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Preface

This proceedings volume contains the papers presented at The 18th Inter-
national Workshop on Statistical Modelling held in Leuven, Belgium, July
7-11, 2003. The workshop aims to bring together researchers and all those
interested in the development of statistical models and in their applica-
tions in the widest sense. It arose out of the idea of having a forum for
presenting and discussing advances in statistical modelling and stimulat-
ing international collaborative work. The main focus is the annual meeting
(usually held in July) where a wide range of non-theoretical papers from a
wide range of areas in addition to considering theoretical contributions are
covered.

The International Workshop on Statistical Modelling has been held in Eu-
rope and the USA for the past 18 years. The workshop arose out of two
GLIM conferences in the U.K. in London (1982) and Lancaster (1985), and
from a number of short courses organised by Murray Aitkin and held at
Lancaster in the early 1980s, which attracted many European statisticians
interested in Generalised Linear Modelling. At this time, a group of Aus-
trian, Italian and British statisticians saw both the opportunity and the
need for a regular meeting of Europeans that would focus on various aspects
of statistical modelling in an informal workshop environment, specifically
aimed at applied statistics, but also including theoretical developments and
computational methods.

The spirit of the workshop has always concentrated on papers that are both
motivated by real life data and which also make novel contributions to the
subject. Statistical modelling is an important cornerstone in many scien-
tific disciplines, and the workshop has consistently provided a rich environ-
ment for cross-fertilization of ideas from different statistical disciplines. The
workshop has brought together scientists from different nationalities with
different backgrounds and experience, and has thus always promoted contri-
butions from students early in their careers and allowed time for discussion
and interchange between junior and senior scientists. Special attention is
given to student contributions, and an award for the best student presen-
tation is given. The scientific programme is characterised by having invited
lectures and a pre-workshop short course, contributed papers, posters and
software demonstrations.



Since the first meeting in Innsbruck in 1986, the workshop has grown sub-
stantially, and now regularly attracts over 200 participants. There has been
a strong effort to bring each new meeting to a different European country.
The scope of the workshop is now much broader, reflecting the growth in
the subject of statistical modelling over ten years. The number of sub-
mitted papers has grown with the number of participants, but parallel
sessions have been avoided, allowing everyone both to learn and to con-
tribute. Poster sessions are now held, and software demonstrations and
displays are organised. One change is that the workshops have become
more international in nature. Participants now attend from all corners of
the globe, and workshops have travelled around Europe: Innsbruck (1986),
Perugia (1987), Vienna (1988), Trento (1989), Toulouse (1990), Utrecht
(1991), Munich (1992), Leuven (1993), Exeter (1994), Innsbruck (1995),
Orvieto (1996), and Biel/Bienne (1997) - to the USA - New Orleans (1998)
- and back to Europe - Graz (1999), Bilbao (2000), Odense (2001), Chania
(2002). Future workshops will be organized in Florence (2004) and Aus-
tralia (location to be specified, 2005).

After 10 years, the workshop is back in Leuven, as a joint organization of
the Biostatistical Centre of the K.U.Leuven and the Center for Statistics
of the Limburgs Universitair Centrum. The scientific programme consists
of invited papers, oral contributions as well as poster contributions. We
very much appreciate the efforts of the scientific committee in the selection
of the invited speakers and the oral contributions. We thank the invited
speakers, Ron Brookmeyer (The Johns Hopkins University, U.S.A.), Chris
Chatfield (The University of Bath, U.K.), Marie Davidian (North Carolina
State University, U.S.A.), Anastasios Tsiatis (North Carolina State Uni-
versity, U.S.A.), and Henry Wynn (London School of Economics, U.K.) for
accepting the invitation to present a one hour state of the art lecture in their
specific fields of expertise. Abstracts of these presentations are included in
the first part of this volume. Further, we very much appreciate the efforts
of Brian Marx (Louisiana State University, U.S.A.) and Paul Eilers (Uni-
versity of Leiden, The Netherlands) for their one-day short course entitled
‘Smoothing for Smarties.” Finally, our special thanks are dedicated to all
authors who contributed to the second and main part of this proceedings
volume, for participating in the workshop, and for carefully preparing their
manuscripts. Finally, we wish all participants a pleasant stay in the historic
city of Leuven, and a very fruitful scientific meeting.

Geert Verbeke
Geert Molenberghs
Marc Aerts

Steffen Fieuws

Leuven, May 2003
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Abstracts of Invited Papers






Statistical Models for Anthrax Outbreaks

Ron Brookmeyer

! Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland USA

In the fall of 2001 an outbreak of inhalational anthrax occurred in the
United States that was the result of bioterrorism. Letters contaminated
with anthrax spores were sent through the postal system. In response to
the outbreak, public health officials treated over 10,000 persons with antibi-
otic prophylaxis in the hopes of preventing further morbidity and mortality.
No persons receiving the antibiotics subsequently developed disease. The
question arises how many cases of disease may actually have been prevented
by the public health intervention of antibiotic prophylaxis. In this paper, a
statistical model is developed to answer this question by relating the dates
of disease onset, initiation of antibiotic prophylaxis, and exposure to the
anthrax spores, to the incubation period distribution. An important com-
plication is that the date of exposure to the anthrax spores was unknown
for a cluster of cases in Florida because the contaminated letter was never
found.

