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Preface

This proceedings volume contains the papers presented at The 18th Inter-
national Workshop on Statistical Modelling held in Leuven, Belgium, July
7–11, 2003. The workshop aims to bring together researchers and all those
interested in the development of statistical models and in their applica-
tions in the widest sense. It arose out of the idea of having a forum for
presenting and discussing advances in statistical modelling and stimulat-
ing international collaborative work. The main focus is the annual meeting
(usually held in July) where a wide range of non-theoretical papers from a
wide range of areas in addition to considering theoretical contributions are
covered.

The International Workshop on Statistical Modelling has been held in Eu-
rope and the USA for the past 18 years. The workshop arose out of two
GLIM conferences in the U.K. in London (1982) and Lancaster (1985), and
from a number of short courses organised by Murray Aitkin and held at
Lancaster in the early 1980s, which attracted many European statisticians
interested in Generalised Linear Modelling. At this time, a group of Aus-
trian, Italian and British statisticians saw both the opportunity and the
need for a regular meeting of Europeans that would focus on various aspects
of statistical modelling in an informal workshop environment, specifically
aimed at applied statistics, but also including theoretical developments and
computational methods.

The spirit of the workshop has always concentrated on papers that are both
motivated by real life data and which also make novel contributions to the
subject. Statistical modelling is an important cornerstone in many scien-
tific disciplines, and the workshop has consistently provided a rich environ-
ment for cross-fertilization of ideas from different statistical disciplines. The
workshop has brought together scientists from different nationalities with
different backgrounds and experience, and has thus always promoted contri-
butions from students early in their careers and allowed time for discussion
and interchange between junior and senior scientists. Special attention is
given to student contributions, and an award for the best student presen-
tation is given. The scientific programme is characterised by having invited
lectures and a pre-workshop short course, contributed papers, posters and
software demonstrations.



Since the first meeting in Innsbruck in 1986, the workshop has grown sub-
stantially, and now regularly attracts over 200 participants. There has been
a strong effort to bring each new meeting to a different European country.
The scope of the workshop is now much broader, reflecting the growth in
the subject of statistical modelling over ten years. The number of sub-
mitted papers has grown with the number of participants, but parallel
sessions have been avoided, allowing everyone both to learn and to con-
tribute. Poster sessions are now held, and software demonstrations and
displays are organised. One change is that the workshops have become
more international in nature. Participants now attend from all corners of
the globe, and workshops have travelled around Europe: Innsbruck (1986),
Perugia (1987), Vienna (1988), Trento (1989), Toulouse (1990), Utrecht
(1991), Munich (1992), Leuven (1993), Exeter (1994), Innsbruck (1995),
Orvieto (1996), and Biel/Bienne (1997) - to the USA - New Orleans (1998)
- and back to Europe - Graz (1999), Bilbao (2000), Odense (2001), Chania
(2002). Future workshops will be organized in Florence (2004) and Aus-
tralia (location to be specified, 2005).

After 10 years, the workshop is back in Leuven, as a joint organization of
the Biostatistical Centre of the K.U.Leuven and the Center for Statistics
of the Limburgs Universitair Centrum. The scientific programme consists
of invited papers, oral contributions as well as poster contributions. We
very much appreciate the efforts of the scientific committee in the selection
of the invited speakers and the oral contributions. We thank the invited
speakers, Ron Brookmeyer (The Johns Hopkins University, U.S.A.), Chris
Chatfield (The University of Bath, U.K.), Marie Davidian (North Carolina
State University, U.S.A.), Anastasios Tsiatis (North Carolina State Uni-
versity, U.S.A.), and Henry Wynn (London School of Economics, U.K.) for
accepting the invitation to present a one hour state of the art lecture in their
specific fields of expertise. Abstracts of these presentations are included in
the first part of this volume. Further, we very much appreciate the efforts
of Brian Marx (Louisiana State University, U.S.A.) and Paul Eilers (Uni-
versity of Leiden, The Netherlands) for their one-day short course entitled
‘Smoothing for Smarties.’ Finally, our special thanks are dedicated to all
authors who contributed to the second and main part of this proceedings
volume, for participating in the workshop, and for carefully preparing their
manuscripts. Finally, we wish all participants a pleasant stay in the historic
city of Leuven, and a very fruitful scientific meeting.

Geert Verbeke
Geert Molenberghs

Marc Aerts
Steffen Fieuws

Leuven, May 2003
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Cortiñas and Burzykowski : A Version of the EM Algorithm for
Proportional Hazards Model with Random Effects . . . . . . . . . . . . . 91

Currie et al: Using P-splines to Extrapolate Two-dimensional
Poisson Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Cysneiros and Paula: One-Sided Tests in Univariate Elliptical
Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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Statistical Models for Anthrax Outbreaks

Ron Brookmeyer

1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland USA

In the fall of 2001 an outbreak of inhalational anthrax occurred in the
United States that was the result of bioterrorism. Letters contaminated
with anthrax spores were sent through the postal system. In response to
the outbreak, public health officials treated over 10,000 persons with antibi-
otic prophylaxis in the hopes of preventing further morbidity and mortality.
No persons receiving the antibiotics subsequently developed disease. The
question arises how many cases of disease may actually have been prevented
by the public health intervention of antibiotic prophylaxis. In this paper, a
statistical model is developed to answer this question by relating the dates
of disease onset, initiation of antibiotic prophylaxis, and exposure to the
anthrax spores, to the incubation period distribution. An important com-
plication is that the date of exposure to the anthrax spores was unknown
for a cluster of cases in Florida because the contaminated letter was never
found.
A general likelihood function for a multi-common source outbreak is devel-
oped where the dates of exposure to the source (e.g. anthrax spores) may
or may not be known. Estimates of the incubation period distribution are
derived from an outbreak in Sverdlovsk, Russia. The results are applied to
the 2001 U.S. outbreak to estimate jointly the date the Florida cases were
exposed to the contaminated letter, and the numbers of cases of disease
that may have been prevented in the three main clusters in New Jersey,
Florida and Washington, D.C. The model is extended to allow a phase-in
time period during which antibiotics are distributed. The sensitivity of the
estimates to the assumed incubation period is investigated. Properties of
the estimators particularly when the outbreak sizes are small are evaluated
by simulation. We find that antibiotics may have cut in half the number of
cases of disease. Sensitivity analyses indicate that even in the absence of
antibiotic prophylaxis the outbreak would not likely have been more than
50 cases. The results underscore the importance of early detection of out-
breaks together with targeted and effective public health control measures.

Keywords: Anthrax; Epidemiology; Infectious disease; Likelihood.
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Model Selection, Data Mining and Model

Uncertainty

Chris Chatfield1

1 Department of Mathematical Sciences, University of Bath, Bath, UK, BA2 7AY

Different methods for selecting an appropriate model are briefly reviewed.
Data mining, or data dredging, arises when large numbers of models are
tried on the same data. The effects of this, such as model-selection bias,
are still not widely understood and some remarks are made on model un-
certainty.

Keywords: Akaike’s information criterion; Bayesian information criterion;
Data dredging; Principle of parsimony.

An extended version can be found on page 79.
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“Semiparametric” Approaches for Inference

in Joint Models for Longitudinal and
Time-to-Event Data

Marie Davidian1

1 Department of Statistics, North Carolina State University, Raleigh, USA

A common objective in longitudinal studies is to characterize the relation-
ship between a longitudinal response process and a time-to-event. Consid-
erable recent interest has focused on so-called joint models, where models
for the event-time distribution (typically proportional hazards) and longi-
tudinal data are taken to depend on a common set of latent random effects,
which are usually assumed to follow a multivariate normal distribution. A
natural concern is sensitivity to violation of this assumption. We review
the rationale for and development of joint models and discuss two model-
ing and inference approaches that require no or only mild assumptions on
the random effects distribution. In this sense, the models and methods are
semiparametric. The methods will be demonstrated by application to data
from an HIV clinical trial.

Keywords: Longitudinal data; Time-to-event data; Semiparametric.
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Efficient Estimation of The Mean of A

Time-Lagged Variable Subject to Right
Censoring

Anastasios A. Tsiatis

1 Department of Statistics, North Carolina State University, Raleigh, USA

In many clinical trials, the endpoint of interest may not be available im-
mediately, but rather evolves over time. Examples are numerous. Survival
time is clearly such an example, but also cost-of-care, quality-adjusted life-
time, or even dichotomous response such as whether viral load falls below
detectable limits after treatment for AIDS patients are also examples of
time- lagged responses. The lag time may be part of the biological process
or due to administrative delays. Because patient entry is staggered and
follow-up is of limited duration, some of the response variables will be
missing due to censoring of the lag time. We will show how the theory of
inverse probability weighting of complete cases developed by Robbins and
Rotnitzky can be used to derive consistent estimators for the mean of a
time-lagged variable. We will also show how to use additional information
collected during the study to increase effciency.

Keywords: Efficient estimation; Time-lagged variable; Right censoring.
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Computational Algebraic Methods for

Discrete Statistical Models

Henry P. Wynn

1 London School of Economics, UK.

Algebraic statistics is the name given to the use of computational algebraic
methods in statistics covering in particular graphical models and various
independence and conditional independence structures. The use of algebra
comes from various sources. First by interpolating the probability mass
function or its logarithm over the support using Gröber basis methods one
obtains unique forms of polynomial or exponential models. This imme-
diately copes with difficult support problems such as structural zeros in
contingency tables.
Second, complex factorisations can be expressed algebraically. Thus for
conditional independence of X1 and X2 on X3, in the binary case, we have
the exponential form:

p(x, y, z) = exp(φ000 + φ100x1 + φ010x2 + φ001x3 + φ101x1x3 + φ011x2x3)

By setting
tα = exp(φα)

for each multi-index α we obtain another algebraic formulation. Then elim-
inating the tα we obtain the “toric ideal” representation.
The representation comes from the special choice of multi-indices α defining
the original factorisation. There is a very close connection between the set
of multi-indices and certain inclusion-exclusion identities based on the sets.
For the above conditional independence, for example we have:

{123} = {13} + {23} − {3}

The key to the use of such identities in the modelling environment is certain
projection operators based on conditional expectations.
In summary, many factorisations such as graphical models, junction trees
and similar structures can be classified using such identities. Being able
to move between the different algebraic formulations of models and sub-
models is revealing. The work summarises collaboration with co-workers

11
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especially: G Pistone (Torino), E Riccomagno (Warwick).

Keywords: Algebraic Methods, Discrete Statistical Models.
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Two Lack of Fit Tests for Multiple Logistic

Regression

M. Aerts1, G. Claeskens2, J. Hart2, E. Moons3, and G. Wets3

1 Center for Statistics, Limburgs Universitair Centrum, Universitaire Campus,
B-3590 Diepenbeek, Belgium

2 Department of Statistics, Texas A & M University, College Station, Texas
77843, U.S.A.

3 Data Analysis and Modeling Group, Limburgs Universitair Centrum, Univer-
sitaire Campus, B-3590 Diepenbeek, Belgium

Abstract: Several methods have been developed to asses the fit of a regression
model. Many lack of fit tests however focus on the simple regression setting. Here
we propose two tests which are completely different in nature, but which both
are promising especially in the case of a multiple regression model with several
potential explanatory variables.

Keywords: Bayes information criterion; Classification trees; Lack of fit; Poste-
rior distribution; Recursive partitioning.

1 Introduction

There is a variety of techniques and methods available for testing lack of
fit in regression models, see e.g. Hart (1997). Here we focus on the special
case of multiple logistic regression. Other related work covering this setting
includes Brown (1982), le Cessie and Van Houwelingen (1991, 1993, 1995),
Aerts, Claeskens and Hart (2000).
Consider a binary response Y on N subjects and a logistic regression model
logit{P (Y = 1)} = g(x) with g some unknown regression function and
x = (x1, ..., xp) the covariate vector (possibly containing mixed continuous
and categorical variables). The null hypothesis states

H0 : g(x) = g(x;θ) (1)

as the correct model for our data, where g(x;θ) is a specified parametric
regression function and θ an unknown parameter vector. In case all ex-
planatory variables are categorical and if sparseness is no issue, we can rely
on the Pearson goodness-of-fit test, given by

χ2 =
I∑
i=1

(yi − niπ̂i)2

niπ̂i(1 − π̂i)
, (2)

15
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where ni is the number of subjects in covariate pattern i, yi the number
of observed events and π̂i the fitted probability based on the null model
M0 in the i-th of all I possible combinations. In case there are one or more
continuous explanatory variables, the asymptotic distribution of Pearson’s
chi-squared and the deviance test is not applicable anymore. The following
two tests offer a solution in this setting. A first approach is a modification of
the well-known Hosmer-Lemeshow test. The second method is a Bayesian-
motivated test and can carried out in either Bayesian or frequentist fashion.

2 A Tree Based Test

The Hosmer-Lemeshow test has the same form as the Pearson test statistic
but the grouping is different and typically based on the so-called deciles
of risk. More precisely, the first group contains those subjects (10 % of
the sample size) with the smallest estimated (under the null hypothesis)
probabilities, etc. Since this grouping is based on the fitted null model, this
approach is expected to have nonoptimal power characteristics.
The grouping proposed here is based on a flexible nonparametric model,
the classification tree. The test statistic actually measures the discrepancy
between the parametric null model and the classification tree as its unre-
stricted nonparametric counterpart. In general, a tree consists of different
layers of nodes (implying a grouping, splitting of the sample). It starts
from the root node in the first layer, containing all data. Using an impurity
criterion (maximizing the homogeneity), this parent node is split into two
daughter nodes on the second layer. This partitioning process continues
until a stopping criterion is reached. The tree is then pruned to an optimal
sized tree during the pruning process. It is the grouping of this final tree
which is used to define a Hosmer-Lemeshow like test statistic.
As a consequence of the data-driven grouping procedure, the final groups
might be highly unbalanced with some of the groups containing only a few
observations. To improve the distributional behaviour of the test statistic
(2), the tree test can be based on the Cressie and Read (1984) family of
power divergence statistics, i.e.

TCR =

2
λ(λ+1)

∑I
i=1

{
yi

((
yi
niπ̄i

)λ
− 1
)

+ (ni − yi)
((

ni−yi
ni(1−π̄i)

)λ
− 1
)}

(3)

with I the number of final nodes resulting from the partitioning and pruning
process, π̄i the proportion of observed events in the ith group and −∞ <
λ < ∞. For λ = 1 it equals the Pearson based formulation (2). Cressie and
Read (1984) recommend the statistic with λ = 2

3 , which they found less
susceptible to effects of sparseness.
Because the cells in the contingency table are random, the distribution of
the tree based test cannot be obtained from a straightforward application
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of the usual theory for chi-squared goodness of fit tests (Moore and Spruill
1975). Simulations show that a chi-squared distribution with 2 × g − p de-
grees of freedom is a reasonable choice. Next to this approximate distribu-
tion, one can always simulate a null distribution by a parametric bootstrap
method. For a detailed discussion, see Moons, Aerts and Wets (2002).

3 A Bayesian Motivated Test

A version of this test was proposed by Hart (1997). The idea is very sim-
ple. Consider a sequence of models for g(x) of varying dimensions, one of
which is the parametric null model g(x;θ). The posterior probability, π̃n,
of the null model is computed, and if this probability is sufficiently low,
the null model is rejected. A sequence of constants an can be determined
such that an(1 − π̃n) converges in distribution to a nondegenerate random
variable when H0 is true and the sample size n tends to ∞. This allows
the frequentist to conduct a valid large sample test of given size based on
an(1− π̃n). There are several choices for the sequence of alternative models
Mj. Here, we consider nested models (Mj ⊂ Mj+1) and singleton models
that contain only one more parameter than the null model M0.
Applying Schwartz ’s (1978) approximation, we get the following approxi-
mation of the posterior probability

P (M0|y) ≈ 1

1 +
∑K

j=1 exp(BICj −BIC0)
def= πBIC .

where BICj = logLj − mj logn/2, the Bayes Information Criterion of
model Mj (Lj the likelihood function at the MLE and mj the dimension
of model Mj).
Under certain regularity conditions and for a finite number K of alterna-
tive models, , it can be shown that n

1
2 (1 − πBIC) →D exp(V1/2) for the

nested models and n
1
2 (1 − πBIC) →D

∑K
k=1 exp(Vk/2) for the singletons,

where V1, . . . , VK are independent χ2
1 random variables and K is the total

number of alternative singleton models. For more details on the limiting
null distribution (including finite sample corrections and the case in which
the number of alternative models tends to ∞ with n) and on the power
against local alternatives, see Aerts, Claeskens and Hart (2003).

4 Data Example and Discussion

The data set used in this analysis comes from the Project on Preterm
and Small-for-Gestational-Age Infants in the Netherlands (POPS), a Dutch
follow-up study on preterm infants by Verloove and Verwey (1988), see also
le Cessie and van Houwelingen (1991) . Data were collected on 1338 infants,
born in 1983 in The Netherlands with a gestational age of less than 32
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TABLE 1. Test results POPS data: p-values for three null models.

Test x1, x
2
1, x2 x1, x2, x

2
2 x1, x

2
1, x2, x

2
2

BS 0.000 0.000 0.126
BN 0.006 0.000 0.138
TCR 0.012 0.044 0.090
HL 0.125 0.002 0.207
CV H 0.02 - 0.45
BR 0.01 - 0.06
ACH1 - - 0.07
ACH2 - - 0.02

completed weeks and/or a birthweight of less than 1500 g. After deleting
the observations with missing data, a data set of 1310 infants remained.
We consider the situation after 2 years. The response variable Y indicates
whether or not the infant has died within 2 years or has survived but with
a major handicap. The explanatory variables are gestational age (X1) and
weight of the babies at birth (X2). As an illustration, we consider each
of the following models as null model: model 1 with x1, x

2
1, x2, model 2

with x1, x2, x
2
2, and model 3 with x1, x

2
1, x2, x

2
2. Table 1 shows the results

for the tree-based and the Bayesian motivated test and compares them
with the results from several other tests from literature. The first four lines
shows p-values for the singleton and nested Bayesian motivated test (BS
and BN respectively) using a sequence of alternative models including up
to fifth order main and interaction effects, the tree-based test based on the
Cressie-Read statistic (TCR) with pruning up to 15 terminal nodes, and
the Hosmer-Lemeshow test (HL) based on deciles of risk. All p values were
simulated using the parametric bootstrap (1000 runs).
The last four lines show some analogous results from other test statistics
proposed in literature: a kernel based goodness of fit method (CV H) pro-
posed by le Cessie and Van Houwelingen (1991, 1993), the Brown statistic
(BR, Brown 1982, see also le Cessie and Van Houwelingen 1993) and an
order selection score test (ACH1) and the value of a score based AIC cri-
terion (ACH2) as reported by Aerts, Claeskens and Hart (2000).
The p-values in Table 1 show that there is clear evidence against any model
without both quadratic terms (model 1 and 2). Only the HL test does not
reject model 1. As also discussed in Aerts, Claeskens and Hart (2000), there
is some evidence against model 3 with both quadratic terms, but the dif-
ferent test results disagree. The HL test seems to have less power than
the tree based test TCR, which has been confirmed by simulations (see
Moons, Aerts and Wets 2002). On the other hand this latter test has less
convincing results for the simpler null models. Especially the Bayes moti-
vated tests reject model 1 and 2 very strongly. Of course, such conclusions
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are premature. Extensive simulations are needed to shed more light on the
power characteristics of the different test statistics. An appealing property
of the Bayes motivated test is that it can be easily implemented for more
complex likelihood models (like e.g. for clustered data). The tree-based test
is promising in settings with huge datasets (like in data mining).
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Evolving Classification and Regression Trees

Claudio Agostinelli and Irene Poli

1 Department of Statistics, University Ca’ Foscari, Campiello S. Agostin, S.Polo
2347, 30125 Venice, Italy, claudio@unive.it, irenpoli@unive.it

Abstract: In this paper we introduce a new procedure to build the Classifica-
tion and Regression Trees. The procedure called ECART is based on a genetic
algorithm.

Keywords: Classification; Genetic algorithms; Regression trees.

1 Introduction

Classification And Regression Trees (CART) (Breiman et al, 1984) is a
popular procedure for regression and classification problems where high di-
mensionality and a non–linear optimization criterion are involved. In par-
ticular, CART is a nonparametric statistical method developed to build
models with a tree–based structure.
Considering a regression problem, where X = (X1, · · · , Xp) is the input
space and Y is the response variable, the CART algorithm adopts a binary
recursive partitioning startegy: the input space R0, with X ∈ R0, is divided
into two regions R1 and R2 by a split (i, a) on the variable Xi at the split
point a. The procedure selects i and a so that replacing the parent region
R0 with the two regions R1 and R2 yields minimal empirical risk. The
algorithm proceeds recursively on the daughter regions until a very large
number of regions are achieved. Model selection criteria are then applied
for stopping the process.
In this procedure to model the relation between Y and X we are asked to
choose: i) which and how many variables to introduce in the model, ii) in
which order the variables should appear, iii) the number and the position
of the split points, and iv) the associated regression parameters.
Choosing all these elements of the model to minimize empirical risk is a
hard combinatorial problem, and CART represents an approximate solution
based on a recursive partitioning approach.
CART is a simple algorithm to implement and fast to compute. Unfortu-
nately CART also produces sub–optimal solutions and can be an unstable
procedure (removing or adding a few observations may change the tree
structure). Recently, Breiman (2001) introduced the Random Forest (RF)
to avoid instability.

21
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FIGURE 1. The partition generated by the tree model [1] (left) and by the model
[2] (right).

In this work we adopt an evolutionary approach to build the CART method.
We design a Genetic algorithm (GA) which evolves the partition of the
input space, and then achieves how many and which split points for each
variable considered. We introduce a two stage genetic algorithm where the
first stage is designed to evolve the number of the split points in each X
variable and the second stage the position of the split points.
To introduce this algorithm let us consider Ii,aj an indicator function such
that

Ii,aj =
{

1 Xi > aj
0 Xi ≤ aj

1 ≤ i ≤ p and j ≥ 0 ,

and Īi,aj = (1 − Ii,aj ) the complement of Ii,aj .
The simple regression model (with the tree representation as in Figure 1):

Y = μ+ α1I1,a1 + α2I1,a1 I2,b2 + α3Ī1,a1I2,b1 + ε (1)

with μ, α1, α2, α3, a1, b1, b2 as unknown constants and ε as a normal random
variable with mean zero and variance σ2, is reformulated in the following
way

Y = μ+ β1I1,a1 + β2I2,b1 + β3I2,b2 + β4I1,a1I2,b1 + β5I1,a1I2,b2 + ε′ (2)

This reformulated model [2] is related to the regression tree model [1]: a few
constraints are introduced on the β’s (see also Figure 1), such as β1 = α1,
β2 = α3, β3 = 0, β4 = −β2 = −α3, β5 = α2.
Models with this formulation present the following advantages:

1. the variables and their split points can be introduced or cancelled
from the model without modified the remaining structure;

2. the order of the variables is not relevant and this simplifies and speeds
up the search of a sub–optimal model;

3. the cardinality of the set of models grows very slowly.

The formulation (2) of the regression model allow us to build a genetic
algorithm which evolves the possible candidate solutions to our problem,
chosen in a very large sets of possible solutions.
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2 The Genetic Algorithm

Genetic algorithms (Holland, 1975, and Goldberg, 1989) are powerful and
flexible tools for search and optimization problems. They are based on
the mechanics of natural selection and they are particularly suitable for
optimization problems involving discrete parameters. They have been suc-
cessfully applied in a large variety of fields and problems, including the
selection of statistical models (Minerva and Poli, 2001).
In this work we design a two-stage genetic algorithm in order to choose the
number of split points and their values. In fact, the first stage creates and
evolves a population of candidate numbers to be considered as the number
of split points of each variable of the input set. The second stage creates
and then evolves a population of possible split points for each variable of
the input set. The algorithm works with a transformed form of the Akaike
criterion (AIC) as a fitness function to select the optimal models.
The implementation of the genetic algorithm follows these steps:

1. Select random values from a discrete Uniform distribution with sup-
port 0, 1, · · · , Ni, where Ni represents the maximum number of split
points for the i-th input variable with i = 1, · · · , p, and create a pop-
ulation of individuals ns, s = 1, · · · , S where S is the size of the popu-
lation; each individual defines a possible set of the number of the split
points of the input space variables, that is ns = (ns1, ns2, · · · , nsp);
encode each individual with the reflected Gray code;

2. For each individual ns create a random population of new individ-
uals vk, k = 1, · · · ,K, where K is the size of the population. Each
individual is a p vector whose elements are vectors of variable size,
that is vk = (vk1,vk2, · · · ,vkp), with vki = (vki,1, vki,2, · · · , vki,nsi);
each element of the vector vki, represents a rank value identifying the
corresponding value assumed by the i-th input variable; encode each
individual with the reflected Gray code;

3. Compute the fitness function values;

4. Select the values of the parameters for the selection, crossover and
mutation operators and perform the genetic operators as defined
above;

5. Set g=g+1; if g ≤ Ng then go to step 3;

6. Assign to each individual ns the best fitness function achieved with
the last generation of the previous GA (which identifies the best
choice of the values of the input variables given the number of the
splits: steps 2–5;



24 Evolving Classification and Regression Trees

|
x.1 < 0.368078

x.1 < 9.35065
x.2 < 9.08967

x.1 < 6.36973

x.2 < 5.2371

x.1 < 4.75684 x.1 < 4.92107

x.2 < 5.00074

 −1.112

 20.190  −2.334
 −1.604

 −2.653

 −6.561

−15.010

−20.160 12.440

  4.143

 19.980−19.610

  3.989

 19.970−19.990

 14.580

−14.320

|
x1 < 4.79905

x2 < 4.87974 x2 < 4.87974

 −1.1120

 −0.3756

−20.1600  20.0500

 −1.8140

 19.8700 −19.8800

FIGURE 2. The tree generated with CART (left) and ECART (right).

7. Select the values of the parameters for the selection, crossover and
mutation operators and perform the genetic operators as defined
above;

8. Set G=G+1; if G ≤ NG then go to step 2;

9. Return the best ns and the associated vk from the last generation.

This algorithm has been applied to few set of data giving very encouraging
results.

3 An illustrative Example

We present the results achieved with a sample of observations from data
with the following model:

Y = −20 + 40 I1,5 + 40 I2,5 − 80 I1,5I2,5 + ε

and X1, X2 ∼ U(0, 10), ε ∼ N(0; 1) and a sample of size 129 from it.
The tree structure from CART is reported in Figure 2 (left). The suggested
tree has several branches that we can not prune without losing the correct
splits. From the tree it is really difficult to recover the true structure of the
data.
We run the genetic algorithm described above using S = K = 20. The
parameter of crossover is set to 0.95 and that of mutation is set to 0.02. We
run Ng = NG = 10 generations. The number of possible partitions we con-
sider is of order 1028 and with the algorithm, at the end, we explore 40000
of them, a very small number. The best solution is found after exploring
about 12000 partitions (5-th generation).
Table 1 compares CART with our procedure (ECART). We compute the
deviance (Dev(R)) of the residuals and deviance (Dev(Y )) of the dependent
variable.
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TABLE 1. Results for CART and ECART.

True model CART ECART
Dev(R) 125.113 4180.693 125.113
Fitness (×10−3) 11.529 2.745 11.529
Misclassified (%) 0.000 2.326 0.000
Dev(Y) 51493.370
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Abstract: In longitudinal studies with a set of continuous or ordinal repeated
response variables it may be convenient to summaries the outcome as a threshold
event. Then, the time to this event becomes of interest. In this paper we obtain
the general likelihood for the unknown parameters when the underlying survival
model is parametric and the survival times are interval-censored. We investi-
gate the use of a member of the Generalized Time Dependent Logistic family of
survival distributions (MacKenzie, 1996) which is a non-PH Accelerated Hazard
Model and has a logistic baseline hazard function. We use simulation to inves-
tigate how inference on the treatment parameter is compromised by using the
mis-specified likelihood, which treats the interval-censored survival times as if
they were exact

Keywords: Interval censoring; Logistic survival; Non-PH model; Accelerated
hazard; Mis-specified likelihood.

1 Introduction

In classical survival analysis, the exact time to event is usually known.
However, in longitudinal clinical trials where outcome is a continuous or
ordinal variable measured repeatedly at scheduled follow-up times, the ex-
act time-to-event may be unknown. Such situations arise when the outcome
is classified according to threshold of clinical interest. Then scientific inter-
est is focused on the time at which the threshold is crossed. In these studies
recruitment is staggered in time and, increasingly, survival-type methods
(Kaplan Meier, 1958; Peto & Peto, 1972, and Cox, 1972) are being pressed
into service.
These methods are appropriate for right censored ’time to event data’ when
the exact time of occurrence is known, but strictly inappropriate when the
’time to event’ is known only to lie in an interval. Application of conven-
tional methods to interval ’end’ or ’mid’ points can lead to bias (Lindsey
and Ryan, 1998) and optimistic precision (MacKenzie, 1999). Here, we de-
velop the parametric accelerated life (AL) logistic model (MacKenzie, 1996)
in which the baseline hazard follows the time-dependent logistic (TDL) sur-
vival model. We compare inference from the correct model with that from
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the mis-specified model which uses follow-up times as if they were exact.

2 Likelihood Formulation

Suppose there are m+ 1 scheduled inspection times, t+o , t
+
1 , ..., t

+
m at which

continuous or ordinal responses Y0, Y1, ..., Ym are measured. Let T be a non
negative variable denoting the time to some outcome of interest defined on
the Y s. Let S(t; θ) and λ(t; θ) be the corresponding survival and hazards
functions, respectively, depending on the unknown vector parameter θ ∈ Θ,
where θ = (α′, γ′, β′)′. Then for a sample of n independent subjects it may
be shown that the true censored likelihood for the unknown parameters is:

L1(θ) =
n∏
i=1

{
S(ti(k−1) ; θ)

[
1 − S(tik−1 , tik ; θ)

]}δi
[S(t∗i ; θ)]

1−δi (1)

where typically nk patients fail between scheduled examination times t+(k−1)

and t+k for k = 1, ...,m and nc patients are censored or withdrawn at specific
times, t∗i ,such that nc +

∑m
k=1 nk = n. Here, δi = 1 denotes an event and

δi = 0 denotes a censored observation. We may compare (1) with the mis-
specified censored likelihood resulting from treating the observed inspection
times as if they were exact:

L2(θ) =
n∏
i=1

[λ(tik ; θ)S(tik ; θ)]
δi
[
S(t∗ik ; θ)

]1−δi (2)

Equations (1) and (2) enable us to investigate the effect of mis-specification
for any survival model where the function takes closed form. Notice the use
of observed inspection times rather than the scheduled times in equation
(1).

3 Model Formulation

MacKenzie’s (1996) AL logistic survival model is defined by the hazard
function

λ(t;x) =
λ exp(tx′β + γ)

1 + exp(tx′β + γ)
(3)

a form which we have modified to obtain an accelerated hazard model
defined by

λ(t;x) =
λ exp(tαφ)

1 + exp(tαφ)
(4)
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FIGURE 2. Predicted AH versus KM .

where φ = exp(x′β) and we have suppressed the dependence on θ. We
compare this model with the corresponding modified accelerated life model
defined by

λ(t|x) = λφ
exp(tαφ)

1 + exp(tαφ)
(5)

a form which is recognisably different from (4).
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TABLE 1. Comparison of Mis-specified and True Models Estimators: AL Model.

Mid-point, Regular follow up (3,6,9,12,15,18,21,24)
Mis-specified True

n φ̂∗ α̂ β̂ φ̂∗ α̂ β̂

φ∗ = −0.6, α = 0.2, β = −0.5, % within censoring =0
Mean 100 −1.007 1.901 −0.451 −0.601 0.251 −0.511
(se.) (0.160) (0.250) (0.161) (0.215) (0.201) (0.178)
Mean 500 −1.052 1.976 −0.438 −0.626 0.201 −0.501
(se.) (0.053) (0.120) (0.071) (0.131) (0.135) (0.078)

φ∗ = −0.6, α = 0.2, β = −0.5, % within censoring=30
Mean 100 −1.346 1.882 −0.443 −1.060 0.371 −0.479
(se.) (0.175) (0.294) (0.188) (0.207) (0.306) (0.205)
Mean 500 −1.403 1.962 −0.442 −1.127 0.531 −0.481
(se.) (0.061) (0.168) (0.089) (0.151) (0.385) (0.091)

TABLE 2. Comparison of Mis-specified and True Models Estimators: AH Model.

Mid-point, Regular follow up (3,6,9,12,15,18,21,24)
Mis-specified True

n φ̂∗ α̂ β̂ φ̂∗ α̂ β̂

φ∗ = −0.6, α = 0.2, β = −0.5, % within censoring =0
Mean 100 −1.020 1.618 −0.034 −0.624 0.253 −0.552
(se.) (0.094) (0.203) (0.221) (0.180) (0.211) (1.112)
Mean 500 −1.053 1.742 −0.045 −0.635 0.225 −0.538
(se.) (0.040) (0.103) (0.104) (0.129) (0.125) (0.588)

φ∗ = −0.6, α = 0.2, β = −0.5, % within censoring=30
Mean 100 −1.024 1.688 −0.024 −0.632 0.248 −0.393
(se.) (0.088) (0.211) (0.218) (0.197) (0.199) (1.206)
Mean 500 −1.055 1.744 −0.045 −0.634 0.212 −0.530
(se.) (0.040) (0.108) (0.099) (0.125) (0.109) (0.584)

4 Simulation Study

The object of the simulation study is to quantify the degree to which in-
ference about the parameters in the AH & AL models, especially β, is
compromised by the use of the mis-specified likelihood. We investigate the
2-sample case, mimicking a RCT in which scientific interest is focused on
estimating the treatment effect and its associated standard error. The sim-
ulation parameters include: sample size, percentage censored, patterns of
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follow-up examination is regularly and irregularly spaced, the model para-
meters (θ). The maximum likelihood estimates will be calculated using the
correct and the mis-specified likelihoods.

5 Results

First we compared models (4) and (5) using lung cancer data, and present
the conditional fits obtained by each regression model and the marginal
fit of the Kaplan Meier estimator. The (AH) model shows a better fit
compared with the (AL) model (Figures 1, 2).
Second, we report a subset of the complete simulation using mid-points in
the mis-specified likelihood. Tables 1 and 2 show the MLE’s for the three
parameters using a regular visit schedule. Note that we report φ∗ = loge(λ)
in the tables. Overall, the true likelihood provided consistently better esti-
mates with superiority for the AH model compared with the AL model,
when we allowed for drop-out and using a regular schedule. The mis-
specified likelihood also produced standard errors which were artificially
precise.

6 Summary

The idea of an accelerated hazard model is new. To our knowledge this
is the first time that they have been described, and compared empirically
with classical accelerated life models, allbeit in the context of a single fam-
ily of survival models - the GTDL (MacKenzie, 1996). The results of the
numerical analysis favour the AH model suggesting that the model may be
useful in practice. The advantages of these parametric models stem from
the closed forms taken by survivor functions and the fact that when β = 0
the underlying survival functions have testable parametric forms. We have
demonstrated by simulation, the use of these two models in the analysis
of interval censored survival data arising in longitudinal randomized con-
trolled trials.

References

Cox, D.R. (1972). Regression models and life tables (with discussion).
Journal of the Royal Statistical Association, Series B, 34, 187–220.

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incom-
plete observations. Journal of the American Statistical Association,
53, 457–481.

MacKenzie, G. (1996). Regression models for survival data: the generalized
time-dependent logistic family. The Statistician, 45(1), 21–34.



32 A Non-PH Accelerated Hazard Model

MacKenzie G. (1999). Survival analysis for longitudinal data. 14th Inter-
national Workshop on Statistical Modelling. Graz, Austria. pp. 259–
264.



Application of General Finite Mixture

Models to Reliability Data Using Likelihood
Estimation

E. Andries1, K. Croes2, L. De Schepper1 and G. Molenberghs1

1 Limburgs Universitair Centrum, Institute for Materials Research (IMO), Ma-
terials Physics Division, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

2 XPEQT,Transportstraat 1,B-3980 Tessenderlo (Belgium)

Abstract: Likelihood estimation of the general finite mixture model is consid-
ered. A short discussion on this likelihood method is given. The phenomenon of
spurious maxima is explained and its relation with sample size. The method is
demonstrated on two real reliability data examples.
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1 Introduction

A lot of today’s reliability data obtained from experiments with micro-
electronic components give evidence of bi or even multi modal failure data.
Although reliability engineers know mostly whether there is more than one
failure mechanism involved, at the end of the experiment it is or too difficult
or too expensive to recover the specific failure reason of each device. A large
part of these failure data can be modeled by means of a finite mixture. In
particular, mixtures with mixing over all parameters are of interest since,
due to the nature of much reliability data, a common shape parameter for
the component densities cannot a priori be assumed.
A general M-component finite mixture has the following density:

fM (x|θ) =
M∑
m=1

πmf(x|μm, σm) (1)

with
∑M

m=1 πm = 1, f(x|μm, σm) the density of a 2-parameter distribution,
μm a scale and σm a shape parameter. The problem with these mixtures
is that a maximum likelihood estimate (MLE), defined as the global maxi-
mum of the likelihood, does not exist. However, the likelihood does have a
local maximum with, very importantly, good statistical properties.
The aim of this paper is first to discuss shortly this likelihood theory, which
is far from new, acknowledged by some authors, but still rarely applied.
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Second to tackle the problem of spurious maxima and sample size, and
third to demonstrate the method on two sets of reliability data.

2 Likelihood Estimation

It is well known that the likelihood function for a mixture with density
(1) is unbounded at some points on the edge of the parameter space. As
a result an MLE does not exist. Nevertheless, both empirical and theo-
retical evidence proved for finite normal mixtures the existence of some
local maximum of the likelihood function with good statistical properties,
i.e. consistent, asymptotically normal and efficient (Quandt, 1972; Kiefer,
1978). An explanation for this is given by the different conditions determin-
ing the existence of a consistent global and a consistent local maximum of
the likelihood. Namely, under the conditions of Cramér (1946), the likeli-
hood equations (LEQ) have a (in essence unique) consistent, asymptotically
normal and efficient solution which, with probability tending to one as the
sample size tends to infinity, corresponds to a local maximum. On the other
hand, the different and more demanding conditions of Wald (1949) ensure
the consistency of the classical MLE.
While for a mixture with common shape parameter both set of conditions
hold, only Cramér’s conditions apply for a general M-component mixture .
Importantly, whether we either work with a mixture with common or with
unequal shape parameters, in essence the same kind of estimate is obtained
from the LEQ, in spite of the convention of terminology to only call the
first an MLE. The latter will be referred to as a likelihood estimate (LE).
The problem is not entirely solved yet since the likelihood function for (1)
has multiple roots and it is not specified which is the proper one. It can be
proven that for many general finite mixtures, such as the (log)normal or
Weibull mixture, the largest local maximum of the likelihood corresponds
to those well-behaved estimates. This gives a criterion similar to ML esti-
mation. But, not everyone agree on this as McLachlan et al. (2000), among
others, claim that a spurious maximum could then be chosen as LE.

3 Spurious Maxima

What is meant with a spurious maximum? No unambiguous definition ex-
ists yet, but mostly the corresponding mixture is characterized by a small
proportion or shape parameter for one of its components. Since a spurious
maximum cause problems when it has the largest likelihood value, some
authors suggest to first remove all solutions of the LEQ corresponding to
such maxima and then to choose among the remaining roots the solution
with the largest likelihood as LE. Although these maxima should be con-
sidered with care, this procedure is dangerous, highly subjective and we do
not recommend it.
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TABLE 1. Some local maxima of the likelihood of two simulated datasets. Esti-
mates in bold correspond to the maximum closest to the true values.

n μ1 = 0 σ1 = 0.5 μ2 = 3 σ2 = 1 π1 = 0.2 Likelihood
-1.029 0.00175 2.493 1.470 0.0399 -85.122

50 1.387 1.444 3.627 0.553 0.569 -88.398
-0.249 0.694 2.996 0.987 0.198 -88.571
-0.255 0.627 2.895 0.984 0.128 -200.921

120 3.246 0.685 1.693 1.543 0.514 -202.120
2.874 0.0000541 2.485 1.425 0.0166 -202.628

The point is that spurious maxima are not only related to the largest like-
lihood criterion and the finite mixture case. They exist as soon as Cramér’s
conditions hold and as the LEQ have multiple roots; irrespective of the fact
whether we search for a local or a global maximum. Their appearance as
the largest maximum is primarily due to the ambiguity in the statement
of a consistent root and related with sample size. Indeed, consistency is a
limiting property. As a result an improper estimate can be the outcome of
the likelihood or ML method if the sample size n is too small. We define a
spurious maximum as each maximum of the likelihood that is not closest
to the true values, with closest defined by some distance.
How can we then obtain a proper estimate from the LEQ in case of multiple
roots? First, use always a consistent procedure (e.g. the largest local or
global criterion). Second, choose the sample size large enough. If the latter
is not possible, one should take into consideration another method or look
whether there is relevant information about the possible true values. A
too small sample can often be recognized through the likelihood value of
distinct spurious maxima, i.e. maxima for which one of the component
densities corresponds to no more than a few data values (if these data values
are not clearly separated from the others). Namely, simulations indicated
that when n is too small, often at least one of these maxima has a highest
likelihood value. As an example, Table 1 gives some local maxima of the
likelihood of two simulated datasets from a two-component normal mixture.
The second dataset is based on the first but with 70 extra values generated.
As seen, for the smallest dataset, the maximum with the highest likelihood
value is distinct spurious (π1 is less than 2/50), while for the larger dataset
the proper maximum has the highest likelihood value.

4 Examples

We demonstrate the likelihood estimation method on two datasets obtained
from experiments carried out at IMO. The experiments consisted of acceler-
ating the failure mechanisms of a micro-electronic component by means of
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TABLE 2. Some maxima of the likelihood for the datasets of examples 1 and 2.
The first maximum of each example is the largest local. Estimated parameters are
the mean and shape of the mixture distribution of the log failure times.

Example μ̂1 σ̂1 μ̂2 σ̂2 π̂1 Likelihood
6.164 0.236 7.022 0.251 0.286 -66.100

1 6.745 0.0000355 6.777 0.463 0.0159 -72.545
6.864 0.0000436 6.775 0.463 0.0158 -72.918
5.329 0.0000684 5.009 0.429 0.0292 -40.444

2 5.071 0.0000783 5.020 0.432 0.0291 -41.375
4.086 0.000730 5.041 0.413 0.0286 -43.137
4.220 0.0518 5.080 0.389 0.105 -44.575
4.697 0.340 5.374 0.166 0.641 -45.427

increasing certain stress factors (such as temperature, current, . . . ). Main
interest is in the estimation of the failure-time distribution. For the com-
ponents under study it is known that there could be a second failure mech-
anism, leading to bimodal failure data.

4.1 Example 1

The failure times of 125 commercial metal film resistors, stressed at a tem-
perature of 165 ◦C, were measured. Figure 1(left) shows a lognormal QQ-
plot of the data. Generally, the failure times for this type of component
are lognormally distributed. Since the data suggest two failure modes, a
two-component lognormal distribution is estimated. The local maxima of
the likelihood function are searched for and the most important ones are
indicated in Table 2. As noticed, the largest local maximum is not a dis-
tinct spurious maximum and its likelihood value is much larger than the
second largest maximum. So, there is no reason to mistrust the largest lo-
cal maximum. The fitted distribution is shown in Figure 1(left). One can
now proceed as in case of ML estimation and carry out tests, construct
confidence intervals, . . . in the usual way.

4.2 Example 2

Interconnects were stressed at 80 ◦C and 0.75MA/cm2. All 68 devices un-
der test failed. A Weibull QQ-plot of the failure times is shown in Fig-
ure 1(right). Previous experiments indicated that there could be two failure
mechanisms. So, a two-component Weibull mixture is used to fit the data.
The likelihood is scanned for local maxima and some of them are tabulated
in Table 2. In contrast to the first example, the largest local maximum is
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FIGURE 1. (left) Lognormal QQ-plot ex.1; (right) Weibull QQ-plot ex.2.

now distinct spurious. Although the last two maxima in the table corre-
spond to reasonable estimates, it is dangerous to choose one of these two as
the LE. Indeed, depending on the chosen maximum other inference results
are obtained, which could lead to wrong reliability predictions and con-
clusions. If there are truly two failure modes, this is not clearly seen yet.
Consequently, more data is needed or other techniques have to be applied.

