ( )
( )

( )

' ' '

j

' ' '

1

jf j dj
j

jf j dj


¥

¥
=
ò

ò
 

 

But, for all j 1³ : 

 

 ( )
2

' ' '

j

j
jf j dj C

2





-¥

=
-ò  (22) 

 

Hence 

 

 ( ) 2j j  -=  

 

proving (20).                          

 

Since we do not need it in this paper we leave it as an easy exercise to prove the following 

extension of Theorem II.1.1, also valid for ( )2 1 < ¹  (but also for 2> ). 
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Theorem III.1.2: 

If we have (18) for [ ]mj 1,Î , for 1> , 2 ¹  we have that, for all [ ]r 0,TÎ  

 

 ( )
( )

( )

2

1

2

1

1 Fr 1
r

1 FT 1











-

-

-

-

+ -
=

+ -

 (23) 

 

where 

 

 
1

m

1
F

C 



 -

-
=  (24) 

 

and 

 

 ( )
2 2

m

2

m

j
j

1

 








- -

-

-
=

-
 (25) 

 

Hint: Use Theorem II.2.2.3 in Egghe (2005). 

 

The cases 1=  and 2=  can also be treated; this is left to the reader, now using Theorem 

II.2.2.7 ( )1 =  respectively Theorem II.2.2.1 ( )2 =  in Egghe (2005). 

 

One can also check easily that Theorem III.1.1 follows from Theorem III.1.2 by letting m  go 

to + ¥  (and noting that, in this case, 2> ). 

 

We can now prove the validity of some conjectures under some parameter  (e.g.  ) 

conditions. 

 

Theorem III.1.3: 

Let us have two IPPs of Lotkaian type as in Theorem III.1.1, the first one with Lotkaian 

exponent 1 2 >  and the second one with Lotkaian exponent 2 2 > . Let 
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 1 2 £  (26) 

 

Let 
iT , iA  denote the total number of sources, items in IPP i ( )i 1,2= . Then 

 

(i) If 1 2T T< , then 

 

 ( ) ( )1 2r r >  (27) 

 

for all ( ]1r 0,TÎ , i.e. Conjecture II.2.1 is valid, given that the first IPP is smaller than 

the second IPP, in the source-sense (cf. Definition II.1.1). 

(ii) If the inequality in (26) is strict, then 

 

 ( ) ( )1 2j j >  (28) 

 

 for all ( ) { }j 1, x ||1 xÎ + ¥ º < , i.e. Conjecture II.2.2 is valid in all cases where 

 

 1 2 <  (29) 

 

 applies and, in fact, (29) is necessary and sufficient for (28) to be valid. 

 

Proof: 

(i) We use Theorem III.1.1, formula (19) to express that (27) reads 

 

 

1 2

1 2

2 2

1 1

1 2

r r

T T

 

 

- -

- -æ ö æ ö
÷ ÷ç ç÷ ÷>ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (30) 

 

 Since 1 2T T<  this inequality is valid if we can prove that 

 

 

1 2

1 2

2 2

1 1

1 1

r r

T T

 

 

- -

- -æ ö æ ö
÷ ÷ç ç÷ ÷³ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (31) 
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 for all ( ]1r 0,TÎ . Since 
1

r
1

T
£ , (31) is valid if and only if 

 

 1 2

1 2

2 2

1 1

 

 

- -
£

- -
 (32) 

 

 and this is equivalent with 

 

 1 2 £  (33) 

 

 as is readily seen. 

 

(ii) We use Theorem III.1.1, formula (20) to express that (28) reads 

 

 
1 22 2

1 1

j j - -
>  (34) 

 

 for ( )j 1,Î + ¥ . But this is equivalent with 

 

 1 2 < . (35) 

 

 as is readily seen.              

 

Note that condition (35) is equivalent with (use formula (A12)) 

 

 1 2 >  (36) 

 

where i
i

i

A

T
 =  is the average number of items per source in IPP i ( )i 1,2= . 

 

Theorem III.1.3 contains a proof (under certain restricting conditions) of the conjecture of 

Aksnes and Sivertsen: 
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Corollary III.1.4: 

If we have two Lotkaian systems with the same Lotka exponent   such that 1 2T T<  then 

( ) ( )1 2r r >  for all ( ]1r 0,TÎ . 