A general likelihood function for a multi-common source outbreak is devel-
oped where the dates of exposure to the source (e.g. anthrax spores) may
or may not be known. Estimates of the incubation period distribution are
derived from an outbreak in Sverdlovsk, Russia. The results are applied to
the 2001 U.S. outbreak to estimate jointly the date the Florida cases were
exposed to the contaminated letter, and the numbers of cases of disease
that may have been prevented in the three main clusters in New Jersey,
Florida and Washington, D.C. The model is extended to allow a phase-in
time period during which antibiotics are distributed. The sensitivity of the
estimates to the assumed incubation period is investigated. Properties of
the estimators particularly when the outbreak sizes are small are evaluated
by simulation. We find that antibiotics may have cut in half the number of
cases of disease. Sensitivity analyses indicate that even in the absence of
antibiotic prophylaxis the outbreak would not likely have been more than
50 cases. The results underscore the importance of early detection of out-
breaks together with targeted and effective public health control measures.

Keywords: Anthrax; Epidemiology; Infectious disease; Likelihood.
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Model Selection, Data Mining and Model
Uncertainty

Chris Chatfield®

! Department of Mathematical Sciences, University of Bath, Bath, UK, BA2 7TAY

Different methods for selecting an appropriate model are briefly reviewed.
Data mining, or data dredging, arises when large numbers of models are
tried on the same data. The effects of this, such as model-selection bias,
are still not widely understood and some remarks are made on model un-
certainty.

Keywords: Akaike’s information criterion; Bayesian information criterion;
Data dredging; Principle of parsimony.

An extended version can be found on page 79.






“Semiparametric” Approaches for Inference
in Joint Models for Longitudinal and
Time-to-Event Data

Marie Davidian!

! Department of Statistics, North Carolina State University, Raleigh, USA

A common objective in longitudinal studies is to characterize the relation-
ship between a longitudinal response process and a time-to-event. Consid-
erable recent interest has focused on so-called joint models, where models
for the event-time distribution (typically proportional hazards) and longi-
tudinal data are taken to depend on a common set of latent random effects,
which are usually assumed to follow a multivariate normal distribution. A
natural concern is sensitivity to violation of this assumption. We review
the rationale for and development of joint models and discuss two model-
ing and inference approaches that require no or only mild assumptions on
the random effects distribution. In this sense, the models and methods are
semiparametric. The methods will be demonstrated by application to data
from an HIV clinical trial.

Keywords: Longitudinal data; Time-to-event data; Semiparametric.






Efficient Estimation of The Mean of A
Time-Lagged Variable Subject to Right
Censoring

Anastasios A. Tsiatis

! Department of Statistics, North Carolina State University, Raleigh, USA

In many clinical trials, the endpoint of interest may not be available im-
mediately, but rather evolves over time. Examples are numerous. Survival
time is clearly such an example, but also cost-of-care, quality-adjusted life-
time, or even dichotomous response such as whether viral load falls below
detectable limits after treatment for AIDS patients are also examples of
time- lagged responses. The lag time may be part of the biological process
or due to administrative delays. Because patient entry is staggered and
follow-up is of limited duration, some of the response variables will be
missing due to censoring of the lag time. We will show how the theory of
inverse probability weighting of complete cases developed by Robbins and
Rotnitzky can be used to derive consistent estimators for the mean of a
time-lagged variable. We will also show how to use additional information
collected during the study to increase effciency.

Keywords: Efficient estimation; Time-lagged variable; Right censoring.






Computational Algebraic Methods for
Discrete Statistical Models

Henry P. Wynn
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Algebraic statistics is the name given to the use of computational algebraic
methods in statistics covering in particular graphical models and various
independence and conditional independence structures. The use of algebra
comes from various sources. First by interpolating the probability mass
function or its logarithm over the support using Grober basis methods one
obtains unique forms of polynomial or exponential models. This imme-
diately copes with difficult support problems such as structural zeros in
contingency tables.

Second, complex factorisations can be expressed algebraically. Thus for
conditional independence of X; and X5 on X3, in the binary case, we have
the exponential form:

p(z,y, 2) = exp(Pooo + P100%1 + Po10%2 + Po01%3 + P10121T3 + Go11L2T3)

By setting
to = exp(dq)

for each multi-index o we obtain another algebraic formulation. Then elim-
inating the t, we obtain the “toric ideal” representation.

The representation comes from the special choice of multi-indices « defining
the original factorisation. There is a very close connection between the set
of multi-indices and certain inclusion-exclusion identities based on the sets.
For the above conditional independence, for example we have:

{123} = {13} + {23} — {3}

The key to the use of such identities in the modelling environment is certain
projection operators based on conditional expectations.

In summary, many factorisations such as graphical models, junction trees
and similar structures can be classified using such identities. Being able
to move between the different algebraic formulations of models and sub-
models is revealing. The work summarises collaboration with co-workers

11
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especially: G Pistone (Torino), E Riccomagno (Warwick).

Keywords: Algebraic Methods, Discrete Statistical Models.
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Two Lack of Fit Tests for Multiple Logistic
Regression

M. Aerts', G. Claeskens?, J. Hart?, E. Moons?, and G. Wets®
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Department of Statistics, Texas A & M University, College Station, Texas
77843, U.S.A.

Data Analysis and Modeling Group, Limburgs Universitair Centrum, Univer-
sitaire Campus, B-3590 Diepenbeek, Belgium

Abstract: Several methods have been developed to asses the fit of a regression
model. Many lack of fit tests however focus on the simple regression setting. Here
we propose two tests which are completely different in nature, but which both
are promising especially in the case of a multiple regression model with several
potential explanatory variables.

Keywords: Bayes information criterion; Classification trees; Lack of fit; Poste-
rior distribution; Recursive partitioning.