5 Conclusions

Despite the nonexistence of the MLE for general finite mixtures, there exists
a root of the LEQ with good statistical properties. It is the same kind of
estimate as the MLE, called the LE and corresponds for a lot of cases to
the largest local maximum of the likelihood.
The appearance of spurious maxima is inherently linked to the presence of
multiple roots in the LEQ and independent of the fact whether one search
for the largest local or global maximum. When the likelihood function is
dominated by distinct spurious maxima, the sample is most likely too small
and none of the roots of the LEQ can be trusted.
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model described by MacKenzie (1996, 2002), is extended by incorporating a multi-
plicative Gamma frailty component into the hazard function. The resulting model
is obtained in closed form and its properties are compared with the classical PH,
Weibull frailty regression model described by (Hougaard, 1994). The performance
of the models, with and without frailty, is investigated by re-analyzing some data
from the NI lung cancer study (MacKenzie, 1996).
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1 Introduction

The Weibull proportional hazards (PH) regression survival model has been
extended to a frailty model by means of a multiplicative random effect
acting on the hazard function (Hougaard, 1994). Classically the random
component is assumed to follow a Gamma distribution, which is mathe-
matically tractable and leads, after marginalization, to a closed form for
the resulting frailty distribution. However, not all survival data are PH and
it is therefore useful to have alternative non-PH models. This is relevant as,
increasingly, random effect models are being used to analyze multivariate
survival data (Ha, Lee and Song, 2001, Ha and Lee, 2003).
A flexible non-PH model is the Canonical Time-Dependent Logistic (CTDL)
described by MacKenzie (1996, 2002). We generalize this model by includ-
ing a multiplicative Gamma frailty term in the hazard function. The result-
ing frailty model is obtained in closed form and we compare its properties
with the Weibull frailty model, noting the connection with a general class of
frailty models described by Aalen (1988). Moreover, we investigate the per-
formance of the four models, Weibull and CTDL with and without frailty,
using data from the Northern Ireland lung cancer study.
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2 Parametric Regression Models with Frailty

Consider a basic survival regression model with failure time density f(t|θ, β),
hazard function λ(t|.) and survivor function S(t|.), where typically θ is a
vector valued parameter and β is a regression parameter. Assume that a
random variable U , with density g(u|σ2), denotes the unobservable indi-
vidual (i.i.d.) frailties and that E(U) = 1 and V (U) = σ2. Then, given
data (ti, xi, δi) for i = 1 . . . n subjects, a target vehicle for inference is the
marginal likelihood of the parameters of interest

Lf (θ, β, σ2) =
n∏
i=1

∫ ∞

0

λ(ti|ui, θ, β)δiS(ti|ui, θ, β)g(ui|σ2)dui (1)

where δi is the censoring indicator and f denotes the marginal frailty
survival model, derived from f(t|u, ·) using the frailty distribution density
g(u|·).
In more general cases, the marginal likelihood may be analytically in-
tractable, when recourse to numerical methods of integration may be re-
quired. Alternatively, the h-likelihood method, extended to survival models
by Ha, Lee and Song (2001), has the obvious advantage of dispensing with
the need for marginalization in several important classes of statistical mod-
els. Here, we adopt a classical approach to the derivation of Lf (·) for two
parametric survival models with Gamma frailty and obtain the resulting
marginal frailty survival models in closed form.

2.1 CTDL Model

A non-PH model, the CTDL regression model (MacKenzie, 1996), is defined
by the hazard function

λ(t|x) = λp(t|x), (2)

where λ > 0 is a scalar, p(t|x) = exp(tα + x′β)/{1 + exp(tα + x′β)} is a
linear logistic function in time, α is a scalar measuring the effect of time, β
is a p × 1 vector of regression parameters associated with fixed covariates
x′ = (x1, . . . , xp) and θ′ =(λ, α, β).
The corresponding survival function is

S(t|x) = {(1 + exp(tα+ x′β))/(1 + exp(x′β))}− λ
α (3)

whence the censored log-likelihood becomes


(λ, α, β) =
n∑
i=1

[
δi loge λ+ δilogepi +

λ

α
[logegi + logegi]

]
(4)



Blagojevic et al 41

where,

pi = exp(tiα+ x′iβ)/{1 + exp(tiα+ x′iβ)}
qi = 1/{1 + exp(tiα+ x′iβ)} (5)
gi = 1 + exp(x′iβ)

and where, for notational convenience, we have suppressed the dependence
on time and the covariates on the LHS of (5).
When developing the CTDL-gamma mixture model, we assume that the
random component has a multiplicative effect on the hazard, such that
λ(t;x, u) = uλ(t;x). If U follows a Gamma distribution with E(u) = 1
and V (u) = σ2 then g(u|σ2) = u

1
σ2 −1 exp(−u/σ2)/Γ(1/σ2)σ2

1
σ2 . We may

then integrate out the random effect to obtain the survivor function for the
resulting frailty survival distribution, viz

Sf (t|x) =
∫ ∞

o

S(t|x, u)g(u|σ2)du (6)

=
{

1 − λσ2

α
loge(qigi)

}− 1
σ2

(7)

whence it follows that

λf (t|x) = λpi/

{
1 − λσ2

α
loge(qigi)

}
(8)

results, which enable the censored log-likelihood to be constructed


(λ, α, β, σ2) =
n∑
i=1

{
δiloge(piλ) − (δi +

1
σ2

)loge(1 − λσ2

α
loge(qigi))

}
(9)

2.2 Weibull Model

The familiar Weibull regression distribution has the following hazard and
survival function

λ(t|x) = λρ(tλ)ρ−1 exp(x′β) (10)

S(t|x) = exp(−(tλ)ρex
′β) (11)

respectively, giving rise to the censored log-likelihood


(λ, ρ, β) =
n∑
i=1

[
δiloge(ρλρt

ρ−1
i ex

′
iβ) − (λt)ρex

′
iβ
]

(12)

In deriving the marginal frailty distribution, we make the same assumptions
and use the same method as in section 2.1. We find that

Sf (t|x) =
{

1 + σ2(tλ)ρex
′β
}− 1

σ2
(13)
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and
λf (t|x) = λ(tλ)ρ−1ρex

′β/(1 + σ2(tλ)ρex
′β) (14)

yielding the log-likelihood


(λ, ρ, β, σ2) =∑n
i=1

{
δiloge(λρt

ρ−1
i ρex

′
iβ) − (δi + 1

σ2 )loge(σ2(tiλ)ρex
′
iβ + 1)

}
3 Example Data Analysis

The data analyzed form part of a population-based prospective study of
incident cases of lung cancer diagnosed in Northern Ireland in one year.
This multi-source study identified 900 incident cases in which outcome was
missing in 25 and a further 20 were diagnosed at post-mortem. We analyzed
’Time from Diagnosis to Death or Censoring’ in relation to a range of
covariates, but, to illustrate the models, we present a detailed analysis of
two covariates, age at diagnosis and sex of the patient. The model fitting
procedure was implemented in S-Plus (V4.5) and in R.
The results are presented in Table 1. The analysis illustrates some im-
portant findings. First the significant and adverse effect of Age is statis-
tically significant in all four models fitted, although the magnitude of the
estimated effect and the corresponding standard error varies. The non-
significance of the Sex effect is also confirmed in all models. In the CTDL
model α̂ is statistically significant and negative so that the trend in the
hazard is decreasing with time - which, potentially, is a frailty signature.
When Gamma frailty is added to the CTDL α̂ becomes non-significant, sug-
gesting that the significant negative trend resulted, at least in part, from
heterogeneity. The standard errors in the frailty models are all increased
suggesting that the non-frailty models under-estimate the dispersion in the
data.
Likelihood ratio tests were conducted within model family to test the ab-
sence of the frailty component, i.e. H0 : σ2 = 0. Note that such a hy-
pothesis is on the boundary of the parameter space, so the critical value
is χ2

2λ for a size λ test (Chernoff, 1954; Vu and Knuiman, 2002).For the
CTDL family, the difference −2(
̂− 
̂f ) is 4.24 and for the Weibull family
it is 21.68, whence the null hypothesis is rejected for both models by a 5%
level (χ2

1,0.10 = 2.71). Thus, the addition of a frailty component is justified,
especially in the Weibull family. Moreover, as judged by the usual AIC
criterion, the Weibull-frailty model is the best model.
However, inspection of the fitted models (not shown) reveals that the AIC
is misleading. The CTDL model without frailty is superior to the Weibull
model without frailty and the best fit, overall, is provided by the CTDL
frailty model. These findings persist when the data are categorized by esti-
mated risk score (x′β̂) into quartiles and compared with the corresponding
conditional Kaplan-Meier estimators.
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TABLE 1. Maximum Likelihood Estimates & (s.e.): four models, with Age (β1)
and Sex (β2) fitted (λ̂c = λ in the CTDL, λ̂w = λ in the Weibull, GF = Gamma
Frailty).

Parameter CTDL Weibull CTDL+GF Weibull+GF
α̂ -0.1165 - -0.0342 -

(0.0239) - (0.0770) -
λ̂c +0.2148 - +0.2169 -

(0.0352) - (0.0373) -
λ̂w - +0.0309 - +0.0308

- (0.0130) - (0.0145)
ρ̂ - +0.8640 - +0.8186

- (0.0280) - (0.2181)
β̂1 +0.0140 +0.0170 +0.0206 +0.0302

(0.0071) (0.0050) (0.0114) (0.0082)
β̂2 +0.0177 +0.0175 -0.0673 +0.0250

(0.2000) (0.0820) (0.4782) (0.1197)
σ̂2 - - +0.4402 +1.1194

- - (0.2054) (0.0751)


̂ -2053.299 -2052.399 -2051.166 -2041.556

4 Final Remarks

In this paper we have derived a new non-PH based Gamma frailty model
and compared it with the standard PH-based Gamma frailty competitor.
In the data analyzed the interpretation of the fixed effects was similar, but
the fit of the CTDL Gamma frailty model was demonstrably superior and
it is therefore a more natural vehicle for inference, among the frailty models
considered. Of course, this will not always be the case, but the new model
is flexible and clearly provides a viable alternative to the PH models con-
sidered. Further work is required on discriminating between these survival
models and on developing suitable measures of Goodness of Fit for non-
nested models with frailty in different model classes, when the AIC may be
misleading.
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Abstract: We present two different logistic regression models for longitudinal air
pollution data. After the confounder modelling we first use marginal regression
models to take account of the autocorrelation structure of the data. As a second
approach we then present Bayesian generalized additive mixed models with an
interaction between the trend and a patient-specific random effect to account for
unobserved heterogeneity and autocorrelation. We apply this methods to data of
the project EPA STAR.
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1 Introduction

One objective of the project EPA STAR (Environmental Protection Agen-
cy; Science To Achieve Results: Inflammatory Response and cardiovascu-
lar risk factors in elderly subjects with angina pectoris or COPD in asso-
ciation with fine and ultrafine particles) is to characterize the association
between ambient particle exposures and changes in biomarkers of inflam-
mation in the airways and the blood of patients with stable coronary artery
disease (CAD). Therefore 60 male non-smokers, aged between 50 and 80
years, were recruited from local practitioners. Further participants have
physician diagnosed coronary artery disease or stable angina pectoris or
take angina pectoris medication.
Among other things the panelists recorded cardiovascular symptoms and
medication intake daily over a period of about six months. Ambient air
pollutants as well as meteorological parameters were measured at local
monitoring stations on a daily basis.
The main statistical challenge of this type of observational study is to find
the effect of air pollution on the symptoms in the presence of confounders,
autocorrelation and random effects.
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2 Modelling

To analyze the association between air pollution and health outcomes we
use logistic regression models for longitudinal data controlling for con-
founders and autocorrelation.
Responses yit, i = 1, . . . , n, t = 1, . . . , Ti are binary, with yit = 1 for the
presence and yit = 0 for the absence of a symptom. We assume, that the
probability of appearance of a symptom follows a logit model

logit(E(yit|zit)) = log
P (appearance)

P (no appearance)
= ηit = α+ βxt−l + γ1zit1 + . . .+ γpzitp

+g1(vt1) + . . .+ gk(vtk).

xt−l denotes the (lagged) measure of the air pollutant, zitj are confounder
variables with a linear effect and vts confounders with nonlinear effects.

The modelling principle has two steps: First, the confounder model is fit-
ted. A step-wise model selection procedure in S-PLUS (2001) is used to
determine the optimal confounder model. As confounder variables are con-
sidered: an indicator variable for each subject, long-term time trend, med-
ication intake, influenza, temperature, relative humidity and barometric
pressure each with lag 0 to lag 5 (a lag is the assumed time period between
exposure and effect) and an indicator variable for weekday versus weekend.
For each metrical covariate both linear and non-linear terms are allowed.
The step-wise procedure selects whether each covariate should be included,
and if so, whether the metrical covariate should be linear or non-linear. The
Akaike Information Criterion (AIC) is used in this algorithm for variable
selection.
Due to the problems discussed in Dominici et. al. (2002) we use more strin-
gent convergence parameters than the default settings in S-PLUS for all
confounder models. However, at this stage, the procedure does not take
any autocorrelation structure of the data into account because this would
result in a quite complex statistical computation.

2.1 Marginal Regression

To allow for autocorrelation of the response we then use Marginal regres-
sion models for longitudinal data. The modelling and estimation approach
is based on generalized estimating equations (GEE). In these models, the
effect of covariates on responses and the association between responses is
modelled separately.
To be able to fit the GEE model the non-linear and polynomial confounder
components are transferred to SAS (2001) with the same degrees of free-
dom. The impact of calendar time and the possibly non-linear effects of
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meteorology are modelled with regression splines or polynoms. By us-
ing parametric smoothers we avoid the problem of concurvity (Ramsay
et. al. (2003)). The effects of the remaining confounders such as medica-
tion intake and of the air pollutant are considered as linear. Additionally
a fixed patient-specific effect is included.

2.2 Bayesian GAMM

As a second model approach, we use Bayesian generalized additive mixed
models (Bayesian GAMM). This methods allow for a predictor with semi-
parametric additive form. We now model the impact of the global trend
and the possibly non-linear effects of meteorology nonparametrically using
P-splines with second order random walk models as priors for the smooth
functions. The effects of the remaining covariates, especially of air pollu-
tants are considered as fixed. For the fixed effect parameters we assume
independent diffuse priors. Furthermore, interactions between the trend
and a patient-specific random effect account for unobserved heterogeneity
and autocorrelation. For this interactions we make the assumption that the
parameters are i.i.d. Gaussian.
Additionally we assume highly dispersed inverse gamma priors for variances
in a further stage of hierarchy. This allows for simultaneous estimation of
the unknown function and the amount of smoothness.
Inference is fully Bayesian via Markov Chain Monte Carlo (MCMC) tech-
niques. All Bayesian analyses are performed with BayesX (2000).

3 Results

Figure 1 displays the calendar time trend and a parametric estimate for rel-
ative humidity together with errors bands provided by S-PLUS. The trend
is slowly declining over the study period. The effect of relative humidity is
clearly non-linear. The curve indicates that not only low relative humidity
but also relative humidity between 80 and 95% increases the risk.
Table 1 gives the estimates with standard errors and p values for the re-
maining confounder effects. It is seen that medication intake increases the

TABLE 1. Estimates of constant confounder parameters for the symptom chest
pain.

Covariate Coefficient Std. Error p value
Intercept -3.100073 0.575742 <0.000001
Temperature, lag 5 -0.022897 0.012297 0.062678
Medication intake 1.889101 0.282345 <0.000001
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FIGURE 1. Estimated trend and estimated effect of relative humidity together
with error bands provided by S-PLUS.
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FIGURE 2. Estimated trend and estimated effect of relative humidity. Shown is
the posterior mean within 90% pointwise credible intervals.

TABLE 2. Bayesian estimates of constant confounder parameters for chest pain.

Covariate Mean 10% quantil 90% quantil
Intercept -0.8546 -2.2439 0.9403
Temperature, lag 5 -0.0258 -0.0430 0.0095
Medication intake 1.1114 0.6121 1.5952

risk while an increasing temperature with lag 5 decreases the probability
of chest pain.
The Bayesian estimation results of the nonparamtric confounder terms and
the trend are shown in Figure 2. Corresponding to the parametric estimates
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TABLE 3. Estimated effects of NO2 and ultrafine particles (GEE).

Lag Odds 95% CI p value Odds 95% CI p value
Ratio/IQR Ratio/IQR

0 0.940 (0.984,1.076) 0.371 1.012 (0.888,1.152) 0.862
1 1.027 (0.991,1.177) 0.701 0.945 (0.816,1.095) 0.452
2 1.230 (1.001,1.487) 0.032 1.121 (0.922,1.364) 0.252
3 1.038 (0.991,1.214) 0.636 1.061 (0.907,1.242) 0.461
4 0.981 (0.981,1.220) 0.865 0.970 (0.821,1.147) 0.723
5 0.970 (0.982,1.179) 0.759 0.895 (0.705,1.137) 0.364

TABLE 4. Estimated effects of NO2 and ultrafine particles (Bayesian GAMM).

Lag Odds 90% Credible Odds 90% Credible
Ratio Interval Ratio Interval

0 0.925 (0.839,1.025) 0.984 (0.884,1.104)
1 1.030 (0.918,1.152) 0.962 (0.859,1.069)
2 1.212 (1.086,1.351) 1.096 (0.979,1.223)
3 1.113 (0.994,1.248) 1.086 (0.972,1.212)
4 1.021 (0.918,1.138) 0.998 (0.895,1.112)
5 0.968 (0.871,1.082) 0.907 (0.809,1.010)

the calendar time trend is again declining but with an stronger effect. The
curve for relative humidity indicates that low relative humidity and relative
humidity between 80 and about 95% increases the risk. This is in agree-
ment to the results shown in Figure 1.
Table 2 gives the posterior means together with 90% credible intervals of the
remaining confounder effects. As can be seen the medication intake again
increases the risk, while an increasing temperature with lag 5 decreases
the probability of chest pain. In comparison to the results in Table 1 the
estimations of temperature and medication intake have the same signs, but
the effect of medication intake here is less strong.

The Marginal regression results for the gaseous pollutant NO2 and for par-
ticle number concentrations of ultrafine particles by the interquartile range
are given in Table 3, showing the strongest associations with a lag of 2
days. For NO2 this association is even significant.
Table 4 shows the results of the Bayesian pollutant analysis. The strongest
associations are again seen with a lag of 2 days whereas for NO2 this as-
sociation is even significant. This is in close agreement to the marginal
regression approach.
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4 Discussion

In this analysis we use two different logistic regression models for longitu-
dinal data controlling for trend, medication intake, influenza, meteorology
and autocorrelation. By using parametric regression splines we furthermore
avoid the problem of concurvity as discussed in Ramsay et al. (2003). Soft-
ware has been developed on all aspects of our models, but there are still
some technical difficulties to deal with the problems of confounder mod-
elling and autocorrelation simultaneously in one model. In comparison with
the Marginal regression model the results of the Bayesian approach gener-
ally show similar effects. The main advantage of the hierarchical Bayesian
model is the modular structure and flexibility.
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1 Introduction

We consider two spatial models for ordinal responses, and apply both to
data arising from a study of grazing and trampling impacts in the South
Loch Tay area of Scotland (Stolte et al, 2003). The first includes an L2-
norm spatial random effect as in Besag et al (1991), whereas the second
uses mixing weights to combine both L2- and L1-norm spatial terms (see
Lawson and Clark, 2002).
Since 1997, the Macaulay Institute has been conducting surveys on the
impact of grazing and trampling by large herbivores on areas of upland
Scotland, in collaboration with the Deer Commission for Scotland, Scot-
tish Natural Heritage and Deer Management Groups. These surveys are
intended to inform decisions relating to the management of grazing uplands
and to aid understanding of the effects of different policies. The data in this
paper arise from one such study, on the South Loch Tay Deer Management
Group area in Perthshire, Scotland. The response is ordinal on a 5-point
scale, representing assessments of the intensity of impacts by grazing ani-
mals. The classes are Light, Light/Moderate, Moderate, Moderate/Heavy
and Heavy. These assessments are made for parcels of land called part-
polygons, which represent the intersection of contiguous areas of common
vegetation type (or habitats) and 0.25 km2 squares of the National Grid.
The habitat of each part-polygon is available as covariate information, as
is the estate to which each belongs; there are 28 habitats and 6 estates
in South Loch Tay. We model the spatial effects at the 0.25 km2 grid
square level, since some of the part-polygons are too small to be genuinely
representative—less than 10m2 in a few cases.
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2 Spatial Models for Ordinal Responses

We adopt the approach to modelling ordinal response data proposed by
Albert and Chib (1993), whereby a latent variable is used to model an un-
derlying unobservable continuous response and where cut-points separate
the observed classes. As in Albert and Chib (1993), we use Markov chain
Monte Carlo (MCMC) as our main analytic tool.
The density curve specific to each part-polygon is assumed to be Normal
with mean μk and common variance 1, where k = 1, 2, . . . , n indexes each
individual part polygon, being of habitat hk and belonging to estate ek.
The cut-points on this continuous (latent) scale are represented by θ1 to
θ4, and if we further define θ0, θ5 to be −∞,+∞ respectively, then we can
define the probability of part-polygon k exhibiting class c grazing impact
as

Pr (Yk = c | θ, μk) = Φ (θc − μk) − Φ (θc−1 − μk) (1)

for c = 1, . . . , 5, and where Φ is the standard Normal distribution function.
The variance is fixed since the probabilities at (1) are scale-invariant, and
we use the value 1 w.l.o.g. here. We consider two spatial models. Both
include an L2 spatial effect δgk ; if we define neigh(gk) to be the set of ngk
neighbours of grid square gk then the (implicit) prior specification for δgk
is

δgk | δj �=gk ∼ N

(
δ̄gk ,

σ2

ngk

)
where δ̄gk =

∑
j∈ neigh(gk)

δj/ngk

and σ2 is the random effect variance. The second model also includes an
L1 spatial random effect ηgk , and where the product of the priors for {ηgk}
is

λ−m/2 exp

⎧⎨⎩(2λ)−1
∑
gk

∑
j∈ neigh(gk)

|ηj − ηgk |
⎫⎬⎭ .

Note that Lawson and Clark (2002) use λ−1/2 rather than λ−m/2. The δgk
and the ηgk are both scaled to have mean 0. The stated aim in Lawson and
Clark (2002) is to allow δgk to reveal smoothly-changing patterns while ηgk
uncovers “discrete jumps”. The linear predictor for our first model is

μk = αhk + βek + γhk,ek + δgk

where αhk represents the habitat (random) effect for habitat hk, βek the
estate (fixed) effect for ek, γhk,ek the interaction effect for the habitat/estate
combination (random for habitat within estate), and δgk the spatial effect
for grid square gk. For the second model, we weight the spatial components
by pk:

μk = αhk + βek + γhk,ek + pkδgk + (1 − pk) ηgk .
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FIGURE 1. Maps of observed grazing impacts and mixing weights for model 2.

Finally, we use: weakly informative Gamma priors for precisions and for
λ; and diffuse Normal priors for αhk , βek , γhk,ek and θc, the latter with
constraints to ensure θc−1 < θc for c = 0, . . . , 5. Fuller details of the model
can be found in Brewer et al (2003).

3 Results and Discussion

In this paper we concern ourselves with the spatial smoothing of the two
models, and not with the importance or otherwise of the remaining covar-
iates—again, see Brewer et al (2003). In Figure 1 we see the observed
grazing impacts. The impacts are not smooth, but we can make out, e.g.,
areas of lower impacts in the centre and the top right (north-east)—these
correspond to an area of high altitude and an area of low animal stocking
density respectively. These areas are shown far more clearly in the maps of
fitted impacts from both models in Figure 2. The fitted maps are similar,
but the model 1 map is smoother, and the model 2 map has more part-
polygons in the extreme classes—most noticeably for the Heavy class. Note
that there are covariate terms in the models, so we should not expect the
maps to be too smooth.
Figure 3 shows the L2 spatial effects δ; there are clear differences here
between the two models. The map for model 2 is far smoother than that
for model 1—the L1 term η in model 2 has removed the discontinuities,
leaving δ to describe the larger-scale smooth spatial trend.
In contrast to the findings in Lawson and Clark (2002), we find more in-
formation as to the location of jumps in the mixing weights p than in the
η themselves. Hence, we show a map of p from model 2 in Figure 1, where
the darker areas relate to greater weight on η, i.e. large jumps in the spatial
pattern. Comparing the two maps of Figure 1, it is clear that the weights do
pick out areas where the grazing impacts differ most between neighbouring
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FIGURE 2. Maps of fitted impacts for models 1 and 2.

TABLE 1. DIC values for both models.

Model D̄ D(μ̄) pD(μ̄) DIC(μ̄) D(π̄) pD(π̄) DIC(π̄)
1 4993.0 4554.4 438.6 5431.6 4662.7 330.3 5323.3
2 4743.1 4192.5 550.6 5293.7 4310.3 432.8 5176.0

grid squares. Typically, low p values correspond either to areas with low
animal numbers (due to altitude, low stocking, etc) or high animal num-
bers (due to the likely placement of food), where the numbers are not fully
explained by habitat or estate. Space limitations prevent us showing the
map of η, which in any case appears fairly random due to the high values
of p for many of the grid squares (cf. the map of p in Lawson and Clark,
2002).
Finally, we show DIC values (with standardising factor set to 1, see Spiegel-
halter et al, 2002) for both models in Table 1. Whether we use the means μ
or the class probabilities π to calculate DIC, we see that model 2 is favoured.
The standard deviations of the D̄ quantities were around 30, so the differ-
ences in DIC would appear to be meaningful. Model 2 is far more complex
(by the higher pD values), but this appears to be outweighed by model
fit. Also, we note the large differences between the parameterisations—
following the advice in Spiegelhalter et al (2003) regarding Normality of
likelihoods, we prefer DIC(μ̄).
In conclusion, the mixture model with two kinds of spatial random effect
provides a better fit to our grazing impact data than a simpler version,
allowing a clear separation of overall trend and more localised jumps.
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FIGURE 3. Maps of estimated spatial random effects (δ) for models 1 and 2.
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Abstract: The paper deals with symmetric GARCH(p,q) models. Assuming that
there exists defined by this model stationary time series we have proposed the
necessary and sufficient condition for exponential mean square convergence of any
satisfying this model stochastic recurrent procedure to the above stationary time
series. A mathematical background of proposal methods are based on the derived
by author covariance method for mean square exponential stability analysis of
linear stochastic difference equations. That permits to write out a mean square
convergence criterion for GARCH(p,q) models with any integer positive p and q
in a convenient for application integral form involving the model parameters.

Keywords: GARCH(p,q) models; Stationary Time Series; Stochastic Difference
Equations; Mean Square Stability.

1 Introduction: Stationary GARCH(p,q) Models

Over the last decade, there has been a tendency to employ to analysis
the financial time-series data model the symmetric regression model for
conditional mean, defined by formula

Yt = b0 +
n∑
k=1

bkX
(k)
t + ξt, E{ξt/Φt−1} ≡ 0, E{ξ2t /Φt−1} = σ2

t , (1)

with errors (shocks) ξt given as GARCH(p,q) model (Generalized Auto
Regressive Conditional Heteroskedasticity), that takes the following form
(Hamilton (1994)):

σ2
t = θ0 +

p∑
k=1

ϕkσ
2
t−k +

q∑
k=1

θkσ
2
t−kε

2
t−k. (2)

This process is described for time moments t ∈ Z by q + 1 coefficients
θk ≥ 0, k = 0, 1, ..., q, p coefficients ϕk ≥ 0, k = 1, 2, ..., p, mean b0, n
linear regression coefficients bk, k = 1, 2, ..., n, endogenous and exogenous
variables Yt and X

(k)
t , k = 1, 2, ..., n respectively, conditional variance σ2

t ,
white-noise type time series {εt, t ∈ Z} (that is, i.i.d. random variables with
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mean zero and variance one) and the sigma-algebra Φt−1 of information up
to time t−1, defined by {εs, s ≤ t−1}. As it has been shown by (Bollerslev
(1986)) under assumption

p∑
k=1

ϕk +
q∑

k=1

θk < 1. (3)

there exists defined by (2) stationary time-series {σ̂2
t , t ∈ Z} and ex-

pectation of deviations ut := σ2
t − σ̂2

t of any other satisfying (2) time
series {σ2

t , t ∈ Z} converge to zero in the mean with t → ∞, that is
lim
t→∞E|σ2

t − σ̂2
t | = 0. It should be mentioned that parameters of regression

model (2) are mainly defined by the least square method and therefore it is
preferable (He and Terasvirta (1999)) to analyze a behaviour of the second
moments of iterations (2), that is, an asymptotic of sequence {E|σ̂2

t −σ2
t |2}

with t → ∞. We will say that the stationary GARCH model (2) is expo-
nential mean square stable if the above second moments exponentially tend
to zero as t → ∞, that is, there exist such positive numbers M, λ that

E
{|σ2

t − σ̂2
t |2
∣∣
σs=σ

} ≤ Me−λ(t−s)E
{|σ2

s − σ̂2
s |2
}

(4)

for any t ≥ s, s ∈ Z. The problem arises: to determine a largest set
of parameters of model (2), which guarantees the stability property (4).
For GARCH(p,1) models this problem has been discussed in our previ-
ous paper (Carkova and Gutmanis (2002)). Applying some of well known
mathematical results for positive defined matrices, the mentioned paper
derives the necessary and sufficient condition for exponential mean square
stability in a form of inequality involving forth moment of εt and pa-
rameters ϕ1, ..., ϕp, θ1. In spite of the convenience for application of the
proposal there approach for q = 1, that has been written as an inequal-
ity for two specially constructed determinants, it becomes very compli-
cated for GARCH(p,q)-models with q ≥ 2. To eliminate this lack we
will apply another method, developed in paper (Carkova and Carkovs
(1969)) for asymptotical stability analysis of linear stochastic difference
equations. It permits us under assumption (3) to derive necessary and suf-
ficient exponential mean square stability condition in a form of inequality
E|ε|4 < g(ϕ1, ..., ϕp; θ1, ..., θq).

2 Integral Criteria for GARCH(p,q) Exponential
Mean Square Stability

It is easy to write for the deviations ut := σ̂2
t − σ2

t the homogeneous differ-
ence equation

ut =
m∑
k=1

akut−k +
q∑

k=1

θkut−kyt−k, (5)
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where m = max{p, q},

ak =

⎧⎨⎩
ϕk + θk, if k ≤ min{p, q},
ϕk, if p < k ≤ q,
θk, if q < k ≤ p,

(ak)

and yt = ε2t−1. The latter random variables {yt, t ∈ Z} are i.i.d. with mean
zero and variance s4 := E|ε2t − 1|2 defined by distribution of εt. Formula
(5) defines a linear difference equation with random coefficients and the
problem is: to find necessary and sufficient conditions for exponential mean
square decreasing of its solutions. Let sequence {ut, t ∈ Z} be a solution
of (5). According to proposal in ( V.Carkova and J.Carkovs, 1969) method
first of all we have to define two sequences: {ht, t ∈ Z}, satisfying for t > 0
homogeneous difference equation

ht = a1ht−1 + a2ht−2 + . . .+ amht−m, (h)

under conditions h0 = 1, ht = 0 for t ≤ −1, and {x̃t, t > 0} satisfying the
same homogeneous difference equation x̃t = a1x̃t−1+a2x̃t−2+. . .+amx̃t−m,
but for t ≤ 0 is the same as ut, that is, x̃t = ut, t ≤ 0. It may be proved that
owing assumption (3) any of solutions of the above homogeneous equations
exponentially tends to zero as t → ∞. Now we should rewrite equation (5)
in a following form

ut = x̃t +
t∑

s=1

q∑
j=1

ht−sθjys−jus−j = gt +
q∑
j=1

t∑
k=1

ht−k−jθjykuk,

where gt = x̃t +
q∑
j=1

j∑
s=1

ht−sθjys−jus−j is Φ0 -adopted random sequence

for any t ≥ 0. Squaring the both parts of the above equity and taking a
conditional expectation under condition Φ0 we can reach for conditional
second moment mt := E{|ut|2/Φ0} a following equation

mt = g2
t + s4

t∑
k=1

b2t−kmk, (6)

where bt =
q∑
j=1

ht−jθj . Because g2
t and b2t are exponentially decreasing to

zero nonnegative sequences any satisfying (6) positive sequence {mt, t ≥ 0}
may be majorized by sequence {ct, t ≥ 0} for sufficiently large c. Therefore
to analyze an asymptotic of this sequence we may apply discrete Laplace
transformation multiplying the both parts of (6) by zt with some constant
z ∈ (0, c−1) and summarizing by t from 0 to ∞. This approach permits to

find function M(z) :=
∞∑
t=0

ztmt in a form of fraction

M(z) =
G(z)

1 − s4B(z)
, (7)



60 GARCH Mean Square Stability

where G(z) :=
∞∑
t=0

ztgt, B(z) :=
∞∑
t=0

ztb2t . It is obviously that mt expo-

nentially decreases with t → ∞ if and only if the series
∞∑
t=0

mt converges.

Analyzing equality (7) one can make sure of equivalence the latter asser-
tion to inequality s4 < (B(1))−1 involving fourth moment of white noise
s4 = E{|εt|2 − 1|2} = E{|εt|4}− 1 and parameters {ϕk, θj ; k = 1, ..., p, j =

1, ..., q} of model GARPCH(p, q) defined by series B(1) =
∞∑
t=0

b2t . Let B1(z)

be a discrete Laplace transformation of sequence {bt}, that is, B1(z) :=
∞∑
t=0

btz
t. Applying well known Cauchy theorem one may calculate any term

of sequence {bt} as contour integral of complex valued function B1(z) mul-
tiplied by z−t−1:

bt =
1

2πi

∫
|z|=1+δ

B(z)z−1−tdz,

with an arbitrary sufficiently small by module real number δ. Therefore

formula B(1) =
∞∑
t=0

b2t may written in an integral form:

B(1) =
∞∑
t=0

⎛⎜⎝ 1
2πi

∫
|z|=1+δ

B1(z)z−1−tdz

⎞⎟⎠
⎛⎜⎝ 1

2πi

∫
|x|=1

B1(x)x−1−tdx

⎞⎟⎠ =

= − 1
4π2

∫
|z|=1+δ

∫
|x|=1

B1(z)B1(x)
dxdz

xz − 1
=

1
2πi

∫
|z|=1

B1(z)B1(z−1)z−1dz.

The function B1(z) is a Z-transformation of series bt =
q∑
j=1

ht−jθj formed

by solution {ht} of difference equation (h). Let H(z) be a Z-transformation
of this solution. Owing to special chosen initial conditions for that, the
delayed solution {ht−k} with any k ≥ 0 has Z-transformation zkH(z).
Therefore applying Z-transformation to formula (h) one can find B1(z) =(

q∑
j=1

θjz
j

)/(
1 −

m∑
k=1

a
k
zk
)
. Finally defined by (9) expression B(1) has

an integral form

B(1) =
1

2πi

∫
|z|=1

(
q∑
j=1

θjz
j)(

q∑
j=1

θjz
q−j)

z(1 −
m∑
k=1

a
k
zk)(1 −

m∑
k=1

a
k
zm−k)

zm−q−1dz, (8)

where m = max{p, q} and ak defined above in formula (ak). Therefore
the necessary and sufficient condition for stationary GARCH(p,q) mean
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square stability has a form an inequality s4 < B(1)−1 with B(1) defined
by formula (8). Because under assumption (3) the absolute values of all

roots of polynomial
m∑
k=1

a
k
zm−k are less than 1, the integral in (10) can be

calculated applying residual theory.

Example. Let we should deal with GARCH(2,2) model. Then p = q = 2,
H(z) = (1 − (ϕ1 + θ1)z − (ϕ2 + θ2)z2)−2, and integral (9) is equal to

1
2πi

∫
|z|=1

z(θ21 + θ22) + (1 + z2)θ1θ2
(1 − (ϕ1 + θ1)z − (ϕ2 + θ2)z2)(z2 − (ϕ1 + θ1)z − (ϕ2 + θ2))

dz.

Not so difficult to find roots of polynomial z2−(ϕ1+θ1)z−(ϕ2+θ2) (which
should be less than one by module) and applying residual theory for the
above integral to write necessary and sufficient exponential mean square
stability condition of GARCH(2,2) in a following complete form:

s4 <
2[(1 − ϕ2 − θ2)2 − (ϕ1 + θ1)2](1 + ϕ2 + θ2)

(θ21 + θ22)(1 − ϕ2 − θ2) + 4(ϕ1 + θ1)θ1θ2
.
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Abstract: The paper proposes a stochastic analysis approach to equilibrium
stability analysis of an adaptive Samuel-Marshall type single component mar-
ket. Assuming that an equilibrium can be achieved by the equality of demand
to supply, manufacturer would like to stabilize the price of a product unit into a
small neighborhood of the level p̄. Because to enter the market a manufacturer
needs a time, he can manage by a chosen supplied quantity at the delayed time
moment t− τ (t). Taking into account this circumstance and permanent random
perturbations of demand elasticity function the paper discusses stochastic price
dynamics. Our approach is based on asymptotical theorems of stochastic calcu-
lus and second Lyapunov methods for stability analysis of stochastic functional
differential equations. That allows not only to estimate how a time delay of sup-
ply and other market performances exert price dynamics, but also to advance in
stochastic stability analysis, calculating dependence of maximal admissible price
equilibrium volatility on demand and supply elasticity functions.

Keywords: Price equilibrium; Stochastic stability; Adaptive market.

1 Introduction: Adaptive Single Component Market

The paper deals with simplest mathematical model of an adaptive Samuel-
Marshall type single component market under assumption that a manu-
facturer has a monopoly there and he would like to stabilize the price of
a product unit into a small neighborhood of the level p̄. Let us remind,
that in any classical single component market model supply St and de-
mand Dt are dependent on a price of product unit history up to time
F t := {p(s), s ≤ t} and equilibrium p(t) ≡ p̄ may be achieved by the
equality of demand D(p̄) to supply S(p̄) (see, for example, Hamilton (1994),
Samuelson (1974), Sharpe (1964)). As in the classical Samuelson model we
will suppose equilibrium to be reached due to an adaptive price dynamical
property: the price movement (Δp)(t) := p(t + �) − p(t) is proportional
to difference Dt − St multiplied by time increment �. To control a price
p(t) a manufacturer should keep a supplied quantity St at the level of de-
mand quantity Dt, but to enter the market at the time moment t he needs
some time τ(t). Therefore manufacturer has a delayed reaction because he
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is guided by the price at the moment of time t−τ(t). As a result the supply
St is a function of a delayed price p(t − τ(t)), that is St = S(p(t − τ(t))).
Because supply quantity is formed by manufacturer based on known price
value p we may suppose that supply is deterministic sufficiently smooth
function and model this function within a small equilibrium vicinity in a
linear form

S(p) = bp+ β. (1)

But demand Dt at time moment t does not depend on manufacturer. He
can find this function analyzing statistical data {Ds, p(s), s ≤ t} only and
applying some of well derived regression procedures. Let us suppose for
simplicity that demand Dt has a quick response on price dynamics and
is dependent only on present price value p(t). Therefore for a given price
history F	 we may model a deterministic part of demand as a conditional
expectation D(p(t)) := E{Dt/F	} and forecast mean value of a demand
quantity for a given price value p as a functionD(p). The above assumptions
permit to analyze price dynamics writing out market mathematical model
in a form of the first order ordinary differential equation with delay

dp(t)
dt

= D(p(t)) − S(p(t− τ(t)). (2)

We should take into consideration that Samuelson’s adaptive assertion
about adaptive price increments dynamics is only rational expectation of
market price reaction on supply and demand values and therefore equation
(2) reflects price dynamics in the mean. Unfortunately real price mostly is
very irregular function of time t. Recent decades has appears many papers
which intensively developed the branch of modern economics concerning the
price dynamics analysis and elaboration of a rational algorithm of investor
behavior, taking into account the financial market statistical uncertainty.
It has been shown that it is not enough to know smooth dynamical perfor-
mances of financial flows, reached by moving-average procedure, but also
is necessary to analyze extremely complicated and bad predictable chaotic
price oscillations. This made many researchers use Ito stochastic calculus
for modeling price dynamics. As an example one can specify the well-known
Black-Scholes option-pricing formula used not only by scientists in the the-
oretical financial economics but also by most of brokers for gambling on
a stock exchange (see, for example, Black and Scholes (1973), Marshall
(1979), Sharpe (1964)). This paper also deals with the stochastic analysis
of price dynamics, writing an adaptive Samuelson’s assertion in a form of
stochastic Ito equation

dp(t) = (D(p(t)) − S(p(t− τ(t)))dt + σp(t)dB(t), (3)

where B(t) is standard Brawn motion process, and parameter σ (called
by volatility) allows to take into account value of risk connected with this
model of price dynamics (see, for example, Sharpe (1964)).
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2 Stochastic Analysis Approach

Let us suppose that price equilibrium can be reached owing to equality of
demand and supply in the mean, that is E

{
dp/F	} = ′. First of all we

will discuss the dependence of equilibrium stability on demand elasticity
by price (parameter b), fraction of demand elasticity by price and supply
elasticity by price (parameter c = a/b with a > 0, b < 0, −b < a), volatil-
ity σ ≥ 0, and time-delay τ(t) probabilistic properties, writing for price
deviations x(t) := p(t)− p̄ linear stochastic Ito equation in a following form

dx(t) = b(cx(t) − x(t − τ(t)))dt + σx(t)dw(t). (4)

Under condition of independence of the involving in the above equation
processes B(t), τ(t) and strong mixing condition for stationary process τ(t)
our paper proves that for equilibrium stability it is necessary a negativity
of real parts of all roots of function v(z) := z− b(c−M(−z)), where M(z)
is moment function of time delay. For example, if stationary distribution
of time delay is given by formulae P{τ(t) = 0} = π̂, P{τ(t) = 1} = 1 − π̂,
the necessary price equilibrium stability condition has a following form
(Šadurskis and Tsarkov (2001)):

π̂ <
1 − c

2
, b <

arccos((c− π̂)/(1 − π̂))√
(1 − c)(1 + c− 2π̂)

. (5)

It should be mentioned that this inequality guarantees exponential de-
creasing only for price mean value, but price variance may be infinitely
increasing. Applying proposal in Šadurskis and Tsarkov (2001) asymptotic
methods and covariance approach for mean square stability analysis of sto-
chastic functional differential equations (see, for example, Tsarkov (1989))
one can find necessary and sufficient condition for decreasing of price vari-
ance to zero with t → ∞ in a form of inequality for volatility

σ2 < π
( ∞∫

0

dz

|iz − b(c− χ(−z))|2
)−1

, (6)

where χ(z) is characteristic function of stationary random delay τ(t). For
above mentioned example of binomial market this inequality has a form
(Carkovs and Počs (2002)):

σ2 < σ2
cr :=

2(1 − π̂)bν(ν − sin(bν))
(1 − π̂) cos(bν) + c− π̂

(7)

where ν =
√

(1 − c)(1 − 2π̂ + c).
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3 Price Nonlinear Dynamics

Linear differential market model even in a more complicated nonhomoge-
neous form than (4)

dp(t) = {ap(t) − bp(t− τ(t)) + α− β + η(t)}dt+ σP (t)dB(t), (8)

where η(t) is zero-mean stationary process, satisfactory fits price dynamics
only for parameters located within stability region and sufficiently far from
border of stability. In this case one can forecast price dynamics as a steady-
state stationary process with mean p̄ = (α−β)/(b−a) and spectral density
which is proportional to spectral density fη(λ) of noise η(t) and inverse
proportional to squared modules of frequency response

V (λ) = |λ− bIm{M(iλ)}|2 + |a− bRe{M(iλ)}|2,
whereM(z) is moment generating function of stationary delay τ(t). But for
parameters a and b lying on the border of stability function V (λ) becomes
equal to zero for some values of λ and the steady-state stationary of equa-
tion (8) does not exist. Therefore chosen linear model becomes invalid be-
cause predictable by this model price dynamics has such a large scatter that
p(t) leaves a chosen vicinity of equilibrium p̄. That is why for the parame-
ters near border of stability one should pass to more complicated nonlinear
mathematical model. Let for example market model has delayed linear sup-
ply (1) with stationary distributed binomial time delay P{τ(t) = 1} = 1−π̂,
P{τ(t) = 0} = π̂ and nonlinear demand Dt = D(p(t)) + η(t). This model
may be written in a form of an ordinary functional differential equation

dp(t)
dt

= D(p(t)) − bp(t− τ(t)) − β + η(t),

where η(t) is stationary process with known correlation function. As it
was mentioned above the parameters (b,D′(p̄) := a, π̂) should be chosen
near a critical point {bcr, acr, πcr} laying on the border of stability. Taking
a = acr, π̂ = πcr, and b = bcr + ε, where ε is a small parameter, and
applying a stochastic averaging procedure (see, for example, Šadurskis and
Tsarkov (2001)) under condition D′(p̄) > 0, D′′(p̄) < 0 one can predict
asymptotically stable price stochastic oscillations

p(t) = p̄+ (r̄ +
√
ερ(εt)) cos(νt+ ϕ(εt)), (9)

with frequency ν =
√

(a− b)(a+ b− 2aπcr), where ρ(t) is stationary Gauss-
ian process of Ornstain-Ulenbeck type and ϕ(t) is stationary Gaussian
process given on the circle S1 by stochastic Ito equation with zero drift
and constant diffusion. Corresponding to price dynamics (9) steady-state
process approximately may be represented as a limit cycle on the Demand-
Supply phase plane called by stable stationary price business cycle.
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Abstract: The paper is studying the estimation problem of individual weights
of objects using a chemical balance weighing design under the restriction on the
number times in which each object is weighed. We assume that errors have the
same variances and they are correlated. The necessary and sufficient conditions
under which the lower bound of variance of each of the estimated weights is
attained are given.

Keywords: Chemical balance weighing design.