 

Proof: 

This follows from Theorem III.1.3 (i). 

 

Of course, the above corollary is more restrictive than Theorem III.1.3 itself since we assume 

now 1 2  = = . Nevertheless, Corollary III.1.4 is a partial explanation and confirmation of 

the conjecture of Aksnes and Sivertsen since, in comparing different fields concerning papers 

and their citations we can assume (as a first approximation) that 1 2 »  and hence, in this 

case, Corollary III.1.4 confirms Conjecture II.2.1. 

 

From Theorem III.1.3 another important Corollary follows. 

 

Corollary III.1.5: 

Conjectures II.2.1 and II.2.2 are not equivalent. 

 

Proof: 

From the above theorem we see that, if we can make an example where 1 2T T<  and 1 2 =  

that then Conjecture II.2.1 is satisfied but Conjecture II.2.2 is not. So let us take 

1 2T 500 T 1,000= < =  and 1 2 3 = = . It follows from (A14) and (A15) that 

 

 
( )T 1

A
2





-
=

-
 (37) 

 

So 1 2A 1,000 A 2,000= < =  (so both conditions on IPP size are satisfied). We have, by 

Theorem III.1.1 that, for all ( ]1r 0,TÎ  
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 ( ) ( )

1 1

2 2

1 2

1 2

r r
r r

T T
 

æ ö æ ö
÷ ÷ç ç÷ ÷= > =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 

 

but 

 

 ( ) ( )1 2

1
j j

j
 = =  

 

for all j 1.³                       

 

We close this section by providing further counterexamples, showing that, in general, none of 

the formulated conjectures are true. 

 

Counterexamples III.1.6: 

Let 1A 1,000= , 1T 500= , m,1 = + ¥ . Then by (A12) and (A13) we have 1 3 = , 

1C 1,000= , hence we have the size-frequency function 

 

 ( )1 3

1,000
f j

j
=  

 

satisfying (A10) and (A11). By (A8), the corresponding rank-frequency function is 

[ ]( )1r 0,TÎ  

 

 ( )1

1,000
g r

2r
=  

 

Let 2A 10,000= , 2T 1,000= , m,2 = + ¥ . Then by (A12) and (A13) we have 2

19

9
 = , 

2

10,000
C

9
= , hence we have the size-frequency function 
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 ( )2 19

9

10,000
f j

9 j

=  

 

satisfying (A10) and (A11). By (A8), the corresponding rank-frequency function is 

[ ]( )2r 0,TÎ  

 

 ( )

9

10

2 9

10

10,000

9
g r

10
r

9

æ ö
÷ç ÷ç ÷çè ø

=

æ ö
÷ç ÷ç ÷çè ø

 

 

Note that 1 2T T<  as well as 1 2A A<  so that in both the source- and item-sense, the first IPP 

is smaller than the second. Now we will show that Conjectures II.2.1 and II.2.2 are false. We 

have, by Theorem III.1.1 that 

 

 ( ) ( )1 2 1

9

1 1
j j

j
j

 = < =  (38) 

 

for all j 1> . Also by Theorem III.1.1 it follows that 

 

 ( )

1

2

1

r
r

500


æ ö
÷ç= ÷ç ÷çè ø

 

 

and 

 

 ( )

1

10

2

r
r

1,000


æ ö
÷ç= ÷ç ÷÷çè ø

. 

 

Now 
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11

102r r

500 1,000

æ öæ ö ÷÷ çç < ÷÷ çç ÷÷ç ÷çè ø è ø
 

 

for all 

 

 r 420.£  

 

Hence, certainly for the most productive sources (compare with r 1=  or 5 in Aksnes and 

Sivertsen (2004)) we have that 

 

 ( ) ( )1 2r r <  (39) 

 

Formulae (38) and (39) contradict both conjectures. 
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Appendix 

 

The following results are needed from continuous informetrics (cf. Egghe (1990, 2005)). 