1 Introduction

There is a variety of techniques and methods available for testing lack of
fit in regression models, see e.g. Hart (1997). Here we focus on the special
case of multiple logistic regression. Other related work covering this setting
includes Brown (1982), le Cessie and Van Houwelingen (1991, 1993, 1995),
Aerts, Claeskens and Hart (2000).

Consider a binary response Y on N subjects and a logistic regression model
logit{P(Y = 1)} = g(x) with g some unknown regression function and
x = (21, ...,xp) the covariate vector (possibly containing mixed continuous
and categorical variables). The null hypothesis states

Hy: g(x) = g(x; 0) (1)

as the correct model for our data, where g(x;8) is a specified parametric
regression function and @ an unknown parameter vector. In case all ex-
planatory variables are categorical and if sparseness is no issue, we can rely
on the Pearson goodness-of-fit test, given by

oyl g
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where n; is the number of subjects in covariate pattern i, y; the number
of observed events and 7; the fitted probability based on the null model
My in the i-th of all I possible combinations. In case there are one or more
continuous explanatory variables, the asymptotic distribution of Pearson’s
chi-squared and the deviance test is not applicable anymore. The following
two tests offer a solution in this setting. A first approach is a modification of
the well-known Hosmer-Lemeshow test. The second method is a Bayesian-
motivated test and can carried out in either Bayesian or frequentist fashion.

2 A Tree Based Test

The Hosmer-Lemeshow test has the same form as the Pearson test statistic
but the grouping is different and typically based on the so-called deciles
of risk. More precisely, the first group contains those subjects (10 % of
the sample size) with the smallest estimated (under the null hypothesis)
probabilities, etc. Since this grouping is based on the fitted null model, this
approach is expected to have nonoptimal power characteristics.

The grouping proposed here is based on a flexible nonparametric model,
the classification tree. The test statistic actually measures the discrepancy
between the parametric null model and the classification tree as its unre-
stricted nonparametric counterpart. In general, a tree consists of different
layers of nodes (implying a grouping, splitting of the sample). It starts
from the root node in the first layer, containing all data. Using an impurity
criterion (maximizing the homogeneity), this parent node is split into two
daughter nodes on the second layer. This partitioning process continues
until a stopping criterion is reached. The tree is then pruned to an optimal
sized tree during the pruning process. It is the grouping of this final tree
which is used to define a Hosmer-Lemeshow like test statistic.

As a consequence of the data-driven grouping procedure, the final groups
might be highly unbalanced with some of the groups containing only a few
observations. To improve the distributional behaviour of the test statistic
(2), the tree test can be based on the Cressie and Read (1984) family of
power divergence statistics, i.e.

Tcr =

2 S () 1) + - () -1} @

with I the number of final nodes resulting from the partitioning and pruning
process, 7; the proportion of observed events in the ith group and —oco <
A < 0. For A =1 it equals the Pearson based formulation (2). Cressie and
Read (1984) recommend the statistic with A = Z, which they found less
susceptible to effects of sparseness.

Because the cells in the contingency table are random, the distribution of
the tree based test cannot be obtained from a straightforward application
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of the usual theory for chi-squared goodness of fit tests (Moore and Spruill
1975). Simulations show that a chi-squared distribution with 2 x g — p de-
grees of freedom is a reasonable choice. Next to this approximate distribu-
tion, one can always simulate a null distribution by a parametric bootstrap
method. For a detailed discussion, see Moons, Aerts and Wets (2002).

3 A Bayesian Motivated Test

A version of this test was proposed by Hart (1997). The idea is very sim-
ple. Consider a sequence of models for g(x) of varying dimensions, one of
which is the parametric null model g(x; ). The posterior probability, 7,
of the null model is computed, and if this probability is sufficiently low,
the null model is rejected. A sequence of constants a,, can be determined
such that a,(1 — 7, ) converges in distribution to a nondegenerate random
variable when Hj is true and the sample size n tends to oco. This allows
the frequentist to conduct a valid large sample test of given size based on
an(1—17y,). There are several choices for the sequence of alternative models
M;. Here, we consider nested models (M; C M) and singleton models
that contain only one more parameter than the null model M.

Applying Schwartz ’s (1978) approximation, we get the following approxi-
mation of the posterior probability

1 def
P(Myly) =~ = TBIC-
(Moly) 1+ 31 | exp(BIC; — BICy)

where BIC; = logL; — mjlogn/2, the Bayes Information Criterion of
model M; (L; the likelihood function at the MLE and m; the dimension
of model M;).

Under certain regularity conditions and for a finite number K of alterna-
tive models, , it can be shown that n%(l — mprc) —p exp(V1/2) for the
nested models and nz (1 — wgrc) —p 22(:1 exp(V}/2) for the singletons,
where Vi,. .., Vi are independent x? random variables and K is the total
number of alternative singleton models. For more details on the limiting
null distribution (including finite sample corrections and the case in which
the number of alternative models tends to co with n) and on the power
against local alternatives, see Aerts, Claeskens and Hart (2003).

4 Data Example and Discussion

The data set used in this analysis comes from the Project on Preterm
and Small-for-Gestational-Age Infants in the Netherlands (POPS), a Dutch
follow-up study on preterm infants by Verloove and Verwey (1988), see also
le Cessie and van Houwelingen (1991) . Data were collected on 1338 infants,
born in 1983 in The Netherlands with a gestational age of less than 32
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TABLE 1. Test results POPS data: p-values for three null models.