1 Introduction

Let us consider the class Φn×p,m(−1, 0, 1) of the n × p matrices X with
elements equal to −1, 0 or 1, where m there is the maximum number of
elements equal to −1 and 1 in each column of the matrix X. The matrices
belonging to this class there are the design matrices of the chemical balance
weighing designs. Suitable model we can write in the form,

y = Xw + e, (1)

where y is an n × 1 random observed vector of the recorded results of
weights, w is an p × 1 column vector representing unknown weights of
objects and e is an n×1 random vector of errors. We assume that E(e) = 0n
and the errors are correlated and with equal variances, i.e. Var(e) = σ2G,
where 0n is the n × 1 column vector of zeros, G = g [(1 − ρ)In + ρ1n1′

n],
where g > 0, −1 < ρ < 1 are given constants.
For estimating individual unknown weights of objects we can use the normal
equations

X′G−1Xŵ = X′G−1y, (2)

where ŵ is the vector of the weights estimated by the least squares method.
The chemical balance weighing design is singular or nonsingular depending
on whether the matrix X′G−1X is singular or nonsingular, respectively. If
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X′G−1X is nonsingular the least squares estimator of w is given in the
form,

ŵ = (X′G−1X)−1X′G−1y (3)

and the variance - covariance matrix of ŵ is given by formula,
Var(ŵ) = σ2(X′G−1X)−1. (4)

In the case G = In, Hotelling (1944) has studied some problems connected
with chemical balance weighing designs. He has shown that for the chemical
balance weighing design the minimum attainable variance for each of the
estimated weights is σ2/n. He proved the theorem that each of the variance
of the estimated weights attains the lover bound if and only if X′X = nIp.
This design is called the optimum chemical balance weighing design. It im-
plies that for the optimum chemical balance weighing design the elements
of the matrix X are −1 and 1, only. In this case, several methods of con-
struction the optimum chemical balance weighing designs are available in
Raghavarao (1971) and Banerjee (1975). In the model of optimum chemical
balance weighing design with equal correlated errors Ceranka and Katulska
(1998) gave the sufficient and necessary conditions under which the lower
bound of variances of the estimators was attained.

2 Variance Limit of Estimated Weights

Let assume that the design matrix X ∈ Φn×p,m(−1, 0, 1) is of full column
rank p, c denote an p× 1 vector. From Section 1c.1 (ii) (b) in Rao (1973)
we get:

Lemma 2.1 For the design matrix Φn×p,m(−1, 0, 1) of rank p, any sym-
metric positive definite n× n matrix G and p× 1 vector c inequality

c′(X′G−1X)−1c ≥ (c′c)2

c′(X′G−1X)c

is true and the equality is fulfilled if and only if c there is eigenvector of
the matrix X′G−1X.

Lemma 2.2 The matrix (1 − ρ)In + ρ1n1′
n is positive definite if and only

if −1
n−1 < ρ < 1.

It is obvious that if −1
n−1 < ρ < 1 and g > 0 then the matrix G = g[(1 −

ρ)In + ρ1n1′
n] is positive definite and the matrix X′G−1X is nonsingular

if and only if the matrix X′X is nonsingular, i.e. if and only if X is of full
column rank (= p).
Let assume that the matrix G is given as

G = g[(1 − ρ)In + ρ1n1′
n], (5)



Ceranka and Graczyk 71

where −1
n−1 < ρ < 1 and g > 0.

Theorem 2.1 In the nonsingular chemical balance weighing design with
the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance - covariance
matrix of errors σ2G, where G is given by (5), the variance of ŵj for a
particular j, such that j = 1, 2, ..., p, cannot be less then

Var(ŵj) ≥

⎧⎪⎨⎪⎩
σ2g(1−ρ)

m if 0 ≤ ρ < 1,

σ2g(1−ρ)
m− ρ

1+ρ(n−1) (m−2u)2 if −1
n−1 < ρ < 0,

j = 1, 2, ..., p

where m = max{m1,m2, ...,mp},mj represents the number of elements
equal to −1 and 1 in jth column of X, u = min{u1, u2, ..., up}, uj repre-
sents the number of elements equal to −1 in jth column of X, j = 1, 2, ..., p.

Proof: Let cj , j = 1, 2, ..., p, be the vector equal to jth column of the
matrix Ip. Then we have
ŵj = c′jŵ and Var(ŵj) = σ2c′j(X

′G−1X)−1cj , j = 1, 2, ..., p.
Since the matrix X ∈ Φn×p,m(−1, 0, 1) is of full column rank and

G−1 = 1
g(1−ρ) [In − ρ

1+ρ(n−1)1n1
′
n],

then from the lemmas 2.1 and 2.2 we have

Var(ŵj) ≥ σ2
(c′jcj)

2

c′jX′G−1Xcj
=

= σ2g(1 − ρ)
1

c′jX′Xcj − ρ
1+ρ(n−1)c

′
jX′1n1′

nXcj
≥

≥ σ2g(1 − ρ)
1

m− ρ
1+ρ(n−1)c

′
jX′1n1′

nXcj
≥

≥
⎧⎨⎩

σ2g(1−ρ)
m if 0 ≤ ρ < 1,

σ2g(1−ρ)
m− ρ

1+ρ(n−1) (m−2u)2 if −1
n−1 < ρ < 0,

j = 1, 2, ..., p. (6)

Since elements xij = −1, 1 or 0 only, hence the thesis.
In the special case m = n and X ∈ Ψn×p(−1, 1), the class of the n× p ma-
trices X with elements equal to −1 and 1, theorem 2.1 was given in Ceranka
and Katulska (1998). When m = n, ρ = 0, g = 1 and X ∈ Ψn×p(−1, 1) the
theorem 2.1 was proved in Hotelling (1944).

Definition 2.1 Nonsingular chemical balance weighing design with the
design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance - covariance
matrix of errors σ2G, where the matrix G is of the form (5), is said to be
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optimal for the estimated individual weights if the variance of each of the
estimators attains the lower bound, i.e. if

Var(ŵj) =

⎧⎪⎨⎪⎩
σ2g(1−ρ)

m if 0 ≤ ρ < 1,

σ2g(1−ρ)
m− ρ

1+ρ(n−1) (m−2u)2
if −1

n−1 ≤ ρ < 0,
j = 1, 2, ..., p.

Now, we give the necessary and sufficient conditions under which the lower
bound is attained.

Theorem 2.2 Let 0 ≤ ρ < 1. Nonsingular chemical balance weighing
design with the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance
- covariance matrix of errors σ2G, where the matrix G is of the form (5),
is optimal for the estimated individual weights if and only if
(i) X′X = mIp and
(ii) X′1n = 0p.

Proof: To prove the necessity part let notice that from lemma 2.2 the first
inequality in (6) is equality if and only if

[
X′X − ρ

1+ρ(n−1)X
′1n1′

nX
]
cj =

μjcj , μj > 0, j = 1, 2, ..., p. The second inequality in (6) is equality for
each j if and only if c′jX

′Xcj = m for j = 1, 2, ..., p. The third inequality is
equality if and only if c′jX

′1n = 0 for j = 1, 2, ..., p. These conditions imply
that X′X = diag{μ1, μ2, ..., μp}, μ1 = μ2 = ... = μp = m and X′1n = 0p.
Finally we get (i) and (ii). The proof of sufficiency part is obvious.

Theorem 2.3 Let −1
n−1 < ρ < 0. Nonsingular chemical balance weighing

design with the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance
- covariance matrix of errors σ2G, where the matrix G is of the form (5),
is optimal for the estimated individual weights if and only if
(i) X′X = mIp − ρ(m−2u)2

1+ρ(n−1) (Ip − 1p1′
p),

(ii) u1 = u2 = ...up = u and
(iii) X′1n = zp,
where zp is p× 1 vector, for which the jth element is to equal (m− 2u) or
−(m− 2u), j = 1, 2, ..., p.

Proof: The proof of the necessity part is similarly to the proof of two first
inequalities in the theorem 2.2. The third inequality in (6) is equality if
and only if c′jX

′1n = (m − 2u) or −(m− 2u) for j = 1, 2, ..., p. It implies
X′X − ρ

1+ρ(n−1)X
′1n1′

nX = diag{μ1, μ2, ..., μp}, μ1 = μ2 = ... = μp =

m− ρ(m−2u)2

1+ρ(n−1) and X′1n = zp.

The proof of sufficiency part is obvious. Hence the thesis.
Let us consider the case 0 ≤ ρ < 1. Nonsingular chemical balance weighing
design with the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance
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- covariance matrix of errors σ2G, where G is given as (5), is optimal if
and only if the conditions (i) and (ii) from the theorem 2.2 hold. From this
second condition we get

Corollary 2.1 Let 0 ≤ ρ < 1. The necessary condition for existence
optimum chemical balance weighing design with the design matrix X ∈
Φn×p,m(−1, 0, 1) and with the variance - covariance matrix of errors σ2G,
where G is of the form (5), is m ≡ 0(mod2).
The condition (i) from the theorem 2.1 is the same as condition deter-
mining optimum chemical balance weighing design with the design matrix
X ∈ Φn×p,m(−1, 0, 1) and with variance - covariance matrix of errors σ2In.
Then we have

Corollary 2.2 Let any p1(≤ p) columns of the design matrix
X ∈ Φn×p,m(−1, 0, 1) of the optimum chemical balance weighing design
with the variance - covariance matrix σ2In form new design matrix X∗ ∈
Φn×p,m(−1, 0, 1) of the chemical balance weighing design. Chemical ba-
lance weighing design with the design matrix X∗ ∈ Φn×p,m(−1, 0, 1) with
the variance - covariance matrix of errors σ2G , where G is given by (5)
and 0 ≤ ρ < 1, is optimal if and only if X′1n = 0p.

Theorem 2.4 Let 0 ≤ ρ < 1. The existence of the optimum chemi-
cal balance weighing design with the matrix X ∈ Φn×p,m(−1, 0, 1) and
with the variance - covariance matrix of errors σ2G, where G is given
by (5), is equivalent to the existence of the optimum chemical balance
weighing design with the matrix X∗ ∈ Φ2n×2p,m(−1, 0, 1) in the form

X∗ =
[

X X
X −X

]
and with the variance - covariance matrix of errors

σ2G∗, where G∗ = g[(1 − ρ)I2n + ρ12n1′
2n].

Proof: Let notice that if X there is the matrix of optimum chemical balance
weighing design with the variance - covariance matrix of errors σ2G, where
G is given by (5), then XX′ = mIp and X′1′

n = 0p. These conditions are

fulfilled if and only if
[

X X
X −X

]′ [ X X
X −X

]
= 2mI2p and X′1n = 0p.

Hence the thesis.
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Abstract: A model is proposed for longitudinal binary data with informative
drop-out. The model combines a conditional AR1 model for the underlying re-
sponse with a logistic regression model for the drop-out process. Parameter es-
timation is done through a Bayesian approach. The model is demonstrated and
compared through a methadone clinic data set. It is anticipated that information
gathered from modeling the drop out process has practical implications for the
interpretation of the data.
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1 Introduction

The collection of longitudinal binary data is common in clinical trials or lon-
gitudinal studies when repeated measurements, positive or negative to cer-
tain tests, are made on the same subject over time. Since many longitudinal
studies are lengthy, subjects undergoing longitudinal studies may drop-out
prematurely, resulting in a large class of distinct missingness patterns. One
important issue arising from the problem of drop-out is whether the drop-
out process is related to the measurement process. Drop-out processes can
be classified into three types: completely random, random and informative
drop-out (Rubin,1976, Little and Rubin, 1987). Completely random and
random drop-out are often referred to as being ignorable which indicates
that it is not necessary to specify a model for drop-out in a likelihood-
based analysis of the measurement process. Informative drop-out (ID), on
the other hand, is said to be non-ignorable as the drop-out mechanism
cannot be ignored when estimating parameters for the data. Diggle and
Kenward (1994) have demonstrated that there are biases in the parameter
estimated if such drop-out mechanism is not accommodated in the model.
Special modeling strategies are therefore required for inference when the
drop-out process is informative.
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2 Modeling Strategy

A modeling strategy for longitudinal binary data with informative drop-
out has been proposed. A conditional AR1 model with random intercepts
that accounts for population heterogeneity was proposed for the underlying
response and a logistic regression model for the drop-out process. Both the
probability of positive outcomes and that of drop-out were assumed to be
logit linear in some covariates and outcomes.

2.1 Background of Data Set

We will use a methadone clinic data set reported by Chan et al. (1998) to
demonstrate our models. This data set is a record of drug users enrolled in a
methadone maintainance treatment (MMT) programme at a clinic in West-
ern Sydney in 1986. The record consists of several information including
drug user’s weekly urine test result that are positive (Y = 1) or negative
(Y = 0) to morphine, a biological marker for heroin use, the dosage of
methadone d in milligram (mg) at the time of urine test and also their
duration of treatment in weeks t. There are 136 heroin users, submitting a
total of 2,872 urine screens with 16% of them being positive for heroin. The
dosage of methadone averaged over the 2,872 incidents is 64mg. Each user
submitted 4 to 26 weekly outcomes and the average number of treatment
weeks per heroin user is 21.1 weeks. 51 drug users dropped out before the
end of 26 weeks and the rest having 26 outcomes were regarded as having
completed the program. For all analyses, each urine screen result rather
than each patient served as the unit of analysis.

2.2 Models

Let Yit denote the binary outcome for patient i in week t. The vector of all
possible outcomes for patient i can be separated into

Y i = (Yit)′ = (Yi1, · · · , Yi,ni︸ ︷︷ ︸
ObservedY ′

oi

, Yi,ni+1, · · · , Yi,n︸ ︷︷ ︸
UnobservedY ′

mi

)′

where ni denotes the number of observed Yit and the vector of all outcomes
is denoted by Y ′ = (Y ′

1,Y
′
2, · · · ,Y ′

I).
Similarly, let Rit denote the drop-out indicator for patient i in week t such
that Rit = I(t > ni) where Rit=1 if Yit is unobserved (t > ni) and zero
otherwise. Then the vector of all drop-out indicators R for patient i is
Ri = (Rit)′ which is a series of ni ’0’ followed by 26 - ni ’1’.
For the outcome model, the conditional probabilities of heroin use are logit
linear in a random intercept ui and some covariates and as well as the
’previous outcomes’ Yi,t−1:

logit[Pr(Yit = 1|Yi,t−1,β)] = ηit = ui + βo + βddit + βt ln t+ βpvYi,t−1.
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TABLE 1. Parameter estimates and s.e. (in italic) in models with and without
ID (Int=Intercept, Prev=Previous, Pres=Present, Var=Variance).

Model Int Dose Time Prev Pres Var
without ID β -0.643 -0.016 -0.421 1.430 1.837

0.405 0.006 0.072 0.140 0.414
with ID β -0.640 -0.0164 -0.351 1.410 1.839

0.386 0.006 0.077 0.143 0.439
α -6.460 0.695 2.039

0.986 0.265 0.763

For the ID model, the conditional probabilities of drop-out are logit linear
in some covariates including the ’present outcomes’ Yi,t which signify ID:

logit[Pr(Rit = 1|Yit,α)] = ζit = αo + αt ln t+ αpsYi,t

for t ≤ ni such that the present outcomes Yi,t are unobserved. When t =
ni + 1 and ni < 26, the ’present outcome’ Yi,ni+1 is unobserved. Taking
condition on the two possible values of Yi,ni+1, we have

logit[Pr(Ri,ni+1 = 1|Yi,ni+1 = h,α)] =
ζi,ni+1,h = αo + αt ln t+ αpsh, h = 0, 1.

A vector of parameters for the whole model is θ = (β′,α′)′. Parameters of
the model were estimated using Bayesian approach via Gibbs sampler and
were implemented conveniently using WinBUGS package.

3 Results

We refer to Table 1 for a summary of our main results. Regarding the result
of model with ID modeling, we found that reduced heroin use is signifi-
cantly associated with increase in methadone dose and increase in duration
of treatment. There is also a strong and positive association between the
present and previous outcomes suggesting that some patients in treatment
tend to use heroin continuously while others do not. Aparting from these
covariates, the variance of the random intercepts is also significant showing
the specificity of patients of the treatment. We even found that the positive
and significant random intercepts help us to identify the heavy drug users
of the programme. The significant parameters in the drop-out model, on
the other hand, suggest that patients staying longer in the treatment are
more likely to drop-out. Patients having take drugs are more likely to be
absent for the coming urine test.
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3.1 Discussion

Comparing the parameter estimates of models with and without informa-
tive drop-out modeling, they are more or less the same except that corre-
sponding to time effect. The time effect (-0.351) in the drop-out modeling
is decreased by 17% in magnitude or 7% in odds. This finding helps us to
justify our concern on time effect. We are worrying the time effect of the
treatment may be primarily due to the drop-out of heavy drug users which
in turn leads to an impression that if patients stay longer in the treatment,
they will reduce using drug. Now, we found that the time effect is indeed
weaker after accounting for the drop-out process of the data which suggests
some time effect may be because of the drop-out of heavy drug users.
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1 Introduction

Model-building is a complex procedure involving (i) the specification of an
appropriate class of models; (ii) the selection of a ‘best’ model; (iii) model-
fitting; and (iv) model-checking. In practice there are typically several cy-
cles of fitting, because model-building is an iterative, interactive process as
in the Box-Jenkins modelling of time series (Box et al, 1994). It may even
be the case that more data are collected and new models entertained during
the modelling cycle. Key considerations are the objectives of the study and
the background knowledge - the context. In my work on Pragmatic Statis-
tical Inference, I have explicitly included the context in the mathematical
description of the problem (Chatfield, 2002). Another important decision
is whether to use a black-box type of model or a structural model that
accounts for specific physical features.
This paper concentrates on model selection and the related issues of data
mining and model uncertainty.

2 Prelude

Consider the following ‘typical’ time-series problem. You have five years
of monthly data and forecasts are required up to 12 months ahead. What
would you do?
A standard approach would be to choose a family of possible models (e.g.
the ARIMA class), look at the time plot and the sample autocorrelation
function, try plausible models within the ARIMA family and choose a ‘best’
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model in some way. Then the analyst typically makes inferences and fore-
casts conditional on the selected model being ‘true’. Statisticians all do this
sort of thing but should they? The standard analysis ignores:

(1) The effects of Data Mining (DM). The model has been selected from
the data.

(2) Model Uncertainty (MU). Uncertainty about the structure of the model
is arguably the most important source of uncertainty, but also the
least understood.

3 Model Selection

As well as finding out about any background knowledge, the analyst will
typically begin by carrying out some form of Initial Data Analysis (e.g.
Chatfield, 1995a, Chapter 6). Sometimes a model is selected subjectively
using the results of this initial examination of the data, by using the ana-
lyst’s experience to match an appropriate model to the observed character-
istics. However, we concentrate here on the use of model-selection criteria.
We cannot simply choose a model to give the best fit by minimizing the
residual sum of squares, as this takes no account of the model complexity –
the number of parameters fitted. There is an alternative fit statistic, called
adjusted-R2, which attempts to take account of the number of parameters,
but more sophisticated model-selection statistics are generally preferred.
Akaike’s Information Criterion (AIC) is the most commonly used and
is given (approximately) by:

AIC = −2 ln(max. likelihood) + 2r,

where r denotes the number of independent parameters that are fitted for
the model being assessed. Thus the AIC essentially chooses the model with
the best fit, as measured by the likelihood function, subject to a penalty
term, to prevent over-fitting, that increases with the number of parame-
ters in the model. For an ARMA(p, q) model, note that r = p + q + 1 as
the residual variance is included as a parameter. Ignoring arbitrary con-
stants, the first (likelihood) term is usually approximated by N ln(S/N),
where S denotes the residual sum of squares, and N is the number of
observations. It turns out that the AIC is biased for small samples, and
a bias-corrected version, denoted by AICC, is increasingly used. The lat-
ter is given (approximately) by replacing the quantity 2r in the ordinary
AIC with the expression 2rN/(N − r− 1). The AICC is recommended, for
example, by Brockwell and Davis (1991, Section 9.3) and Burnham and
Anderson (2002).
An alternative, widely used, criterion is the Bayesian Information Cri-
terion (BIC) that essentially replaces the term 2r in the AIC with the
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expression (r + r lnN). This penalizes the addition of extra parameters
more severely than the AIC.
Several other possible criteria have also been proposed - see Burnham and
Anderson (2002) for a general review. Note that all the criteria may not
have a unique minimum and depend on assuming that the data are (ap-
proximately) normally distributed. Although dimensionless, the arithmetic
value of a statistic like the AIC is hard to interpret unless it is first sub-
tracted from the value for the ‘best’ model. A rule of thumb is that models
having an AIC within 2 or 3 of the minimum value are ‘good’, while models
with differences greater than about 8 should be discarded. Following the
results in Faraway and Chatfield (1998), I generally prefer to use the AICC

or BIC. Computer packages routinely produce numerical values for several
such criteria so that the analyst can pick the one he or she likes best. The
guiding principle throughout is to apply the Principle of Parsimony, which
says ‘Adopt the simplest acceptable model ’.
An alternative approach to model selection relies on carrying out a series
of hypothesis tests. Econometricians tend to favour this approach and may
test null hypotheses for such attributes as normality, constant variance,
unit roots and non-linearity. However, little will be said here about this
approach, because the author, like most statisticians, prefers to rely on
the subjective interpretation of diagnostic tools (such as the correlogram
for time-series data) allied to the model-selection criteria given above. My
reasons for this preference are as follows:

1. A model-selection criterion gives a numerical-valued ranking of all
models, so that the analyst can see if there is a clear winner or,
alternatively, if there are several close competing models.

2. It is difficult to use hypothesis tests to compare non-nested models.

3. A hypothesis test requires the specification of an appropriate null
hypothesis, and effectively assumes the existence of a true model that
is contained in the set of candidate models.

Of course, there is a real danger that the analyst will try many different
models, pick the one that appears to fit best according to one of these
criteria, but then make predictions as if certain that the best-fit model is
the true model. Further remarks on this problem are made in Section 4.

4 Data Mining

What exactly is Data Mining (DM)? Is it ‘good’ or ‘bad’? Is it ‘getting
as much as you can out of a set of data’, or ‘squeezing your data dry
and perhaps finding spurious relationships’? Typically analysts try several
models, pick the ‘best’ one, and then behave as if this was the only model
fitted. This is dangerous. For example, in multiple regression, the analyst



82 Aspects of Model Selection

may try p explanatory variables and select q < p ‘significant’ variables.
If we then take (q + 1) as the model D.F., this disregards the fact that q
itself has been estimated from the data. As a result, the variance of out-of-
sample predictions will be under-estimated. There are similar problems in
hypothesis-testing when a hypothesis is generated and tested on the same
data. Problems are likely to be most serious for observational data (e.g. time
series) and least serious for designed experiments with prior hypotheses
(e.g. clinical trials).
The term DM has been around for many years and, in particular, is used in
the econometrics literature to mean data-dependent specification searches.
An alternative description is Data-Dredging, and this may be preferable
because the term DM is also used by computer scientists to denote the very
different activity involved in extracting previously unknown and potentially
useful information from databases that may be large, noisy and have miss-
ing data. This form of DM is sometimes called Knowledge Discovery
in Databases or KDD. Techniques used here include various classifica-
tion tools, neural nets, genetic algorithms, and clustering methods – see
for example Hand (1998) and Hastie et al (2001). Computing hype makes
grandiose claims, which are not always borne out by results. There are
substantial differences from DM as used in statistical model-selection. For
computer science DM, the data have often been collected electronically for
some other purpose and are often non-numerical. Datasets are very, very
large (meaning millions+). It is no longer possible to ‘look’ at all the data,
and any analysis has to be automated. It is more usual to ‘apply an al-
gorithm’ rather than ‘fit a model’. Small differences may be statistically
significant, but are they of practical importance? Is a significance test valid
anyway? Local patterns are of interest, but how do we distinguish those
that arise by chance? (e.g. Fraud detection looks for unusual patterns.)
Clearly, there is much of interest here for statisticians.
Returning to Statistical DM, or Data-Dredging, we note that it is often seen
as a rather suspect activity. However, this should really depend on how it
is applied. A possible way to describe a ‘good’ version of DM is: Trying
many different models on a set of data as a way of generating hypotheses.
However, a ‘bad’ version of DM is to try many different models on a set of
data and then behave as if the ‘best’ model is true and the only one that
has been fitted.
Surprisingly little seems to be known about the effects of data-dependent
model specification (Chatfield, 1995b). Data dredging yields models which
overfit the data and may be poor at out-of-sample predictions. Likewise
tests on hypotheses generated by the data are likely to be ‘significant’
when the same data are used for the test.
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5 Model Uncertainty

When building a model, it is easy to forget that there is probably no such
thing as a ‘true’ model (except in simulation exercises), and that all models
are tentative and approximate. Yet statistical theory typically assumes we
know the true model.
Nowadays computers let us look quickly at tens, or even hundreds of mod-
els. Thus, we effectively admit MU by searching for the ‘best’ model but
then ignore MU when making inferences. If we formulate and fit model to
the same data (the usual situation!), it is easy to show that standard the-
ory does not apply. There can be large model-selection biases, especially in
time-series modelling, and in multiple regression (Chatfield, 1995b). Sta-
tisticians are much more familiar with two other sources of uncertainty,
namely parameter uncertainty, assuming the model is known, and unex-
plained random variation. In my experience, uncertainty arising from esti-
mating parameters is usually much less important than uncertainty about
the model structure, but gets far more attention. Structural uncertainty
can arise, not only through incorrect model selection, but also because the
underlying model is changing through time, or because there is no ‘true’
model anyway. One immediate consequence of model uncertainty is that
out-of-sample forecasts generally have poorer accuracy than expected from
within-sample fit.
Some alternatives to trying to pick a ‘best’ model are to combine several
plausible models, to fit different models to different parts of data or to
use a model whose parameters are allowed to adapt through time. Further
details on the effects of model uncertainty, and ways of dealing with it, are
given by Chatfield (1995b; 1996; 2001, Chapter 8).

6 Postscript

My most recent large-scale modelling exercise (Zidek et al, 2003), on ex-
posure to air particles (PM10), has been very different to my previous ex-
perience in time-series analysis. Much of the model was pre-specified from
environmental considerations and the major effort was in collecting, and
handling fairly large datsets (for example one year’s hourly observations
gives 8760 observations). From bitter experience, here are some tips. (1)
There will be data peculiarities; (2) Check the first and last lines of the data
carefully; (3) Check there are the right number of lines of data; (4) Check
the effects of changing to summertime - if one day has 25 observations, this
can ruin the analysis! Dealing with practical modelling problems like this
is at least as important as understanding relevant theory.
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ing risk leads to a focussed information criterion, the FIC, for model selection.
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1 Motivation

The traditional use of model selection methods in practice is to proceed as
if the final selected model had been chosen a priori, without acknowledging
the additional uncertainty introduced by the model selection step. As a
consequence, coverage probabilities of confidence intervals conditional on
the selected model will often be much smaller than the nominal coverage
probabilities and variability might be underreported.
We discuss the topic of post-model selection and of frequentist model av-
eraging estimators and their asymptotic distributions. Existing results are
extended in several directions. We obtain risk properties of estimators-post-
model selection as well as of estimators averaged across models, and take
modelling bias explicitly into account. Our methodology is applicable to
any model selection mechanism and to general modelling settings, which
include regression models and generalized linear models.
The model averaging work naturally leads to a new class of model selection
criteria which put special focus on the parameter singled out for inference.
This leads to a focussed or concentrated information criterion.
For more information and details we refer to Hjort and Claeskens (2003)
and Claeskens and Hjort (2003).
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FIGURE 1. Coverage probability when ignoring a model selection step in AIC
model choice between four models, as a function of location in a local alterna-
tive model space. The nominal coverage probability is 95%, while the minimum
obtained coverage value equals 0.748.

2 Post-model Selection Estimators

The need to study the asymptotic behaviour of estimators after model
selection is clearly illustrated when considering coverage probabilities. Fig-
ure 1 shows the coverage deficiency when ignoring a model selection step in
further inference for Akaike’s information criterion AIC choosing between
four models: model (1) is the minimal model, models (2) and (3) each add
one extra variable to the minimal model and model (4) adds both of these
variables. The intended nominal coverage probability is 95%.
The key to derive properties of post-model selection estimators is that these
estimators can be considered as special cases of estimators averaged across
models. Consider a collection of possible models. Using the data at hand, a
model selector will pick a single one of these models, for example that model
with best predictive qualities or smallest distance to the in some sense
true model. We can write the post-model selection estimator as a weighted
average of the estimator of μ in the different models under consideration,
where the random weight function is one if this model is the one selected by
our data-dependent selection criterion, and is zero otherwise. Particularities
of the specific mechanism, such as for example AIC or BIC, are contained
in this indicator function. Post-model selection estimators are a substantial
motivation to study frequentist model averaging estimators in general.



Claeskens and Hjort 87

3 Frequentist Model Averaging

When interest is in finding a best parameter estimate, and not as much
in model selection, an interesting area is frequentist model averaging. A
general class of model averaging estimators weights estimators in different
models by, typically, data dependent weights, summing to one. Note that
the class of model average estimators includes the post-model selection
estimators as a special case. A general model averaging estimator, however,
bypasses the model selection step.
From a frequentist perspective, not many results are known about model
averaging, however, see Hjort and Claeskens (2003). This is in contrast to
the Bayesian literature, where many methods have been discussed, partly
focussing on algorithmic matters. In Bayesian model averaging, priors are
put on all of the models under consideration. Here we take a purely non-
Bayesian approach to the problem.
As a main result we obtain the limiting distribution of the model averaging
estimators, which is a suitable convex mixture of Gaussian random vari-
ables, of which the mixing coefficients are largely determined by the choice
of weights. The asymptotic distribution of the estimators is obtained in the
local misspecification framework where the true parameter is at a distance
1/

√
n from the parameter used in our models. This encompasses for each

subset model the possibility that this particular submodel is correct and
the others incorrect. We obtain expressions for the limiting mean squared
error of the model average estimators in this setting. The limiting distribu-
tion of model averaging estimators also leads us to expressions for the real
coverage probability of confidence intervals when the model uncertainty
is ignored, this to learn about how much can be lost in the traditional
approach. We used this methodology to obtain Figure 1 presented above.
Since the correct limiting distribution is non-normal, we need formulae
for constructing asymptotically correct confidence intervals. These formu-
lae can be derived from the limiting distribution, see Hjort and Claeskens
(2003) for details.

4 Parameter Adaptive Model Selection

Asymptotic expressions for risk functions of model averaging and post-
model selection estimators are a function of the estimated parameter. This
poses the question of whether model selection criteria can and should be
made parameter adaptive. While model selection criteria such as AIC and
BIC, along with several variations, aim at selecting a single model with good
overall properties, none of these methods is concerned with the actual use
of the selected model, which varies with application and context. A model
which gives good precision for one estimand might be worse when used for
another estimand. This indicates that improvement might be possible if
focus is restricted to the selection of a model for a specific parameter.
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FIGURE 2. Asymptotic risk of the model selection criteria (i) AIC and (ii) FIC,
the focussed information criterion, for model selection amongst four models. Risk
is depicted as a function of location in the local alternative model space.

We construct an unbiased estimator of the asymptotic risk expression which
leads to a new type of model selection criterion which focusses on the
parameter of interest. The framework is that of large-sample likelihood
inference. We investigate properties of this new criterion and discuss some
connections to the AIC. Figure 2 shows the different behaviour in risk for
(i) AIC model selection amongst 4 models (see earlier) and (ii) selection
using the focussed information criterion FIC.

5 Applications

A first application is averaging over logistic regression models. The data
contain information on factors that might influence the birth weight of
babies. The classical AIC and BIC criteria do not select the same model
for these data. Interest is in estimating the probability of low birth weight
for babies of the average ‘white’ and ‘black’ mothers, and for the ratio
of these two probabilities. The focussed information criterion is applied to
select a model for each of these parameters of interest and suggests different
variables to be included for the different parameters. Note that both AIC
and BIC provide only one best model, ignoring the focus parameter. Further
we apply several model averaging strategies to estimate these parameters
along with standard deviations and confidence bounds.
A second application consists of averaging over covariance structure mod-
els. We use data from the Adelskalenderen of speedskating, which lists the
best speedskaters ever, as ranked by their personal best times over the four
distances 500, 1500, 5000 and 10000 m. The correlation structure of the
4-vector of times is important when relating performances on the different
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distances. We illustrate how models for the covariance structure are av-
eraged to form estimators of quantities of interest. Also here, our theory
provides methodology to obtain standard errors and confidence intervals.
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José Cortiñas Abrahantes1 and Tomasz Burzykowski1

1 Center for Statistics Limburgs Universitair Centrum, Universitaire Campus,
Building D, B 3590 Diepenbeek, Belgium

Abstract: Proportional hazards models with random effects (frailties) have been
the focus of the research on methods of analysis of multivariate failure-time data.
Several estimating methods have been proposed to tackle the problem of the
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1 Introduction

Proportional hazards models with random effects (frailties) acting mul-
tiplicatively on the baseline hazard have been the focus of the research
on methods of analysis of multivariate failure-time data for a long time.
Initially, the research concentrated on univariate (shared) frailty models.
The models have some limitations. Therefore, multivariate frailty models
have started to attract some attention. Several estimating methods have
been proposed to tackle the problem of the estimation of the parameters
(Xue and Brookmeyer, 1996; Vaida and Xu, 2000; Ripatti et al, 2002). In
this paper an alternative fitting approach is considered. It is based on a
modification EM algorithm, in which the Laplace approximation is used
at the E-step. We consider clustered failure-time data with N clusters.
The failure-time variable corresponding to subject j (i = 1, . . . , ni) from
cluster i (i = 1, . . . , N) is denoted by Tij . It is assumed that observations
of Tij can be right-censored. Thus, for subject j in cluster i, we observe
Yij = min(Cij , Tij), where Cij is a random censoring time independent of
Tij . Additionally, a censoring indicator δij is observed, with δij equal to 1
if Yij = Tij , and 0 if Yij = Cij . The following mixed-effects proportional
hazards model for Tij is considered:

λ(tij |βi, bi) = λ0(tij) exp(xTijβi + zTijbi),
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where λ0(t) is the baseline hazard function, βi is a vector of cluster-specific
fixed-effects corresponding to a vector of covariates xij , and bi is a vector
of random effects associated with a vector of covariates zij . The bi are
assumed randomly distributed with mean 0 and variance-covariance matrix
D = D(θ). The density function of bi is denoted by f(t). Its specification
is not necessary at this point; later on we will assume that it corresponds
to a mean-zero multivariate normal distribution.
The estimation of the parameters βi and θ from the observed data on
Tij is our main interest. Assuming the conditional independence of the
observations given bi, one might write the (conditional) log-likelihood for
the observed data in the ith cluster:

li(βi, λ0|bi) =
ni∑
j=1

{δij [logλ0(tij)+xTijβi+z
T
ijbi]−Λ0(tij) exp(xTijβi+z

T
ijbi)}.

The (marginal) likelihood of the observed data for all clusters can then be
expressed as follows:

L(βi, θ, λ0) =
N∏
i=1

∫
L
i (βi, θ, λ0, bi)dbi, (1)

where

L
i (βi, θ, λ0, bi) =
ni∏
i=1

eli(βi,λ0|bi)f(bi, D(θ)). (2)

Note that (2) can be treated as the likelihood of the “augmented” data for
cluster i, treating bi as additional observations. Consequently,

L
(β, θ, λ0, b) =
N∏
i=1

L
i (βi, θ, λ0, bi), (3)

is the likelihood of the “augmented” data for all clusters, with β and b
denoting vectors resulting from “stacking” vectors βi and bi, respectively,
for all clusters.

2 The EM Algorithm and Issues in the
Implementation

The EM algorithm consists of two steps: the E-step and the M-step. Start-
ing from initial values of parameters βi, θ and λ0, the algorithm iterates
between the E-step, and the M-step. The algorithm is iterated until con-
vergence is reached.
At the E-step the expectation of the logarithm of the likelihood (3), con-
ditional on the observed data and the current values β̃i, θ̃ and λ̃0 of pa-
rameters βi, θ and λ0, is required. The expectation will be denoted by
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Q(βi, θ, λ0). It appears that it can be expressed as:

Q(βi, θ, λ0) = Q1(βi, λ0) +Q2(θ), (4)

where Q1(βi, λ0) is equal to:

N∑
i=1

ni∑
j=1

{δij [logλ0(tij)+xTijβi+zTijE(bi)]−Λ0(tij) exp[xTijβi+log E(ez
T
ijbi)]}

and

Q2(θ) =
N∑
i=1

E[log f(bi)],

with E(.) denoting expected values (conditional on the observed data and
the current values of the parameters).
In the M-step, new estimates β̃i and θ̃ are found by maximizing the func-
tions Q1 and Q2, respectively. The use of the EM algorithm, as described
above, is complicated by the need to compute the conditional expected
values at the E-step. The expectations involve integrals of the form

E{g(bi)} =
∫
g(bi)eli(β̃i,λ̃0|bi)+log f(bi;D(θ̃))dbi∫
eli(β̃i,λ̃0|bi)+log f(bi;D(θ̃))dbi

. (5)

Usually, they will not be available in a closed-form. To compute them, Xue
and Brookmeyer (1996) proposed to use numerical integration. Vaida and
Xu (2000) and Ripatti et al (2002) proposed to use MCMC methods. An al-
ternative solution, not yet considered in the literature, is to use the Laplace
approximation (Evans and Swartz 2000). Using the Laplace approximation,
it can be shown that the integrals (5) can be approximated by

E{g(bi)} ≈ g(b̂i) , (6)

where b̂i is an isolated global maximum of

K(bi) = − 1
ni

[li(β̃i, λ̃0|bi) + log f{bi;D(θ̃)}] . (7)

Though computing the approximation requires finding the maximum of
the function K(), it is numerically less demanding than, e.g., numerical
integration or MCMC sampling.
The variance covariance matrix of the solution (β̂i, λ̂0, θ̂) obtained from the
EM algorithm, can be estimated using the inverse of the observed Fisher
information matrix. The latter matrix can be computed by the formula
developed by Louis (1982).
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3 Application and Simulation Study

A practical application is considered in the context of the validation of sur-
rogate endpoints. Two datasets, coming from multiple randomized cancer
clinical trials, are analyzed. The first one includes data from two multicenter
trials in advanced colorectal cancer, aiming at the evaluation of the benefits
of experimental fluoropyrimidine treatments vs. the use of 5-fluorouracil
(5FU). The second data set contains four randomized multicenter trials
in advanced ovarian cancer. The trials compared the treatment with cy-
closphosphamide plus cisplatin vs. the treatment with cyclosphosphamide
plus adriamycin plus cisplatin. To assess the validity of disease-free survival
time (Sij) as a surrogate for overall survival time (Tij), the following pro-
portional hazards model, with center-specific, random treatment effects bSi
and bTi and unspecified baseline hazards λSi and λTi (stratified by center),
is fitted to each of the data sets:

λSij(sij |βSi, bSi) = λSi(sij)ex
T
ijβSi+Z

T
ijbSi , (8)

λTij(tij |βTi, bTi) = λTi(tij)ex
T
ijβTi+Z

T
ijbTi . (9)

Note that in (8)–(9) i and j denote the center and the patient, respectively,
and Zij is a binary covariate indicating the treatment group. The random
treatment effects bSi and bTi are assumed to follow a mean-zero bivariate
normal distribution. The parameter of interest is the square of the correla-
tion between the random treatment effects, as it is related to the precision
of the prediction of the treatment effect on the true endpoint T from the
effect on the surrogate S. The results obtained from model (8)–(9) are com-
pared to those obtained by Burzykowski et al (2001) using copula models.
In general, the point estimates of the parameter of interest are comparable,
while the estimates of the standard error are smaller for model (8)–(9).
A simulation study, in which clustered bivariate failure-time data are gen-
erated under a model similar to (8)–(9), but with non-stratified baseline
hazards and correlated random intercepts instead of the random covariate
effects. Several configurations of the parameters of the simulation model
are considered, allowing for the investigation of the performance of the
proposed estimation method in function of the number of clusters, the
number of subjects per cluster, the percentage of censored observations,
the variances and the correlation associated with the random effects. The
following results of the simulations, pertaining to the estimation of the
variance-covariance structure of the random effects, are observed:

• the correlation between the random intercepts is underestimated,
while their variances are overestimated;

• the absolute relative bias in the estimates of the variances and the
correlation depends on the cluster size ni: it is around 20−30% when
ni = 20, and drops below 10% when ni ≥ 50;
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• there is almost no effect of the number of clusters N on the absolute
relative bias of the estimates of the correlation;

• the absolute relative bias of the estimates for the variances decreases
with N ; for N = 10, 20 underestimation is observed, while for N =
50, 100 an overestimation appears.

• the absolute relative bias for the correlation increases with the mag-
nitude of the correlation;

• 20% of censoring slightly increases the bias;

• in general, the use of the observed Fisher information matrix, com-
puted by the method of Louis (1982), leads to only a slight underes-
timation of the standard errors of the estimated parameters.

4 Concluding Remarks

In summary, one may conclude that the proposed method of the estimation
of proportional hazards models with random effects does offer an advantage
in terms of the numerical complexity, as compared to the other proposals
based on the EM algorithm (Xue and Brookmeyer, 1996; Vaida and Xu,
2000; Ripatti et al, 2002). Due to the asymptotic nature of the Laplace ap-
proximation, however, the proposed method does require sufficient amount
of data per cluster to provide reasonable results.
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remarks with the analysis of a large set of mortality data indexed by age of death
and year of death.

Keywords: Mortality; P -splines; Extrapolation; Smoothing; Two-dimensions.

1 Introduction

The method of P -splines (Eilers and Marx, 1996) is now well established
as a method of smoothing in generalized linear models (GLMs). A succinct
summary of the method is: (a) use B-splines as the basis for the regression,
and (b) modify the log-likelihood by a difference penalty on the regression
coefficients. Wand (2003) gives a most useful overview which highlights the
wide class of models that can be fitted with the P -spline approach.
Durban, et al (2002) introduced a two-dimensional P -spline model for Pois-
son data in which the regression matrix was defined in terms of the Kro-
necker product of the regression matrices of two one-dimensional P -spline
models. The present paper shows that P -splines provide a natural method
of extrapolating the fitted mortality rates forward in time. The role of the
order of the penalty is shown to be of particular importance. We illustrate
our remarks with the analysis of the same set of mortality data as our 2002
paper.
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2 Description of the Data

The failure to predict accurately the fall in UK mortality rates from the
1970s to date has had far-reaching consequences for the pensions and an-
nuity business of the UK insurance industry. The Continuous Mortality
Investigation Bureau (CMIB) has responsibility for monitoring and pre-
dicting mortality rates. In this paper we consider one of the CMIB data
sets, namely that for male assured lives. For each calendar year (1947 to
1999) and each age (11 to 100) we have the number of years lived (the expo-
sure) and the number of policy claims (deaths). We use a Kronecker prod-
uct P -spline model (Durban, et al., 2002) and a system of prior weights to
predict mortality rates for 1975-1999 using the data from 1947-1974. The
comparison between the observed rates for 1975-1999 and our predicted
rates provides a good test of our method.

3 Extrapolating Mortality Tables

Our data consists of two matrices, Y and E, whose rows are indexed by
age (here 11 to 100) and whose columns are indexed by year (here 1947
to 1999). The matrix Y contains the number of claims (deaths) and the
matrix E contains the exposures. Thus R = log(Y /E) is the matrix of
raw log hazards. Durban, et al (2002) showed how to smooth R by using a
2-dimensional extension of the P -spline model of Eilers and Marx (1996).
The smoothing is achieved by using a penalized generalized linear model
(PGLM) for Y with Poisson errors and appropriately defined regression
and penalty matrices.
We define the regression matrix in terms of the Kronecker product of two 1-
dimensional regression matrices. Let Ba = B(xa), na× ca, be a regression
matrix of B-splines based on the explanatory variable xa; in our example,
x′
a = (11, . . . , 100) so na = 90 and ca is typically about 20. Similarly, let
By = B(xy), ny × cy, be a regression matrix of B-splines based on the
explanatory variable xy; in our example, x′

y = (1947, . . . , 1999) so ny = 53
and cy is typically about 10. The regression matrix for our 2-dimensional
model is the Kronecker product

B = By ⊗Ba. (1)

This formulation assumes that the vector of observed claim numbers y =
vec(Y ), (this corresponds to how Splus stores a matrix). Note that B has
nany rows and cacy columns, so is typically 4770 by 200. The model is, at
present, a standard GLM: y = μ+ ε where logμ = log e+Ba and log e,
e = vec(E), is the usual offset in a log linear model for mortality data.
This regression model will usually be over-parameterized (len (a) ≈ 200) so
we introduce a penalty on a. (Durban, et al, 2002) show that an appropriate
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penalty matrix is

P = λaIcy ⊗D′
aDa + λyD

′
yDy ⊗ Ica (2)

where Ica is an identity matrix of size ca and Da is a difference matrix
with dimension (ca − pa) × ca where pa is the order of the penalty on age;
similar definitions apply for Icy and Dy. For given values of the smoothing
parameters λa and λy the model is fitted by penalized likelihood and the
penalized version of the scoring algorithm

(B′W̃B + P )â = B′W̃Bã+B′(y − μ̃). (3)

Here, ã, μ̃ and W̃ = diag(μ̃), the diagonal matrix of weights, denote
current estimates, and â denotes the updated estimate of a; additionally,
logμ = log e + Ba, the canonical link. Finally, the smoothing parame-
ters can be selected by optimising with respect to the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC), for example.
We perform extrapolation with the following simple device: we define a
weight matrix V = blockdiag {I, 0} where I is an identity matrix of size
nany1 and 0 is a square matrix of 0’s of size na(ny−ny1). We have in mind
using ny1 years of data as a training set and extrapolating the remaining
ny − ny1 years. Alternatively, we can take I to have size nany and extrap-
olate into the future. To accommodate the weight matrix V we modify the
scoring algorithm (3) as follows:

(B′V W̃B + P )â = B′V W̃Bã+B′V (y − μ̃) (4)

where any unknown values in y and e can be given arbitrary values.
Example: We illustrate our methodology by using the 1947-1974 data to
predict the 1975-1999 rates. Figure 1 shows the fitted and extrapolated
log(mortality) values for ages 35 and 60. The fit used cubic B-splines and
second order difference penalties; the smoothing parameters were chosen
using BIC. Confidence intervals are also included and we note that the
observed rates for 1975-1999 for both ages are comfortably within their
respective 95% confidence funnels.