 

The continuous version of the size-frequency function is the strictly decreasing function 

 

 [ ]mf : 1, +® ¡  (A1) 

where ( )f j  is the density of sources with item-density [ ]mj 1,Î . The continuous version of 

the rank-frequency function is the function 

 

 [ ]g : 0,T +® ¡  (A2) 

 

where ( )g r  is the item-density j: 

 

 ( )j g r=  (A3) 

 

in the continuous rank [ ]r 0,TÎ ; T denotes the total number of sources. 

 

The basic defining relation (but with intuition given by (1)) between f and g is 

 

 ( ) ( )
m1 ' '

j
r g j f j dj


-= = ò  (A4) 

 

for [ ]r 0,TÎ , [ ]mj 1,Î . 

 

We will prove the following Proposition (see Egghe (2005), Chapter II): 

 

Proposition A.1 : 

For every [ ]r 0,TÎ , and [ ]mj 1,Î  such that ( )j g r=  we have 
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 ( ) ( )
mr

' ' ' ' '

0 j
g r dr jf j dj



=ò ò . (A5) 

 

Proof : 

By (A4) we have 

 

 
( )( )

( )
' 1

1
f j

g g j-
- =  

 

hence 

 

 
( )( )

( )
' 1

j
jf j

g g j-
- = . 

 

Consequently 

 

 
( )( )

( )
m m

' '
' ' '

' 1 'j j

jdj
jf j dj

g g j

 

-

-
=ò ò . (A6) 

 

Making the substitution (A3) gives ( )j g r= , ( )1r g j-= , ( )'dj g r dr=  and, since ( ) mg 0 =  

(by (A4)), we have, using (A6): 

 

 ( )
( ) ( )

( )( )( )
m

' '
0

' ' '

' 1 'j r

g r dg r
jf j dj

g g g r



-

-
=ò ò  

 

( )
r

' '

0
g r dr= ò  

 

which is (A5).                    

 

For our counterexample we also need the following result (see Egghe (2005), Chapter II) on 

the equivalency of the Lotka function and Zipf’s function. 
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Proposition A.2 : 

Let m = ¥ . We have that the following assertions are equivalent: 

 

(i) [ )f : 1, ++ ¥ ® ¡  

 

 ( )
C

j f j
j

® =  (A7) 

 

 where C 0> , 2>  

 

(ii) [ ]g : 0,T +® ¡  

 

 ( )
( )( )

1

1

1

1

C
r g r

r 1





-

-

® =

-

 (A8) 

 

 where C 0> , 2> . 

 

Proof : 

( ) ( )i iiÞ  

 Using (A4) again yields 

 

 ( )1 '

'
j

C
r g j dj

j 

¥
-= = ò  

 

 ( )1 1C
r g j j

1





- -= =
-

 

 

 So 

 

 ( )

1

11
j g r r

C

 -æ ö- ÷ç= = ÷ç ÷çè ø
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 from which (A8) follows. 

 

( ) ( )ii iÞ  

 By (A4) we have that 

 

 ( )
( )( )' 1

1
f j

g g j-
= -  

 

 ( )

( )

1

1
1

1

1

1
f j

C
r

1










- -
-

-

-
=

-

 

 

 but where we have to substitute (A8). This yields 

 

 ( )
C

f j
j

=  

 

 hence (A7).                         

 

Finally we show the following result (also proved in Egghe (2005), Proposition II.2.1.1.1 (see 

also Egghe (2004)). 

 

Proposition A.3 : 

The Lotka function 

 

       [ )f : 1, ++ ¥ ® ¡  

 ( )
C

j f j
j

® =  (A9) 

 

(hence given m = ¥ ) satisfies 

 

 ( )
1

f j dj T
¥

=ò  (A10) 
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(a given total number of sources) and 

 

 ( )
1

jf j dj A
¥

=ò  (A11) 

 

(a given total number of items, A T> ) if 

 

 
2A T

A T


-
=

-
 (A12) 

 

and 

 

 
AT

C
A T

=
-

 (A13) 

 

(which trivially implies 2>  for given A< ¥  (hence T< ¥ )). 

 

Proof : 

Requirements (A10) and (A11) yield, for 2> : 

 

 ( )
1

C
f j dj T

1

¥

= =
-ò  (A14) 

 

 ( )
1

C
jf j dj A

2

¥

= =
-ò  (A15) 

 

proving (A12) and (A13).                        