Test, T1,T3, Ty T1,T9,T5 T1,T7,T9,Ts
Bg 0.000 0.000 0.126
By 0.006 0.000 0.138
Ter 0.012 0.044 0.090
HL 0.125 0.002 0.207
CVH 0.02 - 0.45
BR 0.01 - 0.06
ACH1 - - 0.07
ACH?2 - - 0.02

completed weeks and/or a birthweight of less than 1500 g. After deleting
the observations with missing data, a data set of 1310 infants remained.
We consider the situation after 2 years. The response variable Y indicates
whether or not the infant has died within 2 years or has survived but with
a major handicap. The explanatory variables are gestational age (X;) and
weight of the babies at birth (X3). As an illustration, we consider each
of the following models as null model: model 1 with z1,2?%, 29, model 2
with x1, 22,22, and model 3 with 2, 2%, x5, 23. Table 1 shows the results
for the tree-based and the Bayesian motivated test and compares them
with the results from several other tests from literature. The first four lines
shows p-values for the singleton and nested Bayesian motivated test (Bg
and By respectively) using a sequence of alternative models including up
to fifth order main and interaction effects, the tree-based test based on the
Cressie-Read statistic (T¢gr) with pruning up to 15 terminal nodes, and
the Hosmer-Lemeshow test (HL) based on deciles of risk. All p values were
simulated using the parametric bootstrap (1000 runs).

The last four lines show some analogous results from other test statistics
proposed in literature: a kernel based goodness of fit method (CV H) pro-
posed by le Cessie and Van Houwelingen (1991, 1993), the Brown statistic
(BR, Brown 1982, see also le Cessie and Van Houwelingen 1993) and an
order selection score test (ACH1) and the value of a score based AIC cri-
terion (ACH?2) as reported by Aerts, Claeskens and Hart (2000).

The p-values in Table 1 show that there is clear evidence against any model
without both quadratic terms (model 1 and 2). Only the HL test does not
reject model 1. As also discussed in Aerts, Claeskens and Hart (2000), there
is some evidence against model 3 with both quadratic terms, but the dif-
ferent test results disagree. The HL test seems to have less power than
the tree based test Togr, which has been confirmed by simulations (see
Moons, Aerts and Wets 2002). On the other hand this latter test has less
convincing results for the simpler null models. Especially the Bayes moti-
vated tests reject model 1 and 2 very strongly. Of course, such conclusions
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are premature. Extensive simulations are needed to shed more light on the
power characteristics of the different test statistics. An appealing property
of the Bayes motivated test is that it can be easily implemented for more
complex likelihood models (like e.g. for clustered data). The tree-based test
is promising in settings with huge datasets (like in data mining).
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Abstract: In this paper we introduce a new procedure to build the Classifica-
tion and Regression Trees. The procedure called ECART is based on a genetic
algorithm.

Keywords: Classification; Genetic algorithms; Regression trees.

1 Introduction

Classification And Regression Trees (CART) (Breiman et al, 1984) is a
popular procedure for regression and classification problems where high di-
mensionality and a non-linear optimization criterion are involved. In par-
ticular, CART is a nonparametric statistical method developed to build
models with a tree-based structure.

Considering a regression problem, where X = (Xy,---,X,) is the input
space and Y is the response variable, the CART algorithm adopts a binary
recursive partitioning startegy: the input space Ry, with X € Ry, is divided
into two regions Ry and Ry by a split (¢, a) on the variable X; at the split
point a. The procedure selects ¢ and a so that replacing the parent region
Ry with the two regions R; and Rs yields minimal empirical risk. The
algorithm proceeds recursively on the daughter regions until a very large
number of regions are achieved. Model selection criteria are then applied
for stopping the process.

In this procedure to model the relation between Y and X we are asked to
choose: i) which and how many variables to introduce in the model, ii) in
which order the variables should appear, iii) the number and the position
of the split points, and iv) the associated regression parameters.
Choosing all these elements of the model to minimize empirical risk is a
hard combinatorial problem, and CART represents an approximate solution
based on a recursive partitioning approach.

CART is a simple algorithm to implement and fast to compute. Unfortu-
nately CART also produces sub—optimal solutions and can be an unstable
procedure (removing or adding a few observations may change the tree
structure). Recently, Breiman (2001) introduced the Random Forest (RF)
to avoid instability.

21
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FIGURE 1. The partition generated by the tree model [1] (left) and by the model
[2] (right).

In this work we adopt an evolutionary approach to build the CART method.
We design a Genetic algorithm (GA) which evolves the partition of the
input space, and then achieves how many and which split points for each
variable considered. We introduce a two stage genetic algorithm where the
first stage is designed to evolve the number of the split points in each X
variable and the second stage the position of the split points.
To introduce this algorithm let us consider I; 5, an indicator function such
that

L-,aj{(l) §22§ 1<i<pandj>0,
and L,aj = (1 — I;,4,) the complement of I; 4;.
The simple regression model (with the tree representation as in Figure 1):

Y=pu+arha +azlia Iop, +ashalop +¢ (1)

with u, a1, as, as, a1, by, b2 as unknown constants and € as a normal random
variable with mean zero and variance o2, is reformulated in the following
way

Y = p+ Bilia, + Balop, + 8312, + Bali oy Iop, + B5lrailop, +€° (2)

This reformulated model [2] is related to the regression tree model [1]: a few
constraints are introduced on the 3’s (see also Figure 1), such as 81 = ay,
B2 =as, B3 =0, 0s=—0F2=—az, f5 = az.

Models with this formulation present the following advantages:

1. the variables and their split points can be introduced or cancelled
from the model without modified the remaining structure;

2. the order of the variables is not relevant and this simplifies and speeds
up the search of a sub—optimal model,

3. the cardinality of the set of models grows very slowly.