4 The Role of the Order of the Penalty

In the previous section we used a quadratic penalty, pa = py = 2. In this
section we examine the conventional wisdom that the order of the penalty
has only a small effect on any smoothed values. Figure 2 shows the results
of fitting and extrapolating using first order (pa = py = 1), second order
(pa = py = 2) and third order penalties (pa = py = 3). We make two
comments: first, the order of the penalty has no discernible effect on the
smooth of the training data; second, the order of the penalty has a dramatic
effect on the extrapolated values. In this paper we have concentrated on
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FIGURE 1. Observed, fitted and extrapolated log(hazard) with 95% confidence
intervals for pa = py = 2. Left panel: age 35, right panel: age 60.

the 2-dimensional problem but it is clear from (4) that the method can be
applied in 1-dimension. In this case it can be shown that the extrapolation
works by extrapolating the regression coefficients and these extrapolations
are constant, linear or quadratic depending on the order of the penalty. This
result is approximately true in 2-dimensions, as is evident from Figure 2. We
make some further comments on this property in our concluding remarks.

5 Conclusions

The failure to predict accurately the fall in mortality rates has had far-
reaching consequences for the UK pensions and annuity business. What
comfort can be drawn from the results presented in this paper? We compare
the predicted mortality rates from 1975-1999 with the observed rates over
the same period and draw two main conclusions.
First, the predicted rates are higher than the observed rates for nearly
all ages. Visual inspection of the observed rates suggests that it is unlikely
that the sharp fall in mortality that occurred from the 1970’s to the present
could have been predicted back in the 70’s.
Second, from 1975 to date, the observed rates lie at about one standard
error below the predicted rates and are comfortably within the confidence
funnel of the predicted rates. In view of the variation in the mortality rates
observed before 1975 this suggests that a prudent course is to allow for this
variation by discounting the predicted rates by a certain amount. If this
discount had been set at one standard error then the resulting ‘prudent’
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FIGURE 2. Observed, fitted and extrapolated log(hazard) for pa = py = 1, 2 and
3 in turn. Left panel: age 35, right panel: age 60.

predictions would have been very close to what actually happened. Our
view is that some such discounting procedure is the only reasonable way of
allowing for the uncertainty in these, or indeed any, predictions.
We also make two general remarks on our method. First, we emphasise
the critical role of the order of the penalty, pord. The choice of the order
of the penalty corresponds to a view of the future pattern of mortality:
pord = 1, 2 or 3 corresponds respectively to future mortality continuing at
a constant level, improving at a constant rate or improving at an acceler-
ating (quadratic) rate. We not only used BIC to choose the values of the
smoothing parameters for given value of pord we also used BIC to choose
the value of pord; the preferred value of pord was 2 and this was used to
produce Figure 1.
Second, in this paper we have been concerned with extrapolation forward
in time. However, the method is quite general. In one dimension we can
extrapolate both forward and backward while in two dimensions we can
extrapolate a rectangular data set in any direction. All that is required are
the regression and penalty matrices, and the appropriate weight matrix.
The extrapolation is then effected by (4).
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Abstract: We discuss in this paper the problem of testing equality and inequality
constraints in univariate elliptical linear regression models. First, the problem of
testing the linear equality hypothesis H0 : Cβ = d against the linear inequality
hypothesis H1 : Cβ ≥ d, with at least one strict inequality in H1 (case 1)
and then, H1 : Cβ ≥ d against H2 : β ∈ IRp − H1 (case 2). This class of
models includes all symmetric continuous distributions, such as normal, Student-
t, Pearson VII, exponential power and logistic, among others. It is commonly
used for the analysis of data containing influential or outlying observations with
responses supposedly normal. Iterative processes for evaluating the parameters
under equality and inequality constraints are presented. Under regular conditions
the expressions of the statistics for three asymptotically equivalent statistical tests
as well as their asymptotic null distribution are given. An illustrative example
with presence of influential observations on the decisions from the statistical tests
of different elliptical models is presented. The robustness aspects of such models
are discussed.

Keywords: Hypothesis testing; Symmetric distributions; Multivariate one-sided
tests; Restricted estimation; Robustness.

1 Univariate Elliptical Linear Models

Let εi, i = 1, . . . , n, be independent random variables with density function
of the form

fεi(ε) =
1√
φ
g{(ε/

√
φ)2}, ε ∈ IR, (1)

where φ > 0 is the scale parameter, g : IR → [0,∞] is such that
∫∞
0
g(u2)du

< ∞. We shall denote εi ∼ El(0, φ). The function g(.) is called density
generator (see, for example, Fang, Kotz and Ng, 1990). Consider the linear
regression model

yi = μi + εi, i = 1, . . . , n, (2)

where μi = xTi β, xTi = (xi1, . . . , xin)T contains values of p explanatory
variables, y1, . . . , yn are the observed response values, and β = (β1, . . . , βp)T
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is the parameter vector. The model defined by (1)-(2) is called univariate
elliptical linear regression model. A joint iterative process to find the un-
restricted estimates β̂ and φ̂ is given by

β(r+1) = {XTD(v(r))X}−1XTD(v(r))y and (3)

φ(r+1) =
1
n
Qv(β(r+1)), for r = 0, 1, . . . , (4)

where Qv(β) = (y − Xβ)TD(v)(y − Xβ), D(v) = diag{v1, . . . , vn}, vi =
−2Wg(ui), ui = (yi − xTi β)2/φ and Wg(u) = g′(u)/g(u) with g(u) =
∂g(u)/∂u. We should start the iterative process (3)-(4) with initial values
β(0) and φ(0).

2 Restricted estimation

2.1 Equality Constraints

Suppose first we are interested in estimating the parameter vector β under
k linearly independent restrictions CT

j β − dj = 0, where Cj , j = 1, . . . , k,
are p × 1 vectors and dj , j = 1, . . . , k, are scalars, both known and fixed.
The problem here is to maximize the log-likelihood function L(θ) subject
to the linear constraints Cβ − d = 0, where C = (CT

1 , . . . ,C
T
k )T and

d = (d1, . . . , dk)T . Similarly to Nyquist (1991), that investigated this kind
of problem in generalized linear models, we shall apply the methodology of
penalty functions by considering a quadratic penalty function. The result-
ing iterative process is given by

β0(r+1) = {XTD(v(r))X}−1XTD(v(r))y + {XTD(v(r))X}−1CT ×[
C{XTD(v(r))X}−1CT

]−1

×[
d − C{XTD(v(r))X}−1XTD(v(r))y

]
, (5)

for r = 0, 1, . . ., where φ(r+1) is obtained from (4). The authors have devel-
oped a library in S-Plus and R to fit univariate elliptical linear models based
in some distributions and the iterative process (3-5) and more, some diag-
nostic graphics. This library is available in the web page www.de.ufpe.br
/∼cysneiros/elliptical/elliptical.html.

2.2 Inequality Constraints

The problem of maximizing log-likelihood functions restricted to linear in-
equality parameter constraints Cβ − d ≥ 0 have been investigated by
various authors (see, for instance, Robertson, Wright and Dykstra, 1988
and Fahrmeir and Klinger, 1994). Our primary interest is to obtain the
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maximum likelihood estimate of β, denoted by β̃, in model (1) subject
to the constraints Cβ − d ≥ 0; that is, we want to solve the problem
max{Cβ−d≥0} L(β, φ). We can apply the Kuhn-Tucker conditions to at-
tain the restricted maximum. These conditions are equivalent to finding β̃
from a searching procedure which consists in maximizing L(β, φ) subject
to CT

j β − dj = 0, j ∈ I, for each I ⊆ {1, . . . , k}. The inequality-restricted
problem reduces to a equality-restricted problem that may be solved by
the procedures given in Section 2.1.

3 One-sided Tests

3.1 Case 1

We shall consider in this section the problem of testing the hypotheses
H0 : Cβ = d against H1 : Cβ ≥ d, with at least one strict inequality in
H1. The usual statistics likelihood ratio, Wald and score take, in this case,
the forms

ξLR = 2

[
n

2
log

(
φ̂0

φ̃

)
+

n∑
i=1

log

{
g{(yi − xTi β̃)2/φ̃}
g{(yi − xTi β̂

0
)2/φ̂0}

}]
,

ξW =
4dg
φ̃

(Cβ̃ − d)T {C(XTX)−1CT }−1(Cβ̃ − d) and

ξSR =
φ̂0

4dg
{Uβ(β̂

0
, φ̂0) − Uβ(β̃, φ̃)}T (XTX)−1{Uβ(β̂

0
, φ̂0) −

Uβ(β̃, φ̃)},
respectively, where dg = E{W 2

g (Z2)Z2} with Z ∼ El(0, 1) and Uβ(β, φ) =
1
φX

TD(v)(y−Xβ). In addition, suppose the parameter space of β is open.
Under the regular condition given in Gourieroux and Montfort (1995, Sec-
tion 21.3) it follows that the statistics ξLR, ξW and ξSR are asymptotically
equivalent as a mixture of chi-square distributions, namely

Pr{ξLR ≥ c} =
k∑
�=0

ω(k, 
;Δ)Pr{χ2
� ≥ c} + o(1), (6)

where c ≥ 0, Δ = CK−1
ββC

T , Kββ = 4dg
φ (XTX), χ2

0 denotes the degenerate
distribution at the origin and ω(k, 
;Δ)’s are known as level probabilities
which are expressed as functions of correlation coefficients associated with
the matrix Δ. These correlation coefficients are the minimum information
necessary to compute the asymptotic null distribution given in (6) because
ω(k, 
;Δ) depends on Δ only through its correlation matrix. Examining the
expression of Kββ we can conclude that ω(k, 
;Δ) does not depend on β.
Then, the distribution given in (6) is unique and consequently invariant in
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the elliptical class. This property rarely occurs in other classes of regression
models such as generalized linear models (see, for instance, Paula and Sen,
1995).

3.2 Case 2

Now, we shall consider the hypotheses H1 : Cβ ≥ d against H2 : β ∈
IRp −H1. In this case, the usual statistics likelihood ratio, Wald and score
take the forms

ξcLR = 2

[
n

2
log

(
φ̃

φ̂

)
+

n∑
i=1

log

{
g{(yi − xTi β̂)2/φ̂}
g{(yi − xTi β̃)2/φ̃}

}]
,

ξcW =
4dg
φ̂

(Cβ̂ − Cβ̃)T {C(XTX)−1CT }−1(Cβ̂ − Cβ̃) and

ξcSR =
φ̃

4dg
Uβ(β̃, φ̃)T (XTX)−1Uβ(β̃, φ̃)T .

An important asymptotic result observed in the last section is the lack of
functional dependence of Δ = CK−1

ββC
T on β. The main consequence of

this fact is that the asymptotic null distribution of ξcLR, ξ
c
W and ξcSR for

the purpose of testing H1 against H2, is uniquely determined and given by

Pr{ξcLR ≥ c} =
k∑
�=0

ω(k, k − 
;Δ)Pr{χ2
� ≥ c} + o(1). (7)

4 Example

We shall reanalyze in this section the example discussed by Ramanathan
(1993) on a study in which seven variables were observed in 40 metropolitan
areas. The main interest is on regressing the number (in thousands) of
subscribers with cable TV (Y ) against the number (in thousands) of homes
in the area (X1), the per capita income for each television market with cable
(X2), the installation fee (X3), the monthly service charge (X4), the number
of television signals carried by each cable system (X5) and the number of
television signals received with good quality without cable (X6). Because
Y corresponds to count data we shall use a square root transformation in
order to stabilize the variance of Y . Then, we shall propose the model

√
yi = β0 +

6∑
j=1

βjxji + εi, i = 1, . . . , 40,

where εi ∼ El(0, φ) are mutually independent errors. In addition, it is
reasonable to assume some constraints. For example, it is expected that the
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number of subscribers decreases as the monthly service charge increases,
which leads to the restriction β4 ≤ 0. Following the same idea for the
remaining variables one has the constraints β1 ≥ 0, β2 ≥ 0, β3 ≤ 0, β5 ≥ 0
and β6 ≤ 0. Applying one-sided t tests we can notice indications that
the coefficients β2, β3 and β4 seem to be individually equal to zero, at
the significance level of 5%, while some doubt appears for the coefficient
β5 whose p-value is about 3%. The remaining coefficients β1 and β6 are
highly significant in the direction of the constraints. Thus, in order to
assess if the four coefficients β2, β3, β4 and β5 are jointly equal to zero, we
apply the statistical tests defined in Sections 3.1 to assess the hypotheses
H0 : β2 = β3 = β4 = β5 = 0 against H1 : β2 ≥ 0, β3 ≤ 0, β4 ≤ 0 and
β5 ≥ 0, with at least one strict inequality inH1. Our main conclusion of this
example based on diagnostic methods is that the transformation

√
Y seems

to stabilize the variance of the responses, but the Student-t with 6 degrees
of freedom, exponential power and logistic-II models are less influenced by
the outlying observation 14 than the normal model. The one-sided tests
based on these three fitted models indicate for the rejection of the null
hypothesis at the significance level of 5% while under the normal model
the rejection of the null hypothesis becomes evident only after dropping the
outlying observation 14. However, the Student-t model seems to be more
robust against the influential observation 1 than the other three models.
Continuating the selection procedure the Student-t model appears as the
best fitted model.

Acknowledgments: The first author received financial support from
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Brazil.
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Abstract: In this paper we consider historical volatilities at several time scales
measured by different ways, from standard deviations to ranges. Then we mod-
elling it by Generalized Inverse Gaussian distribution (GIG)and GIG mixtures
of Gamma distributions. If the basic model setting applies for an asset, then we
have to observe a Gamma distribution for sample variance on its returns. Gamma
distribution are included in GIG and testing Gamma is a way to check departures
from basic hypothesis.
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1 The Problem

The volatility is one of the most fundamental concepts in finance. It has
a major role in risk management and in pricing derivatives. However, it is
difficult to obtain a satisfactory estimation for this quantity . The problem
arises because the basic model for assets returns assumes constant volatili-
ties and the empirical evidence shows its evolution on time. Several ways are
usually considered to measure volatilities: historical volatilities, Black and
Scholes implied volatilities, stochastic volatility models, GARCH models...
In this paper we consider historical volatilities at several time scales mea-
sured by different ways, from standard deviations to ranges. Then we try
to modelling it by Generalized Inverse Gaussian distribution (GIG). If the
basic model setting applies for an asset, then we have to observe a Gamma
distribution for sample variance on its returns. Gamma distribution are in-
cluded in GIG and testing Gamma is a way to check departures from basic
hypothesis.
GIG is a family of infinitely divisible and self-discomposable distributions,
hence it is an appropriate model for sums of positive independent and
identically distributed random variables and it is compatible with autore-
gresive models. GIG provides useful models for volatilities, in the context of
Lévy processes, and it include many submodels of practical interest: The
Gamma model for volatilities, introduced in Madan and Seneta (1990);
the positive hyperbola distributions, introduced by Eberlein Kelly (1995)
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FIGURE 1. 60-day historical volatility estimates

and the normal inverse Gaussian, introduced by Barndorff-Nielsen (1997).
Another relevant submodel of GIG is the reciprocal Gamma family with
heavy tailed distributions. All these models are submodels of GIG an can
be tested by likelihood ratio test, but the Gamma and reciprocal Gamma
distributions appear at the boundary of the family and we face the problem
of testing hypothesis in non-regular exponential models.

2 Data Set

The Spanish IBEX-35 index is a value-weighted index comprising the 35
most liquid Spanish stocks traded in the continuous auction marked sys-
tem. The official derivative marked for risky assets, which is known as
MEFF, trades futures contract on the IBEX-35. Trading in derivative
marked started in 1992.
For this paper, our data basis is comprised of a time series of daily observed
high, low, open and close prices for the IBEX-35 index during the period
January 14, 1992 through February 28, 2001.
Figure 1 shows the rolling ’60-day historical volatility estimates’ that ap-
pear to indicate that volatility is changing in some persistent manner over
time.
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3 The Model: GIG

A generalized inverse Gaussian random variable, x ∼ GIG(λ, χ, ψ), has
probability density function

f(x;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1e−
1
2 (χx+ψx), x > 0 (1)

where Kλ is the modified Bessel function of the third kind with index λ. A
complete study of the GIG distribution is given in Jörgensen (1982).
A special case is the inverse Gaussian distribution (λ = − 1

2 ) which arises
as the distribution of the first passage time in a Brownian motion with
positive drift. The GIG is an exponential model with boundary parame-
ters. On the boundary appears the Gamma distribution (χ = 0, λ > 0)
and the reciprocal Gamma (ψ = 0, λ < 0). For testing Gamma against
GIG the parameter of interest χ belongs on the boundary under the null
hypothesis. The same situation occurs to test Reciprocal Gamma against
GIG. Hence we only consider λ > 0 since x ∼ GIG(λ, χ, ψ) if and only if
x−1 ∼ GIG(−λ, χ, ψ).

4 Main Results

From empirical point of view, it is easily rejected that the estimated volatil-
ity follows a Gamma distribution. When GIG distributions are used as a
model for volatilities the estimations suggest heavy tailed distributions, as
reciprocal Gamma. Moreover, we find a high degree of correlation between
return-based and range-based volatility estimates. Then in many places
ranges, that are more available in daily financial data, can be used to com-
pare volatilities.
Assuming the GIG model for volatilities and assuming they are locally
constant, the distribution of the corresponding return-based estimates is a
mixture of Gamma distributions with probability density function

fS2
m

(x) =

(m2 )
m
2 ψ−m

4 χ
λ
2

Γ(m2 )Kλ
(√

χψ
) x

m
2 −1

(χ+mx)−
λ
2 +m4

Kλ−1−m
2

(√
ψ (χ+mx)

)
. (2)

Specially relevant results are obtained on high order properties on testing
hypothesis in non regular exponential models that have boundary parame-
ters. The standard regularity conditions do not always work. This fact is
closely related to steepness and to the existence of moments of the limit
distribution. Testing Gamma or reciprocal Gamma against GIG are exam-
ples of this situation. Other examples of interest are conjugate families of
non-negative random variables without moments generating function, test-
ing exponentiality against singly truncated normal distribution (Castillo
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and Puig, 1999-a) and several situations in reliability theory and survival
analysis, see Castillo and Puig (1999-b).
We show that the results of Jensen (1992), on high order properties for
likelihood ratio test, can be extended together with the results of Self and
Liang (1987) on asymptotic properties for likelihood ratio test under non-
standard conditions.

5 Conclusions

1. The constant volatility model for asset returns is clearly regected from
empirical evidence.

2. By using a GIG model for volatilities, heavy tailed distributions are
suggested.

3. The distribution of sample variance for a GIG mixture of locally
constant volatility models is obtained.

4. We prove that saddlepoint methods can be used to improve the like-
lihood ratio test with boundary parameters.

5. Through simulation we see that the saddlepoint approximation works
successfully for small samples for testing Gamma against GIG. More-
over, the simulation results show that the saddlepoint approximation
works very well with nuisance parameter too.

6 References

Barndorff-Nielsen, O. (1997). Normal inverse Gaussian distributions and
stochastic volatility modelling. Scandinavian Journal of Statistics,
24, 1–13.

Castillo, J. and Puig, P. (1999-a). The Best Test of Exponential Against
Singly Truncated Normal Alternatives,Journal of the American Sta-
tistical Association, 94, 529–532.

Castillo, J. and Puig, P. (1999-b). Invariant exponential models applied
to reliability theory and survival analysis,Journal of the American
Statistical Association, 94, 522–528.

Eberlein and Keller (1995). Hyperbolic distributions in finance. Bernoulli,
3, 281–299.

Jensen, J. L. (1992). The modified signed likelihood statistic and saddle-
point approximations. Biometrika, 79(4), 693–703.



del Castillo and López 113
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Abstract: We propose an information matrix test in which the covariance matrix
of the vector of indicators is estimated using the parametric bootstrap. Monte
Carlo results and theoretical arguments show that its small sample performance
is comparable with that of the efficient score form.
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1 Introduction

The Information Matrix (IM) test, introduced by White (1982), offers a
conceptually appealing way to perform omnibus specification testing in
parametric models estimated by maximum likelihood. The null hypothesis
of the IM test is the information matrix equality, i.e. the hypothesis that
the sum of the mathematical expectations of the Hessian matrix of the log-
likelihood and the outer product of the gradient vector of the log-likelihood
equals zero. An important advantage of the (full) IM test is the fact that
it is an omnibus test for misspecification (not requiring the specification of
an alternative), e.g. the IM test for the normal regression model tests for
heteroscedasticity, skewness and kurtosis.
While the IM test is well known as a general test for misspecification of
a parametric likelihood function, its use in applied econometric research
is still limited. A major drawback of the IM test is that the asymptotic
χ2 distribution is a very poor approximation to the finite sample distrib-
ution of the test statistic. This seriously limits its usefulness in practice.
Large deviations from the asymptotic distribution are typical even in rela-
tively large samples, as evidenced by the Monte Carlo experiments reported
in Taylor (1987), Orme (1990), Chesher and Spady (1991), Davidson and
MacKinnon (1992, 1998), and Horowitz (1994). Several approaches have
been proposed to overcome this problem. Chesher and Spady (1991) derive,
for specific models, critical values for the IM test statistic that are based on
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a higher order Edgeworth expansion. Davidson and MacKinnon (1992) pro-
pose a variant of the IM test based on double-length artificial regressions.
Their method, however, cannot be applied to models for discrete, censored,
or truncated data. Horowitz (1994) proposes bootstrap-based critical val-
ues for the IM test. Despite these efforts, computing the correct critical
value of an IM test statistic for an arbitrary model is still not particularly
easy.

2 Estimating the Covariance Matrix of the IM Test

All existing versions of the IM test rely on some estimate of the asymptotic
covariance matrix of the vector of indicators, the differences arising essen-
tially from replacing expectations with sample averages in different parts
of the formula for the asymptotic covariance matrix (Orme 1990). Avail-
able Monte Carlo evidence shows that the ensuing test statistics have finite
sample distributions that are poorly approximated by the χ2 distribution.
Four sources of possible error may be involved in the approximation:

(i) the finite sample distribution of the indicator vector may be non-
normal;

(ii) the finite sample covariance matrix of the indicator vector may differ
from its asymptotic covariance matrix;

(iii) the unknown parameter is replaced by a consistent estimate in the
formula of the asymptotic covariance matrix;

(iv) sample averages replace expectations in parts of the formula for the
asymptotic covariance matrix.

In most circumstances, the error sources (i)-(iii) effectively apply to the IM
tests. Moreover, the efficient score form is the only one not vulnerable to
(iv).
Rather than relying on an asymptotic covariance matrix formula, one may
choose to estimate the finite sample covariance matrix of the indicator
vector. Although it is simple enough to write the finite sample covariance
matrix as an integral, working out the integral analytically is bound to be
impossible in all but the simplest models. A simple and feasible alternative
is to estimate it by the parametric bootstrap. It is shown that the test
statistic with bootstrap covariance matrix has, if the model is correctly
specified, an asymptotic (Hotelling’s) T 2 distribution with q (the dimension
of the indicator vector) and B − 1 (where B is the number of simulations
used to approximate the finite sample distribution of the indicator vector)
degrees of freedom. With finite B, the finite sample covariance matrix is
estimated with some noise, but the T 2 critical values correct for this. Using
this IM test statistic and T 2 critical values, (ii) is eliminated as a source of
approximation error.
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We have two final remarks. First, the only computational requirement to
obtain the statistic with bootstrap covariance matrix is that observations
can be generated from the specified density and that the vector of indica-
tors can be computed. The latter can often be extracted without effort from
econometric software packages, either as the difference between two infor-
mation matrix estimates, or as the difference between the inverses of two
estimates of the covariance matrix of the MLE. Thus, no analytical work
is required before the test can be applied. Second, although Monte Carlo
results show that the ERP (error in rejection probability: the difference be-
tween the actual and nominal (chosen) rejection probability under the null
hypothesis) of the newly proposed test is moderate, it may be advisable
in situations with few observations to use bootstrap-based critical values,
as suggested by Horowitz (1994) in the context of the IM test. Although
this requires a nested bootstrap – the inner bootstrap serves to calculate
the covariance matrix estimate – this is nowadays quite feasible: 50 inner
and 99 outer bootstrap replications will often suffice (e.g. in the regression
model with a constant and three regressors and a sample size of 100, this
takes more or less 2 seconds on a P4 2.00GHz using a Matlab program).

3 Monte Carlo Results

We report comparative Monte Carlo results on the finite sample properties
of the new statistic, White’s (1982), Chesher (1983) and Lancaster’s (1984),
Orme’s (1990) test statistic and the efficient score form. We study the ERP
under the null of correct specification as well as the power against a het-
eroskedastic alternative, both in the linear model and in the probit model.
The ERP is displayed using p-value plots (Davidson and MacKinnon, 1998).
In order to correct power for ERP, we plot power as a function of actual RP
under the null (Davidson and MacKinnon, 1998). In both the linear model
and the probit model we find the statistic with bootstrap covariance matrix
to have smaller ERP than the other tests. The powers of the efficient score
form and the statistic with bootstrap covariance matrix are extremely close
to each other, and well above the power of the other included test statistics.
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Abstract: This paper introduces a model for repeated paired comparison data.
We adopt an approach that converts such data to multiple multivariate responses,
which can then be modelled through a log-linear model. Extra parameters can
be introduced which can represent e.g. Markovian dependence on the previous
time point. Using standard software, we illustrate the technique on attitudinal
data from the British Household Panel Survey.
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1 Introduction

This paper is concerned with the development of models for repeated paired
comparison data, where the same judge compares a set of objects in a paired
comparison experiment repeatedly over time. Such data arises naturally in
panel surveys, most often in the form of ranked data, where an individual
(the judge) might be asked to rank a collection of items or opinions in var-
ious sweeps of a survey. Such ranked data can then be converted to a set of
paired comparisons by utilising the concept of rank order explosion (Chap-
man and Staelin, 1982). A second example might be a sports competition
such as the Formula 1 motor racing competition, where drivers meet re-
peatedly in a single year on different race circuits. Here, the ”judge” would
be the circuit, with the finish order providing the paired comparisons and
the repeated yearly visits to each circuit providing the replication. In such
data it is natural to wish to consider temporal dependence - the likelihood
of a response of a judge at one time point to depend on their response at
the previous time point.
Fahrmeir and Tutz (1994) introduced dynamic stochastic models for time-
dependent ordered paired comparisons, based on an extension of Kalman
filtering and smoothing for dynamic generalized linear models. This has
subsequently been extended by Glickman (2001). However the models are
complex and time-consuming to fit.
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The purpose of this paper is to develop a log-linear approach for (time-
dependent) paired comparison data based on the Bradley-Terry model.
The approach of this paper is to convert such data to multiple multinomial
responses, and echoes the quadratic exponential binary distribution sug-
gested by Cox (1972). This places the model within the Generalized Linear
Model (GLM) framework. Parameters representing dependencies can then
be added. The advantage of this specification is that model fitting and
model checking can easily be done within the GLM framework.

2 Likert Scales and Paired Comparisons

We now consider an associated problem - the analysis of repeated multiple
Likert responses over time. We assume that J Likert responses are measured
repeatedly over time, and that each Likert response is measured on the
same underlying measurement scale. Models for analysing a single Likert
response and allowing for temporal dependence now exist (Sutradhar and
Kovacevic, 2000). Models for multiple ordinal responses at multiple time
points (Douglas, 1999) have also been proposed, but the emphasis is on the
determination and assessment of a common latent variable rather than the
examination of the differences and relative importance of items and such
changes over time. Here, we propose an alternative approach. Consider each
Likert question to be a separate item. Then for any time point, a set of
Likert responses can be converted to a set of paired comparisons simply
be examining the response category given to each Likert question. As an
example, if the Likert response is greater for item i than for item j, then we
determine that item i is preferred to item j. Thus, methods developed for
the analysis of repeated paired comparison data may also be appropriate
for the analysis of repeated multiple Likert scales.

2.1 An Example

We take as an example a set of social attitude questions from the British
Household Panel Study (BHPS). The BHPS is an household-based survey,
taking as a base 8,167 selected households in England, Wales and most of
Scotland. We concentrated on a question which measures concern about
various social and political issues of contemporary relevance. This question
has so far been administered three times - in 1992, 1994 and 1996 - and
consist of a series of four-point Likert scales which give the absolute level
of concern (a great deal, a fair amount, not very much, not at all). We
have chosen the following three items, destruction of the ozone layer, rate
of unemployment, and declining moral standards. 4,155 panel members
responded to all three waves of the survey and gave complete responses.
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3 A Log-linear Representation for Time-dependent
Paired Comparisons

Consider a paired comparison experiment where J objects O1, . . . , OJ have
to be compared repeatedly over time points t, t = 1, 2, . . . , T , by N judges,
where it is assumed that all judges respond at each time point to all paired
comparisons. At each time point t, this experiment results in

(
J
2

)
paired

comparisons. We represent the ’worth’ of the object Oi at time t on an
underlying latent scale by the parameter πit, with

∑J
i=1 πit = 1.

For the comparison of objects Oi and Oj at time point t, the response to
the experiment is represented by the random variable Yijt, defined by

Yijt =

⎧⎨⎩
−1 if object Oj is preferred over Oi at time t,

0 if there is no preference between Oi and Oj at time t,
1 if object Oi is preferred over Oj at time t.

In terms of the random variables Yijt, the experiment results for a given
judge in a response pattern vector of length T × (J2) which can be written
in a pre-defined fixed order as

y = (y121, . . . , y12T ; y131, . . . , y13T ; . . . ; yJ−1 ,J1, . . . , yJ−1 ,JT ) .

For any judge, the observed response pattern will be one of the L = 3T(J2)

possible response pattern vectors y�, 
 = 1, 2, . . . , L, with each element con-
sisting of one the values {−1, 0, 1}. For example, y1 = (−1,−1, . . . ,−1,−1).
For any Yijt the response is ordinal and the Adjacent Categories model
(Böckenholt and Dillon, 1997) is a suitable basis for our model. This model
can be written as

P{Yijt = yijt} = Δijt

(
πit
πjt

)yijt
(ν0t) 1−|yijt| , yijt ∈ {−1, 0, 1} , (1)

where Δijt denotes a normalising constant in order to make the probabil-
ities sum to unity, ν0t can be interpreted as a parameter representing no
decision at time point t.
We assume that decisions concerning different object pairs are independent.
We can therefore write the joint distribution of the Yijt as

P{Y = y} =
∏
i<j

P{Yij1 = yij1, Yij2 = yij2, . . . , YijT = yijT } . (2)

If there is no temporal dependence, this expression can be further factorised
into

P{Y = y} =
∏
i<j

T∏
t=1

P{Yijt = yijt} . (3)
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Temporal dependence is introduced by assuming that only the previous
decision (at time t − 1) has an influence on the decision at time t for
the given comparison of objects i and j. This is represented by additional
parameters θij|t−1,t which are introduced as follows:

P{Yij1 = yij1, . . . , YijT = yijT }

=
[
Δij

(
πi1
πj1

)yij1
(ν01) 1−|yij1|

]
×

T∏
t=2

(
πit
πjt

)yijt
(ν0t) 1−|yijt| exp{θij|t−1,tyij,t−1yijt} , (4)

where Δij =
∏
t Δijt.

The joint distribution of Y can then be obtained by using equation (2).
Note that this is the probability of the independence model (3) augmented
by a multiplicative term that introduces time dependencies between the
Y ’s.
The probability of any particular response pattern p(y�) can then be ob-
tained by substituting values of the yijt into the above expression, and the
expected value m� = N×p(y�) can be calculated. Taking logs converts this
model into a log-linear model and can be estimated using standard soft-
ware using a log-link and Poisson distribution. The design matrix consists
of a column for a nuisance parameter δ and sets of columns for the λ, γ, θ
parameters, where λit = lnπit, γ0t = ln ν0t. Further details and discussion
of other dependencies are given in Dittrich et al (2003).

4 Results

We return to the BHPS data introduced earlier. With three items and three
time points, and with three possible outcomes to each paired comparison,
we have 19,683 possible responses in the response set. We fit two mod-
els - the temporal independence model (deviance 29588 on 19673 df) and
the temporal dependence model (deviance 24550 on 19667 df). It is clear
from the change in deviance that there is strong temporal dependence.
The θ parameters are all close to one with those measuring dependence
in the ozone-morals comparison (1.257 and 1.228) exhibiting the highest
dependence and thus the most stability in response over time. We can also
examine the worths πit = exp(λit)/

∑
j exp(λjt) for both the independence

and dependence models (Figure 1). Both plots show that concern about
the high unemployment rate is decreasing over the period of observation,
whereas concern about moral standards declining is increasing over the pe-
riod. Small changes are noted in the worth parameters in shifting from the
independence to the dependence model.
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FIGURE 1. Worth parameters for the models of temporal independence (left) and
temporal dependence (right)
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Abstract: Background estimation is common problem in many types of mea-
surements. Asymmetric smoothing, using either an L2 or an L1 is an effective
ad-hoc solution. But it has the disadvantage that it only specifies an algorithm,
not a statistical model. To remedy this, a mixture model for baseline, noise and
(positive) signal is introduced. The EM algorithm is used for estimation. The
model works well and its use is illustrated on real data.
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1 Introduction

In many types of measurements we encounter an unavoidable background
signal. It may be caused by drifting of the instrument over time, like in
a chromatogram, it may be a signal contribution due to interfering sub-
stances, as in many (optical) spectra, or it may be background fluorescence
in a microarray image. In many cases the background can be modelled —
in words — as a slowly varying baseline on which the real signal is super-
posed. A picture shows stretches of “pure” baseline, alternating with the
peaks of the signal. In most cases the chemistry or physics of the set-up
dictates that the real signal be strictly positive or strictly negative, but the
picture may be blurred by noise. If the background is relatively weak, it
does little harm, but in many real-life applications good background cor-
rection can improve detection limits appreciably. Some instruments give
the operator the option to correct the data interactively. The human eye
is a wonderful pattern recognition machine; a trained operator can indi-
cates baseline stretches with a mouse. A computer program then connects
these with straight lines or splines to construct a complete baseline. Of
course, such a semi-manual approach is not the most desirable one. It is
even impossible in many high-throughput systems or in completely auto-
matic processes. Thus there is a need for reliable procedures for automatic
background estimation.
Simple low-pass filtering will not work, because of the basic asymmetry
of the situation. The real (partly high-frequency) signal deviates only in
one direction from the low-frequency baseline. A statistical model has to
respect this. In this paper I discuss several promising approaches:
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• Asymmetric least squares. A weighted least squares smoother or para-
metric curve fitter is used, but positive and negative residuals get
different weights (with a ratio of 100 or more). A simple iterative
algorithm works well to fit this model.

• Percentile smoothing. Again the weights of positive and negative
residuals are different, but now an L1 norm (sum of absolute val-
ues) is used. A large-scale linear program has to be solved (using the
interior point method).

• Mixture modelling. An explicit model for baseline, noise and the sig-
nal distribution is set up and fitted by an EM algorithm.

2 Asymmetric Smoothing

To simplify the presentation, I use P-splines (Eilers and Marx, 1996), my
favorite smoother, but local likelihood or smoothing splines might be used
equally well. I first discuss standard smoothing. Let y be a measured series,
with positions x, and let μ = Bα, where B is a B-spline basis, computed
on x. Minimizing |y−μ|2 leads to the normal equations B′Bα̂ = B′y. B is
chosen to be “rich”, i.e. it would generally overfit, giving μ̂ = Bα̂ that is
less smooth than desired. To increase the smoothness of μ, the penalized
sum of squares |y − Bα|2 + λ|Ddα|2 is minimized. Here Dd is the matrix
that forms differences of order d. The explicit solution follows from the
modified normal equations (B′B + λD′

dDd)α̂ = B′y. With λ we can tune
the smoothness of μ̂ = Bα̂. Of course, μ will go more or less through the
“middle” of y.
To get an asymmetric result, we introduce adaptive weights wi: wi = a if
yi > μi and wi = 1 − a if yi ≤ μi, with 0 < a < 1. The goal function
is (y − Bα)′W (y − Bα) + λ|Daα|2, with W a (diagonal) matrix with the
asymmetric weights on the diagonal. If the real signal has positive peaks
(above the baseline) a = 0.01 or a = 0.001 is used, but when they are
negative (below the baseline) a = 0.99 or a = 0.999. Experience has shown
that with visual inspection a very good baseline fit can be obtained. A
simple algorithm works well: given the weights w, finding μ̂ is just a case
of weighted (penalized) linear regression. And given μ̂, the computation of
the weights is trivial. Starting with all weights equal to 1, the two compu-
tations are alternated until convergence. The convexity of the goal function
guarantees that this will take place exactly. In practice about 10 iterations
are sufficient.
A modification of this scheme uses the L1 norm in the goal |W (y−Bα)|+
λ|Ddα|, where W is a diagonal matrix, with the adaptive weights wi on its
diagonal. We need a linear programming algorithm to solve this problem.
The interior point method works well (Eilers, 2000). Notice that essentially
we are estimating a smooth low-percentile curve.
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FIGURE 1. Background estimation with asymmetric least squares smoothing. The
upper panel shows the data with a thin line and the estimated baseline with a thick
line. The lower panel shows the difference between data and estimated baseline.

A disadvantage of these algorithms is that the choice of the parameters p
and λ is made visually. This is not a great problem in a semi-interactive
set-up. Figure 1 shows an example. The data are a cross-section through
a part of the fluorescence image of a cDNA microarray. The background
was estimated with asymmetric least squares smoothing, using a basis of
13 cubic B-splines, λ = 10−4, and a = 0.001.

3 A Mixture Model

Asymmetric smoothing is defined algorithmically and it is not very clear
which criteria to use to optimize the parameters (a for asymmetry and
λ for smoothness). This section presents a mixture model with explicit
components for baseline, noise and signal.
To simplify the presentation, we first consider the case of a constant but
unknown background level μ. We assume normally distributed noise with
unknown variance σ2 and a signal with an unknown distribution h(.), which
is only supported on the positive real axis. The mixture model is:

f(y) = πg(y|μ, σ) + (1 − π)h(y − μ), (1)

where π is an unknown mixing ratio and g(.) stands for a normal density.
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The EM algorithm is attractive here. Suppose we knew approximations to
all parts of (1). Then we could compute the approximate posterior proba-
bility pi that observation yi comes from density g(yi|μ, σ) as

pi =
πg(yi|μ, σ)

πg(yi|μ, σ) + (1 − π)h(yi − μ)
. (2)

Then we can use p and y to compute weighted estimates of μ and σ. And we
can feed 1 − p to a density smoother to estimate h(.) and take the average
of p to estimate π. Hopefully this gives improved approximations, so by
repeating these steps we would finally arrive at the solution. Experience
with real and simulated data has shown that this is actually the case.
The amount of smoothing for estimating h(.) is important. Oscillations can
occur when it is not chosen strong enough. Actually we can simplify this
component of the model to an exponential (or even a uniform) distribution
without any problem. We have no interest in the actual signal distribution,
but only need good estimates of the probabilities p. For yi near μ, pi is very
near to 1, and at a distance larger than 3σ from μ it will be essentially 0,
whatever the shape of h(.). The simplification will have some influence on
weights not near 0 or 1, but they are a minority.
Now it is easy to see how more complicated baseline models can be con-
structed: specify μ(x) as a polynomial or P-spline model in x. This model
and the EM algorithm work remarkably efficient and effective. For the mi-
croarray data it looks very similar to Figure 1. Figure 2 shows an example
with a rather strongly fluctuating baseline, using 100 cubic B-splines and
λ = 0.001.
To correct the background of an image it is not attractive to apply the
algorithm to each column (or row) separately, because small jumps can
occur when going from one column (row) to the next. The model allows
straightforward extension to a two-dimensional model, using tensor prod-
ucts of P-splines (Durban, Currie and Eilers, 2002). The implementation
described there would not work here, because in an intermediate step a
regressor matrix of size m by n is formed, with m the number of observa-
tions and n the number of basis functions. For an image with 500 by 500
pixels and a 10 by 10 grid of tensor products this leads to a matrix with
25 million elements, taking (too) much space and time. Very recently we
(Eilers, Currie and Durban) have developed an extremely fast algorithm
for weighted tensor product smoothing of data on a grid that eliminates
this intermediary step. Details will be reported elsewhere.

4 Discussion

The mixture model works well. It solves one problem: the choice of a mea-
sure of asymmetry, because it follows implicitly from the parameters π, σ
and the model for distribution h(.). But we are still left with the penalty
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FIGURE 2. Background estimation with the mixture model. The upper panel
shows the data with and the estimated baseline. The lower panel shows the differ-
ence between data and estimated baseline.

parameter λ. Cross-validation seems a natural choice here. We fit the model
to a subset of the data, chosen randomly or systematically, like only the
odd observations, and compute the log-likelihood of the left-out part of
the data. Changing the penalty parameter λ on a grid and computing the
cross-validation likelihood for each value will give a curve that hopefully
shows a global maximum. Experiments with simulated data seem to indi-
cate that this can work well. But the simulations use independent noise. In
real data the noise is frequently correlated, leading to complications. More
work is needed here.
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Abstract: A typical analysis of survival data assesses the impact of several ex-
planatory variables on a time duration response variable. The standard method-
ology for such analysis assumes that the explanatory variables, or covariates, are
measured without error. We deal with the analysis of data in which a response
variable is right-censored and some covariates are contaminated with measure-
ment error. We assume a log-linear model with a right-censored response, and
a set of covariates some of them measured with error. To obtain consistent esti-
mates of the regression parameters that takes measurement error into account,
we propose a sequential procedure. The performance of the two-step estimator is
studied using simulated data. Finally, standard errors are also obtained.
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1 Introduction

A frequent problem in statistics is to obtain the estimates of the regres-
sion parameters, that is, to assess the effects of a set of covariates on a
response variable. In survival analysis, the presence of censoring requires
specialized methods for estimating unknown parameters. For linear models,
we emphasize the procedures that are modifications of Least Squares (LS)
methods to accommodate censored values of the response (see, e.g. Buckley
and James 1979). A common assumption underlying these methods is that
covariates are measured precisely.
Even though there is a wide range of methodologies for estimating the
regression parameters taking into account measurement errors (see Fuller,
1987 or Carrol, Rupert and Stefanski, 1995), all of them are based on the
values for the dependent variable when no censoring is present.
We propose a method for estimating censored linear models with mea-
surement errors on covariates based on a combined procedure that merges
known results from measurement error theory with methods for censored
data. We describe a two-step approach for obtaining consistent estimates
of the regression parameters.
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2 The Model

We consider a non-negative and continuous random variable T (this is
the time elapsed in a certain state) and a set of explanatory variables
{X


1 , · · · , X

p}, also called covariates.

Let Y = logT be the log-transformation of the true duration T . Consider
y1, · · · , yn, independent realizations of Y such that yi is related to the vector
of covariates x
i as

yi = x
i
′β + wi, i = 1, · · · , n (1)

where β is the vector of unknown parameters and w1, · · · , wn are i.i.d.
realizations of a disturbance term W with variance σ2

w and mean not nec-
essarily zero. We assume that W and X


j , j = 1, · · · , p, are independent
random variables.
We assume a right censorship model, that is, our observable duration for
the ith individual is

zi = min {yi, ci}, i = 1, · · · , n (2)

where c1, · · · , cn are independent realizations of a random variable C (in
this case ci represents the log-transformed censored time for individual
i). Here we assume that the censoring mechanism is not informative. The
indicator of censoring is given by δi = 1{yi≤ci}, i = 1, · · · , n.
The model defined by (1) and (2) stated for analyzing data of the form
{(zi, δi,x
i ′), i = 1, 2, · · · , n} is usually known as the censored linear
model (see, e.g. Breiman, Tsur and Zemel, 1993). From now we refer to
it as CLM.
Here we consider a CLM with an additional assumption of possible mea-
surement error in the covariates. Thus we assume that variables X


j may
be observed only indirectly, through covariates Xj , j = 1, · · · , p. The rela-
tionship between the observed covariates xi for the ith individual and the
true value of the covariates x
i is defined by the measurement error model:

xi = x
i + ui, i = 1, · · · , n (3)

where u1, · · · ,un are i.i.d. realizations of the random vector U =
(U1, · · · , Up)′ with zero mean and known covariance matrix Σuu. We also
assume that U is independent of X and W .

3 The Two-step Estimator

The two-step estimator gives unbiased estimates of the regression coeffi-
cients of the model defined by (1), (2) and (3). The method modifies the
standard procedures of estimation for linear measurement error models in
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order to account for censoring. The first step of the method takes into ac-
count the presence of censoring in the data. The second step consists of
estimating a linear measurement error model defined by (1) and (3). Once
both steps have been performed, unbiased estimators of the regression co-
efficient in model (1) are obtained.

3.1 Estimated censored values: Step 1

In this step, we ignore the measurement error, in the sense that we state
the survival model defined by

yi = x′
iγ + εi

zi = min {yi, ci}
δi = 1{yi≤ci} (4)

where xi is the vector of explanatory variables for individual i (here we are
using their observed values) and γ are the regression coefficients. Note that
we change the notation for the parameters because in the observed model
(4) the parameters are not the same as those in the true model defined in
(1) and (2).
We note that (4) is a CLM. Thus, to obtain consistent estimates of pa-
rameter γ we suggest, based on the ease of implementation in practical
situations including multiple regression, using the method proposed by
Schneider and Weissfeld (1986). Say, γ̂ the estimator of γ obtained by
applying this method to the model defined in (4).
In this step we want to deal with the censoring of the response variable.
For this reason, we are not interested in the estimator γ̂ but in linear
predictions, conditional on xi, for zi based on model (4), say ẑi = x′

iγ̂, i =
1, · · · , n. This leads to the following result for the values (ẑ1, · · · , ẑn):

Result 1.
The (ẑ1, · · · , ẑn) are estimators of the censored response variable such that

κ̂xy = n−1
n∑
i=1

xiẑi (5)

is a consistent estimator of kxy = E(X ′Y ), where Y is the true response
variable. That is,

κ̂xy
P−→ kxy.

The usefulness of this estimator κ̂xy is based on the following argument. If
the response variable in a linear model is censored, for the observed zi the
matrix of the raw mean squares and products Kxz = n−1

∑n
i=1 xizi is not

a consistent estimator of kxy.
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3.2 Errors-in-variables Model: Step 2

In this step, we define the estimator of β, say β̂, using methodologies
for estimating linear measurement error models (see Fuller, 1987). The
proposed procedure is based on the estimator κ̂xy defined in step 1.
We consider the errors-in-variables model

yi = x
i
′β + wi

xi = x
i + ui. (6)

where the covariance matrix of U = (U1, · · · , Up), denoted by Σuu, is
known. Then for the standard case where yi are observed for all i = 1, · · · , n,
a consistent estimator of β is defined as (see Fuller, 1987)

β̂ = (Kxx − Σuu)−1 Kxy (7)

where Kxx = n−1
∑n

i=1 xix′
i and Kxy = n−1

∑n
i=1 xiyi. As before, Kxx

and Kxy denote the matrix of the raw mean squares and products.

Result 2.
The proposed estimator of β defined as

β̂ = (Kxx − Σuu)−1 κ̂xy (8)

is a consistent estimator of β, where κ̂xy is the estimator computed in
step 1.
The estimator derived by steps 1 and 2 is a consistent estimator of the
regression parameters of model (1), (2) and (3). It is called the two-step
estimator. The performance of the estimator is explored using simulations.

3.3 Standard Errors

In order to obtain the standard errors of the two-step estimator we as-
sume first uncensored observations only. In such a case, asymptotic robust
standard errors may be computed using the normal theory estimates (see
Satorra, 1992).
However, in the presence of censoring, the usual formulae for standard
errors in linear measurement error models do not apply. We advocate com-
puting standard errors using bootstrap methods.
Table 1 shows 5% and 10% tails of the empirical distribution of the z-
statistic of the two-step estimator defined in (8). The results indicate that
these empirical values remain close to the theoretical ones when there is
censoring in the response and measurement error on covariates.
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TABLE 1. Monte Carlo results with 20% of Type I of censoring. B(·) is the
bias of the estimator, V(·) denotes the estimated variance of the z-statistic and
5%−tail, 10%−tail are the empirical P(|z| > 1.96) and P(|z| > 1.65), respectively.
Population value of parameters β0 = 3, β1 = 1.

β̂0 β̂1

k B(β̂0) V(z) 5% 10% B(β̂1) V(z) 5% 10%
tail tail tail tail

n = 100
1 –.011 1.04 6.20 11.20 –.011 1.09 6.60 10.60
.8 –.009 .95 4.00 9.20 .000 .92 3.60 8.80
.6 –.004 .79 3.20 5.80 .027 .85 4.20 8.00
.4 –.017 .52 1.40 3.80 .068 .48 1.80 4.20

n = 500
1 –.003 1.04 5.20 10.40 –.006 1.07 6.20 10.80
.8 –.008 1.09 6.80 11.80 –.006 1.04 6.00 10.60
.6 –.004 .98 5.00 10.00 .002 1.03 5.00 10.00
.4 –.010 .87 5.00 10.00 .005 1.01 4.60 9.60

n = 1000
1 –.005 1.14 7.40 12.20 –.006 1.02 5.80 12.40
.8 –.007 1.03 6.40 11.80 –.007 1.17 6.40 11.20
.6 –.008 1.06 6.20 11.60 –.009 1.05 7.20 12.20
.4 –.011 1.02 6.20 11.40 –.008 1.01 6.20 11.80
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Abstract: Within the past decade, there has been an increasing interest in the
problem of joint analysis of clustered multiple outcome data, motivated by de-
velopmental toxicity applications (Fitzmaurice and Laird 1995, Gueorguieva and
Agresti 2001, Molenberghs and Ryan 1999, Regan and Catalano 1999, Aerts et al
2002). So far however, one has tackled the challenges in this setting only partly
each time making different restricting assumptions (e.g. restriction to viable fe-
tuses only). Ideally, a model should take the complete correlated hierarchical
structure of the data into account. A hierarchical bayesian method will be dis-
cussed in this context. Once a suitable model is selected, it can serve as basis for
quantitative risk assessment.

Keywords: Toxicology; Benchmark dose; Hierarchical model.

1 Introduction

Lately, society has become increasingly concerned about problems related
to fertility and pregnancy, birth defects and developmental abnormalities.
Questions are raised about the potential risk of chemical compounds and
other environmental agents on the development of fetuses. Consequently,
regulatory agencies such as the U.S. Environmental Protection Agency and
the Food and Drug Administration have given increased priority to repro-
ductive and developmental toxicity research, in order to investigate the
causes of these problems and to assess the potential adverse effects of ex-
posure on the developing fetuses.
However, because of ethical reasons, reliable epidemiological information of
adverse effects on fetal development may often be limited or unavailable.
As an alternative, laboratory experiments in small mammalian species can
be conducted in advance of human exposure (Williams and Ryan 1996). In
developmental toxicity studies with a Segment II design, pregnant animals
are exposed during the period of major organogenesis and structural de-
velopment to a compound of interest. Dose levels for this design typically
consist of a control group and three or four exposed groups, each with 20
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FIGURE 1. Data Structure of Developmental Toxicity Studies

to 30 pregnant animals. The dams are sacrificed just prior to normal deliv-
ery, at which time the uterus is removed and the contents are thoroughly
examined for the occurrence of defects. The viable fetuses are measured for
birth weight and examined carefully for the presence of malformation.
The analysis of developmental toxicity data raises a number of challenges
(Molenberghs et al 1998). Since deleterious events can occur at several
points in development, an interesting aspect lies in the staging or hierarchy
of possible adverse fetal outcomes (Williams and Ryan 1996). Figure 1
illustrates the data structure. A toxic insult early in gestation may result
in a resorbed fetus. If the implant survives being absorbed, the developing
fetus is at risk of fetal death. If the fetus survives the entire gestation
period, growth reduction such as low birth weight may occur. The fetus
may also exhibit one or more types of malformation. Ultimately, a model
should take into account this hierarchical structure. In addition, because
of genetic similarity and the same treatment conditions, offsprings of the
same mother behave more alike than those of another mother, i.e., the litter
effect. Thus, responses on different fetuses within a cluster are likely to be
correlated.
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2 Risk Assessment

The primary goal of these studies is to determine a safe level of expo-
sure. Recent techniques for risk assessment in this area are based on fitting
dose-response models and estimating the dose corresponding to a certain
increase in risk of an adverse effect over background, i.e. benchmark dose
(Crump 1984).
In case of multiple outcomes, the outcomes are often examined individually,
using appropriate methods to account for the correlation, and regulation
of exposure is based on the most sensitive outcome. It has been found,
however, that a clear pattern of correlation exists between all the outcomes
(Ryan et al. 1991), so that risk assessment based on a joint model may
be more appropriate. The model must both incorporate the correlation be-
tween the outcomes, as well as the correlation due to clustering. Estimation
of the risk, will be illustrated in Section 4.

3 Modelling Approach

Until now, most models have looked only to a small part of the hierarchi-
cal structure, and assumed that the response distribution for the malfor-
mation outcomes and weight outcomes is independent of the cluster size.
The analysis of developmental toxicity data has usually been conducted
on the number of viable fetuses only. In other models, the litter-size was
included as a covariate in modelling these response probabilities (Williams
1987, Rai and Van Ryzin 1985, Catalano and Ryan 1992). Some attempts
have already been made towards a joint model for death and malformation
outcomes (Chen 1993). Kuk (2002) proposed a model for fetal response
in developmental toxicity studies when the number of implants is dose-
dependent.
We propose a Bayesian hierarchical modelling framework for the joint
analysis of fetal death and malformation/weight among the viable fetuses.
In a first step, we construct a model for the joint analysis of death and
malformation. In a later step, we will extend this approach to include the
weight of the viable fetuses.
Let N denote the total number of dams, and hence litters, in the study.
For the ith dam (i = 1, . . . , N), let mi be the number of implants. Let
ri indicate the number of fetal deaths in cluster i. The number of viable
fetuses, i.e., the litter size, is ni ≡ mi−ri. The number of malformed fetuses
of a dam is denoted zi.
A joint model for the possible adverse fetal outcomes is developed using
the underlying hierarchy of the data. In the first stage, a toxic insult may
result in a fetal death. This effect of dose di on cluster i with mi implants
can be described using the distribution f(ri|mi, di). We assume that

ri ∼ Binomial(pdth,i,mi)
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with pdth,i the probability of a death fetus in litter i, depending on the
dose. In the second stage, the fetuses that survived the entire gestation
period are at risk of malformation. The effect of malformation of dose di
on cluster i with ni viable fetuses can be described using the distribution
f(zi|ni, di). We assume that

zi ∼ Binomial(pmal,i, ni)

with pmal,i the probability of a malformed fetus in litter i, depending on
dose di. A joint model for the number of deaths and the number of malfor-
mations can be assessed by jointly modelling both stages.
To account for the litter effect, we assume a hierarchical model in which the
probability of an adverse event in each litter come from a prior distribution.
We assume the malformation and death probability pi of any fetus in litter
i to come from a beta distribution with mean πi, i.e.,

pdth,i ∼ Beta(a1i, b1i) πdth,i =
a1i

a1i + b1i

pmal,i ∼ Beta(a2i, b2i) πmal,i =
a2i

a2i + b2i

Both the malformation and death probability are affected by dose, and can
be modelled using appropriate link functions. We assume

logit(πdth,i) = α0 + αddi

logit(πmal,i) = β0 + (αd + βd)di,

with a common parameter for the dose effect.
In a last step, we specify hyperprior distributions on the regression pa-
rameters α0, αd, β0 and βd. The hyperpriors chosen for this analysis were
N(0, 106). We expect these priors to have minimal influence on the final
conclusions of our analysis.

4 Data Analysis

This article is motivated by the analysis of developmental toxicity of Eth-
ylene Glycol (EG) in mice. EG is a high-volume industrial chemical with
diverse applications. For instance, it can be used as an antifreeze, as a
solvent in the paint and plastics industries, as a softener in cellophane,
etc. The potential reproductive toxicity of EG has been evaluated in sev-
eral laboratories. Price et al (1985) for example, describe a study in which
timed-pregnant CD-1 mice were dosed by gavage with EG in distilled water.
Dosing occurred during the period of organogenesis and structural develop-
ment of the fetuses (gestational days 8 through 15). Table 1 shows the rate
of malformed litters for each dose group and suggests clear dose-related
trends for the rate of malformation. The mean litter size is also tabulated,
and shows a decrease with dose.
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TABLE 1. Summary Data from an EG Experiment in Mice

Dose Dams Live Litter Size Malformations
(mg/kg/day) (mean) (%)
0 25 297 11.9 4.0
750 24 276 11.5 66.7
1500 22 229 10.4 81.8
3000 23 226 9.8 95.7

TABLE 2. Risk Assessment for EG Study in Mice.

Model q = 0.01 q = 0.05
Joint 103 447
Malf 142 563
Death 340 1493

We define the combined risk due to a toxic effect as the probability that a
fetus is death or a viable fetus is malformed. This risk can be expressed as

r(d) = P(death fetus | d)+P(viable fetus | d)× P(malformed | viable,d)
= πdth + (1 − πdth)πmal.

The benchmark dose is defined as the level of exposure corresponding to an
acceptably small excess risk (q) over background, i.e., the dose satisfying

r∗(d) =
r(d) − r(0)
1 − r(0)

= q.

Table 2 shows the benchmark doses corresponding to the 1% and 5% excess
risk. We also added the corresponding quantities, calculated from univari-
ate risks (only malformation, or only death). The joint model yields more
conservative doses.
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Abstract: The linear mixed model (LMM) has been widely used in longitudinal
studies. Existing methods of influence assessments in LMM are mostly based on
the likelihood function, in which the marginal covariance structure is usually as-
sumed to be compound symmetry. These methods, however, may be very difficult
to apply to the model with sophisticated but commonly encountered covariance
structures such as AR(1) and ante-dependence. In this paper, we propose an al-
ternative approach using Q-function, the conditional expectation of logarithm of
the joint-likelihood in EM-algorithm. The effects of mis-specification of covari-
ance structure on influence analysis are addressed and the relationship between
subject- and observation-levels influences are considered.

Keywords: Influence; Linear mixed model; Longitudinal data; Q-function.

1 Introduction

The linear mixed model (LMM) is commonly used in longitudinal data
analysis, which is defined by

Y = Xβ + Zu+ ε (1)

where Y = (Y ′
1 , · · · , Y ′

m)′ is the (n× 1) (n =
∑m
i=1 ni) response vector of m

subjects, X = (X ′
1, · · · , X ′

m)′ is the (n × p) design matrix for fixed effects
β, Z = diag(Z1, · · · , Zm) is the ( n×mq) design matrix for random effects
u = (u′1, · · · , u′m)′, u ∼ N(0,G), ε = (ε′1, · · · , ε′m)′ is the (n × 1) vector of
random errors and ε ∼ N(0,R). The random effects ui are independent
of the random errors εi, G = diag(G, · · · , G) where G = G(α), the (q × q)
between-subject common covariance matrix, and R = diag(R1, · · · , Rm)
where Ri = Ri(γ), the (ni × ni) within-subject covariance matrix, where
α and γ are r × 1 and s × 1 parameters in G and Ri, respectively. The
parameters of interest are θ = (β′, α′, γ′)′.
When the ith subject is deleted, Eq.(1) reduces to Y[i] = X[i]β+Z[i]u[i]+ε[i]
where a vector/matrix with the index [i] represents the associated vec-
tor/matrix with ith sub-vector/matrix removed. This model is called the
subject-deletion model in longitudinal studies.
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For the LMM with independent random effects and random errors, Bener-
jee and Frees (1997) developed an approach to quantify the overall impact
of a subject on the modelling. Lesaffre and Verbeke (1998) addressed the
issue of local influences, see also a recent review paper by Molenberghs and
Verbeke (2001). When the covariance matrices G and R are of sophisti-
cated structures such as AR(1) and ante-dependence, these methods may
be too difficult to apply. In this paper, we propose an alternative approach
based on Q-function, the conditional expectation of logarithm of the joint-
likelihood in EM-algorithm, to identify influential subjects. The advantage
of this technique is that it can be easily applied to sophisticated models.
In Section 2, within the framework of LMM with compound symmetry co-
variance we compare the Q-based diagnostics to likelihood-based methods.
In Section 3 we study the effects of mis-specification of covariance struc-
tures on influence assessments. Some further comments on influences in
longitudinal studies are given.

2 Influence Assessments in LMM

2.1 Likelihood-based Approach

Let l(θ) and l[i](θ) be the log-likelihood functions under the full model (1)
and the subject-deletion model, respectively. Denote θ̂ and θ̂[i] as the MLEs
of θ associated with the two models. A vital issue in case-deletion influence
assessments is to quantify the difference between θ̂[i] and θ̂.
Applying the Fisher-scoring algorithm to l[i], with θ̂ as the initial value of
θ we obtain the one-step approximation estimate

θ̂[i] = θ̂ + {−El̈[i](θ̂)}−1 l̇[i](θ̂), (2)

where l̇[i](θ̂) and l̈[i](θ̂) are the first- and second-derivatives of l[i], evaluated
at θ̂. Although Eq.(2) provides an approximation of the difference θ̂[i] − θ̂,
the matrix El̈[i] is subject-dependent and may cause intensive computa-
tions. For example, we have to compute m inverse matrices {−El̈[i](θ̂)}−1

(i = 1, 2, ...,m) when using Eq.(2). Instead, we propose to use El̈ to replace
El̈[i], i.e.,

θ̂[i] = θ̂ + {−El̈(θ̂)}−1 l̇[i](θ̂). (3)

We can show that this approximation can be characterized by Op(n−2)
under certain conditions.
Based on (3), a generalized Cook-type distance can be defined as

Di = (θ̂[i] − θ̂)′{−El̈(θ̂)}(θ̂[i] − θ̂) = [l̇[i](θ̂)]′{−El̈(θ̂)}−1[l̇[i](θ̂)]. (4)

If both the matrices G and Ri are of independent structures, i.e., G =
σ2
uIq and Ri = σ2

ε Ini , it can be shown that the matrix El̈(θ̂) is of block-
diagonal so that Di can be easily calculated. When either G or Ri is of
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other structures, however, no analytical form of Di is available because the
matrix El̈(θ̂) may be too complicated.

2.2 Q-function-based Approach

In order to study influence analysis in LMM, we propose to use the Q-
function in EM-algorithm to replace the likelihood-based methods. The Q-
function for the model (1) is defined by Q(θ|θ̃) = E{log f(Y, u)|Y, θ̃}, the
conditional expectation of the joint log-likelihood function of the responses
Y and the random effects u, given the responses, where θ̃ is the updated
solution of θ in EM algorithm. Based on Q̈, the second-order derivative of
Q with respect to θ, Zhu et al (2001) discussed influence assessments for
incomplete data. However, the calculation of Q̈ for sophisticated models
may be too difficult and the resulting generalized Cook’s distance may
have no clear interpretation. As an alternative we replace Q̈ with EQ̈, the
expectation of Q̈, leading to the generalized Cook’s distance:

D∗
i = [Q̇[i](θ̂|θ̂)]′{−EQ̈(θ̂|θ̂)}−1[Q̇[i](θ̂|θ̂)], (5)

where both the first-order derivative Q̇[i] and the second-order derivative Q̈
are evaluated at the MLE θ̂. For the LMM (1), we find that the matrixEQ̈ is
always block-diagonal whatever the covariance structure is. The generalized
Cook’s distance D∗

i in (5) hence can be decomposed into three components

D∗
i = D∗

iβ +D∗
iα +D∗

iγ , (6)

whereD∗
iβ , D

∗
iα andD∗

iγ are the generalized Cook’s distances corresponding
to the fixed effects β, the between-subject covariance components α and
the within-subject covariance components γ, respectively. In other words,
the influence measurements for the three sets of parameters are mutually
independent in this sense.
To measure how good the Q-based statistic D∗

i is, we compare it with
the likelihood-based influence measurement Di under the framework of
LMM with G = σ2

uIq and Ri = σ2
ε Ini through analyzing two practical

data sets. The first one is the Aerosol Data set (e.g., Beckman et al, 1987)
and the second is the Dental Data set (e.g., Pan and Fang, 2002). For
the Aerosol data Beckman et al (1987) identified that the 5th subject is
the most influential subject. Pan and Fang (2002) analyzed the Dental
data in terms of growth curve modelling and detected the 20th and 24th
individuals as the two largest influential subjects. Figure 1(a) gives the
index plots of Di and D∗

i for the Aerosol data while Figure 1(b) displays
the corresponding index plots for the Dental data, from which we see the
performances of the two influence measurements are very close, implying
that D∗

i is a good alternative to Di.
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FIGURE 1. The index plots of Di and D∗
i for the Aerosol data (Panel (a)) and

the Dental data (Panel (b)), where lines with dots and with empty boxes are Di
and D∗

i , respectively.

3 Effects of Covariance Structures

In practice, the study of the fixed effects may be the focus in longitudinal
studies. A well-known result in the LMM is that a mis-specification of
covariance structures may not affect the magnitude of estimates of the
fixed effects (e.g., Pan and Fang, 2002). An interesting question is, does a
mis-specification of covariance structures affect the fixed effects in terms of
influence assessments?
To see this we analyzed Zerbe’s Glucose data, in which the 30th subject
was identified as the largest influential subject using growth curve mod-
elling technique (Pan and Fang, 2002). BIC-based model selection criterion
suggests that a linear mixed model with G = σ2

uIq and Ri =AR(1) is the
best fitting, which is called Model 1. We then consider two models that
have the same fixed effects and random effects to Model 1 but mis-specify
the covariance structures for either G or Ri: (a)Model 2: G = σ2

uIq and
Ri = σ2

ε Ini and (b) Model 3: G =AR(1) and Ri = σ2
ε Ini . Although the

mis-specification of covariance structures occurs, both models are not too
far away from Model 1 in terms of BIC values (BIC=388.93, 418.21 and
419.64 for Models 1, 2 and 3, respectively).
For each model we compute the generalized Cook’s distance D∗

iβ for the
fixed effects β. Figure 2(a) gives the index plots of the statistic for Model
1 (line with dots) and Model 2 (line with empty boxes), while Figure 2(b)
displays the comparison of Model 1 (line with dots) with Model 3 (line with
empty boxes). Figure 2 shows that the 30th subject, the largest influential
subject identified using Model 1, can not be detected as the largest influ-
ential subject using either Model 2 or Model 3. Instead, these two models
identify the 24th subject as the most influential subject, which is in fact
the third largest influential subject. We anticipate the reason that both
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the mis-specified models identify the right influential subject, though not
the largest influential one, is their closeness to the best model. In general,
mis-identification of influential subjects may occur when mis-specifying co-
variance structures.
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FIGURE 2. The index plots of D∗
iβ for Models 1 & 2 (Panel (a)), and for Models

1 & 3 (Panel (b))

In summary, our proposed approach is a good alternative to likelihood-
based influence methods. A mis-specification of covariance structures may
lead to mis-identification of influential subjects. Correct specification of co-
variance structures is thus crucial for diagnostics purpose. We also studied
the relationship between subject- and observation-levels influences. Further
details will be reported in the oral presentation.
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Abstract: Regression models for time series of counts have been developed over
the last years within the framework of generalized linear models methodology
to take into account serial dependence that occurs so frequently in applications.
Estimation, testing and prediction can be routinely carried out using standard
conditional/partial likelihood methods under certain regularity conditions. The
aim of this communication is to report some further results on this still evolving
applied area by discussing an autoregressive moving average model for time series
of counts. Several simulations enrich the theoretical results.

Keywords: Partial likelihood; Count data; Regression.

1 Introduction

Over the last years there has been a growing interest on regression models
for time series of counts whose development has been facilitated by various
applications arising frequently from different scientific disciplines such as
finance, medicine, environmentrics to name a few, Kedem and Fokianos
(2002). These regression models–often called “transitional”, “conditional”,
and “Markov” models–are analyzed in almost all of the cases by partial
likelihood or quasi-likelihood methods which allow for temporal or sequen-
tial conditional inference with respect to a filtration generated by all that is
known to the observer at the time of observation. This enables very flexible
conditional inference which takes into account autoregressive components,
functions of past covariates, all forms of interactions among covariates, and
more generally time dependent random covariates. Furthermore, the com-
bination of partial likelihood and regression models for time series of counts
provide a methodological sound framework where estimation, diagnostics,
model assessment, and forecasting are implemented in a straightforward
manner while the computation is carried out by a number of the existing
software packages. These issues are addressed in the list of desiderata sug-
gested in Davis et al (1999) and Zeger and Qaqish (1988) and have further
examined in Kedem and Fokianos (2002).
The main objective of this work is to study an autoregressive moving av-
erage model for time series of counts whose moving average part depends

149



150 Time Series of Counts

upon an unknown parameter, or possibly, parameters. Therefore estimation
of the parameter/parameters involved in the moving average part of the
model is necessary for regression fitting and prediction.
To fix notation, suppose that Yt, t = 1, 2, . . . , N is a response time series of
counts and let Zt−1, t = 1, . . . , N be a p–dimensional vector of covariates
which may includes past values of the process and/or any other auxiliary
information. Under the above setup, statistical inference is mainly con-
cerned with exploring the relationship between the expected value of the
response and the covariates given the history. Thus, a methodologically
sound analysis is based on the following regression model

μt(β) = h(Z ′
t−1β), t = 1, . . . , N, (1)

where μt = E[Yt | past] and the inverse link h(.) function maps a subset
H ⊆ R one–to–one onto (0,∞). The regression coefficients β are unknown
and need to be estimated from the data. For instance, when h equals to the
exponential function, then expression (1) leads to the so called log–linear
model where

logμt(β) = Z ′
t−1β. (2)

In what follows, we are concerned with model (2). It is well known that
inference about the regression parameters can be carried either by con-
ditional or partial likelihood methods (Ch.6 of Fahrmeir and Tutz (1994)
and Ch.4 of Kedem and Fokianos (2002)), or by the so called estimating
equations approach, Zeger and Qaqish (1988).

2 A Moving Average Model

Consider model (2) and let Zt−1 = (Xt, et−1, . . . , et−p)′, where Xt denotes
a multivariate auxiliary process and the random sequence {et} is defined
by

et =
Yt − μt

μλt
, t = 1, . . . , N, (3)

for λ ≥ 0, see Davis et al (1999). Hence equation (2) becomes

logμt(β) = X ′
tγ +

p∑
i=1

θiet−i,

where β = (γ′, θ1, . . . , θp)′. A close examination of the above model resem-
bles the well known ARMA models. In particular when λ = 1/2, then the
random sequence {et} reduces to the so called Pearson residuals and then
Yt possesses a number of nice properties. To mention only few

• model (2) can be used for prediction in a straightforward manner.
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FIGURE 1. Typical realizations of model (4) with β = (1, 0.5,−0.5)′ and
N = 200. From top to the bottom: λ = 0, 0.5, 1.

• model (2) takes into account serial dependence for estimating the
parameter vector γ.

As an example consider the following model

log μt(β) = γ1 + γ2 cos
(

2πt
12

)
+ θ1et−1 (4)

for t = 1, . . . , N and set β = (γ1, γ2, θ1)′ and Zt−1 = (1, cos(2πt/12), et−1)′.
Then the log–linear model (2) is satisfied with this notation. Figure 1 dis-
play realizations of the observed time series of counts for different parame-
ter values of both β and λ and points to a rather rapid oscillation for all
λ–even though the value λ = 0 yields to a few extreme points.
Clearly, when the parameter λ is known, inference can proceed in a straight-
forward way according to the established theory since the vector (et−1, . . . ,
et−p)′ can be thought as additional covariates. However a problem arises
when λ is not known and it is not well understood how estimation of f λ
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affects the regression parameters. The aim of this contribution is to inves-
tigate

• Estimation of λ in (3).

• Prediction for count time series under joint estimation of β and λ.
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Abstract: For the joint modelling of longitudinal continuous responses and
dropout generalized Heckman model is used in order to see the influence of small
perturbation of the elements of covariance structure on likelihood displacement.
The perturbation from random dropout in the direction of informative dropout
is considered for Mastitis data.
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1 Introduction

Recently joint modelling of response and non-response in cross-sectional
and longitudinal data has been extensively used. Examples of such models
are the selection model of Heckman (1979) and the dropout model of Diggle
and Kenward (1994). In Diggle and Kenward’s model dropout is at ran-
dom (RD) if, given the previous outcome, it is independent of the current
response and it is completely random dropout (CRD) if it neither depends
on the previous nor on the current response. If dropout is not CRD or RD,
it is informative dropout (ID). However, Diggle and Kenward’s model rests
on strong assumptions (discussion of Diggle and Kenward, 1994) and it has
been so much suggested that an important way to use joint modelling is
by means of sensitivity analysis (Verbeke and Molenberghs, 1997 and 2000
and the references mentioned there). Several tools have been discussed in
the literature, such as the informal sensitivity analysis of Kenward (1998)
and a local influence based approach as formal sensitivity analysis (Molen-
berghs et al, 2001) for assessment of the influence of a small modification
of model components.
Molenberghs et al (2001) use Diggle and Kenward’s model and the ap-
proach of Cook (1986) for measuring the influence of a small perturba-
tion of the model components. In this paper we shall use the generalized
selection model of Heckman (Crouchley and Ganjali, 2002, see also next
Section) and the approach of Cook (1986) for measuring the influence of
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a small perturbation of the model components for longitudinal data with
dropout. The approach will be discussed for measuring the influence of a
small perturbation of the covariance structure of the generalized Heckman
model (GHM) on likelihood displacement (see Section 3). In Section 4, as
an application, the Mastitis data will be used for assessing the influence of
the perturbation from RD in the direction of NRD.

2 The Selection Model and its Generalization

Heckman (1979) proposed a joint model for a continuous response (yi)
and a sample selection mechanism. This model is defined by means of two
equations,

R∗
i = αTWi + vi

y∗i = βTXi + εi,

where α and β are vectors of parameters, Wi and Xi are vectors of
covariates, (vi, εi) are i.i.d drawings from a bivariate normal distribution
with zero means, variances σ2

RR = 1, σ2
Y Y and covariance σRY . It is as-

sumed that y∗i is observed only when R∗
i > 0. So let yi = y∗i if R∗

i > 0
and yi = 0 if R∗

i ≤ 0, for i = 1, ..., n, where yi = 0 is used to indicate a
missing response. Also define Ri = 1 if R∗

i > 0 and Ri = 0 if R∗
i ≤ 0, so

that (yi, Ri) constitute the observations for subject i.
The Heckman (1979) model is generalized to the situation of repeated re-
sponses with dropout by Crochley and Ganjali (2002). This is

R∗
it = αTt Wit + vit

y∗it = βTt Xit + εit,

where t = 1, ..., Ti, yi = (yi1, yi2, ..., yiTi) and Ri = (Ri2, ..., RiTi). In
this model, it is assumed that all the subjects at the start of the study
are observed, i.e. Ri1 = 1, ∀ i. The observations for the subject i, take
the form (yi,Ri) =

([
y∗i1, ..., y

∗
iTi−1

, 0
]
, [1, ..., 1, 0]

)
, if dropout occurs and

(yi,Ri) =
([
y∗i1, ..., y

∗
Ti

]
, [1, ..., 1]

)
, if a subject is independently right cen-

sored by the observation plan at time Ti.
In this model V ar (εi) = ΣY Y . ΣY Y is assumed to be unstructured so that
Var(εit) = σ2

Y Yt
and cov (εis, εit) = σY Ys,t . It is also assumed that the

subjects are independent of each other, so that cov (εis, εi′t) = 0 for i �= i′

for all s and t. Also V ar (vi) = ΣRR, where diag (ΣRR) = 1.

The Dropout Mechanism

When dropout occurs y∗iTi is not observed. Little and Rubin (2002) note
that for CRD the dropout process must be independent of both the ob-
served responses y∗

io =
(
y∗i1, ..., y

∗
iTi−1

)
and y∗iTi , while for RD the dropout

process, conditional on y∗
io, must be independent of y∗iTi .
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If we let f (.) denote a multivariate normal distribution then we have CRD
if f(R∗

i | y∗Ti ,y∗
io

) = f(R∗
i ). We have RD if f(R∗

i | y∗Ti ,y∗
io

) = f(R∗
i | y∗

io
).

With either CRD or RD the joint probability of (y∗
i ,R

∗
i ) factors so that we

can use f (yio) on its own for unbiased inference about β. If f(y∗Ti | R∗
i ,y

∗
io

)
does not simplify for CRD or RD we have informative dropout (ID).
Crouchley and Ganjali denotes the variance-covariance matrix ΣGH for the
elements

(
y∗
io, y

∗
iTi
,R∗

i

)
as

ΣGH =

⎡⎣ ΣYoYo ΣYoYT ΣYoR
ΣYTYo σ2

Y YT
ΣYTR

ΣRYo ΣRYT ΣRR

⎤⎦ .
and they found that if both ΣYTR = 0 (missing at random) and ΣYoR = 0
(observed at random) we have CRD, i.e. ΣYTR|Yo = 0. They also found
that if

ΣYTR − ΣYTYoΣ
−1
YoYo

ΣYoR = 0 (1)

we have RD. So we can estimate a model under RD by imposing the con-
straint ΣYTR = ΣYTYoΣ

−1
YoYo

ΣYoR.
Consider as an example the case of a two period longitudinal data where
the response at first time is observed for all individuals. In this case yi =
(yi1, yi2), Ri = Ri2 and let

ΣGH =

⎡⎣ σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 1

⎤⎦
where cov(yi1, yi2) = σ12 and cov(yij , Ri2) = σj3 for j = 1, 2. Consequently
equation (1) for σ22 > 0, ρ23 −ρ12ρ13 = 0 gives the conditions for ignorable
dropout. This can occur when ρ23 = ρ13 = 0,which is completely random
dropout (CRD) and when ρ23 = ρ12ρ13.

3 Likelihood Displacement (LD)

We are interested in the influence that selection exerts on the parameters
of interest in GHM as our selection model. If ΣYTR−ΣYTYoΣ

−1
YoYo

ΣYoR = 0
we have RD process. In this case measurement model parameters can not
be influenced by selection. Modification of H = ΣYTR − ΣYTYoΣ

−1
YoYo

ΣYoR
may lead to large difference in the model parameters. Let denote the log-
likelihood function corresponding to the GHM by

£(γ | H) =
n∑
i=1

£i(γ | H)

in which £i(γ | H) is the contribution of the ith individual to the log-
likelihood and γT = (βT , αT ) is the parameter vector of measurement and
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TABLE 1. Results for mastitis data.

ID model RD model CRD model IDWO

Par. Est SE. Est SE. Est SE. Est SE.

β0 5.765 0.0.09 5.765 0.090 5.765 0.009 5.598 0.086

η 0.315 0.138 0.719 0.107 0.719 0.107 0.617 0.434

ρ12 0.470 0.087 0.581 0.071 0.581 0.071 0.727 0.054

ρ13 -0.157 0.125 -0.149 0.013 -0.127 0.131

ρ23 0.676 0.117 -0.127 0.934

σ11 0.931 0.064 0.931 0.064 0.931 0.064 0.872 0.060

σ22 1.274 0.113 1.138 0.088 1.138 0.087 1.044 0.100

α0 0.634 0.130 0.667 0.131 0.667 0.132 0.645 0.133

-logL 308.771 311.389 312.013 275.998

dropout mechanisms. Let shows £(γ) = £(γ | H = 0) where £(γ) is the
log-likelihood function which corresponds to a RD model. Suppose H can

be perturbed around 0. Let
∧
γ be MLEs for γ obtained by maximizing £(γ)

and
∧
γHbe MLEs for γ obtained by maximizing £(γ | H). Now one can

compare
∧
γH and

∧
γ as local influence. If

∧
γH and

∧
γ are similar, parameters

estimates are robust to the perturbation of RD in the direction of ID.
Strongly difference estimates shows that estimation procedure is highly
sensitive to such modification. We can use the Cook’s LD which defined as
LD(H) = 2[£(

∧
γ)−£(

∧
γH)]. A graph of LD(H) versus H can be used as the

influence of perturbations. For two-period longitudinal data with dropout

LD is LD(H) = 2[£(
∧
γ) − £(

∧
γH)] where H = ρ23 − ρ12ρ13.

4 Mastitis Data: Model and Results

Mastitis can reduce the milk yield of infected animals. We shall use data
of the total milk yield for 107 cows from a single herd, in two consecutive
years, to investigate the relationship between yield and mastitis. Of 107
animals, 27 were infected in their second year which will be treated as
missing. For these data the GHM is in the form

y∗i1 = β0 + εi1,

y∗i2 = β0 + η + εi2,

R∗
i2 = α0 + vi3, (2)

where η gives the effect of time on the mean of the response. We delete
the effect of explanatory variable, selected year, as the previous analysis
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FIGURE 1. Likelihood displacement against values of H.

(Crouchley and Ganjali, 2002) shows no significant effect of this variable on
responses. We used NAG (1996) routine E04UCF to obtain the likelihood
displacements for these data.
Results from the GHM, System (2) for ID, RD, and CRD models are pre-
sented in Table 1.
We get an increase in deviance of 6.484 for 2 d.f. (p=0.039) for a test of
CRD (ρ13 = ρ23 = 0) in System (2) and an increase in deviance of 5.236
for 1 df (p=0.022) for a test of RD (ρ23 = ρ12ρ13 in System (2)). Table
1 shows that, for the ID model, dropout is informative because of the
stochastic dependency (ρ23 = 0.676) between the dropout process and the
response in the second period. The value of ρ23 implies that a large value
of the response in the second period (which may be missing) will increase
the probability of being present in the second period. All the models give
a significant change in mean response in the second period, but the CRD
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and RD model overestimates it.
Using Pearson residuals Crouchley and Ganjali (2002) find 3 outliers in
responses (cows 4, 5, 66). Deleting these observations show no sign of ID
(see results of IDWO in Table 1). Figure 1 shows the LD against different
values of H for full data and data without outliers.
In Figure 1, as it can be seen, there is no strong difference between LD for
full data and LD for data without outliers. This suggests that only some
outliers are the cause of ID in these data.

Acknowledgments: Many Thanks to Shahid Beheshti university for the
financial support.
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Abstract: Performance of a selection model and a random effects model are
compared under the presence of informative censoring, using real as well as sim-
ulated data. The bias in the parameter estimates from a random effects model
when informative dropout is present is small in our data set. This result is con-
firmed by the simulation study. Larger differences are seen in the estimates of
the individual random effects.
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1 Introduction

Markers are internal host factors that represent the current disease or recov-
ery status of an individual. Identification of markers and modeling their de-
velopment provides information on the disease mechanism. After infection
with the human immunodeficiency virus (HIV), the number of CD4 lym-
phocytes decreases, finally leading to severe immunodeficiency and AIDS.
Recently, assays have become available to quantify the HIV-RNA level in
HIV infected individuals. Marker data that are collected during follow-up
are usually missing to some extent since the value of the marker is associ-
ated with the risk of dropout (death).
Numerous papers have been published that model the development of CD4
count after HIV seroconversion. Some papers included data on AIDS di-
agnosis in order to correct for informative dropout via selection models
(e.g. Berzuini and Larizza (1996), Wulfsohn and Tsiatis (1997)) or mixture
models (Pawitan and Self (1993)). Others investigated the amount of bias
caused by informative dropout when dropout is ignored and only a random
effects model is used (Faucett and Thomas (1996), Touloumi et al (1999)).
In the medical literature, the so-called set point theory has been the
favourite model to describe the development of HIV-RNA level: after a
short peak in the first few months after infection, levels tend to be sta-
ble until another rise occurs close to AIDS diagnosis. The development

159



160 Marker Development with Informative Dropout

of HIV RNA has been modeled in a couple of papers, taking account of
the fact that the assay used has a lower detection limit. Some only model
the repeated measures (Hughes (1999)), others also include the correction
for informative dropout via selection models (Jacqmin-Gadda et al (2000),
Lyles et al (2000)). The bivariate development of both markers, without
considering informative dropout, has also been modeled (Boscardin et al
(1998)).
Many studies have investigated the effects of age and some genetic mu-
tations on AIDS progression via a Cox model. By combining a model for
the effects of the cofactors on the marker development and the effects of
the markers on AIDS risk via a selection model, insight is gained into the
causal mechanisms of these cofactors (Taylor et al (2000)).
We use a selection model to investigate the ways in which age and the
genetic cofactors influence progression to AIDS. Emphasis will be on the
bias in the parameters of the longitudinal part that may be introduced when
a random effects model is used that neglects the informative dropout. The
results are compared with the results from a small simulation study and
with the results from an ordinary least squares model that considers each
value as independent.

2 Materials and Methods

We used data from two different cohort studies, the Amsterdam Cohort
Study among homosexual men (N=126) and the French SEROCO Co-
hort Study (N=274). The Amsterdam Cohort Study among homosexual
men was started in 1984. We only used information until the date that
administration of highly active anti-retroviral therapy (HAART) became
widespread in the Netherlands (July 1st, 1996). Follow-up data from hos-
pitals was included as well. All laboratory measurements were done in one
laboratory. The French SEROCO cohort was started in 1988. HIV-infected
adults from 17 hospitals and a network of private practitioners have been
enrolled. In the analysis, only homosexual men were included. Information
until February 1st, 1996 was used, when HAART became widely available
in France. Marker measurements originate from 19 different laboratories.
We used a selection model, in which the marker development is modeled
and the AIDS risk is modeled conditional on the fitted marker values. The
model for the marker development is(

CD4(tij)1/3

log RNA(tij)

)
=
(
ai1 + bi1 tij + ci1 t

2
ij + θcal1 + ε1(tij)

ai2 + bi2 tij + γ2 tijI(tij<0.5) + θcal2 + ε2(tij)

)
,

with

(ai1, b
i
1, c

i
1, a

i
2, b

i
2)
T ∼ N ((α1(l), β1, γ1, α

site
2 , β2)T ,Σ),

α1(lF ) ∼ N (μF , σ2
lab),
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α1(lA) = μA,

ε1(tij) ∼ N (0, σ2
cal),

ε2(tij) ∼ N (0, τ2),

and εk(·) independent. For the relation between the markers and the AIDS
risk, we used a time-dependent Cox model

λ(t) = λ0(t) exp{fitted(CD4) + fitted(RNA) + cofactors}.

The fitted marker values are obtained by combining the fixed and random
effects. The effect of the fitted cube root of CD4 count on AIDS risk was
modelled via a linear spline with knots at the values five and seven. The
fitted log RNA level was fitted linearly.
Since laboratory methods improved over time, we allowed for a calendar
time effect for error variance and CD4 level. For Amsterdam, changes oc-
curred in 1988 and 1992. For France, where this was dependent on the
laboratory, we allowed for a change in 1990 and included a random lab-
oratory effect. Since HIV-RNA level was determined retrospectively, we
modeled an effect of calendar time on the level (representing the effect of
storage of frozen samples and the increasing availability of treatment), but
no effect on the variance of the measurement error.
We used a Bayesian approach to parameter estimation, starting with non-
informative priors for the parameters. Posterior distributions were obtained
via Markov Chain Monte Carlo techniques, using the WinBUGS package.
Three chains with different sets of initial values were generated. In order
to reduce posterior correlations, we used hierarchical centring in the para-
metrisation (Gelfand et al (1995)).
Results from the joint model were compared with the results from a ran-
dom effects model that only incorporates the marker trajectories without
correction for dropout due to AIDS.

3 Results

In total, we had 6761 CD4 records. The number of measurements per person
ranged from 1 to 59 (median 14). For HIV-RNA level, we had 3807 records,
ranging from 1 to 55 per person (median 8). Of the HIV-RNA records, 344
were below the detection limit.
Hierarchical centring greatly improved convergence. Only about 4000 it-
erations were needed instead of 50000 if no centring was done. Moreover,
updating was done about three times faster.
The selection model and the random effects model give more or less similar
parameter estimates for the population effects. Difference in parameter esti-
mates, relative to the width of the 95% credibility interval of the parameter
under the selection model, remains below 12%. The largest differences are
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TABLE 1. Parameter estimates and coverage probabilities of the 95% credibility
intervals (in brackets). (ID=Informative dropout, MAR=Missing At Random)

random effects model ordinary least squares model
α β α β

ID 9.59 (0.94) -0.57 (0.92) 8.62 (0.00) -0.21 (0.000)
MAR 9.60 (0.95) -0.58 (0.95) 9.51 (0.23) -0.59 (0.086)

seen for some of the parameters from the covariance matrix of the ran-
dom effects (σb2 : −11%, σc1 : −6.1%, ρb2,c1 : 7.9%) and the parameters
for the RNA development (calendar period effect France: −8.5%; calendar
period effect Amsterdam 1988-1992 relative to before 1988: 12%; effect age
on RNA slope: −7.7% and RNA slope parameter β2: 5.1%). Relative bi-
ases in all other effects remain below 5%. Larger differences are seen in the
individual random effects for individuals who had few records and a long
period between the last record and the moment of censoring or AIDS.
After the initial drop, HIV-RNA load increases again at the population
level. The same pattern is seen for the selection model and the random
effects model. However, the ordinary least squares model gives highly biased
results: after the initial drop, HIV-RNA remains at a stable level.

4 A Simulation Study

We did a simulation study in order to investigate the amount of bias in
the random effects model and in the ordinary least squares model when
the probability of dropout depends on a person’s marker trajectory. We re-
stricted to the development of one marker (CD4 count), without covariates.
Individual intercepts ai and slopes bi follow a bivariate normal distribution,
with mean (α, β) = (9.6, −0.58) and σa = 1.48, σb = 0.45, ρa,b = −0.495.
For each person, a random censoring time is generated from a uniform
distribution on [0, 20]. The hazard of the event of interest is given by
λ(s) = λ exp{γ × (ai + bis)}, with λ = 1.8 and γ = −0.5. The time span
between subsequent observations is drawn from an exponential distribution
with mean 0.25 years. Two thousand samples were generated, each sample
containing data from 400 persons. We also generated one thousand samples
in the situation that dropout only occurred through the censoring mecha-
nism. Results are summarized in Table 1. Again we see that the random
effects model performs well under our informative dropout mechanism.

5 Conclusions

The bias in the parameter estimates from a random effects model when
informative dropout is present is small in our data set used. This result is
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confirmed by the simulation study. It contradicts earlier results (Faucett
and Thomas (1996), Touloumi et al (1999)), but may be explained by
the large number of records per individual and the good follow-up until
AIDS or censoring. The largest bias, although still small, is found in the
parameters that describe HIV-1 RNA development and in the covariance
matrix of the random effects. Also, larger biases are found in the individual
random effects. The set point theory of viral load development seems to be
an artefact caused by the frequent use of an ordinary least squares model
to describe HIV-RNA development.
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Abstract: This work is motivated by the need of knowing computer cache rates
over a wide range of architectural configurations while being able to simulate only
a small fraction of them. We present methodology for fitting multivariate models
to available cache rate data. The models must be smooth and possess two fea-
tures. First, they interpolate (replicate) the data set itself. Second, they produce
meaningful extrapolation beyond the range of the simulation data along several
dimensions simultaneously corresponding to large cache configurations. This is
achieved by gradually transitioning from an interpolation model to a smooth
extrapolation model via a set of intermediate models of varying smoothness.