The formulation (2) of the regression model allow us to build a genetic
algorithm which evolves the possible candidate solutions to our problem,
chosen in a very large sets of possible solutions.
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2 The Genetic Algorithm

Genetic algorithms (Holland, 1975, and Goldberg, 1989) are powerful and
flexible tools for search and optimization problems. They are based on
the mechanics of natural selection and they are particularly suitable for
optimization problems involving discrete parameters. They have been suc-
cessfully applied in a large variety of fields and problems, including the
selection of statistical models (Minerva and Poli, 2001).

In this work we design a two-stage genetic algorithm in order to choose the
number of split points and their values. In fact, the first stage creates and
evolves a population of candidate numbers to be considered as the number
of split points of each variable of the input set. The second stage creates
and then evolves a population of possible split points for each variable of
the input set. The algorithm works with a transformed form of the Akaike
criterion (AIC) as a fitness function to select the optimal models.

The implementation of the genetic algorithm follows these steps:

1. Select random values from a discrete Uniform distribution with sup-
port 0,1,---, N;, where IN; represents the maximum number of split
points for the i-th input variable with ¢ = 1,-- -, p, and create a pop-
ulation of individuals ng, s = 1, - -, .S where S is the size of the popu-
lation; each individual defines a possible set of the number of the split
points of the input space variables, that is ny = (ns1,ns2, -+, Nsp);
encode each individual with the reflected Gray code;

2. For each individual ng create a random population of new individ-
uals vi, £k = 1,---, K, where K is the size of the population. Each
individual is a p vector whose elements are vectors of variable size,
that is vi = (Vi1, Ve, -+, Vip), With Vi = (Vki1, Vki2, 5 Uking, )
each element of the vector vy;, represents a rank value identifying the
corresponding value assumed by the i-th input variable; encode each
individual with the reflected Gray code;

3. Compute the fitness function values;

4. Select the values of the parameters for the selection, crossover and
mutation operators and perform the genetic operators as defined
above;

5. Set g=g+1; if g < Ny then go to step 3;

6. Assign to each individual n, the best fitness function achieved with
the last generation of the previous GA (which identifies the best
choice of the values of the input variables given the number of the
splits: steps 2-5;
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-0.3756 -1.8140

-20.16012.440

19.970-19.990
19.980-19.610 -20.1600 20.0500 19.8700 -19.8800

FIGURE 2. The tree generated with CART (left) and ECART (right).

7. Select the values of the parameters for the selection, crossover and
mutation operators and perform the genetic operators as defined
above;

8. Set G=G+1; if G < N¢ then go to step 2;
9. Return the best ng and the associated vy from the last generation.

This algorithm has been applied to few set of data giving very encouraging
results.

3 An illustrative Example

We present the results achieved with a sample of observations from data
with the following model:

Y =-20+40 1175 + 40 12,5 — 80 11,51275 +e€

and X1, Xo ~ U(0,10), € ~ N(0;1) and a sample of size 129 from it.

The tree structure from CART is reported in Figure 2 (left). The suggested
tree has several branches that we can not prune without losing the correct
splits. From the tree it is really difficult to recover the true structure of the
data.

We run the genetic algorithm described above using S = K = 20. The
parameter of crossover is set to 0.95 and that of mutation is set to 0.02. We
run Ny = Ng = 10 generations. The number of possible partitions we con-
sider is of order 10?® and with the algorithm, at the end, we explore 40000
of them, a very small number. The best solution is found after exploring
about 12000 partitions (5-th generation).

Table 1 compares CART with our procedure (ECART). We compute the
deviance (Dev(R)) of the residuals and deviance (Dev(Y')) of the dependent
variable.
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TABLE 1. Results for CART and ECART.

True model CART ECART

DeV(R) 125.113 4180.693 125.113

Fitness (><10_3) 11.529 2.745 11.529

Misclassified (%) 0.000 2.326 0.000

Dev(Y) 51493.370
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Abstract: In longitudinal studies with a set of continuous or ordinal repeated
response variables it may be convenient to summaries the outcome as a threshold
event. Then, the time to this event becomes of interest. In this paper we obtain
the general likelihood for the unknown parameters when the underlying survival
model is parametric and the survival times are interval-censored. We investi-
gate the use of a member of the Generalized Time Dependent Logistic family of
survival distributions (MacKenzie, 1996) which is a non-PH Accelerated Hazard
Model and has a logistic baseline hazard function. We use simulation to inves-
tigate how inference on the treatment parameter is compromised by using the
mis-specified likelihood, which treats the interval-censored survival times as if
they were exact

Keywords: Interval censoring; Logistic survival; Non-PH model; Accelerated
hazard; Mis-specified likelihood.

1 Introduction

In classical survival analysis, the exact time to event is usually known.
However, in longitudinal clinical trials where outcome is a continuous or
ordinal variable measured repeatedly at scheduled follow-up times, the ex-
act time-to-event may be unknown. Such situations arise when the outcome
is classified according to threshold of clinical interest. Then scientific inter-
est is focused on the time at which the threshold is crossed. In these studies
recruitment is staggered in time and, increasingly, survival-type methods
(Kaplan Meier, 1958; Peto & Peto, 1972, and Cox, 1972) are being pressed
into service.

These methods are appropriate for right censored 'time to event data’ when
the exact time of occurrence is known, but strictly inappropriate when the
‘time to event’ is known only to lie in an interval. Application of conven-
tional methods to interval ’end’ or 'mid’ points can lead to bias (Lindsey
and Ryan, 1998) and optimistic precision (MacKenzie, 1999). Here, we de-
velop the parametric accelerated life (AL) logistic model (MacKenzie, 1996)
in which the baseline hazard follows the time-dependent logistic (TDL) sur-
vival model. We compare inference from the correct model with that from

27
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the mis-specified model which uses follow-up times as if they were exact.