Keywords: Nonparametric regression; Smoothing; Extrapolation; Cache simu-
lation.

1 Introduction

We consider the following regression problem. Given sample pairs (xi, yi)
that leave large portions of the domain region unexplored, we would like to
estimate the functional relationship between x and y fulfilling the following
three requirements. Let f denote the estimate, X be the domain region of
interest and C ⊂ X be the data region. In the absence of “holes” in the
data, it can be defined as the convex hull of the xi.
Requirement 1. f(xi) = yi. This is the interpolation property.
Requirement 2. Over the extrapolation region X \ C, f is the smoothest
possible function that still captures the trends in the data.
Requirement 3. f is smooth over X .
Req. 2 implies that f should be very smooth over the extrapolation region
while Req. 1 stipulates that f must be rough enough to pass through all
the data points. Therefore, f has to make a smooth transition achieved by
gradually increasing the smoothness of f as we move away from the data.
If the data are sampled evenly within C (no holes), the smoothness will be
increased as we move away from C. Constructing models of variable smooth-
ness has been widely considered (Fan and Gijbels (1995), Ruppert (1997),
Schimek (2000)). Frequently, one selects the amount of smoothness locally
based on a criterion, such as the mean squared error (MSE). The primary
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distinguishing feature of modeling cache rate data is the need for extrapola-
tion. Smoothness selection is hard for such models because one is unable to
estimate the model bias over X \C (nor variance for heteroscedastic models)
deeming the local MSE approach infeasible. A secondary feature is that the
data set is noiseless, thus, one need not consider smoother models at the
expense of breaking Req. 1. It will be seen, however, that a similar method
would work for noisy data as well for building a conditional expectation
estimate f over X \ C after standard smoothing is carried out over C.
Our motivation for considering this problem is computer system perfor-
mance estimation. Computer system models take as inputs cache rate data
and output performance estimates as well as resource utilizations that al-
low one to identify bottlenecks. A cache rate is the frequency of a par-
ticular memory event. A (single level cache) system configuration is para-
meterized by the number of processors, cache size, and some other cache
attributes. (Hennessy (2003)). A typical dataset consists of four to six pre-
dictors (the configuration parameters) and a continuous response (the cache
rate). Caches can usually be simulated over a regular design covering the
set of simulatable architectures. This would be the set C. Gluhovsky (2003)
discusses cache simulation constraints. However, performance analysis is
usually required over a considerably broader domain requiring extrapola-
tion. For example, we were only able to simulate configurations with up to
16 processors, while we are interested in designing machines with as many
as 256 (logical) processors!

2 Building the Model

The first step in building model f is fitting a set of models f0, · · · , fM
of different constant smoothness. The models are indexed with increasing
smoothness. The idea then is to use the roughest interpolation model f0
over most of C and switch to progressively smoother model as we move
away from C.
The emphasis of this work is on integrating the models of different smooth-
ness. Our hope is that the ideas are applicable to a variety of modeling
methodologies. To be concrete, for f0 we chose an interpolating thin-plate
spline. It is the smoothest function that passes through all the data points,
thus, satisfies Req 1. Details of the smoothness criterion and fitting thin-
plate splines can be found in Green and Silverman (1994). It is well known
that the behavior of thin-plate splines is not suitable for extrapolation.
Therefore, we move to a smoother set of models. In this work, we chose
f1, · · · , fM to be additive models with bivariate interactions. They are fit-
ted via backfitting (Hastie and Tibshirani (1990)) using a locally weighted
running-plane smoother (Hastie and Tibshirani (1990), Cleveland and De-
vlin (1988)) with the same weighting kernel bandwidth for each of the addi-
tive components. Those bandwidths increase from f1 to fM (thus fM is the
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smoothest model) and are chosen to be equally spaced on the logarithmic
scale. Our goal now is to keep f0 over and around the data points, use fM
for much of the extrapolation region and use the intermediate models to
facilitate the transition.
First, let us quantify Req. 2. We have to limit the smoothness of f from
above; a model that is too smooth at the expense of losing the trend of the
data would not define useful extrapolation. For a straightforward measure
of the goodness of fit of f ′, we chose a high, say, α = .9-quantile of the
absolute residuals |f ′(xi) − yi|, where f ′ has constant smoothness. Denote
the α-quantile by rα. Then we constrain all models fm to satisfy

rα {|fm(xi) − yi|} ≤ γ (1)

for some threshold γ.
The idea behind model integration is the following. As we move away from
the data, rougher models become unstable and we observe wider discrep-
ancy between the M +1 fits. Observing the discrepancy at x that is higher
than that over the data region points towards using a smoother model.
We would like to catch the transition early enough, so that jumping to a
smoother model is smooth. On the other hand, we do not want to sacrifice
the quality of the fit near the data by using too smooth a model.
Define the model m instability of the fit measure s(x,m) at x ∈ X via

s(x,m) = range{fk(x) : k ≥ m}.
If s(x,m) is small and models fk, k ≥ m produce similar fits at x, this is an
indication that the variability of the estimates due to extrapolation is not
much of as issue for model m. It is possible that we are not flexible enough
to pick up the trend of the data as well as we could. On the other hand,
a large s(x,m) indicates that any potential gain in picking up the trend of
the data is likely to be offset by loose control of the behavior of fm.
Define R(m) = rα {s(xi,m)}, the α-quantile of the instability measures
over the data points for, say, α = .9. Let

p(x,m) = s(x,m) + (R(0) −R(m)) (2)

define the penalty for using model m at x. Its interpretation is that we
penalize for the instability of the fit by s(x,m), but we discount it by
R(m) as the part being consistent with an interpolation problem. Adding
R(0) makes both summands nonnegative, as R(m) decreases with m. In
what follows let R(m) be redefined as R(m) ← R(0) −R(m).
We also considered another measure for whether or not a location x should
be treated as part of extrapolation based on how far from the data points x
is. Rather than examining the geometry of the data set, which is generally
not tractable in several dimensions, the idea is to fit a smooth model to
the indicator vector 1{xi} in X of the data points (it is zero over X \{xi}).
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A smooth function I that approximates this indicator is obtained by fit-
ting a logistic locally weighted running plane model (Hastie and Tibshirani
(1990)). To use I(x) in the penalty definition (2), we opted for

p(x,m) = s(x,m) + r(m) + (1 − (c0 − I(x))+/c0)(R(m) − r(m)) (3)

for a given c0, where r(m) is defined similarly to R(m) except for a smaller
α. c0 is taken to be, say, r.1{I(xi)}. Thus, we lower the tolerance to insta-
bility of the fit if we are told by I to expect to use a smoother model. The
reason to involve c0 is to keep the original tolerances R(m) over most of
the data points.
Due to space limitations, we can only give a flavor of the last piece of the
procedure. Observe that while the penalties (3) of two different models at
some x may be similar, their fits may be rather different. If two different
models are used at nearby locations, it may lead to a roughness in f .
If the two models have similar penalties, we would prefer to discourage
such behavior by incurring a slightly larger combined penalty, but using
the same model at both locations. In general, we expect that as we move
away from the data, the models used gradually become smoother, thus,
defining contiguous regions where the same model is used. The details will
be presented elsewhere.

3 Cache Rate Data Model

Space limitations allow us to only show a glimpse at the procedure. Figure 1
presents a slice through a 4-dimensional surface f for the total cache miss
rate varying the number of processors with the other three arguments fixed
at some values. There are four data points within this slice corresponding
to processor levels 0, 2, 3, and 4 shown as small dots. The small dots
(including those just mentioned) depict the fit given by f0. The lines are
smooth additive fits f1, · · · , f6. The circles are the final model f . As can
be seen, the procedure chose the second roughest model f1 at level 1 that
is close to the data and the smoothest model f6 at levels 7, 8, and 9 far
from the data. The transition was facilitated by two intermediate models.
We can observe a widening discrepancy between the fits as we move away
from the data and a particularly loose behavior of f0 in the extrapolation
region.
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FIGURE 1. Slice through f showing all the models.
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Abstract: Biomedical researchers are often interested in estimation and testing
of treatment effects on multiple outcome variables. A motivating example for
this paper is a randomized clinical trial of two depression treatments in which an
ordinal and a continuous measure of depression severity are collected repeatedly
over 7 weeks. We formulate a latent variable mixed model for joint analysis of
the two outcomes and compare results between joint and separate analysis of
the response varaibles. Maximum likelihood estimation via adaptive Gaussian
quadrature is used for estimation and inference. Likelihood-based methods are
used for model comparison. Bias and efficiency comparisons between joint and
separate fitting of the response variables are performed via simulations.

Keywords: Latent variable; Gaussian quadrature; Multivariate response; Re-
peated measures.

1 Introduction

In randomized clinical trials and observational studies medical researchers
often measure multiple outcome variables and analyze these responses sep-
arately. Traditionally in such situations either no correction or the very
conservative Bonferroni correction for multiple tests is applied. Since the
outcome variables often correspond to the same or related latent processes,
models with correlated or shared random effects can be fitted to several
related outcome variables. This approach can keep the alpha level closer to
the nominal level, may improve efficiency of treatment effect estimates, and
may provide additional information about the relationship between vari-
ables. A number of authors have considered such models for cross-sectional
data or for repeatedly measured data on responses of the same type. The
case of multiple outcomes and repeated measures is complicated since two
types of correlations must be taken into account: correlations between mea-
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TABLE 1. Average HAMD and CGI scores for the two treatment groups over
time in the randomized clinical trial of depression.

HAMD CGI
Week Active augmentation Active Active augmentation Active

0 29.27 31.08 4.12 4.30
1 23.27 26.13 3.60 3.88
2 18.43 20.91 3.14 3.52
3 15.57 19.82 2.90 3.50
4 14.35 18.61 2.65 3.39
5 10.58 14.25 2.58 2.89
6 8.89 11.68 2.00 2.47

surements on different variables and correlations between measurements on
the same variable within cluster or subject.
In this paper we formulate a latent-variable mixed model for a combi-
nation of ordinal and continuous outcomes measuring the same underlying
process over time. We use maximum-likelihood estimation for model fitting
and likelihood methods for model comparison. The motivating dataset is
from a double-blind randomized clinical trial of two depression treatments
(Sanacora et al., 2003). Fifty subjects with a diagnosis of major depres-
sion are randomly assigned to receive either active or active augmentation
treatment. Hamilton depression scale ratings (HAMD) and clinical global
impression (CGI) ratings are obtained weekly over a period of 6 weeks. Both
variables measure depression severity. The hypothesis of interest is whether
the experimental treatment group demonstrates faster improvement than
the standard treatment group. The HAMD score is best treated as con-
tinuous measure and can be assumed to be normally distributed based on
normal probability plots. The CGI is an ordinal variable measuring sever-
ity of illness on a scale from 1 to 7, with 1 indicating “normal, not at all
ill” and 7 indicating “among the most extremely ill patients”.Since there
is only one value in categories 6 and 7, categories 5, 6 and 7 are combined
in one. Means for each treatment group over time are shown in Table 1.

2 Model Definition and Properties

Let yij1 and yij2 denote the continuous and the ordinal outcome respec-
tively, measured on the ith subject i = 1, ...I at the jth time point,
j = 1, ...J . Let also lij be the true unobserved depression status for the
ith subject at time j.
The model is defined by the following equations:
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yij1 = β0 + β1lij + εij1,

yij2 = c (if τc−1 < lij + εij2 < τc, c=1,...5, τ0 = −∞, τ5 = +∞),
lij = xTijγ + zTijbi + εij .

Here β0 is a shift parameter, β1 is a factor loading parameter, the θ’s are
unknown thresholds. As usual xTij and zTij are covariate vectors, γ is a
parameter vector describing the effect of covariates on the latent response
and bi are subject-specific random effects. The fixed effects in the latent
variable model are treatment, linear time, quadratic time, treatment by
linear time, treatment by quadratic time. We assume a random intercept
and a random slope. Let also εij ∼ i.i.d.N(0, σ2), independent of εij1 ∼
i.i.d.N(0, σ2

1), εij2 ∼ i.i.d.N(0, σ2
2) and of the random effect vector bi ∼

i.i.d.N(0,Σ). For identifiability we set γ0 = 0 and σ2 = 1.
If the underlying continuous outcome is observed this model reduces to the
model of Roy and Lin (2002) with no variable-specific random intercepts. If
each outcome is considered separately, the above formulation corresponds
to a linear mixed model for the normal response and to a correlated probit
model for the ordinal response. The proposed model can also be rewritten
as a generalized latent and linear mixed model (GLAMM, Rabe-Hesketh,
Pickles and Skrondal (2001)) and fitted using the gllamm function in Stata.
Our model provides a test for a common treatment effect and can handle
irregularly spaced observations. Its correlation structure implies that mea-
sures on two different subjects are independent and measures on the same
occasion between two variables are more highly correlated than measures
taken on the same two variables but lagged over time. Although formulated
for a single continuous and a single ordinal outcome the model extends to
multiple binary, ordinal and continuous outcomes measuring the same un-
derlying process.

3 Maximum Likelihood Estimation and Model
Comparison

3.1 Adaptive Gaussian Quadrature

The marginal log-likelihood involves integration over the random effects
distribution and over the error distribution of the latent process. The main
challenge is that the integrals are nested and the inner integrand depends
on the values of the random effects bi which are unknown and have not
been integrated out yet. To solve this problem Rabe-Hesketh, Skrondal
and Pickles (2002) developed an iterative adaptive Gaussian quadrature
procedure for estimation of multilevel models and implement the approach
in gllamm in Stata. When the dimension of integration is large, an exten-
sion of the Monte Carlo Estimation Conditional maximization method of
Gueorguieva and Agresti (2001) can be used.
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TABLE 2. Adaptive Gauss-Hermite quadrature estimates for the Depression Data
Example.

HAMD only CGI only HAMD-CGI
Parameter Estimate(SE) Estimate(SE) Estimate(SE)
Intercept 30.57(1.33) – 30.47(1.32)
Factor loading – – 3.79(0.48)
Threshold 1 – -6.60(0.61) -7.14(0.87)
Threshold 2 – -3.70(0.39) -4.99(0.67)
Threshold 3 – -1.71(0.30) -2.83(0.49)
Threshold 4 – 0.92(0.30) 1.01(0.39)
Treatment -1.60(1.74) -0.25(0.42) -0.40(0.49)
Time -4.63(0.53) -0.56(0.22) -1.20(0.22)
Treatment×time -1.28(0.92) -0.48(0.31) -0.35(0.25)
Time2 0.33(0.07) 0.02(0.02) 0.10(0.02)
Treatment×time2 0.11(0.13) 0.04(0.04) 0.03(0.04)
Var. of rand. intercept 30.60(7.76) 0.91(0.43) 2.09(0.72)
Var. of rand. slope 2.57(0.73) 0.26(0.09) 0.18(0.07)
Covar. of rand. effects -3.61(1.87) -0.09(0.13) -0.22(0.13)
Var. of latent variable – – 0.95(0.18)
Var. of HAMD 15.04(1.48) – 1.46(1.94)
Log-likelihood -952.4 -284.5 -1154.84

3.2 Model Comparison

It is of interest to compare the fit of the joint model relative to the fit of
separate models for the two response variables. However since the models
are not nested the likelihood ratio test can not be applied. Here we use the
ratio of geometric means of the contributions to the maximized likelihood
ρm1m2 proposed by Agresti and Caffo (2002). Values greater than 1 indicate
that model m1 is better than model m2.

4 Results

Table 2 contains parameter estimates obtained using the two separate mod-
els for the two outcome measures and the joint model.
In all models all effects involving treatment are non-significant indicating
that treatments are not significantly different. Due to the difference in scale
the estimates from the continuous only model are not directly comparable
to the estimates from the joint models. Since the estimate from the con-
tinuous only model is equal to b = 3.79 times the estimate from the joint
model we can use the delta method to obtain directly comparable parame-
ter estimates. In general, regression estimates from the joint models are in
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between the estimates from the continuous only and the ordinal only mod-
els, and standard errors are similar. The likelihood based model comparison
reveal that the joint model fits better than the separate models ρ̂JS = 5.16
and this model provides the best predictions at the subject level. A limited
simulation study suggests that separate fitting of the continuous response
variable is almost as efficient as joint fitting of the outcome variables and
that in small samples the bias in regression parameter estimates may be
smaller in the separate continuous model than in the joint model. On the
other hand the separate model for the ordinal outcome shows larger bias
and larger standard errors of the regression parameter estimates than the
continuous only and the joint models.

5 Discussion

The results from the data example suggest that CGI does not contribute
a significant amount of additional information about the latent process in
excess of what is contained in HAMD and in view of the complexity of the
joint model, a continuous only model may be preferrable. It is possible to
extend the model to the case of two or more latent outcomes when each of
these latent outcomes is measured via a different set of predictor variables.
The model formulation can also be extended to situations with informative
dropout by jointly modeling the outcomes and the probability of dropout.

References

Agresti, A. and Caffo, B. (2002). Measures of relative model fit. Compu-
tational Statistics and Data Analysis. 39, 127–136.

Gueorguieva, R.V. and Agresti, A. (2001). A correlated probit model for
joint modeling of clustered binary and continuous responses. Journal
of the American Statistical Association. 96, 1102–1112.

Rabe-Hesketh, S., Pickles, A., and Skrondal, A. GLLAMM: A class of
models and a Stata program. (2001). Multilevel Modelling Newsletter,
13, 17–23.

Rabe-Hesketh, S., Skrondal, A., and Pickles A. (2002). Reliable estima-
tion of generalized linear mixed models using adaptive quadrature.
The Stata Journal, 2, 1–21.

Roy, J. and Lin, X. (2000). Latent variable models for longitudinal data
with multiple continuous outcomes. Biometrics. 56, 1047-1054.

Sanacora, G., Berman, R.M., et al. Yohimbine addition to SSRI therapy
hastens the onset of antidepressant response. Submitted.



176 A Joint Model for Repeated Discrete and Continuous Outcomes



Multilevel Survival Analysis using

Hierarchical Likelihood

Il Do Ha1, Youngjo Lee2, and Geon-Ho Cho1

1 Faculty of Information Science, Kyungsan University, Kyungsan, 712-240,
South Korea. Email: idha@kyungsan.ac.kr

2 Department of Statistics, Seoul National University, Seoul, 151-742, South Ko-
rea. Email: youngjo@plaza.snu.ac.kr

Abstract: Nested survival data may be modelled by random-effect models such
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1 Introduction

Multilevel (or nested) structures often arise in biomedical research. We an-
alyze a set of data on chronic granulomatous disease (CGD, Fleming and
Harrington, 1991). Recurrent infection times of patients from different hos-
pitals were observed. Both hospital and patient effects can be considered
as random, with patient effect being nested within hospital. For analysis
of survival data, there are two ways of introducing random effects. The
frailty model (FM) introduces random effects into the hazard rate of re-
current event times, while the mixed linear model (MLM) introduces them
into the expected values of recurrent event times. FMs specify the fixed-
and random-effects multiplicatively on the conditional hazard rate, while
MLMs specify them additively on the mean of recurrent event times. FMs
are semi-parametric and fairly flexible, and their covariates can be time-
dependent. However, FMs have been mainly developed for survival data
analysis. MLMs have been widely used in many other areas, so that inter-
pretation of their fixed and random effects is more familiar to statisticians.
Because censored observations can be handled they can be useful alter-
natives to FMs for analysis of multivariate survival data. It is well known
(Goldstein, 1995) that ignoring important sources of random variation may
render traditional methods of statistical analysis invalid. Thus, multilevel
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random-effect models are of interest. However, the difficulties encountered
in extending these models prevent them from being well developed. Sas-
try (1997), Bolstad and Manda (2001) and Yau (2001) all studied limited
classes of multilevel FMs as we shall see in Section 3. Multilevel models
assume that random effects have a nested structure, which is not neces-
sary for our approach. As far as we know, there is no existing literature on
multilevel MLMs for analyzing nested survival data.
Recently Lee and Nelder (1996, 2001) have introduced the hierarchical
likelihood (h-likelihood) which avoids the intractable integrals necessary
to obtain the marginal likelihood. The h-likelihood gives a straightforward
generalization of the fast and statistically efficient fitting algorithm for both
single random-effect FMs and MLMs (Ha, Lee and Song, 2001, 2002) to
their multilevel forms (nested and/or crossed).

2 The CGD Data

The CGD data set in Fleming and Harrington (1991) consists of a placebo-
controlled randomized trial of gamma interferon (γ-IFN) in CGD. The aim
of the trial was to investigate the effectiveness of the gamma interferon
on serious infections in CGD patients. In this study, 128 patients from
13 hospitals were followed for about 1 year. The number of patients in a
hospital ranges from 4 to 26. Of the 63 patients in the treatment group, 14
patients experienced at least one infection and a total of 20 infections were
recorded. In the placebo group, 30 out of 65 patients experienced at least
one infection, with a total of 56 infections being recorded.
Let Tijk be the infection time for the kth observation of the jth patient in
the ith hospital. In the CGD study about 63% of the data were censored.
The recurrent infection times for a given patient are likely to be correlated.
However, since each patient belongs to one of the 13 hospitals, the corre-
lation may also be due to a random hospital effect. Yau (2001) developed
multilevel log-normal FMs, in which infections, patients and hospitals are
respectively defined as level 1, level 2 and level 3 units. He considered a
single fixed covariate xijk (= 0 for placebo and = 1 for gamma interferon).
The estimation of the variances of the random effects was also of interest.
Throughout the paper, we let Ui be the unobserved frailty (or random ef-
fect) on the ith hospital and let Uij be that on the jth patient in the ith
hospital. We assume that the frailties Ui and Uij are mutually independent
and have density functions with frailty parameters α1 and α2, respectively.

3 Multilevel Frailty Models

Consider the multilevel FM below. Given Ui = ui and Uij = uij , the
conditional hazard function of Tijk is of the form

λijk(t|ui, uij) = λ0(t) exp(xTijkβ)uiuij , (1)
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TABLE 1. Analyses using multilevel FMs. α1(α2), the variance of the hospital
(patient) frailty. M1, the Cox model (α1 = α2 = 0); M2, two-level FM(α1 > 0,
α2 = 0); M3, two-level FM(α1 = 0, α2 > 0); M4, three-level FM with both

frailties. β̂1, the estimate of γ-IFN effect β1; ( ), the corresponding estimated
standard error. hP , the adjusted profile h-likelihood.

Model β̂1 α̂1 α̂2 −2hP
M1 -1.086 — — 707.42

(0.268)
M2 -1.119 0.157 — 703.62

(0.269)
M3 -1.062 — 0.778 693.24

(0.321)
M4 -1.067 0.024 0.750 693.20

(0.319)

where λ0(·) is a nonparametric baseline hazard function, β = (β1, . . . , βp)T

is a p× 1 vector of regression parameters and xijk = (xijk1, . . . , xijkp)T is
a vector of fixed covariates. Following Yau (2001), we assume log Normal
frailties; Vi ≡ logUi ∼ N(0, α1) and Vij ≡ logUij ∼ N(0, α2), so that the
zero variances represent the absence of corresponding random components.
For example, α1 = α2 = 0 corresponds to the Cox proportional hazards
model. If α1 = 0 but α2 > 0, the model (1) becomes a two-level model
without random hospital effects. Similarly, if α2 = 0 but α1 > 0, the model
is without random patient effects. If both α1 > 0 and α2 > 0, the model (1)
becomes a three-level model, requiring both random patient and random
hospital effects. With FMs we can model the hazard rate of a series of
infections in CGD patients.
The results are summarized in Table 1. For the three-level model our results
are very similar to those of Yau (2001) ignoring ties. For example, in the
three-level FM, we have β̂1 = −1.067 with SE (standard error) = 0.319,
α̂1 = 0.024 and α̂2 = 0.750, while Yau (2001) has β̂1 = −1.069 with SE =
0.320, α̂1 = 0.025 and α̂2 = 0.758. When there are no ties Yau’s method
is identical to ours. However, the estimate of frailty parameters can be
sensitive to ties (Therneau and Grambsch, 2000, pp. 250). Lee and Nelder
(1996) showed that the deviance (−2hP in Tables 1 and 2) can be used for
testing the absence of a random component. Here, hP is the adjusted pro-
file h-likelihood for dispersion components after eliminating nonparametric
baseline cumulative hazards Λ0(t), fixed-effects β and random-effects v.
Note that such a hypothesis is on the boundary of the parameter space,
so the critical value is χ2

2λ for a size λ test (Chernoff, 1954). For testing
the absence of random-hospital effects H0 : α1 = 0, α2 > 0 the deviance
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difference is 0.04, which is not significant at a 5% level (χ2
1,0.10 = 2.71),

indicating that the random-hospital effects are not necessary. For testing
the absence of random-patient effects H0 : α1 > 0, α2 = 0 the deviance dif-
ference is 10.42, indicating that the random-patient effects are adequate.
In addition, the deviance difference between the random-patient-effect only
model (α1 = 0, α2 > 0) and the one-level Cox model (α1 = α2 = 0) is 14.18,
i.e. the two-level model with the random-patient effect only appears to fit
the data best, agreeing with Yau’s (2001) conclusion. In the final lognormal
FM, β̂1 = −1.062 (SE = 0.321) suggests that γ-IFN significantly reduces
the rate of serious infections for CGD patients. With the h-likelihood we
can use other frailty distributions. We tried gamma FMs, not reported here,
and they provide similar results to the lognormal FMs. The choice of frailty
distribution is relatively unimportant in inferences about fixed effects: see
Sastry (1997) and Ha and Lee (2003) for FMs, and Ha et al (2002) for
MLMs.

4 Multilevel Mixed Linear Models

For the responses log Tijk, we consider the three-level MLM

logTijk = xTijkβ + Ui + Uij + εijk, (2)

where xijk = (1, xijk1, . . . , xijkp)T is a vector of fixed covariates, β =
(β0, β1, . . . , βp)T is a (p + 1) × 1 vector of fixed effects, Ui ∼ N(0, α1),
Uij ∼ N(0, α2), and εijk ∼ N(0, φ) are mutually independent and φ is
the within-dispersion component. In MLMs the covariate xTijk includes the
intercept term, while in FMs the intercept term is not necessary, since it
is confounded with the baseline hazard. With MLMs we directly model
the recurrent times of serious infections in CGD patients. Note here that
(α1 = 0, α2 = 0) corresponds to one-level regression model without ran-
dom effects, (α1 = 0, α2 > 0) to two-level model without hospital ef-
fects, (α2 = 0, α1 > 0) to two-level model without patient effects, and
(α1 > 0, α2 > 0) to three-level model, requiring both patient and hospital
effects. Without censoring, model (2) is a standard MLM whose inferential
procedures have been well developed. MLMs allowing censoring have been
studied by a few authors, for example, Klein et al (1999), and Ha et al
(2002). However, they have been restricted to single random-effect mod-
els. With the h-likelihood we can easily extend Ha et al’s (2002) method
to multilevel MLMs. Ha et al (2002) demonstrated by a numerical study
that the h-likelihood procedure is robust against violations of the normal
assumption.
The results are given in Table 2. As with analyses of the FMs we use the
deviance (−2hP ) for testing the absence of a random component. Here, hP
is the adjusted profile h-likelihood for dispersion components after elimi-
nating fixed and random effects. The deviance (−2hP ) shows again that the
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TABLE 2. Analyses using multilevel MLMs. α1(α2), the variance of the random
hospital(patient) effect; φ, within-variance component. M1, the regression model
(α1 = α2 = 0); M2, two-level MLM(α1 > 0, α2 = 0); M3, two-level MLM(α1 = 0,

α2 > 0); M4, three-level MLM with both random effects. β̂0(β̂1), the estimate of
the intercept β0 (γ-IFN effect β1); ( ), the corresponding estimated standard
error. hP , the adjusted profile h-likelihood.

Model β̂0 β̂1 α̂1 α̂2 φ̂ −2hP
M1 5.428 1.494 – – 3.160 426.52

(0.185) (0.322)
M2 5.594 1.470 0.294 – 2.872 422.00

(0.249) (0.313)
M3 5.661 1.237 – 0.722 2.163 417.60

(0.202) (0.331)
M4 5.684 1.262 0.085 0.635 2.182 417.24

(0.220) (0.328)

two-level MLM with only the random patient effect fits the data best. In
the final MLM β̂1 = 1.237 (SE = 0.331) means that the γ-IFN significantly
prolongs the recurrent infection times.

5 Discussion

In the CGD data the proportional hazards assumption may be suspect
(Lindsey, 1995). By introducing frailties in FMs we may overcome such a
restriction (Keiding et al, 1997). Indeed the deviance test shows that we
need random effects and the two-level models with only random patient
effects are chosen as final models among models we considered. FMs and
MLMs lead to equivalent conclusions; FMs show that γ-IFN reduces the
hazard rate for serious infections, while MLMs show that it prolongs the
recurrent infection times. We concluded via a residual analysis (not shown)
that both models are equally plausible. Because both models fit the data
equally well, we may use a FM when interest is on reduction of the hazard
ratio or a MLM when it is on prolonging of recurrent infection times.
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1 Introduction

In a longitudinal setting, units are measured on several occasions. It is not
unusual that a sequence is not fully observed, due to intermediate missing-
ness and dropout. In the context of maximum likelihood inference, Rubin
(1976) classified missing data into three types, namely missing completely
at random, missing at random and missing not at random. Diggle and Ken-
ward (1994) use a selection model to represent such a process. A selection
model consists of two parts: a measurement part and a missingness process
part. Such a model relies on strong and untestable assumptions. Not only
the distributional assumptions can be misspecified but also the presence of
missing data can have a large impact. In classical theory, the asymptotic
distribution of the likelihood ratio test is a chisquare distribution with de-
grees of freedom equal to the difference in number of parameters. Careful
considerations have to be made when using this result to test for missing
not at random as shown by Rotnitzky et al (2000). We will first provide
a motivating example from Rotnitzky et al (2000), then we will introduce
selection models. In a simulation study, we will illustrate the finite sample
behavior of the likelihood ratio test and we will conclude with some current
research topics.

2 A Motivating Example

The following example is used in Rotnitzky et al (2000). Let Y1, · · · , Yn be
a sample of n observations from a normal distribution with mean β and
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variance σ2. Suppose there is missingness in this sample which is possibly
related to the outcome itself. Let us denote this conditional probability by

Pc(y;α0, α1) = eH(α0+α1(y−β)/σ)

where α0 and α1 are unknown parameters and H(.) is a known function
assumed to have its first three derivatives at α0 non-zero. Interest goes
out to test whether α1 = 0 which corresponds to missing completely at
random. We thus consider two random variables (R, Y ) where R is a binary
indicator, which is 1 if Y is observed and 0 otherwise. The contribution of
one individual to the loglikelihood is thus

r[− log σ − (y − β)2/(2σ2) +H{α0 + α1(y − β)/σ}]
+ (1 − r)[logE{1 − Pc(y;α0, α1)}]

For n individuals the loglikelihood Ln(β, σ, α0, α1) is the sum of n such
terms., If we have a look at the score vector at the null point β, σ, α0, α1 = 0
we obtain the following equations.

r(y − β)/σ2

r(−σ2 + (y − β)2)/σ3

rH ′(α0) − (1 − r)
H ′(α0)eH(α0)

1 − eH(α0)

rH ′(α0)(y − β)/σ

We can see that this score vector is degenerate at this particular parameter
point. Equivalently, the information matrix calculated from expected sec-
ond derivatives is singular at this parameter point.
Rotnitzky et al (2000) show that likelihood-based inference with a singular
information matrix can have some consequences with respect to the distri-
bution of the likelihood ratio test. Depending on the nature of the model
either the asymptotic distribution can be a mixture of χ2-distributions or
the convergence rate is very slowly. Due to these demerits the application
of the asymptotic distribution has to be considered with care. We will il-
lustrate this behavior in the context of selection models by simulations.

3 Selection Models

Let us assume that for subject i, i = 1, · · · , N , a sequence of responses Yij
is measured at several occasions j = 1, 2, . . . , J . Let Rij be a missingness
indicator and assume that yi1 is always observed. Then rij = 0 if yij is
missing and rij = 1 if yij is observed. The measurement part of the model
of Diggle and Kenward (1994) is given by

Yi = (Yi1, . . . , YiJ ) ∼ N(Xiβ,Σi), i = 1, . . . , N,
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where β is a vector of fixed effects, Xi is a matrix containing covariate
values and Σi is a covariance matrix. The missingness process is described
by

logit[Pr(Rij = 1|yi,j−1, yij)] = ψ0 + ψ1yi,j−1 + ψ2yij ,

where Pr(Rij = 1|yi,j−1, yij) is the probability for the ith subject to drop
out at time j. If ψ2 differs from zero, the missingness process is non-random.
Let us denote

g(hid, yid) = Pr(Rid = 1|yi,d−1, yid)

with d the time of dropout and hid = (yi1, . . . , yi,d−1) the history of yid,
which we now restrict to depend on the previous measurement only. The
total loglikelihood has the form


 =
N∑
i=1

(ri
ci + (1 − ri)
ii),

with 
ii the contribution for an incompleter


ii = ln f(hid) +
di−1∑
j=2

ln[1 − g(hij, yij)] + ln
∫
f(yid|hid)g(hid, yid) dyid

and 
ci the contribution for a completer


ci = ln f(yi) +
J∑
j=2

ln[1 − g(hij, yij)].

The likelihood ratio test statistic for testing MNAR versus MAR is then
given by

G = −2[
MNAR − 
MAR].

Due to the difference in only one parameter, the distribution of this statistic
can be misleadingly expected to be χ2(1). Based on this statistic Kenward
(1998) and Molenberghs et al (2001) rejected the null hypothesis of missing
at random on a value of 5.11, which corresponds to a P-value of 0.02 for
their data example (Mastitis in dairy cattle). They compared this result
with the Wald test (P-value of 0.002) and concluded that the asymptotic
approximations are not very accurate. Rotnitzky et al. (2000) state that
the regular assumptions of the likelihood ratio test statistic do not hold in
this case due to the singular information matrix. In the next paragraph,
we will illustrate the behavior of the likelihood ratio test statistic for the
different missingness parameters in a simple setting.
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4 Simulations

For this small simulation study 400 similar datasets were generated in 4
different settings. Each dataset consists of 200 subjects, each with two
measurements generated from a bivariate normal distribution. Consider the
following bivariate normal distribution, based on a compound symmetry
covariance matrix: (

Yi1
Yi2

)
∼ N

[(
4
2

)
,

(
4 2
2 4

)]
. (1)

The dropout process was generated according to the following model

logit[P (Ri = 1|Yi1, Yi2)] = −2 + ψ1Yi1 + ψ2Yi2 (2)

where ψ1 and ψ2 were chosen according to four different settings. In setting
1, the null hypothesis is ψ1 = 0, given that ψ2 = 0, while in setting 2 the
null hypothesis is ψ1 = 0, given that ψ2 �= 0. Setting 3 considers a test
for ψ2 = 0, given that ψ1 = 0 and finally in setting 4 ψ2 = 0 is tested,
given that ψ1 �= 0. In the next table an overview of the different simulation
settings is given.

Data under H0 with
ψ2 = 0 ψ2 �= 0

H0 : ψ1 = 0 Setting 1 Setting 2
ψ1 = 0 ψ1 �= 0

H0 : ψ2 = 0 Setting 3 Setting 4

Figure 1 shows plots of the simulated null-distributions together with ap-
proximating χ2-distribution.

5 Discussion and Further Research

From the literature and the simulation settings, it is clear that the likeli-
hood ratio test for testing missing not at random does not fulfill the regular
assumptions. The use of classical asymptotic results might clearly lead to
false results. A study of the theoretical asymptotical distribution and a
power simulation study are topics of current research.
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FIGURE 1. Density plots (dots) of the different settings with approximating
χ2-distribution (full line).
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Abstract: In this paper we consider study designs which include a placebo and an
active control group as well as several dose groups of a new drug. A monotonically
increasing dose response function is assumed, and the objective is to estimate a
dose with equivalent response as the active control group, including a confidence
interval for this dose.
We present different non-parametric methods to estimate the monotonic dose
response curve. One is based upon the well known isotonic regression estimator,
and the other one upon a non-negative least squares estimator. We introduce a
bias correction to overcome a bias for the second method.
We also use two different bootstrap methods to obtain the confidence intervals.
One is based upon the standard bootstrap. The other method is slightly more
sophisticated, and ensures that the resampling distributions comply with the
order restrictions imposed.
In our simulations we did not find any differences between the two bootstrap
methods. The non-negative least squares estimator yields biased results for mod-
erate sample sizes. The bias adjustment for this estimator works well, even for
small and moderate sample sizes. Surprisingly, we also found that this bias ad-
justed non-negative least squares method outperforms the isotonic regression
method in some situations, but we did not find any situations where the isotonic
regression method performs better. (Dilleen et al (2003))

Keywords: Monotonic dose response; Isotonic regression estimator; Restricted
least squares estimator; Bootstrap confidence intervals.

1 Introduction

The statistical modelling of dose-response relationships is a common prob-
lem in the pharmaceutical industry, which occurs in quantal bioassays, tox-
icology experiments, and clinical dose finding studies, as well as in many
other situations. In this presentation we are interested in a clinical appli-
cation of dose-response analysis, and in the estimation of a dose which has
an equivalent effect to the active comparator group.
We consider a study design which includes a placebo group (d0 = 0), several
dose groups (d1, d2, . . . dI) of a new compound, and an active control group,
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FIGURE 1. Comparison of Confidence Intervals Based Upon the Isotonic Regres-
sion Estimator and the Bias-Adjusted Non-Negative LSE. The bold lines refer to
the bias-adjusted non-negative lse, and the dotted lines refer to isotonic regres-
sion estimator. The number of patients per group was ni = 60, and the standard
deviation was 5.) (see Dilleen et al, 2003)

which is usually the standard treatment for the respective disease. We
assume there are n0 patients in the placebo group, ni patients in the dose
groups (i = 1, . . . , I), and na patients in the active control group. The
endpoint of interest is continuous, and we denote the observations in the
placebo group and in the dose groups as Yi1, . . . , Yini (for i = 0, . . . , I).
Ya1, . . . , Yana are the observations in the active control group. The observed
mean values of the corresponding groups are denoted as Ȳi· or Ȳa·. The
expected means E[Yi.] = f(di) are assumed to be monotonic.

2 Estimating the Dose Response Curve and the
Confidence Intervals for the Equivalent Dose

We use different methods to model the monotonic dose response curve.
These methods have one feature in common: based upon the observed
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FIGURE 2. Comparison of Confidence Intervals Based Upon the Bootstrap and
Based Upon Korn’s Method using the Isotonic Regression Estimator (The dotted
lines refer to the bootstrap confidence band, and the bold lines refer to Korn’s
method using the isotonic regression estimator. The number of patients per group
was ni = 60, and the standard deviation was 5. ) (see Dilleen et al 2003)

means Ȳ0· to ȲI· a monotonic sequence f̂(d0) ≤ f̂(d1) ≤ . . . ≤ f̂(dI) will be
estimated. The monotonic dose response function f̂(d) is then obtained by
linear interpolation between f̂(di) and f̂(di+1). The dose d̂ which provides
an equivalent response as the active control is the solution to Ȳa· = f̂(d̂).
A confidence band around this estimated dose d̂ is obtained through boot-
strap techniques.
The first method is based upon the isotonic regression estimator. By
linearly interpolating between these monotonic estimates both the esti-
mated dose d̂ and a bootstrapped 95% confidence interval around this dose
can be calculated. Simultaneous confidence bands for f(d) are also found
theoretically using the methods described in Korn (1982). From these, the-
oretical confidence intervals around d̂ are found and compared with the
bootstrap method.
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TABLE 1. Mean Values for Different Dose Response Scenarios. The table displays
the mean values f (d0 ), f (d1 ), . . . for six different dose response scenarios. The
underlying study includes a placebo control and five doses (1mg, 3mg, 6mg, 9mg,
and 12mg) of a new drug.

scenario d0 = 0 d1 = 1 d2 = 3 d3 = 6 d4 = 9 d5 = 12
convex 0 0.2 0.5 2 4 10
concave 0 3 6 8 9.5 10
sigmoid 0 0.25 1 5 9 10
linear 0 0.83 2.5 5 7.5 10
anti-sigm. 0 1.4 4 5 6 10
extreme 1 0 0 5 5 5 10
extreme 2 0 0 0 5 10 10

The second method is based upon the new non-negative least squares
estimator and described in Dilleen et al (2003). Here we assume that the
dose response curve f(d) is again monotonic, i.e. f(d0) ≤ f(d1) ≤ . . . ≤
f(dI). We assume that the observations yij = f(di)+εij , and the residuals
εij are generated from the same distribution and are all independent obser-
vations with zero mean and the same variance. The dose response functions
are assumed to be made up of of a linear combination of monotonic base
functions gi(d) such that f(d) = α0 +

∑I
i=1 βigi(d). The parameters βi are

initially estimated by the ordinary least squares estimator and in order to
comply with the order restrictions, the least squares estimator is modified
accordingly where the β̂+

i are equated to zero if negative. We also assume
that the base functions are the distribution functions of uniform distribu-
tions on [di−1, di] which result in f(d) being a piecewise linear monotonic
function between f(di−1) and f(di). By modelling the dose response curve
using these monotonic estimates the dose which is equivalent to the active
control and its 95% confidence interval is obtained as they were for the
isotonic regression estimates.
However, it is easily seen via our extensive simulations that this method
is biased and therefore a third method based upon a bias adjusted non-
negative least squares estimator has been developed using a suitable
bias adjustment to the non-negative least squares estimate (see Dilleen et
al, 2003).

3 Comparison of the Methods Using Simulations

Main findings from extensive simulations, carried out using different un-
derlying scenarios based on a study design which includes 5 doses of a new
compound together with placebo and a competitor drug will be presented.
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We conducted an extensive simulation study to compare the three esti-
mation methods as well as to compare the different methods to obtain
confidence bands (see Dilleen et al 2003). Different underlying scenarios
were used for these simulations. They are based upon a dose finding study
with I = 5 dose groups (d1 = 1mg, d2 = 3mg, d3 = 6mg, d4 = 9mg, and
d5 = 12mg). These scenarios are explained in Table 1, where the mean val-
ues of the dose groups (including the placebo group d0 = 0) are displayed.
The active control group means μ were also varied and for each scenario
and each level of μ.
These simulations demonstrate that, surprisingly the new bias-adjusted
least square method outperforms the well-known isotonic regression method
in certain situations (see Figure 1). However there are not many situations
where the isotonic regression method performs better. Also using bootstrap
confidence intervals are shown to clearly outperform the corresponding the-
oretical approach (see Figure 2).
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Abstract: Regardless of cyclicity of flowering over time, this study shows that
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and that the effect of temperature is non-linear. Upper and lower thresholds of
flowering temperature for E leucoxylon have been confirmed and estimates of the
long and short-term, non-linear effects of climate given.
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1 Introduction

As reported recently in Keatley et al (2002), phenological study involves
the recording of recurring natural events such as the commencement of
flowering (Koch, 2000) or the arrival of migratory birds (Sparks, 1999),
and the influence on such events by edaphic and climatic factors. Recently
analyses of phenological data have been used to examine potential impacts
of climate change and the observed global increase in temperature (Sagarin
and Micheli, 2001). These studies, however, have thus far used data concen-
trated in the Northern Hemisphere. Currently, there are limited phenologi-
cal studies undertaken at a research level in Australia (Keatley et al, 1999;
Manning and Nobre, 2001). This study is one of the first attempts to utilise
Australian phenological data to detect responses to climate change (Keat-
ley et al, 2002). The data represents a long time series, for Australasian
standards, using more than 30 years of monthly readings, in excess of 400
flowering/climate time points. This paper focuses on one species, E. leu-
coxylon (E.l.), but is part of a larger study examining eight Eucalypt species
flowering profiles from Jan 1938-Mar 1972 (Keatley et al, 2002, 2000, 1999).
The primary aim of this paper is to investigate the relationship between
flowering intensity and temperature, alone or in combination with rainfall,
since temperature is a major climatic influence on phenological events such
as flowering (Snyder, 2001).
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2 Statistical Methods

Method I: Generalised additive models (GAMs)
GAMs (Hastie and Tibshirani, 1990) were used to investigate the effect of
rain and mean diurnal temperature simultaneously. In addition, the effect
of a long-term time/year (TREND) was factored in. GAM models allow
for non-linear relationships between the observed monthly discrete flower
counts (range 0.0 - 5.0) and climatic predictors and trend, using smoothed
regression lines. To estimate the non-linear regression lines, a local scoring
algorithm and a spline with four degrees of freedom (Hastie and Tibshirani,
1990) was used. The results were generated using S-Plus (Venables and
Ripley, 1997).
Method II: Bayesian adaptation of Penalized Regression Splines
An alternative, non-linear framework within a GAM model, is to estimate
the regression lines using a penalized regression spline (Wood, 2000). The
penalized regression spline (PRS) method was reformulated into a Bayesian
hierarchical framework and the variance of the spline terms was used as the
constraint, rather than as a constant smoothing parameter. The Bayesian
adaption of the penalized regression spline (BAPRS) essentially estimates
the degree and shape of the non-linearity. The Bayesian framework has the
further advantage that missing covariates are easily dealt with, although in
this data set the number of missing covariates was small. There were three
values in total missing from monthly temperature from a total sample of
376 (0.8%). The Bayesian model was implemented using the WinBUGS
package (Spiegelhalter et al, 1999). In total 30,000 MCMC simulations
were run after a burn-in of 5,000.