2 Likelihood Formulation

Suppose there are m + 1 scheduled inspection times, ¢, tf, ..yt at which
continuous or ordinal responses Yy, Y1, ..., Y,, are measured. Let T be a non
negative variable denoting the time to some outcome of interest defined on
the Y's. Let S(¢;0) and A(t;0) be the corresponding survival and hazards
functions, respectively, depending on the unknown vector parameter 6 € O,
where 6 = (o/,7',3’)". Then for a sample of n independent subjects it may

be shown that the true censored likelihood for the unknown parameters is:

0;
Ll(e) - H {S(ti(kl) ) 9) [1 - S(tik—l ) timeﬂ } [S(t:, 9)]176" (1)

i=1

where typically ny patients fail between scheduled examination times t&_l)

and tz for k = 1,...,m and n. patients are censored or withdrawn at specific
times, ¢;,such that n. + Z;’;l nr = n. Here, §; = 1 denotes an event and
d; = 0 denotes a censored observation. We may compare (1) with the mis-
specified censored likelihood resulting from treating the observed inspection

times as if they were exact:

La(6) = [T Ntis0)S (0001 (65,00 (2)

i=1

Equations (1) and (2) enable us to investigate the effect of mis-specification
for any survival model where the function takes closed form. Notice the use
of observed inspection times rather than the scheduled times in equation

(1)

3 Model Formulation

MacKenzie’s (1996) AL logistic survival model is defined by the hazard
function
Aexp(ta'S + )

Atiz) = 1+ exp(tz’B+7) ®)

a form which we have modified to obtain an accelerated hazard model
defined by

Aexp(tag)

A(t; @) 1 + exp(tag)

(4)
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where ¢ = exp(a’f3) and we have suppressed the dependence on 6. We
compare this model with the corresponding modified accelerated life model
defined by

exp(tag)

Mtl) = Moo s o)

(5)

a form which is recognisably different from (4).
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TABLE 1. Comparison of Mis-specified and True Models Estimators: AL Model.

Mid-point, Regular follow up (3,6,9,12,15,18,21,24)
Mis-specified True

n___ ¢ a s ¢ a s
¢* = —0.6, a = 0.2, 8 = —0.5, % within censoring =0
Mean 100 —1.007 1.901 —0.451 —0.601 0.251 —0.511

(se.) (0.160)  (0.250) (0.161) (0.215) (0.201) (0.178)
Mean 500 —1.052 1.976 —0.438 —0.626 0.201 —0.501
(se.) (0.053) (0.120) (0.071) (0.131) (0.135) (0.078)

¢* = —0.6, « = 0.2, 8 = —0.5, % within censoring=30
Mean 100 —1.346 1.882 —0.443 —1.060 0.371 —0.479

(se.) (0.175)  (0.294) (0.188) (0.207) (0.306) (0.205)
Mean 500 —1.403 1962 —0.442 —1.127 0531 —0.481
(se.) (0.061) (0.168) (0.089) (0.151) (0.385) (0.091)

TABLE 2. Comparison of Mis-specified and True Models Estimators: AH Model.

Mid-point, Regular follow up (3,6,9,12,15,18,21,24)
Mis-specified True
n o o p ¢ o p
¢* = —0.6, a = 0.2, 8 = —0.5, % within censoring =0
Mean 100 —1.020 1.618 —0.034 —-0.624 0.253 —0.552

(se.) (0.094) (0.203) (0.221) (0.180) (0.211) (1.112)
Mean 500 —1.053 1.742 —0.045 —0.635 0.225 —0.538
(se.) (0.040)  (0.103) (0.104) (0.129) (0.125) (0.588)

¢* = —-0.6, a =0.2, = —0.5, % within censoring=30
Mean 100 —1.024 1.688 —0.024 —0.632 0.248 —0.393

(se.) (0.088) (0.211) (0.218) (0.197) (0.199) (1.206)
Mean 500 —1.055 1.744 —0.045 —0.634 0212 —0.530
(se.) (0.040) (0.108) (0.099) (0.125) (0.109) (0.584)

4 Simulation Study

The object of the simulation study is to quantify the degree to which in-
ference about the parameters in the AH & AL models, especially G, is
compromised by the use of the mis-specified likelihood. We investigate the
2-sample case, mimicking a RCT in which scientific interest is focused on
estimating the treatment effect and its associated standard error. The sim-
ulation parameters include: sample size, percentage censored, patterns of
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follow-up examination is regularly and irregularly spaced, the model para-
meters (). The maximum likelihood estimates will be calculated using the
correct and the mis-specified likelihoods.

5 Results

First we compared models (4) and (5) using lung cancer data, and present
the conditional fits obtained by each regression model and the marginal
fit of the Kaplan Meier estimator. The (AH) model shows a better fit
compared with the (AL) model (Figures 1, 2).

Second, we report a subset of the complete simulation using mid-points in
the mis-specified likelihood. Tables 1 and 2 show the MLE’s for the three
parameters using a regular visit schedule. Note that we report ¢* = log, (1))
in the tables. Overall, the true likelihood provided consistently better esti-
mates with superiority for the AH model compared with the AL model,
when we allowed for drop-out and using a regular schedule. The mis-
specified likelihood also produced standard errors which were artificially
precise.