3 Results

Method I: GAM models
The GAM model is:
Count(t) = Count(t − 1) + f(MEANTEMP) + f(Rainfall) + f(TREND),
where f is an unspecified nonparametric function based on spline smoothers
and a Poisson link function is used. The previous count (count at t − 1)
is used in the model as an autoregressive (AR(1)) term for the correlated
counts time series. The focus is to model the effect of temperature and
rainfall together, with the previous count treated as a nuisance parameter.
GAM fits showed that mean diurnal temperature (MEANTEMP) is sta-
tistically significant (p = 0.0228), as is the previous count (LAGLEUCO).
Rainfall (RAIN) and TREND are not statistically significant (p > 0.5). A
GAM plot is given in Figure 1, where the y-axis represents the estimated
change in flower count, which is the change from the mean flower count
value versus mean diurnal temperature (TEMP) in ◦C. For example at the
highest temperature (∼ 24◦C) the expected number of flowers would be
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approximately one less than the mean. From the GAM modelling (Fig. 1),
the estimated effects of temperature appear smoothly non-linear.
We note, that the observed points of shift in the level of the GAM TREND,
at 20, 23/24 and 30 years, coincide with 1960, 1963/64 and 1970, when a
significant (p < 0.005) shift in flowering was found by block bootstrap and
survival change point (CP) analyses (Dalrymple et al, 2001). Further CP
analyses also confirmed that 4 to 5 years prior to these times, temperature
and rainfall had changed significantly (p < 0.005) in 1955, 1958/59 and
1965/6.

 

FIGURE 1. Estimated effect of mean diurnal temperature and GAM 95% confi-
dence interval (CI)

Method II: Bayesian adaptation of Penalized Regression Splines
The effect of temperature is modelled, assuming that: monthly flower counts
have a Poisson distribution, mean monthly temperature has a Normal dis-
tribution, and that the AR term for previous flower count is uniform and
stationary (within -1 and 1). For the non-linear spline five knots were placed
at 7.5, 12, 15, 17.5, and 22.5 degrees centigrade, and the precision of the
linear spline terms restricted using a Gamma(4000, 20) prior distribution.
Initial BAPRS models, as in the GAMs, rejected the significance of rainfall
or trend on flower counts and these covariates were subsequently omitted
from the final model. The effect of temperature is non-linear and the results
using GAMs and BAPRS agree closely. In agreement with Figure 1 flower
intensity below 10 to 12◦C appears stable and significantly above the aver-
age. This agrees with work by Keatley et al (1999), which found that the
lower threshold temperature for E.l. to induce flowering is 9.9◦C. Bayesian
posterior intervals, not reported here, and the GAM 95% confidence inter-
val (Fig. 1) do not contain zero after 18◦C, as at these temperatures there
is a negative effect on flowering. This implies that an upper threshold tem-
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perature for E.l. may be 18◦C, not 25◦C, as based on earlier work (Keatley
et al, 1999).
The estimated correlation between neighbouring months was 0.41 with
a 95% posterior interval of [0.33, 0.47]. The adapted Bayesian PRS pre-
dicted values and the observed counts match each other closely (Figure
2). The mean square error was 0.59, for 376 observations. According to
the Kolmogorov-Smirnov test the model residuals were not normal due to
the presence of three outliers. However, the residuals appear to be linearly
uncorrelated according to the periodogram based test (Fuller, 1996).

 

FIGURE 2. Predicted and observed counts over time for the Bayesian penalized
spline model

4 Conclusion

Upper and lower thresholds of flowering temperature have now been iden-
tified for E leucoxylon. Keatley and Hudson (1998) showed there is an op-
timal time for a species to commence or cease flowering, depending on bud
and fruit volume. Reproductive success may thus be influenced by shifts in
flowering commencement. Changes in temperature are likely to translate
to changes in the timing of E leucoxylon flowering commencement. Pheno-
logical indicators, such as flowering, may thus prove to be valuable proxy
indicators of global climate change. This study shows that after accounting
for temperature, the long-term trend in the number of flowers is relatively
stable after 1944. Recent research by the authors, using spectral analysis,
as in Legendre and Legendre, (1998), has shown that flowering intensity
in E leucoxylon has a 2 year cycle. These results imply that there may be
an internal mechanism, e.g., levels of nitrogen etc., that may also underpin
flowering, once the effects of external environment are accounted for.
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1 Introduction

This collection of prior results and techniques in the modeling of Inter-
net congestion constitutes an overview of the subject that is not readily
found anywhere else. The level of mathematical/statistical sophistication
is deliberately kept minimal, the focus being on the introduction of key
concepts, in a manner that detailed statistical analysis can be then car-
ried out in a second stage. The fundamental scenario is that ”sources”
(ingress) send ”packets” (sets of bytes of information) across the network,
to ”destinations” (egress). The network itself is a mesh of interconnected
routers (switching/routing elements) and subnets. A basic assumption is
that the network has an innate maximum ”capacity”. If too many packets
enter the network, the network will discard some. This situation of ”loss
under overload” is called congestion. In this paper, we place the problem
in perspective using the key notions of Black Box and White Box models.
Then we sample survey a few now classical Black Box models, i.e., TCP
Tahoe, TCP Reno, and TCP Vegas. We critique these three models, and
present some of their relative merits and demerits. Our new contribution
to Black Box modeling, S-Channels, is introduced briefly, in terms of its
characteristics, properties and benefits.

2 Black Box & White Box Models

In this paper it is argued that it makes sense to differentiate between two
approaches to congestion management, i.e., Black Box models and White
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Box models. Black Box: Assume that the internal ”structure” or innards of
the network, in terms of its mesh of routers, is unknown. Howsoever routers
manage their internal queues and buffers, given any such constellation of
routers, how does one maximize end to end usage of the network? How does
one maximize the throughput? This is the end-to-end Black Box problem.
Prime classical approaches sampled in the sequel include TCP Tahoe, TCP
Reno & TCP Vegas. Our new contribution, S-Channels, is briefly intro-
duced and discussed. It is worthwhile to note that Black Box modeling as
introduced here is in fact part of a far deeper, more fundamental prob-
lem, discussed elsewhere. (Jagannathan, 2003). White Box: This approach
imposes structure on network routers. It consists of adjusting router behav-
iour, in terms of managing router queues and buffers to maximize network
service to end users. Common examples of White Box models include the
RED family of routers and Morris routers. As will be seen, Black Box mod-
els operate at the Transport Layer (Layer 4), and White Box models are at
the Network Layer (Layer 3) of the TCP/IP protocol stack. In Black Box
we optimize network usage, whereas in White Box we optimize the network
itself. White box modeling is beyond the scope of this paper.

3 Conventional TCP Congestion Control

The disciplines in this school of thought revolve more or less around the
interplay of a few key concepts or notions which are itemized below.

Congestion Windows (cwnd)
Assume the network has a capacity of delivering C bytes/sec. Assume the
round trip time between source and destination is RTT. If one waited for
individual packets to be acknowledged before transmitting the next one,
one can send at most 1 packet per RTT. The alternative is to send cwnd
= C x RTT packets spread over an RTT and wait for acks to slide this
window. This allows one to send cwnd packets per RTT, and hence is more
optimal. This whole argument hinges on the assumption that the capacity
C is a key characteristic of the network.

TCP connections
This is the idea of an end-to-end conversation between source and desti-
nation, regardless of the ”route ” taken by the data constituting the con-
versation. TCP is at the end-to-end layer 4 (Transport layer) with the
actual underlying path taken by the packets is with IP at layer 3 (Network
layer). Naturally TCP connections may expect a level of Quality of Service
from the underlying network layer, this interaction is beyond the scope of
this paper. Conventional TCP congestion control algorithms all concern
themselves with the empirical estimation of the true value of cwnd the



Jagannathan and Matawie 203

congestion window, and then monitoring it. The three classical congestion
control algorithms are

• TCP Tahoe;

• TCP Reno;

• TCP Vegas.

We now briefly describe each. Without loss of generality, assume all packets
are of fixed size = 1 byte.

3.1 TCP Tahoe

Start the window at 1. Maintain a threshold parameter (ssthresh), initially
set suitably. As acknowledgements arrive from the destination (egress), dou-
ble cwnd for each window-full of acknowledgements, i.e., cwnd = cwnd +
1, per ack. Do this repeatedly as long as cwnd <= ssthresh. This algorithm
is called Slow Start in the literature. When cwnd > ssthresh, increase cwnd
by 1 per each window-full of ACKs, i.e., cwnd = cwnd + 1/cwnd per ack.
This behaviour is called Congestion Avoidance in the literature. When a
timeout occurs, i.e., packet lost (due to congestion), set ssthresh = cwnd/2,
and also set cwnd = 1, to re-enter SlowStart More details on Tahoe may
be found in (Stevens 2001) and (Chiu et al, 1989).

3.2 TCP Reno

Packets sent by TCP are sequentially numbered, and meant to be received
(assembled) in that order as well. If a specific packet does not reach, and
a subsequent one does, an ACK is immediately generated which contains
the sequence number of the missing packet. When three such duplicate
ACKs are received, i.e., with the sequence number of a missing packet,
TCP Reno does the following ssthresh = cwnd/2 cwnd = cwnd + 3 Send
the problem packet, without waiting for timeout This behaviour is called
Fast Retransmit in the literature. Also cf. (Allman et al, 2001) in this
connection. After this when a non-duplicate Ack arrives, TCP Reno sets
cwnd =ssthresh
Then, enter Congestion Avoidance. This behaviour is called Fast Recovery
in the literature.
Note that TCP Reno only works when cwnd >= 4. Also both Tahoe and
Reno use ACK-clocking wherein the arrival of ACKs clocks out the new
transmissions Further information on Reno can be found in (Stevens, 2001).
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3.3 TCP Vegas

Fix a & b = Vegas parameters.

Compute Expected throughput as Cwnd/BaseRTT [BaseRTT is the
known RoundTripTime]

Compute Actual throughput as Cwnd/RTT [RTT is the observed
RoundTripTime]

Calculate Diff = (Expected - Actual)× BaseRTT

Cwnd =

⎧⎨⎩ Cwnd+ 1 if Diff < a
Cwnd− 1 if Diff > b
Cwnd, otherwise

It may be noted that Vegas uses fluctuation in Round Trip Times to make
inferences about congestion in the network. TCP Vegas was introduced in
(Brakmo et al, 1995).

4 Comparison/Evaluation of Tahoe, Reno & Vegas,
and Further Developments

There have been a fair number of analytical and empirical investigations
that evaluate the relative efficiency, fairness and stability [steady-state be-
haviour] of Tahoe, Reno and Vegas. Most of these analyses use the basic
model of two competing TCP connections (each running a classical con-
gestion control protocol) sharing a wired link between two routers, or at
most a simple variant of this scenario, which then lends itself to mathe-
matical/statistical analysis. (Hasegawa et al, 1999) find that for this model
Tahoe & Reno are biased towards TCP connections with longer Round
Trip Times (RTTs). As a consequence of this, given two connections with
the same RTT each, Tahoe & Reno are fair towards them. Clearly, by
their very nature, Reno & Tahoe never stabilize, in the long run, with
oscillating window sizes. Vegas, on the other hand, does stabilize in the
steady-state, but the throughputs of two competing connections [with or
without the same RTTs] sometimes converge differently. In words, Vegas
cannot guarantee fairness. Thus, they conclude that Fairness and Stabil-
ity cannot be simultaneously achieved. On the other hand, when Reno &
Vegas run concurrently, (Mo et al,1999) note thatReno over-utilizes band-
width as compared to Vegas. They posit, therefore, that despite Vegas’
reported effiency being 37-71 % more than Reno (Ahn et al, 1995), this
may be a reason why Vegas has not been widely deployed, i.e., it cannot
compete with concurrent Reno connections. We note here that the problem
with most comparative analyses of Tahoe, Reno and Vegas is that they mix
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Black Box and White Box modeling. As a result any theorem that is de-
rived in a specific network model setting is at best a counter-example, and
not a general solution to the problem. Our approach, on the other hand, is
Black Box model: Optimize network usage regardless of the internal struc-
ture/behaviour of the network components. Our specific model for this is
S-Channels. Then,White Box model: Optimize the network itself (out of
scope for this paper).
Some additional insights into S-Channels Tahoe/Reno use Timeouts and
duplicate ACKs to infer about congestion, and offer algorithms to deal with
that congestion. This has been discussed. On the other hand, Vegas uses
fluctuations in RTT (Round Trip Time) as a measure of congestion and
offers some means to counter it. Our position is that neither Tahoe/Reno
(losses) of Vegas (RTT variations) is the best way to deal with conges-
tion. In (Jagannathan, 2003) we present a different approach, S-Channels,
and evaluate it empirically using WAN simulation across the Internet. In
summary, some of S-Channels’ key characteristics are:

• Infer about congestion based on ingress/egress rates,

• Eliminate ACKs and conserve ACK space in the TCP header,

• Manage losses efficiently,

• Be more effective than the other schemes and finally,

• Maximize throughput in the steady-state.

5 Conclusion

In this conference paper, we introduced the notion of congestion in inter-
networks. A scheme for managing congestion was presented, in terms of
Black Box and White Box models. We surveyed leading Black Box models,
and examined their pros and cons. Our new contribution, S-Channels, was
outlined, along with its key features, characteristics and advantages.
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plored domain of non-monotone missingness with multivariate ordinal responses
will be broached. In this context, the Multivariate Dale model (Molenberghs and
Lesaffre 1994) will be used.
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1 Introduction

In applied sciences, one is often confronted with the collection of corre-
lated data or otherwise hierarchical data. This generic term embraces a
multitude of data structures. In particular, studies are often designed to
investigate changes in a specific parameter which is measured repeatedly
over time in the participating persons. Longitudinal studies are conceived
for the investigation of such changes, together with the evolution of relevant
covariates.
In longitudinal settings, each unit (respondent, cluster, patient,. . . ) typ-
ically has a vector Y of responses. This leads to several, generally non-
equivalent, extensions of univariate models. In a marginal model, marginal
distributions are used to describe the outcome vector Y , given a set X of
predictor variables. The correlation among the components of Y can then
be captured either by adopting a fully parametric approach or by means of
working assumptions, such as in the semiparametric approach of Liang and
Zeger (1986). Alternatively, in a random-effects model, the predictor vari-
ables X are supplemented with a vector θ of random effects, conditional
upon which the components of Y are usually assumed to be independent.
This does not preclude that more elaborate models are possible if residual
dependence is detected (Longford 1993). Finally, a conditional model de-
scribes the distribution of the components of Y , conditional onX but also
conditional on (a subset of) the other components of Y . Well-known mem-
bers of this class of models are log-linear models (Gilula and Haberman,
1994).

207



208 Modelling Strategies for Longitudinal Data with Missingness.

2 Current Practice

The analysis of longitudinal clinical trials is almost invariably hampered by
dropout. In current practice methods such as last observation carried for-
ward (LOCF) or complete case analysis (CC) are very prominent. Such less
than optimal methods fall within the missing completely at random cate-
gory (MCAR), where dropout is independent of the measurement process,
and part of the literature, supported by the biopharmaceutical industry
and the regulatory authorities (FDA in the United States, EMEA in Eu-
rope, and their Japanese and other national counterparts), maintains that
these methods are to be preferred for reasons of simplicity and validity.
The academic research community, on the other hand, focuses to a large
extent on methods for missing not at random (MNAR) where dropout is
allowed to depend on unobserved measurements. Some researchers believe
that ever more complicated MNAR methods will eventually be sufficiently
general to encompass the true data generating mechanism.

3 Overview of MNAR Models for Categorical Data

In the MNAR setting, we will make a distinction between models for
monotone and non-monotone missingness. The model proposed by Molen-
berghs, Kenward and Lessafre (1997), which combines a Dale model for
the measurements with a logistic regression for dropout (as in the Dig-
gle and Kenward (1994) philosophy), can handle monotone ordinal data.
For non-monotone patterns, Baker, Rosenberger, and DerSimonian (1992)
proposed a model for bivariate binary data subject to non-random non-
response, which is reformulated by Jansen et al. (2003) using 2 loglinear
models, such that its membership of the selection model family is unam-
biguously clear, to accommodate for, possibly continuous, covariates, turn-
ing the model into a regression tool for several categorical outcomes, and
to avoid the risk of invalid solutions. A disadvantage of those BRD models,
is that the parameters cannot be interpreted marginally, which is actually
what clinicians want.
As we can see, until now there does not exist a model that allows for non-
monotone missingness with more than 2 possible outcomes. A solution will
be presented in the next section.

4 A Method for Non-monotone Categorical
Outcomes

Since the multivariate Dale model (Molenberghs and Lesaffre 1999), which
extends the bivariate global cross-ratio model described by Dale (1986),
accounts for the dependence between multiple ordinal responses, as well
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as their dependence on covariate vector(s), which may be time-varying,
continuous and/or discrete, this model is very useful for our purpose.
The model arises from a decomposition of the joint probabilities into main
effects (described by marginal probabilities) and interactions (described by
cross-ratios of second and higher orders).
This model will be used for the measurements Y and for the missingness
given the measurements R|Y , such that again a selection model is ob-
tained and both discrete and continuous covariates can be included in the
measurement model as well as in the missingness model.
Results will be presented for simulated data, and for a data set from a
multicenter, postmarketing study involving 315 patients that were treated
by fluvoxamine for psychiatric symptoms described as possibly resulting
from a dysregulation of serotonine in the brain.

5 Need for a Sensitivity Analysis

The route of a sensitivity analysis has been explored many times in the con-
text of categorical data. For the model by Baker, Rosenberger and DerSi-
monian (1992), Molenberghs, Kenward and Goetghebeur (2001) developed
the intervals of ignorance and uncertainty. To the reformulated model by
Jansen et al. (2003) a local influence is applied by the same authors. This lo-
cal influence is also applied to the Dale model with dropout (Molenberghs,
Kenward and Lessafre, 1997) by Van Steen et al. (2001). Future work will
be devoted to a sensitivity analysis on the model for non-monotone cate-
gorical outcomes, that was introduced in the previous section.
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Abstract: Model based clustering has found increasing applications in recent
years in contrast to ad-hoc and not statistically solid methods, like hierarchical
clustering and K-means method. Model based clustering has been created on
probabilistic grounds that assume the existence of a finite mixture model and
transform the problem to one of estimating the parameters of the multivariate
mixture model. Several inferential procedures have been described for this model,
including model selection and prediction among others. In the present paper
we propose model based clustering for count data based on the multivariate
Poisson distribution which is the natural counterpart of the multivariate normal
model. The general formulation of the model as well as estimation procedures are
provided. Finally, problems for further research are discussed.
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1 Introduction

Multivariate count data appear in a wide range of fields like epidemiology
(e.g. different type of a disease), marketing (e.g. purchases of different prod-
ucts), environmentrics (e.g. different kind of plantation etc) just to name
few. While the Poisson distribution has played a prominent role in mod-
elling univariate data, its multivariate counterpart has been rarely used in
practice mainly due to computational difficulties for inferential procedures
(see, e.g. Johnson et al, 1997). The use of multivariate normal models as
approximation to the multivariate Poisson model, can be misleading espe-
cially if the means are small and there are a lot of zero counts.
The multivariate Poisson distribution, while the most important among
discrete multivariate distributions (see, e.g. Johnson et al, 1997), has several
shortcomings for its application. The main drawback of the application of
the multivariate Poisson distribution is the complicated form of the joint
probability function that has led to the use of a simplified model with just
a common covariance term for all the pairs of variables (see Tsionas, 1999,
2001 and Karlis, 2003).
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In the present paper a multivariate Poisson distribution with different
covariances for all the pairs of variables will be described. A finite mix-
ture model of this family of multivariate Poisson distributions will be con-
structed aiming at clustering multivariate count observations

2 Model Based Clustering

Historically, cluster analysis has developed mainly through ad-hoc meth-
ods based on empirical arguments. The last decade, however, there is an
increased interest in model based methodologies, which allow for clustering
procedures based on statistical arguments and methodologies. The majority
of such procedures are based on the multivariate normal distribution (see,
for instance, Banfield and Raftery, 1993; McLachlan and Basford, 1988).
The central idea of model-based clustering is the use of finite mixtures of a
density. The population of interest, thus, consists of k subpopulations and
the density (or probability function) of the multidimensional observation
y from the j-th subpopulation is f(y|θj) for some unknown vector of pa-
rameters θj . Since, we do not observe the cluster labels, the unconditional
density of the vector y is a mixture density of the form

f(y) =
k∑
j=1

pjf(y | θj) (1)

where 0 < pj < 1,
∑
pj = 1 are the mixing proportions. Note that the

mixing proportion is the probability that a randomly selected observa-
tion belongs to the j-th cluster. This is the classical mixture model (see,
e.g. Bohning, 1999; McLachlan and Peel, 2000). The purpose of model
based clustering is to estimate the parameters (θ1, . . . , θk, p1, . . . , pk−1) .
An expectation-maximization (EM) algorithm is applicable for finding ML
estimates. The majority of model based clustering is based on the mul-
tivariate normal distribution and hence it is based on the assumption of
continuous data. We will now propose a model adequate for multivariate
count data.

3 A Multivariate Poisson Distribution

The general multivariate Poisson distribution is based on the following
multivariate reduction scheme. Assuming Yr, r = 1, ..., k, are independent
univariate Poisson random variables, i.e. Yr ∼ Po(θr), r = 1, ..., k, then the
definition of multivariate Poisson models is made through the vector Y′ =
(Y1, Y2, ..., Yk) and an m × k matrix A with zeroes and ones. Specifically,
the vector X′ = (X1, X2, ..., Xm) defined as X = AY follows a multivariate
Poisson distribution.
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In general, matrix A has the form A = [A1,A2, . . .Am], where Aj , j =

1, . . . ,m is a sub-matrix of dimensions m×
(
m
j

)
, each column of Aj has

exactly j ones and (m − j) zeroes and no duplicate columns exist. Thus,
Am is the column vector of 1s, while A1 becomes the identity matrix of
size m×m. We can realize that, since the random variable Yk appears in
every element of X can be interpreted as an m-way covariance effect to
each of the Xis.
The reduced models for m variables derived from A = [A1,Am] are fre-
quently used in the literature and the resulting distributions are commonly
referred to as the multivariate Poisson distributions (see, e.g. Tsionas, 1999,
Karlis, 2003). This model assumes that all the covariances are the same,
which is not at all realistic. We focus on the case where only the main effects
and the two-way covariance effects are considered, i.e. A = [A1,A2], for
the analysis of multivariate data sets. This is done in order not to impose
too much structure to our data.
It holds that

E(X) = AM

and
V ar(X) = AΣA′

where M and Σ are the mean vector and the variance covariance Σ is
diagonal because of the independence of Yi’s and has the form

Σ = diag(θ1, θ2, . . . , θm)

Similarly
M = (θ1, θ2, . . . , θm)′

Another interesting feature of this model is that it allows for covariance
terms separately for each pair of variables and thus it can be considered as
a counterpart of the multivariate normal distributions suitable for multi-
variate count data.
In the case of the Multivariate Poisson Distribution, the calculation of the
probability mass function can be of great difficulty, as it often demands
summations over high-dimensional spaces. If we consider the multivariate
Poisson model with complete specification, the probability function for the

m-variate case needs
∑m

j=1

(
m
j

)
−m= 2m −m− 1 summations.

Fortunately, computation of the probabilities can be accomplished via re-
cursive schemes. Kano and Kawamura (1991) provided a general scheme
for constructing recurrence relations for multivariate Poisson distributions.
Even those recursive relations must be used efficiently in order to lead to
feasible calculations.
Note that, in the case of A = [A1,A2], each row of A contains exactly
m ones, so each recurrence relationship for the calculation of P (X = x)
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requires the computation of m previous probabilities. Obviously, as m in-
creases the complexity of the model, and hence the computational effort,
increases too.

4 Finite Mixture Model

Naturally we may define a multivariate Poisson mixture model by consid-
ering a multivariate Poisson mixture where f(y) in (1) is replaced by the
joint probability function of the multivariate Poisson distribution.
For estimation purposes an EM type algorithm can be used. It is interesting
to note that this scheme is similar to the standard approach for mixture
models described in McLachlan and Peel (2000) but now one must make
also use of the multivariate reduction technique upon which the derivation
of the distribution is based. Thus the latent variables are the vectors Zi
where Zij = 1 or 0 if the i-th observation belongs to the j-th cluster
or not, accordingly, together with the unobserved variables Yij . An EM
algorithm for the simple case of the multivariate Poisson distribution with
the covariance structure as described in the present paper is given in Karlis
and Meligotsidou (2003). Inference on the model can be made via standard
techniques for finite mixture models. Criteria for assessing the number of
clusters can be also used.

5 Application

The real data application concerns crime data taken from National Sta-
tistical Service of Greece for the year 1996. Four different kinds of crimes
were examined for 50 prefectures of Greece. The different crimes consid-
ered were rapes, arson , smuggling of antiquities and general smuggling.
The population of each prefecture is used as an offset. The aim is to cluster
the prefectures according to their profiles in those types of crimes.
An EM type algorithm was used to fit the finite multivariate Poisson mix-
ture model. The number k of components was considered as known for
using the EM algorithm, but we fitted the model with increasing value
of k in order to decide about the number of components. For a model
with k components there are 11k − 1parameters to estimate. The AIC
criterion selected the solution with 4 components and mixing proportions
p̂ = (0.5915, 0.2266, 0.0638, 0.1181). The parameters for each component
are given below in a matrix form, where the diagonal parameters are the
mean parameters while the non-diagonal elements are the covariances be-
tween the pairs. Note that the marginal means are in fact the sum of the
so-called mean parameter and the covariance parameters related to the
variable.

Θ1 =

⎡⎢⎣ 17.339 0 4.772 0
2.530 0.198 1.977

34.112 2.398
6.171

⎤⎥⎦ ,Θ2 =

⎡⎢⎣ 0 0 3.675 0
9.897 1.925 1.938

5.320 0
2.172

⎤⎥⎦ ,
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Θ3 =

⎡⎢⎣ 0 20.424 0 0
55.868 24.323 0

0 0
0

⎤⎥⎦ ,Θ3 =

⎡⎢⎣ 14.416 12.780 0 0
3.048 0 0

8.934 0
44.621

⎤⎥⎦
It is interesting to see that the structure of the parameters is quite different
for the four components. The third component is associated with high rate
of smuggling of antiquities, in fact it consists of a single prefecture. The
4th component has not any covariances apart from the covariance between
rapes and arsons. The first two components, which are the largest ones,
have enough structure with large covariances between variables. Thus our
approach decompose in some way the entire covariance between the vari-
ables to different parts. More details will be given in a forthcoming complete
version of the paper.
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1 Introduction

Modelling of survival data is largely dominated by the proportional hazard
model introduced by Cox (1972). Even though the model is appealing, the
proportional hazard (PH) assumption is often not fulfilled in applications
when covariate effects vary with survival time. The assumption has been
under major investigation and numerous papers suggest test procedures or
extensions, see for instance O’Sullivan (1988), Hastie and Tibshirani (1990),
Gray (1994), Hess (1994) or Abrahamowicz et al (1996). Allowing covariate
effects to vary with time leads to a varying coefficient model as generally
introduce by Hastie and Tibshirani (1993). Here, constant covariate effects
are replaced by smooth but unknown function. Smooth estimation can then
be carried out using e.g. Spline fitting, as in Hastie and Tibshirani (1993),
or applying local techniques, as e.g. in Fan et al (1997).
In this paper we employ penalised spline fitting (P -spline) as smooth
estimation procedure. The approach has been originally introduced by
O’Sullivan (1986), but the procedure finally achieved recognition due to
the paper by Eilers and Marx (1996). The approach is numerically very
handy and uncovers strong similarities to penalised quasi likelihood esti-
mation in Generalised Linear Mixed Models, as discussed in Breslow and
Clayton (1993). This link becomes obvious if the penalty is rewritten as
prior distribution on the coefficients of the basis. In fact, the smoothing
parameters steering the amount of penalty plays the role of the variance
in the Generalised Linear Mixed Model formulation. We demonstrate how
this connection can be used to estimate the smoothing parameter appro-
priately. A general discussion about the connection of P -spline smoothing
and Mixed Models is also found in Wand (2003).
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The P -spline approach pursued in this paper is imposed directly on the
likelihood, rather than on the partial likelihood. This not only allows to
smoothly estimate the baseline hazard, it also follows technically more
closely the likelihood principle in the case of non-proportional hazards.
In particular the integrated hazard function in the likelihood is approxi-
mated using a trapezoid integration. This in turn leads to simple likelihood
functions resembling a Poisson model.

2 Smooth Hazard Model

2.1 P -Spline Fitting

Let Ti denote the survival time of the ith individual or observational unit
and let Ci be the corresponding right censored time, i = 1, . . . , N . We
observe Yi = min(Ti, Ci) and define the censoring indicator δi = 1 if Ti < Ci
and δi = 0 otherwise. With xi we denote the p dimensional covariate vector
for the i-th individual, which for simplicity of notation is assumed to be
time constant. The hazard function is then modelled as

h(t, xi) = λ0(t) exp{xTi βx(t)} (1)

with λ0(t) as baseline hazard and βx(t) as vector of covariate effects varying
smoothly with survival time t. For convenience we rewrite (1) to h(t, xi) =
exp{ziβ(t)} with zTi = (1, xTi ) and β(t) = {logλ0(t), βTx (t)}T . The task is to
estimate β(t) smoothly by avoiding any stringent parametric assumptions.
This is achieved by penalised spline regression.
For the sake of simplicity let us first consider smooth estimation of the
baseline function β0(t) = logλ0(t). Let B(t) = {b1(t), . . . , bq(t)} be a basis
developed over the knots t1, . . . , tq. A convenient choice is to use a B-
spline basis (see Boor, 1978), even though other choices are possible as
well. The dimension q of the basis is chosen lavish, such that the model
bias β0(t)−B(t)α0

0 is negligible, where α0
0 = (α0

01, . . . α
0
0q)

T is the vector of
“best” coefficients in the sense of having minimal Kullback-Leibler distance.
Since q is supposed to be large, simple maximum likelihood estimation of
α0 would be highly variable and numerically unstable. Therefore, in order
to achieve smoothness and numerical stability the penalty term λ0α

T
0D0α0

is introduced, with D0 as appropriately chosen penalty matrix and λ0 as
bandwidth steering the amount of penalisation.
In the same fashion we fit the remaining components in the model. It is
thereby tactically an advantage to extract the intercept from the smooth
function. This means for estimation we decompose βl(t) to β0l + B̃(t)αl,
l = 0, . . . , p, with αl = (αl1, . . . , αlq)T and B̃(t) as basis matrix containing
no intercept. We define θl = (β0l, α

T
l )T and using the Kronecker product

we can jointly write

β(t) = W (t)θ
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with W (t) = Ip+1 ⊗ {1, B̃(t)} and parameter vector θT = (θT0 , . . . , θ
T
q ),

where Ip+1 is the p+ 1 dimensional identity matrix.
Coefficients αl are now jointly penalised to achieve smooth fits. This leads
to the penalised likelihood

lP (θ, λ) =
N∑
i=1

li(θ) −
p∑
l=0

λlα
T
l Dlαl (2)

with li(θ) = δi

(
zTi W (Yi)θ

)
−∫ Yi

0
exp{zTi W (t)θ}dt as likelihood contribu-

tion and λ = (λ0, . . . , λp) as component-wise smoothing parameters steer-
ing the amount of penalisation for each component. For notational con-
venience the penalty component can be rewritten to θT (ΛD)θ with D
as block diagonal matrix build from matrices Dl and zero entries for β0l,
l = 1, . . . , p. Bandwidth matrix Λ matches accordingly as diagonal built
from λl
Differentiating (2)with respect to θ leads to the penalised score equation

∂lp(θ, λ)
∂θ

=
N∑
i=1

si(θ) − ΛDθ = 0 (3)

with si(θ) = δiW
T (Yi)zi − ∫ Yi

0
W T (t)zi exp{zTi W (t)θ}dt. Accordingly,

the second order derivative results to

∂2l(θ)
∂θ∂θT

=
N∑
i=1

∇si(θ) − ΛD (4)

where ∇si(θ) = − ∫ Yi
0
W T (t)zzTi W (t) exp{zTi W (t)θ}dt.

2.2 Integration

The penalised likelihood and its derivatives (3) and (4) contain integrals
based on the hazard function and its derivatives. Since no analytic solution
for the integrals exist, numerical integration is required. A computationally
handy version is to approximate the integrals by trapezoids. It can be shown
that this leads to likelihood contributions resulting from Pseudo Poisson
variables Ỹij , say. In particular this means that standard software can be
used for fitting.

3 Relation to Generalised Linear Mixed Models

Penalised spline smoothing has strong affinities to penalised quasi likelihood
estimation in Generalised Linear Mixed Models (GLMM) as discussed in
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Breslow and Clayton (1993). For normal response models this link is illu-
minated in depth in Wand (2003). For non-normal response models such
link is achieved in close analogy. In particular we consider coefficients αl,
l = 0, . . . , p, as independent normally distributed variables with

αl ∼ N(0, λ−1
l D−

l ) (5)

where D−
l is a generalised inverse of Dl. The bandwidth parameters λl now

occurs in the a priori variance of αl. Conditional on αl, l = 0, . . . , p and
based on the trapezoid integration we model the Pseudo Poisson variables
as

Ỹik|(α0, . . . , αp) ∼ Po(zTi B(τk)θ + oik) (6)

with oik as know offset resulting from the trapezoid integration. Appar-
ently, (5) and (6) provide the ingredients of a Generalised Linear Mixed
Model. The likelihood for parameters β0l and λl, l = 0, . . . , p, is obtained
by integrating out the random coefficients, i.e.

l(β00, . . . , β0p, λ0, . . . , λp) =
∫ N∏

i=1

Ki∏
k=1

Po(Ỹik; zTi B(τk)θ + oik) (7)

×
p∏
l=0

φ(αl, λ−1
l D−

l )dαl

with φ(·) as normal density. Using Laplace approximation for the integral
leads to penalised quasi likelihood estimation. It is not difficult to derive
that this in turn is equivalent to the penalised estimating equations for the
original survival model.
The connection between smoothing and GLMMs is not only of theoretical
nature but can be exploited practically to choose an appropriate band-
widths λl, l = 0, . . . , p. The idea is to estimate λl based on the likelihood
function (7). Approximating the integral by Laplace integration and insert-
ing estimates for β0l provides a Laplace approximation for the log profile
likelihood given by

lP (λ0, . . . , λp) =
N∑
i=1

Ki∑
k=1

logPo(Ỹik; ·) − 1
2

p∑
l=0

(
α̂Tl Dlα̂l + log |λlDl|

)
.

Maximising this with respect to λl gives

λ̂l =
q

α̂Tl Dlα̂l
. (8)

as corresponding estimate. Apparently, λ̂l depends on α̂l and vice versa.
Therefore a simple backfitting type argument has to be applied. Cycling
between (3) and (8) gives the final estimate. The estimates for λl can now
be employed for model selection, that is if λ̂l is large (i.e. λ̂l → ∞) there is
no evidence that the l covariate has a time varying effect.
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4 Application

In the talk we demonstrate the approach by an application. Moreover sim-
ulations are provided to illuminate the model selection aspect.
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Abstract: Near infrared (NIR) spectroscopy instruments are used as a non-
destructive method for determining and predicting various characteristics of food-
stuffs. Statistical methods are used to calibrate the spectroscopy instruments.
Partial Least Squares Regression is the preferred technique currently used. This
paper describes a comparative study where various statistical and artificial in-
telligence techniques were compared with the more traditional methods in terms
of prediction power. The results indicated that multivariate adaptive regression
splines and support vector machines are superior to partial least squares and
ridge regression.

Keywords: PLS regression; MARS; Support vector machines; Ridge regression;
NIR spectroscopy.

1 Introduction

Near infrared (NIR) spectroscopy instruments are used as a non-destructive
method for determining and predicting various characteristics of food-
stuffs. The foodstuffs are illuminated with a range of frequencies in the
near-infrared region. Based on the amount of light energy returned, the
absorption of energy can be determined for each frequency used. The
characteristics of the foodstuffs (eg water, sugar, fat contents) absorb
different amounts of light energy at different frequencies. Therefore, by
analysing the returned energy at the various frequencies, the characteristics
of the foodstuffs can be predicted without having to analyse the food in a
laboratory.

In order for the instrument to be able to predict the characteristics of
the food, it first has to be calibrated. What is meant by calibration
is that a statistical model is fitted on a set of spectroscopy data, and
then subsequently used for prediction purposes. The data set consists
of a set of NIR frequencies (predictor variables) and one or more
values quantifying the characteristics of the food under study (target vari-
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ables). The values for the target variables are determined in the laboratory.

The calibration is a three step process of pre-processing of the raw data,
fitting the statistical model and evaluating the effectiveness of the fitted
model. For this purpose the data is split into a training set and a test
set. The model parameters are estimated from the training set and the
effectiveness determined from the test set. Measures of effectiveness include
the MSE (mean square error) or the correlation between estimated and
actual values of the target variables.

The problem that arises with the data is that of multicollinearity. The in-
dependent variables are highly correlated and this renders the application
of ordinary least squares regression impossible. Various other techniques
exist which can be used to circumvent this problem. In the chemometrics
field the method of partial least squares (PLS) has become the standard
for calibrating NIR instruments.

Comparative studies have been done in the past to compare various
techniques with one another in the role of calibrating NIR instruments,
which included PLS, Principal Component Regression (PCR), and Ridge
Regression. In the last 10 years other techniques for building statistical
models have come to the fore, either developed by statisticians or artifi-
cial intelligence researchers. These techniques include Neural Networks,
Regression Trees, Multivariate Adaptive Regression Splines (MARS) and
Support Vector Machines (SVM). No reference could be found in the
literature where these techniques were evaluated in a NIR calibration role.

A comparative study was done to compare the above-mentioned techniques.
In section 2 the method for comparison of the techniques is described.
In section 3 the data sets used for comparison are discussed. Section 4
briefly describes the techniques included and the results are summarised in
section 5.

2 Method for Comparison

The techniques were compared using two actual data sets from the field
of chemometrics. Each of the data sets had one target variable to be
estimated using NIR calibration. These data sets are discussed in more
detail in section 3.

The data was divided into a training set and a test set by randomly se-
lecting 80% of the data (without replacement) for the training set and the
remaining for the test set. Calibration models were derived for each of the
techniques from the training set and applied to the test set. The mean
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square error (MSE) was calculated from the test set results for comparing
prediction accuracy. The MSE was calculated as follows:

MSE =
1
n

n∑
i=1

(yi − ŷi)
2

where n is the number of cases in the test set, yi the actual value of the
dependent variable and ŷi the estimate from the calibration model.

The above process was then repeated 10 times resulting in 10 different MSE
values for each technique. Box plots were constructed for the MSE values
for comparative purposes.

3 Data Sets

The first data set originated from a study where NIR calibration was
applied to meat samples for the purpose of estimating the fat content of
the meat. A total of 94 samples were scanned and Figure 1 shows a typical
graph of absorption versus frequency for one of the meat samples. An
empirical first derivative was calculated at each frequency and included
as predictor variables.The fat content for each of the 94 samples were
determined in a laboratory, which served as the target variable. This data
set was used courtesy of Claus Borgaard from the Danish Meat Institute.

The second data set was generated by an experiment to predict the soluble
solid content (brix values) of peaches. Figure 1 shows a typical graph of
frequency vs absorption for one of the peaches scanned. As with the first
data set, empirical first derivatives were also calculated for this data set and
added to the set of predictor variables. This data set was used courtesy of
the Post-Harvest & Wine Technology Division, ARC Infruitec-Nietvoorbij,
and the Dept of Food Science at Stellenbosch University, South Africa.

4 Modelling techniques included in the study

The following techniques were included in the comparative study:

• Partial Least Squares Regression (PLS)

• Ridge Regression

• Multivariate Adaptive Regression Splines (MARS)

• Support Vector Machines (SVM)

The basic principles of each of the techniques are discussed in the following
paragraphs.
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FIGURE 1. Plot of absorption vs frequency for one of the meat and peach samples.

4.1 Partial Least Squares

Partial least squares regression (PLS) is similar to principal components
regression(PCR). In PCR the dimension of the input matrix (independent
variables) is reduced by extracting principal components. Regression is then
performed by using the principal component scores as inputs. PLS extends
this idea by using the target variable in addition to the input variables
for constructing the principal component scores. All PLS calculations were
done using Statistica v6.

4.2 Ridge Regression

Ridge regression is specifically used when the independent variables are
highly correlated and stable estimates for the regression parameters can-
not be obtained. It artificially decreases the correlations so that more stable
but biased estimates of the regression coefficients can be computed. This
is achieved by adding a constant (α) to the diagonal elements of the corre-
lation matrix and then re-standardising the diagonal elements to one (the
off-diagonal elements are divided by the constant). All ridge regression cal-
culations were done using Statistica v6.

4.3 Multivariate Adaptive Regression Splines

MARS is an extension of piecewise linear regression. In piecewise linear
regression, more than one regression line is fitted to the data to account
for non-linear relationships. Each of the regression lines operate on dis-
tinct non-overlapping regions of the predictor variable space. The position
where one regression line stops and the next line starts, is called a knot po-
sition. MARS derives the knot positions from the data. It can also handle
more than one predictor variable as well as combinations of categorical and
continuous predictors. From a MARS analysis it is possible to determine
the relative importance of predictor variables with respect to the target



Kidd 227

variable. All MARS calculations were done using MARS v2 from Salford
Systems.

4.4 Support Vector Machines

Support vector machines(SVM) are better known for application to clas-
sification problems. In the classification setting the SVM attempts to find
hyperplanes in the input space that best separates classes of the target
variable. The hyperplane will be chosen such that the distance of the near-
est points for the different classes to the hyperplane is a maximum. This
method is then adapted for the regression case, keeping some properties of
the SVM classifier. All SVM calculations were done using R and functions
written by David Meyer (based on C/C++-code by Chih-Chung Chang
and Chih-Jen Lin).

5 Results

All the techniques included have tuning parameters which can be varied
to find the best fit. Thus, before the techniques were compared with one
another, tuning parameters giving the best fit for each of the data sets
were derived.

Figure 2 gives the results for the meat data set. From the graph we see
that MARS produced the best results with SVM also performing better
than the traditional methods of ridge regression and PLS. A plot of the
residuals for PLS showed indications of a non-linear relationship between
the target and predictor values. The above results show the ability of
MARS and SVM to model this non-linearity.

Figure 2 also shows the comparative performances for the peach data. From
the graph we see that there is not much difference between the techniques
(contrary to the meat data), but MARS still appeared to provide better
results than the other techniques. Inspection of the PLS residuals did not
indicate non-linear relationships between the target and predictor variables.

6 Conclusion

The results from Figure 2 indicate that MARS and SVM are better
techniques to use for calibration of NIR instruments than PLS or ridge
regression. In cases where non-linearity was not present in the data, the
performance of MARS and SVM were similar to PLS (with MARS showing
a slight improvement), but where there were non-linear relationships in
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FIGURE 2. Comparison of the techniques for the meat and peach data.

the data, MARS and SVM clearly outperformed PLS and ridge regression.

A further advantage of MARS is that it that the software provides rela-
tive importance scores for the predictor variables. Thus MARS have the
ability to highlight important frequencies having the most predictive power.

This study will be extended by including two more techniques namely
neural networks and projection pursuit regression. The conclusions made
here must also be judged in light of the fact that it was based on two specific
data sets which is probably not representative of all NIR data sets. The op-
tion of simulating a wider variety of data sets will therefore be investigated.

To summarise, these initial results indicate that MARS, and to a lesser de-
gree SVM, are superior techniques to PLS, which is currently the preferred
technique for NIR calibration.
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Abstract: Correlations between spouses in health-related variables are deter-
mined by partner selection factors and shared environmental factors during mar-
riage. It is believed that spousal correlations are positive and increase with dura-
tion of marriage. Study of spouse correlations in quantitative variables requires si-
multaneous regression modeling of means and correlations. The program FISHER
was used to model spousal correlations in lung function measures from the Bus-
selton Health Study [http://bsn.uwa.edu.au]. The model for the mean included
effects of gender, age, height and smoking, and various models for the correlation
in relation to duration of marriage and age at marriage were explored. The mod-
els and results indicated that (a) adjustment in the mean model for covariates
that are key determinants of lung function and which themselves have consider-
able spouse concordance substantially reduces the estimated spousal correlation
in lung function, (b) there is clear evidence of non-random partner selection in
relation to lung function, (c) spousal correlation in lung function does not appear
to vary with duration of marriage but does decline with age at marriage.

Keywords: FISHER software; Spousal correlations; Regression models; Multi-
variate normal distribution; Lung function.

1 Motivation

There is considerable interest in identifying genetic, lifestyle and environ-
mental factors that contribute to disease development (Palmer et al 2001).
Family studies, based on married couples and their offspring are used to
identify and separate genetic, lifestyle and environmental factors. Studies of
(non-genetically related) married couples are useful in understanding envi-
ronmental factors associated with cohabitation or the sharing of a common
environment. Married couples often share lifestyle factors (such as smoking)
as well as a common household and local environment (Venters et al 1984).
Concordance between spouses in lifestyle and environmentally-related risk
factors is due to partner selection factors (’assortative mating’) and the ef-
fects of marriage/cohabitation on lifestyle and environmental factors. Both

229



230 Modelling Correlations

groups of factors are believed to induce positive concordance/correlation
in risk factors for disease and the concordance/correlation is expected to
increase with marriage duration.