6 Summary

The idea of an accelerated hazard model is new. To our knowledge this
is the first time that they have been described, and compared empirically
with classical accelerated life models, allbeit in the context of a single fam-
ily of survival models - the GTDL (MacKenzie, 1996). The results of the
numerical analysis favour the AH model suggesting that the model may be
useful in practice. The advantages of these parametric models stem from
the closed forms taken by survivor functions and the fact that when 3 =0
the underlying survival functions have testable parametric forms. We have
demonstrated by simulation, the use of these two models in the analysis
of interval censored survival data arising in longitudinal randomized con-
trolled trials.
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Abstract: Likelihood estimation of the general finite mixture model is consid-
ered. A short discussion on this likelihood method is given. The phenomenon of
spurious maxima is explained and its relation with sample size. The method is
demonstrated on two real reliability data examples.
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1 Introduction

A lot of today’s reliability data obtained from experiments with micro-
electronic components give evidence of bi or even multi modal failure data.
Although reliability engineers know mostly whether there is more than one
failure mechanism involved, at the end of the experiment it is or too difficult
or too expensive to recover the specific failure reason of each device. A large
part of these failure data can be modeled by means of a finite mixture. In
particular, mixtures with mixing over all parameters are of interest since,
due to the nature of much reliability data, a common shape parameter for
the component densities cannot a priori be assumed.

A general M-component finite mixture has the following density:

M
fru(x|0) = Z Tom f (2| oy Tm) (1)

m=1

with 27]\,{:1 Tm = 1, f(x|tm, om) the density of a 2-parameter distribution,
tm a scale and o, a shape parameter. The problem with these mixtures
is that a maximum likelihood estimate (MLE), defined as the global maxi-
mum of the likelihood, does not exist. However, the likelihood does have a
local maximum with, very importantly, good statistical properties.

The aim of this paper is first to discuss shortly this likelihood theory, which
is far from new, acknowledged by some authors, but still rarely applied.

33
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Second to tackle the problem of spurious maxima and sample size, and
third to demonstrate the method on two sets of reliability data.

2 Likelihood Estimation

It is well known that the likelihood function for a mixture with density
(1) is unbounded at some points on the edge of the parameter space. As
a result an MLE does not exist. Nevertheless, both empirical and theo-
retical evidence proved for finite normal mixtures the existence of some
local maximum of the likelihood function with good statistical properties,
i.e. consistent, asymptotically normal and efficient (Quandt, 1972; Kiefer,
1978). An explanation for this is given by the different conditions determin-
ing the existence of a consistent global and a consistent local maximum of
the likelihood. Namely, under the conditions of Cramér (1946), the likeli-
hood equations (LEQ) have a (in essence unique) consistent, asymptotically
normal and efficient solution which, with probability tending to one as the
sample size tends to infinity, corresponds to a local maximum. On the other
hand, the different and more demanding conditions of Wald (1949) ensure
the consistency of the classical MLE.

While for a mixture with common shape parameter both set of conditions
hold, only Cramér’s conditions apply for a general M-component mixture .
Importantly, whether we either work with a mixture with common or with
unequal shape parameters, in essence the same kind of estimate is obtained
from the LEQ, in spite of the convention of terminology to only call the
first an MLE. The latter will be referred to as a likelihood estimate (LE).
The problem is not entirely solved yet since the likelihood function for (1)
has multiple roots and it is not specified which is the proper one. It can be
proven that for many general finite mixtures, such as the (log)normal or
Weibull mixture, the largest local maximum of the likelihood corresponds
to those well-behaved estimates. This gives a criterion similar to ML esti-
mation. But, not everyone agree on this as McLachlan et al. (2000), among
others, claim that a spurious maximum could then be chosen as LE.

3 Spurious Maxima

What is meant with a spurious maximum? No unambiguous definition ex-
ists yet, but mostly the corresponding mixture is characterized by a small
proportion or shape parameter for one of its components. Since a spurious
maximum cause problems when it has the largest likelihood value, some
authors suggest to first remove all solutions of the LEQ corresponding to
such maxima and then to choose among the remaining roots the solution
with the largest likelihood as LE. Although these maxima should be con-
sidered with care, this procedure is dangerous, highly subjective and we do
not recommend it.
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TABLE 1. Some local maxima of the likelihood of two simulated datasets. Esti-
mates in bold correspond to the maximum closest to the true values.

n pw =0 00=05 =3 o09=1 @ =0.2 Likelihood
-1.029 0.00175 2.493 1.470 0.0399 -85.122

50 1.387 1.444 3.627 0.553 0.569 -88.398
-0.249 0.694 2.996 0.987 0.198 -88.571
-0.255 0.627 2.895 0.984 0.128 -200.921

120  3.246 0.685 1.693 1.543 0.514 -202.120
2.874  0.0000541 2.485 1.425 0.0166 -202.628

The point is that spurious maxima are not only related to the largest like-
lihood criterion and the finite mixture case. They exist as soon as Cramér’s
conditions hold and as the LEQ have multiple roots; irrespective of the fact
whether we search for a local or a global maximum. Their appearance as
the largest maximum is primarily due to the ambiguity in the statement
of a consistent root and related with sample size. Indeed, consistency is a
limiting property. As a result an improper estimate can be the outcome of
the likelihood or ML method if the sample size n is too small. We define a
spurious maximum as each maximum of the likelihood that is not closest
to the true values, with closest defined by some distance.

How can we then obtain a proper estimate from the LEQ in case of multiple
roots? First, use always a consistent procedure (e.g. the largest local or
global criterion). Second, choose the sample size large enough. If the latter
is not possible, one should take into consideration another method or look
whether there is relevant information about the possible true values. A
too small sample can often be recognized through the likelihood value of
distinct spurious maxima, i.e. maxima for which one of the component
densities corresponds to no more than a few data values (if these data values
are not clearly separated from the others). Namely, simulations indicated
that when n is too small, often at least one of these maxima has a highest
likelihood value. As an example, Table 1 gives some local maxima of the
likelihood of two simulated datasets from a two-component normal mixture.
The second dataset is based on the first but with 70 extra values generated.
As seen, for the smallest dataset, the maximum with the highest likelihood
value is distinct spurious (7 is less than 2/50), while for the larger dataset
the proper maximum has the highest likelihood value.

4 Examples

We demonstrate the likelihood estimation method on two datasets obtained
from experiments carried out at IMO. The experiments consisted of acceler-
ating the failure mechanisms of a micro-electronic component by means of
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TABLE 2. Some mazima of the likelihood for the datasets of eramples 1 and 2.
The first mazimum of each example is the largest local. Estimated parameters are
the mean and shape of the mizture distribution of the log failure times.

Example i1 01 2 09 T Likelihood
6.164 0.236 7.022 0.251 0.286 -66.100
1 6.745 0.0000355 6.777 0.463 0.0159 -72.545

6.864 0.0000436 6.775 0.463 0.0158 -72.918
5.329 0.0000684 5.009 0.429 0.0292 -40.444
2 5.071 0.0000783 5.020 0.432 0.0291 -41.375
4.086 0.000730 5.041 0.413 0.0286 -43.137
4.220 0.0518 5.080 0.389  0.105 -44.575
4.697 0.340 5.374 0.166 0.641 -45.427

increasing certain stress factors (such as temperature, current, ...). Main
interest is in the estimation of the failure-time distribution. For the com-
ponents under study it is known that there could be a second failure mech-
anism, leading to bimodal failure data.

4.1 Example 1

The failure times of 125 commercial metal film resistors, stressed at a tem-
perature of 165 °C, were measured. Figure 1(left) shows a lognormal QQ-
plot of the data. Generally, the failure times for this type of component
are lognormally distributed. Since the data suggest two failure modes, a
two-component lognormal distribution is estimated. The local maxima of
the likelihood function are searched for and the most important ones are
indicated in Table 2. As noticed, the largest local maximum is not a dis-
tinct spurious maximum and its likelihood value is much larger than the
second largest maximum. So, there is no reason to mistrust the largest lo-
cal maximum. The fitted distribution is shown in Figure 1(left). One can
now proceed as in case of ML estimation and carry out tests, construct
confidence intervals, ...in the usual way.

4.2 Example 2

Interconnects were stressed at 80 °C and 0.75MA /cm?. All 68 devices un-
der test failed. A Weibull QQ-plot of the failure times is shown in Fig-
ure 1(right). Previous experiments indicated that there could be two failure
mechanisms. So, a two-component Weibull mixture is used to fit the data.
The likelihood is scanned for local maxima and some of them are tabulated
in Table 2. In contrast to the first example, the largest local maximum is
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FIGURE 1. (left) Lognormal QQ-plot ex.1; (right) Weibull QQ-plot ex.2.

now distinct spurious. Although the last two maxima in the table corre-
spond to reasonable estimates, it is dangerous to choose one of these two as
the LE. Indeed, depending on the chosen maximum other inference results
are obtained, which could lead to wrong reliability predictions and con-
clusions. If there are truly two failure modes, this is not clearly seen yet.
Consequently, more data is needed or other techniques have to be applied.

5 Conclusions

Despite the nonexistence of the MLE for general finite mixtures, there exists
a root, of the LEQ with good statistical properties. It is the same kind of
estimate as the MLE, called the LE and corresponds for a lot of cases to
the largest local maximum of the likelihood.

The appearance of spurious maxima is inherently linked to the presence of
multiple roots in the LEQ and independent of the fact whether one search
for the largest local or global maximum. When the likelihood function is
dominated by distinct spurious maxima, the sample is most likely too small
and none of the roots of the LEQ can be trusted.

Acknowledgments: This work was supported by the Flemish Science
foundation (IWT).
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1 Introduction

The Weibull proportional hazards (PH) regression survival model has been
extended to a frailty model by means of a multiplicative random effect
acting on the hazard function (Hougaard, 1994). Classically the random
component is assumed to follow a Gamma distribution, which is mathe-
matically tractable and leads, after marginalization, to a closed form for
the resulting frailty distribution. However, not all survival data are PH and
it is therefore useful to have alternative non-PH models. This is relevant as,
increasingly, random effect models are being used to analyze multivariate
survival data (Ha, Lee and Song, 2001, Ha and Lee, 2003).

A flexible non-PH model is the Canonical Time-Dependent Logistic (CTDL)
described by MacKenzie (1996, 2002). We generalize this model by includ-
ing a multiplicative Gamma frailty term in the hazard function. The result-
ing frailty model is obtained in closed form and we compare its properties
with the Weibull frailty model, noting the connection with a general class of
frailty models described by Aalen (1988). Moreover, we investigate the per-
formance of the four models, Weibull and CTDL with and without frailty,
using data from the Northern Ireland lung cancer study.
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2 Parametric Regression Models with Frailty

Consider a basic survival regression model with failure time density f(¢|6, 3),
hazard function A(t|.) and survivor function S(t|.), where typically 6 is a
vector valued parameter and [ is a regression parameter. Assume that a
random variable U, with density g(u|o?), denotes the unobservable indi-
vidual (i.i.d.) frailties and that E(U) = 1 and V(U) = o2. Then, given
data (t;,x;,d;) for i = 1...n subjects, a target vehicle for inference is the
marginal likelihood of the parameters of interest

#(0,8,0* H/ 