2 Statistical Models and FISHER

Study of spouse correlations in (quantitative) disease-related variables in
relation to lifestyle factors and marriage duration requires statistical models
that allow for simultaneous regression modelling of means and correlations.
The program FISHER is freely available and allows flexible modelling of
means, variances, covariances and correlations for multivariate normal data
(Lange et al, 1976, 1988; Hopper 1993; Hopper et al, 1994).

3 Busselton Lung Function Data

Busselton is a town in Western Australia and its residents have been the
subject of several health surveys over the period 1966 to 1995. Surveys
of adults in Busselton were conducted in 1966, 1969, 1972, 1975, 1978,
1981 and 1994/95 [http://bsn.uwa.edu.au]. Lung function was measured
by spirometry. FEV1 (forced expiratory volume in 1 second) is the exhaled
volume in first second and is a measure of breathing capacity. FVC (forced
vital capacity) is the total exhaled volume and their ratio FEV1/FVC is a
measure of airway narrowing. Sex, age, height and smoking are key deter-
minants of lung function. A total of 2,617 husband-wife pairs attended at
least one survey together since 1969 (lung function data were not collected
for women in 1966). For this analysis, lung function data were taken from
the survey attended when marriage duration was smallest to try to get
more data on the first 5-10 years of marriage. The focus of the analysis
is on the spousal (ie husband-wife) correlation in lung function measures
overall and in relation to duration of marriage and age at marriage. The
average age (at lung function measurement) of husbands and wives were
46.7 and 43.2 years respectively, the average duration of marriage was 17.2
years, and hence the average age at marriage was 29.5 years for husbands
and 26.0 years for wives. The overall correlations between husbands and
wives were 0.955 for age, 0.268 for height, 0.267 for smoking (coded as 1 =
never, 2 = former, 3 = current), 0.540 for FEV1 and 0.367 for FEV1/FVC.

4 Regression Models for Spouses

A bivariate normal model for lung function in spouse pairs was used. The
models for the mean included (progressively) the effects of gender, age
(gender-specific quadratic trends), height (gender specific linear trends),
and smoking (gender specific effects for never, former and current). The
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variance was assumed constant and various models for the correlation in
relation to duration of marriage and age at marriage were explored, includ-
ing constant, grouped and linear trend models.

5 Main Results

The estimated residual variance in FEV1 declined from 0.67 to 0.26 when
the model for the mean progressively included terms representing the effects
of age, height and smoking, confirming that these are key determinants.
The residual variance for FEV1/FVC % similarly declined from 105 to 75.
The estimated husband-wife correlation in FEV1 declined from 0.54 to 0.08
when the model for the mean progressively included terms representing the
effects of age, height and smoking. The FEV1/FVC correlation similarly
declined from 0.37 to 0.14. The adjustment for age had the greatest ef-
fect on the estimated residual variance and correlation. Estimated spousal
correlations in lung function by marriage duration groups indicated little
trend in the correlations with marriage duration. The correlation models
that included linear trends with marriage duration and age at marriage
confirmed non-significant trends with marriage duration but revealed a
declining trend for age at marriage (p = 0.004 for FEV1 and p < 0.001 for
FEV1/FVC).

6 Comments on Statistical Issues

The program FISHER is cumbersome to use but does allow flexible simul-
taneous modelling of means and correlations. As expected, adjustment in
the mean model for key determinants of lung function substantially reduces
the residual variance. Adjustment in the mean model for covariates that are
key determinants of lung function AND which themselves have considerable
positive spouse concordance substantially reduces the spousal correlation
in lung function. Estimated trends (with marriage duration or age at mar-
riage) were not influenced by degree of adjustment for key determinants in
mean model. This analysis of trends based on cross-sectional data is open
to possible biases. For example, bias may be introduced if marriages for
couples initially discordant for lung function are more likely to terminate
due to divorce or death of one partner. Longitudinal studies that repeat-
edly measure (throughout married life) cohorts of newly married couples
are required.

7 Comments on Respiratory Epidemiology Issues

There is clear evidence of non-random partner selection in relation to lung
function measures and most (but not all of it) is explained by age and
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height. Spousal correlation in lung function does not appear to vary with
marriage duration. Spousal correlation in lung function appears to vary (ac-
tually decline) with age at marriage. Spousal concordance in lung function
measures appears to be dominated by partner selection factors and age at
marriage and common exposure to lifestyle/household/neighbourhood in-
fluences has little effect. This should be recognised and considered in family
studies that aim to identify and separate genetic from other influences.
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Abstract: In this article we develop a procedure to estimate parameters in
the accelerated failure time model whose error distribution does not have to be
specified and it is estimated using the smoothing techniques. First, a density of
the error distribution is specified as a linear combination of P-splines (B-splines
with penalties), see Eilers and Marx (1996) and second, B-splines are replaced by
their limits which appear to be Gaussian densities. We call the resulting smoothed
function as a G-spline. The spline coefficients as well as the regression parame-
ters are estimated via a constrained penalized maximum likelihood method. The
procedure allows for all types of censoring (left, right and interval). The method
is illustrated on the analysis of the dataset from AIDS research.

Keywords: Accelerated failure time model; B-splines; Penalized likelihood.

1 Introduction

The accelerated failure time model (AFT) is a worthwhile alternative to
the Cox’s proportional hazards model. This model specifies that the effect
of a vector of fixed covariates x acts additively on the logarithm of the time
to event T as

log(T ) = Y = α+ βTx + σε, (1)

where ε is the error term with a density f(e), α and β are regression
parameters and σ is a scale parameter. The expression (1) is simply a linear
model on the log scale of time but unlike the area of uncensored data where
the normal distribution is the most used error distribution, there is no gold
standard distribution for censored data. Moreover, in survival analysis non-
or semi-parametric procedures are generally preferred.
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2 B- and P-splines

Our approach assumes that the density f(e) of the error term can be well
approximated by a mixture of B-splines (de Boor, 1978). The density of the
error term is first assumed to have a form of a spline function of degree k
defined on a finite interval (emin, emax). Briefly, a spline function of degree
k is formed of polynomial pieces of the same degree and all derivatives up
to order k− 1 are continuous. Polynomial pieces are connected together at
so called knots η−k = . . . = η0 = emin < η1 < · · · < ηg∗ < emax = ηg∗+1 =
. . . = ηg∗+k+1. The spline function (density of the error term) can then be
represented as a mixture of basis B-splines Ni,k+1 of degree k as follows
f(e|c) =

∑g∗

i=−k ciNi,k+1(e). The basis B-spline Ni,k+1 is defined through
the knots ηi, . . . , ηik+1, is positive on (ηi, ηi+k+1) and zero elsewhere. Re-
strictions on ci’s such that 0 < ci < 1 and

∑g∗

i=−k ci = (emax − emin)−1

ensure that the resulting spline function is a density.
Choosing the optimal number and the position of knots is generally a com-
plex task. Too many knots lead to over fitting of the data, too few knots
lead to under fitting. O’Sullivan (1988) proposed to use a relatively large
number of knots and to restrict the flexibility of the fitted curve by putting
a penalty on the second derivative. Eilers and Marx (1996) further gener-
alized this approach in the context of B-splines. Basically, the penalized
log-likelihood is maximized for computing the estimates of the parameters.
The knots can be chosen equidistantly and there is no need to search for an
optimal number. Eilers and Marx use consequently the term P-splines in-
stead of B-splines to stress the fact that the spline coefficients are estimated
via the maximization of the penalized log-likelihood.

3 G-splines

A possible drawback of the above described spline approach could be the
finite support (emin, emax) of the fitted density function. However, the basis
B–spline of degree k is proportional to the density function of a sum of k+1
independent uniformly distributed random variables. One can show then
that after a proper normalization including an expansion of the basis B–
spline support it converges uniformly (k → ∞) on � to a Gaussian density,
see Unser et al. (1992) for details. That is why we concluded that a mixture
of Gaussian densities could be used as a model for the error density instead
of the original B-splines mixture. Thus, the density of the error distribution
can be now represented as

f(e|c) =
g∑
j=1

cjϕμj ,σ0(e) (2)

where ϕμj ,σ0 stands for a density of N(μj , σ2
0). To get a proper density

function constraints
∑g

j=1 cj = 1, cj > 0, j = 1, . . . , g are imposed on
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coefficients cj . To keep the correspondence to the original spline approach
we will call each part of the linear combination (2), i.e. a density of N(μj , σ2

0)
as a G-spline (G standing for Gaussian). Means μ1 < . . . < μg are now used
instead of original knots and are fixed during the computation of estimates
as well as the variance σ2

0 of each basis G-spline. Means μj will be still
called as knots in the following.
The G-spline coefficients cj will be estimated using the penalized maxi-
mum likelihood method as will be explained below. For this purpose we
use a grid of equidistant knots. According to our experience (supported by
simulations) the distance of 0.3 between the two consecutive knots is usu-
ally sufficient when smoothing a standardized (zero mean, unit variance)
density.

4 Constrained Penalized Maximum Likelihood
Method

All parameters in the model, i.e. spline coefficients c = (c1, . . . , cg)T , re-
gression parameters α, β and the scale σ will be estimated by the mean of
the constrained penalized maximum likelihood method. Earlier mentioned
constraints

∑g
j=1 cj = 1, cj > 0, j = 1, . . . , g can be omitted through a

reparametrization of the problem as cj(a) = eaj(
∑g

l=1 e
al)−1 with one of

the new aj coefficients fixed to a particular value. We may assume without
loss of generality a1 = 0.
To clearly distinguish the regression part of the model (1) from the er-
ror distribution (2) we fix the mean and the variance of the fitted error
distribution to zero and one, respectively. That is we impose the follow-
ing constraints on the a parameters, 0 = E(ε) =

∑g
j=1 cj(a)μj , and 1 =

var(ε) =
∑g
j=1 cj(a)(μ2

j + σ2
0). Subsequently, a penalized log-likelihood


P,n(θ|λ;y) = 
n(θ|y) − λ
2

∑g
j=m+1 (Δmaj)

2 is maximized w.r.t. θ under
the two constraints. The vector y = (y1, . . . , yn)T denotes a set of n in-
dependent (possibly censored) responses, and θ = (α, βT , log(σ), aT )T is
a vector of unknown parameters to be estimated with a = (a2, . . . , ag)T .
The operator Δm stands for the ordered difference, i.e. Δ1aj = aj − aj−1,
Δm+1aj = Δmaj−Δmaj−1. The parameter λ is a tuning parameter which
determines a degree of smoothing. The term 
n(θ|y) is an ordinary log-
likelihood based on possibly censored responses y under the model (1)
with the error density (2).
The choice of the tuning parameter can be based on the Akaike’s informa-
tion criterion AIC(λ) = 
P,n(θ̂(λ)|λ;y)− df(λ) where df(λ) is the effective
number of parameters defined in the similar manner as in Gray (1992). The
effective number of parameters varies between dim(β) + 1 for λ → ∞ and
dim(β)+g−1 for λ = 0 and describes the estimated number of parameters
while adjusting for a degree of the penalization.
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FIGURE 1. MHC Study. Fitted error distribution compared to the standardized
densities of the normal, extreme value and logistic distribution.

Using similar technique as in O’Sullivan (1988), modified appropriately to
take into account the two constraints a Bayesian technique for generating
confidence bands for penalized MLE’s can be used.
The approach described has been implemented as a function in R and the
function is available upon request from the first author. The simulation
study was performed to evaluate the characteristics of the suggested ap-
proach. The error term in the simulation study was sampled from normal,
extreme value distribution and from the mixture of the two normals and
satisfactory results were obtained.

5 Multicenter Hemophilia Cohort Study

Engels et al. (1999) evaluated the relation between plasma HIV viral load
and subsequent risk for disease progression in patients with hemophilia and
late-stage HIV disease (CD4 count < 200 cells/mm3) using a subset of the
Multicenter Hemophilia Cohort Study (MHC Study). See Goedert et al.
(1989) for more details on the setup of the study. They used various Cox’s
PH–models and stratified Kaplan–Meier estimates without accounting for
interval censoring of the response (development of clinical AIDS).
It can be thus interesting to try models which do account for interval cen-
soring since ignoring it may introduce a bias. We use a subgroup of 335
hemophilic HIV positive men/boys who were between 2.5 and 30 years old
at the baseline visit. Our sample corresponds very closely but not exactly
with the sample analyzed by Engles et al. Values of the plasma HIV vi-
ral load, CD4 counts and CD8 counts at the baseline visit are available.
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TABLE 1. MHC Study. Estimates in the AFT model with smoothed error com-
pared to the estimates in the AFT model with extreme value error.

Parameter Smoothed error Extreme value error
β̂(CD4) 7.99 (2.53) · 10−4 7.82 (2.38) · 10−4

β̂(vl4) −0.49 (0.20) −0.56 (0.22)
β̂(vl5) −0.92 (0.20) −1.01 (0.23)
β̂(vl6) −1.18 (0.23) −1.09 (0.24)
β̂(CD8) −0.76 (1.23) · 10−4 −1.12 (1.31) · 10−4

β̂(age) 4.21 (11.64) · 10−3 2.56 (11.48) · 10−3

Log–likelihood -419.8 -425.0

We fitted models with time to the onset of clinical AIDS in months as
the response which was interval censored with mean length of the intervals
equal to 10 months. In the AFT model with CD4, CD8 counts, age at base-
line and dummies for intervals of viral load at the baseline defined as less
than 104, [104, 105) (vl4), [105, 106) (vl5), and at least 106 copies/mL (vl6),
only the baseline viral load and CD4 at baseline appeared to be significant
(5%). The fitted error distribution compared to three other widely used
error densities is shown on Figure 1. The AIC of the fitted model was min-
imized for λ = 2 and took the value of −431.3 Models with specified error
distributions (normal, extreme value or logistic respectively) gave similar
estimates of the regression parameters as our procedure. Comparison of our
estimates to the estimates in the extreme value model which showed the
highest likelihood among the parametric models is shown in Table 1.
Although, only a qualitative comparison to the results of Engels et al. is
possible our conclusions are similar to these drawn by Engels et al. who
concluded that each log10 increase in baseline viral load was associated
with rather high increase in risk for AIDS–related illness during the first
few months of the follow–up. Based on our model, the expected time to
the development of AIDS–related illness, after adjusting for the CD4 count
is 0.6, 0.4 or 0.3 times respectively lower than the expected time for the
person with less than 10 000 copies of the virus/mL if the viral load is 10,
100 or 1 000 times respectively higher.
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Abstract: A framework that allows the use of Gaussian linear analysis on
non-Gaussian time series is proposed. The idea is to approximate first the trans-
form that renders the marginal distribution Gaussian, and from this transform
to determine the autocorrelation of the Gaussian time series as a function of
the original one. The approximation of the transform is chosen to be piecewise
polynomial and the moments of the truncated normal distribution are used to
determine the relationship for the autocorrelations. The derived Gaussian time
series has the property that through the inverse transform it possesses the same
linear correlations and marginal distribution as the original time series. Thus the
standard linear analysis and modeling can be performed on this Gaussian time
series and the results of the analysis, passed through the inverse transform, can
yield the original non-Gaussian time series. This approach is particularly useful
for the surrogate data test for nonlinearity which relies heavily on the generation
of proper surrogate time series that possess the linear correlations and marginal
distribution of a given time series. The importance of this approach both for the
linear modeling of time series and for the surrogate data test for the nonlinearity
will be illustrated with some real world time series from finance and physiology.

Keywords: Time series; Non-Gaussian; Nonlinearity; Surrogate data test.

1 Introduction

The linear analysis of time series is well established, especially for Gaussian
time series, where, for example, best predictors are linear and the statis-
tics of the optimal estimators can be computed analytically (Brockwell
and Davis, 1991; Rosenblatt, 2000). If the time series cannot be assumed
Gaussian, statistics pertaining the fitted model can be computed numeri-
cally through bootstrapping techniques. In some cases, simple transforms,
such as logarithms, may render the Gaussian marginal distribution and
allow analytical results. One should be careful though when transforming
time series because a Gaussian marginal distribution does not necessarily
imply a Gaussian generating process. Furthermore, the linear correlations
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may be altered through the transform and this should be taken care of in
the analysis of the transformed time series.
For a given non-Gaussian time series we attempt to generate a Gaussian
time series with suitable autocorrelation, so that under a static transform
it has the same marginal distribution and autocorrelation as the given time
series. Thus the analysis and modeling can be performed on this Gaussian
time series and the results, such as point predictions, confidence and pre-
diction intervals, can be mapped through the static transform to yield the
original time series.
The motivation for this approach stems from the surrogate data test for
nonlinearity and in particular from the problem of generating time series
that possess the linear correlations and amplitude distribution of a given
time series (Theiler et al, 1992; Schreiber and Schmitz, 2000; Kugiumtzis,
2002a). Such time series are called “surrogate data” and are used to repre-
sent the null hypothesis that a given time series is stochastic linear (explic-
itly, the time series is generated by a Gaussian process possibly undergoing
a static transform, linear or nonlinear). The generation of surrogate data
using a simple polynomial approximation for the transform of the mar-
ginals was recently used to improve significantly the performance of the
test (Kugiumtzis, 2002b).
In this paper, we extend the approximation of the transform to piecewise
polynomial in an attempt to provide better estimation for the linear corre-
lations. The accurate estimation of the linear correlations is not only useful
for the surrogate data test for nonlinearity, but also for the linear modeling
of non-Gaussian time series. The enhanced approach generates a Gaussian
time series, which is linearly equivalent to the original non-Gaussian time
series, so that the modeling is done on this Gaussian time series and the
estimates and predictions can be transformed back to the original time
series. In the following, we draw the main points of the approach.

2 Gaussian from Non-Gaussian Time Series

Let us suppose a transform g that maps two variables s1 and s2 having
standard Gaussian joint distribution to the variables x1 = g(s1) and x2 =
g(s2). For some known joint distributions of x1, x2, analytic expressions
exist for the transform ψ for the corresponding correlation coefficients ρs
and ρx, such that ρx = ψ(ρs) (Hutchinson and Lai, 2001). This result can
be extended to time series, i.e. for two time series {si} and {xi} where
xi = g(si), there exists a function ψ, such that ρx(τ) = ψ(ρs(τ)), where
ρ(τ) is the autocorrelation for delay τ . For an arbitrary distribution of
x1, x2 (and subsequently of {xi}) the transform g can be expressed by the
rank ordering

xi = g(si) = Φ−1
x (Φ0(si)), (1)
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where Φx is the marginal cumulative density function (cdf) for x and Φ0 is
the standard Gaussian cdf. The transform g as defined above is monotonic
and the inverse transform g−1 is defined in a similar way. However, to
the best of our knowledge, an analytic expression of ψ for the correlation
coefficients (and subsequently for the autocorrelations) does not exist in
general.
In a first approach in (Kugiumtzis 2002b), the transform g is approxi-
mated by a polynomial of some degree m. For a given time series {xi},
the polynomial is estimated from the graph of {xi} versus generated stan-
dard normal white noise data reordered to match the rank order of {xi}.
It was found that then ψ is also a polynomial of degree m with coefficients
ci, i = 1, . . . ,m, given in terms of the coefficients of the polynomial for g

ρx = ψ(ρs) =
m∑
i=1

ciρ
i
s. (2)

The correlation coefficient ρs can be found from the solution of eq(2). In
(Kugiumtzis, 2002b), it is conjectured that a unique solution exists but still
there is no theoretical proof for this. For time series, eq(2) can be solved
for each τ substituting ρx by ρx(τ) and ρs by ρs(τ) in order to derive the
autocorrelation function ρs for the desired Gaussian time series. Indeed,
ρs alone defines a standard Gaussian process which under the transform
g, as defined in eq(1), generates time series that have marginal cdf Φx and
autocorrelation ρx.
This approach has been used to generate surrogate data possessing Fx and
rx (the sample cdf and autocorrelation) of a given time series {xi}, i =
1, . . . , n. The complete algorithm of statically transformed autoregressive
process (STAP) provides proper surrogate time series {zi}: Fz(zi) = Fx(xi)
is attained exactly and rz is an unbiased estimate of rx (Kugiumtzis,
2002b). Compared to the two most known algorithms for surrogate data
generation, the amplitude adjusted Fourier transform (AAFT) (Theiler et
al., 1992) and the iterated AAFT (IAAFT) (Schreiber and Schmitz, 1996),
the test for nonlinearity turned out to perform best with STAP.
In the proposed paper the polynomial approximation of the transform g
is extended to piecewise polynomial to reach better fit. The variable si,
restricted at each interval of the partition, follows a truncated normal dis-
tribution. The moments of the joint truncated normal distribution for s1, s2
are expressed in terms of the truncation points, which are known from the
selected partition, and the correlation coefficient ρs (Johnson and Kotz,
1990; Regier and Hamdan, 1971). Making use of the expressions for the
moments we determine ψ that gives ρx in terms of ρs as in eq(2), but here
the expressions of the coefficients ci are rather involved. Thus the procedure
for generating the equivalent Gaussian time series is the same as for the
simple polynomial approximation of g, but the estimation of ρs is improved
to the cost of more intensive computations.
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3 Work in Progress

We are now working on testing with simulated time series for the cor-
rectness of the estimation of ψ and thus ρs. Then we intend to build an
algorithm similar to STAP and study the improvement of the accuracy in
the match of linear correlations with the use of piecewise polynomials. Fi-
nally, this approach will be used to make predictions of non-Gaussian time
series using the following procedure. A linear model is estimated from the
autocorrelation ρs of the equivalent Gaussian time series and the predic-
tions are transformed by g to derive the predictions for the original time
series. For this paper, we plan to illustrate the performance of the enhanced
approach with the same real world time series as those used in conjunc-
tion with the STAP algorithm in (Kugiumtzis 2002a; Kugiumtzis 2002b),
i.e. electroencephalographs (EEG) from normal and epileptic activity and
volatility data from the exchange rates of USD/GBP.
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Abstract: We show how Anderson’s Stereotype regression model can be ex-
tended to account for correlated responses by a simple nonlinear parameter re-
striction on the multinomial logistic model with random effects. A data set on
physicians’ recommendations and preferences in traumatic brain injury rehabili-
tation is used for illustration.
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1 Introduction

Many study designs in applied sciences give rise to correlated data. For
example, subjects are followed over time, are repeatedly treated under dif-
ferent experimental conditions, or are observed in logical units (e.g. clinics,
families, litters).
One of the standard analysing tools in these situations which adequately
accounts for the correlation between observations is the random effects
(RE) model, sometimes also called hierarchical or mixed effects model. This
is quite common for continuous responses, and also, despite an enhanced
mathematical complexity, for binary responses. Less used have been ran-
dom effect models for the analysis of discrete non-binary responses, some
of the rare examples are Hedeker and Gibbons (1994) and Tutz and Hen-
nevogl (1996) for ordinal and Hartzel et al (2001) for nominal responses.
To our knowledge, up to now there exists no random effects version of the
Stereotype regression model.
The Stereotype regression model was originally proposed by Anderson
(1984). He observed that some relevant discrete non-binary responses in
applied statistics are not perfectly ordinal in the sense that there is an la-
tent continuous variable which was only observed in discrete and disjunct
classes, but should rather be regarded as a multidimensional phenomenon
where several items determine the grade on the ordinal scale, the most
prominent example being maybe the severity of a disease.
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2 The Random Effects Stereotype Regression Model

To extend the Stereotype regression model to account for correlated re-
sponses we use the fact that the original Stereotype model is derived from
the ordinary multinomial logistic regression model by a certain nonlinear
parameter restriction. This restriction is simply applied to the multinomial
logistic random effects model of Hartzel et al (2001). The Stereotype model
with random effects thus becomes a nonlinear model with random effects
and all the well-known theory and estimation methods (see e.g. Davidian
and Giltinan, 1995) can be used.
We assume that our data comprises a set of I (i = 1, . . . , I) independent
clusters where the i-th cluster consists of ni observations. Let Yij denote
the j-th response in cluster i (j = 1, . . . , ni), where this response is from
one of r (r = 1, . . . , R) distinct categories and the response probability is
πijr = P (Yij = r). Further, xij denotes a column vector of covariates for
the j-th observation in the i-th cluster. Thus the model equation is

log
(
πijr
πijR

)
= θr + x′ijφrβ + uir, r = 1, . . . , R− 1, (1)

where the θr are constant terms, the scalars φr introduce a metric for the
common effect of the covariates, where this effect is assumed constant across
response categories. The influences of covariates are assessed through the
components of β = (β1, . . . , βp)′. The θr, the φr, and the β are considered
to be fixed effects. For the random effects uir we assume a multivariate
normal distribution with unstructured covariance matrix Σ, that is for ui =
(ui1, . . . , ui,R−1)′ we have ui ∼ N(0,Σ).
For reasons of identification of parameters we restrict θR = 0, βR = 0,
uR = 0, φ1 = 0, and φR = 1, so that interpretation of parameters is,
analogous to the multinomial logistic model, with reference to the R-th
category. Note that the model equation of the RE Stereotype regression
model is derived from the multinomial logistic random effects model of
Hartzel et al (2001) by the non-linear parameter restriction βr = φrβ.
The estimation of parameters is complicated by the fact that the likeli-
hood function consists of a product of I integrals which can not be solved
in closed form. Thus, numerical or stochastic integration are viable alter-
natives. Hartzel et al (2001) suggest adaptive Gaussian quadrature as the
preferred method for parameter estimation in this model class. As such, the
model can be fitted conveniently with, for example, SAS PROC NLMIXED.

3 The Motivating Example

The motivation for the derivation of the RE Stereotype model was a data
set from a study on physicians’ recommendations and preferences in trau-
matic brain injury (TBI) rehabilitation (Hasenbein et al, 2003). In this
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study, 36 physicians were asked to decide on the optimal rehabilitation
setting (in-patient, day-clinic, out-patient) for each of ten typical TBI dis-
ease histories. Of course, we expect the setting recommendations within
the same physician to be correlated. Concerning the 3-valued response we
recognize that this is not strictly nominal, but has indeed some ordinal
flavor, for example, we might think of the ”time not at home” as some un-
derlying continuous variable. However, it is not that simple that in-patient,
day-clinic, and out-patient rehabilitation only differ by the time that pa-
tients stay in the clinic, instead they rather represent different therapeutic
concepts and actual treatment varies. Of interest was mainly if we could
identify factors (considering physicians and disease histories) that influence
setting preferences.
In the following (see Table 1) we give the results (estimates and respective
standard errors in parentheses) for our data set for the ordinary Stereo-
type model, the RE multinomial model and the RE Stereotype model.
Four covariates, all of them binary, were included in the model, two of
them referring to physicians’ characteristics (1. Is the physician a neurol-
ogist [NEURO] and 2. Is the physician a specialist [SPECIAL]) and two
describing the disease history (3. Is the time since the event longer than 3
months [TIME] and 4. Is the patient severely or moderately handicapped
after the TBI [SEVERITY]). As the reference category of the response we
chose the stationary setting, and compare day-clinic (DC) and out-patient
(OP) to this.
Some remarks regarding the results can be made: As we expect (and maybe
hope as potential patients), physicians’ own characteristics do have only
small influence on their recommendations. Looking at the values of the
model selection criteria we see that the random effects Stereotype model
is superior to the other two models: Compared to the ordinary Stereotype
model this means on one hand that it is essential to account for the inherent
correlation in the data (which is also confirmed by the significant values
of the random effects covariance matrix). Compared to the random effects
multinomial model on the other hand we note that we do not need the
additional information of looking separately at the two response categories,
instead the RE Stereotype model gives a natural summary of the ordering
of response categories and judges the DC category roughly in the middle
(φ2 = 0.55) between the reference category and the OP category. Summing
up a bit roughly in subject matters: The more severe the TBI and the
shorter the time since TBI, the more time the patient should spend in the
hospital.

4 Discussion

We showed how Anderson’s Stereotype regression model can be extended
easily to account for correlated responses. The idea was to impose the non-
linear parameter restriction which relates the ordinary multinomial logistic
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TABLE 1. Results (estimates and respective standard errors in parentheses) from
the ordinary Stereotype model, the RE multinomial model and the RE Stereotype
model for the TBI data set

Stereotype RE Multinomial RE Stereotype
Model Model Model

Fixed effects

DC OP
β̂NEURO 0.89 (0.46) -0.56 (0.74) -0.36(0.90) 1.36 (0.93)
β̂SPECIAL 0.19 (0.43) -0.63 (0.78) -0.04 (0.94) 0.40 (0.88)
β̂TIME 3.26 (0.45) 2.51 (0.41) 3.43 (0.50) 4.23 (0.58)
β̂SEV ERITY -2.00 (0.43) -1.94 (0.43) -3.29 (0.47) -2.60 (0.53)

φ̂2 0.50 (0.10) – – 0.55 (0.09)

Random effects

σ̂2
1 – 1.47 (0.35) – 2.01 (0.96)
σ̂2

2 – – 1.87 (0.43) 2.62 (1.20)
σ̂2

12 – 2.54 (1.11) 1.94 (0.93)

Model selection criteria

AIC 517.3 499.3 487.5
BIC 543.9 516.7 503.3

model to the original Stereotype model to the random effects multinomial
model of Hartzel et al (2001). Proceeding that way, the RE Stereotype
model becomes a nonlinear random effects model and standard theory and
estimation methods apply. In terms of our motivating example we were able
to identify factors which influence physicians’ preferences on optimal reha-
bilitation setting in TBI patients. We learned that we had to account for
the inherent correlation in the data but did not need the additional com-
plexity of the RE multinomial model. Moreover, we got information about
distances between response categories. The estimation method of numer-
ical integration seems to work well as some limited preliminary evidence
from simulation studies reveals. In the future we are mainly interested in
additional estimation techniques to judge robustness of our results, where
MCMC and nonparametric ML methods might be promising candidates.
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Abstract: The estimation of the Gamma frailty model with clustered interval
censored data is considered in this study. A simple multiple imputation approach
is proposed to estimate the regression parameter of the semiparametric Cox pro-
portional hazards model for interval censored data in the univariate case. The
basic idea is to iterate between the following two steps. With an additional para-
metric assumption on the baseline hazard function, we first impute an exact fail-
ure time to each finite interval-censored time using the approximate conditional
posterior distribution. Secondly, the standard Cox partial likelihood is applied to
the imputed data and the estimate of the regression parameter is updated. A ro-
bust variance estimator is also provided. Empirical results show that the proposed
method works extremely well. To accommodate clustered interval censored data,
an extension of the proposed method to estimate the regression and dependence
parameters of a Gamma frailty model is studied. In this part, the EM algorithm
for the Gamma frailty model suggested by Klein (1992, Biometrics 48, 795-806)
is used instead of the partial likelihood in the aforementioned second step. The
proposed method is applied to several real life data sets and the performance of
the proposed method is studied via simulation. As a side product, we also propose
a robust estimation procedure using a marginal approach, to make inference on
the regression parameter and to compare with that based on the Gamma frailty
model.

Keywords: Gamma frailty model; Clustered interval censored; Multiple impu-
tation; Proportional hazards model.

To model interval-censored data by Cox’s semiparametric proportional haz-
ards model, we propose a simple multiple imputation approach to estimate
the regression parameter in the absence of the rankings of the failure times.
The basic idea is to iterate between the following two steps. With an addi-
tional Weibull assumption on the baseline hazard function, we first impute
an exact failure time to each finite interval-censored time using the ap-
proximate conditional posterior distribution. Secondly, the standard partial

251



252 Gamma Frailty Model with Clustered Interval-Censored Data

likelihood is applied to the imputed data and the estimate of the regres-
sion parameter is updated. The two steps are performed iteratively until
convergence is achieved. Robust variance estimator for the regression pa-
rameter is also suggested to address for the misspecification of the baseline
hazard function. Simulation studies showed that the proposed method per-
forms extremely well even when the baseline hazard function is piecewise
constant (See Table 1).
A study is carried out to compare the cosmetic effects of radiotherapy
alone (X = 0) versus radiotherapy and adjuvant chemotherapy (X = 1)
on women with early breast cancer. The variable of interest is the time
to cosmetic deterioration of the patients. To compare the two treatment
regimes, 46 radiation only and 48 radiation plus chemotherapy patients
are considered. Patients are under intense observation in the initial 4 to 6
months after the treatments, but, when they begin to recover, the interval
between visits is lengthened. Due to the fact that patients are examined
only at these random times, we do not know the exact time of breast
retraction, but is known to fall within the interval between two consecutive
visits. The estimated regression parameter using our method together with
the estimates by other existing methods (reproduced from Pan 2000 and
Betensky et al. 2002) are tabulated in Table 2. Our estimates are very
similar to the others.
Correlated survival data are often observed when failure times are collected
on clusters of items or individuals. To accommodate clustered interval-
censored data, an extension of the proposed method to estimate the re-
gression and dependence parameters of a Gamma frailty model is studied.
In this part, we impute the survival times using the approximate joint con-
ditional posterior distribution, and the EM algorithm for the Gamma frailty
model suggested by Klein (1992) is used instead of the partial likelihood
in the second step of the univariate setup. The performance of the pro-
posed method is studied via simulation (See Table 3). Again, the proposed
methodology works extremely well except for a not so alarming underesti-
mation in the dependence parameter, θ.
For illustration, we apply our proposed method to analyze the diabetic
retinopathy study (DRS) data. The main purpose of the study is to assess
the effectiveness of laser photocoagulation in delaying the time to onset
of blindness in patients with diabetic retinopathy. It is also of interest to
examine whether the effect, if it exists, depends on the type of diabetes,
namely juvenile versus adult diabetes. One eye of each patient is randomly
selected for treatment and the other eye is treated as control. As the failure
times for both eyes are correlated, multivariate survival analysis is desired.
The endpoint used to assess the treatment effect is the occurrence of visual
acuity less than 5/200 at two consecutively completed 4-month follow-ups.
Hence, the occurrence times are interval-censored. We analyze the data by
using the proposed method. As a side product, we also propose a robust
estimation procedure using a marginal approach to make inference on the
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regression parameter and to compare with that based on the Gamma frailty
model. The results are tabulated in Table 4.
A simple multiple imputation approach is proposed to model univariate
interval-censored data. The main advantage of this method over the others
is that it can be extended easily to accommodate clustered interval-censored
data as illustrated in the example.

TABLE 1. Simulation Results (Univariate Case) with imputation size = 10, 400
replications and true β = 1.000 (Ct=constant).

Robust
variance True Baseline β̂ Empirical Average Coverage

estimator? SD(β̂) SE(β̂) (95% C.I.)

Weibull 1.043 0.268 0.273 95.75%
No Piecewise Ct 0.993 0.261 0.271 95.75%

Weibull 1.019 0.278 0.269 95.50%
Yes Piecewise Ct 0.998 0.272 0.267 95.00%

TABLE 2. Treatment effect for breast cosmesis data using proportional hazards
model with various methods.

Model Estimate Standard Error
Exponential 0.742 0.277
Mid-point Imputation 0.839 0.286
Huang and Wellner (1995) 0.795 0.29
Finkelstein (1986) 0.791 0.288
Satten (1996) 0.890 0.297
Satten et al. (1998) 0.878 0.294
Goggins et al. (1998) 1.450 0.371
Pan (2000) 0.90 0.29
Betensky et al. (2002) 1.053 0.270
Our results 0.849 0.287
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TABLE 3. Simulation Results (Multivariate Case) with imputation size = 500
and 500 replications (TCB=True Conditional Baseline).

TCB α True α̂ Empirical Average Coverage
SD(α̂) SE(α̂) (95% C.I.)

β -0.693 -0.701 0.218 0.204 93.2%
θ 0.500 0.406 0.225 0.244 90.2%
β -0.693 -0.675 0.244 0.210 90.8%

Weibull θ 1.000 0.871 0.317 0.318 89.0%
β -0.693 -0.645 0.243 0.202 88.8%
θ 2.000 1.851 0.463 0.447 90.6%
β -0.693 -0.681 0.234 0.208 92.0%
θ 0.500 0.386 0.224 0.256 90.0%

Piecewise β -0.693 -0.675 0.234 0.208 92.4%
constant θ 1.000 0.846 0.303 0.320 89.6%
hazards β -0.693 -0.653 0.252 0.205 89.2%

θ 2.000 1.752 0.434 0.440 88.4%

TABLE 4. Parameters estimates (with robust standard error between brackets)
of diabetic retinopathy study using various methods and models. MA=marginal
approach. FM=Frailty Model

Method Covariates Frailty
Type Treatment Interaction

Huster et al. (1989) 0.37 -0.43 -0.84 2.01
(0.20) (0.18) (0.30) (0.34)

Liang et al. (1993) 0.34 -0.42 -0.84 - -
(0.20) (0.19) (0.30)

Lin (1994) 0.34 -0.43 -0.85 - -
(0.20) (0.19) (0.30)

Ross and Moore (1999) 0.35 -0.44 -0.84 2.04
(0.21) (0.18) (0.29) (0.35)

Our results (MA) 0.37 -0.41 -0.88 - -
(0.20) (0.22) (0.35)

Our results (FM) 0.43 -0.51 -0.99 2.07
(0.22) (0.23) (0.40) (0.35)
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Abstract: Hierarchical generalized linear models (HGLMs) are developed as a
synthesis of (i) generalized linear models (GLMs) (ii) mixed linear models, (iii)
joint modelling of mean and dispersion and (iv) modelling of spatial and temporal
correlations. Statistical inferences for complicated phenomena can be made from
such a HGLM, which is capable of being decomposed into component GLMs,
allowing the application of standard GLM procedures to those components, in
particular those for model checking.
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1 Introduction

There have been many models and many methods proposed for the descrip-
tion and analysis of correlated non-normal data. One general approach is
via the use of random effect models. In 1996 Lee and Nelder introduced a
class of models called HGLMs, and recently Lee and Nelder (2001a) pre-
sented them as a synthesis of three widely-used existing model classes, (i)
GLMs (McCullagh and Nelder, 1989), (ii) mixed linear models having both
fixed and random effects (Longford, 1993) and (iii) models with structured
dispersions as used in the analysis of data from quality improvement ex-
periments (Nelder and Lee, 1991).
In Lee and Nelder (2001b) we introduced an extended HGLM for modelling
and analysing spatial and temporal correlations for correlated non-normal
data. This covers a broad class of models, and we show that many previ-
ously developed models appear as instances of our model. Rich classes of
correlated patterns in non-Gaussian models can be produced via HGLMs
without requiring explicit multivariate generalizations of non-Gaussian dis-
tributions. In this talk we summarize inference from HGLMs and list prac-
tical applications.
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2 H-likelihood Inference

For inference in HGLMs Lee and Nelder (1996) proposed the use of an
h-likelihood of the form

h = h(β, σ) = log{f(y|v;β)} + log{f(v;σ)}, (1)

where f(y|v;β) and f(v;σ) denote the conditional density function of the
response y given υ and the density function of v, respectively, and β is a
regression parameter. In forming the h-likelihood the choice of the scale of
random effects is important. Note that v is the scale on which the random
effects are assumed to occur linearly in the linear predictor.
By contrast, the marginal likelihood m can be obtained by integrating out
the random effects from the h-likelihood:

m = log
{∫

exp(h) dv
}
. (2)

However, integration becomes more difficult as the number of random com-
ponents increases. An important advantage of the h-likelihood approach is
that it facilitates inference in models with complex random effect structures
without recourse to integration.
Let l be a likelihood, either a marginal likelihood m or an h-likelihood h,
with nuisance parameters θ. Lee and Nelder (2001a) considered a function
pθ(l), defined by

pθ(l) = [l − 1
2

log det{A(l, θ)/(2π)}]|
θ=θ̂

(3)

where A(l, θ) = −∂2l/∂θ2 and θ̂ solves ∂l/∂θ = 0. For fixed effect parame-
ters β the use of mP ≡ pβ(m) is equivalent to conditioning on β̂ (Cox and
Reid, 1987), while for random effects v the use of pv(h) is equivalent to
integrating them out by using the Laplace approximation. Lee and Nelder
(2001a) showed that hP ≡ pτ (h) where τ = (βT , vT )T is approximately
pβ(pv(h)); in general m ≈ pv(h) and mP ≈ hP . In mixed linear models
hP becomes Harville’s (1977) restricted likelihood mP , and thus hP is a
natural extension of the restricted likelihood for dispersion components
in linear mixed models to non-normal mixed-effect models. Therefore, hP
may be viewed as a proper likelihood for the dispersion parameters σ after
eliminating the nuisance parameters τ .

3 Remarks on Inference in Hierarchical Models and
H-likelihood

For inference in hierarchical models, a considerable amount of effort has
been devoted to implementing methods based upon marginal likelihood,
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which becomes computationally heavier as the number of random compo-
nents increases. This difficulty has limited the wider application of HGLM-
type models.
It is perhaps unfortunate that Bayesians, from Lindley and Smith (1972)
onwards, seem to have made a major play for the high ground in all hi-
erarchical modelling, implying, effectively, that the Bayesian approach is
the method of choice when dealing with hierarchical models. The availabil-
ity of MCMC, making many problems seem more solvable via Bayesian
computations, has appeared to justify this point of view.
For inference in HGLMs, Lee and Nelder (1996) proposed the use of hier-
archical likelihood (or h-likelihood) defined at (1). By using h-likelihood,
we may deal with such models directly because there is an explicit an-
alytical form for this type of likelihood (Nelder, in press). H-likelihood
will, we believe, become widely used for inference in hierarchical models
as it is a natural extension of Fisher likelihood to models with random
parameters. Moreover, h-likelihood estimation is based on a statistically
and numerically efficient fitting algorithm which provides a straightforward
REML extension for inference on dispersion parameters. Finally we note
that subject-specific inference is possible without resorting to an empirical
Bayesian framework.
Despite these obvious strengths, one apparent criticism of the h-likelihood
method derives from a belief that h-likelihood provides qualitatively differ-
ent (i.e. non-invariant) inferences for trivial re-expressions of the underly-
ing model. This perspective is due to a misunderstanding of the nature of
h-likelihood: see Lee and Nelder (2003a) for detailed discussion. Another
criticism of the h-likelihood method is its bias in parameter estimators for
binary data. Yun and Lee (2003) showed that if it is properly implemented
there is no such bias and it gives better estimators than the marginal like-
lihood method using Gauss-Hermite quadrature.

4 Applications of H-likelihood

The scope of the h-likelihood paradigm is wide and continues to expand -
as evidenced by other contributions to this workshop. Already, the use of
h-likelihood provides new solutions to various problems. These include:

1. Joint modelling of mean and dispersion (Lee and Nelder, 2001a),

2. The analysis of temporally and spatially correlated data (Lee and
Nelder, 2001b),

3. A new class of models for stochastic volatility in the finance area (Lee
and Nelder 2003b),

4. The provision of model checking to see if the postulated pattern of
random effects is supported by the data (Lee and Nelder, 2001a)
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5. Meta analysis (Lee and Nelder, 2002),

6. Analysis of survival data (Ha, Lee and Song, 2001; Ha, Lee and Song,
2002),

7. Implicit implementation of an EM-type algorithm to yield good esti-
mators for censored linear mixed models (Ha and Lee, 2003),

8. The prediction of future observations (Pawitan, 2001, Chapter 16),

9. A simple alternative to kernel smoothing (Pawitan, 2001),

10. A new way of modelling long-range dependence and self-similarity
processes for internet queuing systems (Sohn, Yun and Lee (2003),

11. New robust sandwich variance estimates for fixed effect estimators,
which cannot be obtained from marginal likelihood (Lee, 2002), and

12. Alternatives to generalized estimating equations, based on extended
likelihood rather than the ad hoc approach of generalized estimating
equations (Zeger et al, 1988).

5 Discussion

The concept and definition of h-likelihood is reviewed and its several
virtues extolled. It is a major competitor for existing marginal (and usu-
ally Bayesian) methods for inference in the hierarchical modelling paradigm
and its use is destined to become routine and to displace existing MCMC
methods in a large family of relevant statistical models.
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Abstract: We introduce and demonstrate the application of the additive genetic
gamma frailty models for genetic linkage and association analysis. Such models
are developed in order to account for disease phenotypic or etiological hetero-
geneity, including variable age of onset and possible environmental risk factors.
Both real data sets and simulations indicate that the methods can potentially
gain power in mapping genes for complex human diseases.
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1 Introduction

Many complex human diseases are due to multiple disease genes and both
genetic and environmental risk factors. These diseases often also show vari-
able age of disease onset. Examples include human cancers such as breast
cancer and prostate cancer. Early age of cancer onset is a strong indicator
for genetic predisposition and variable age of onset is often a good indica-
tor for disease heterogeneity. Therefore, for complex diseases with variable
age of onset, it is important to incorporate these information into genetic
linkage and association analysis.
In order to incorporate both covariates and age of onset information into
genetic analysis, we have defined an additive genetic gamma frailty model
constructed based on the inheritance vectors (Li and Zhong, 2002). Unlike
the previously proposed frailty models, our models construct the frailties
based on gene segregation within a family. From the conditional frailty
model, we further derived the joint survival functions for age of onset data
within a family, and explicitly obtained the conditional hazard ratio for sib
pairs who share different number of allele identify by descent at the putative
disease locus. Within this modelling framework, we derive a retrospective
likelihood ratio test for linkage and a score test for genetic association in
the linked region using sibships data.
The paper is organized as follows: we first define the model and formulate
tests of linkage and association in terms of the parameters in this model.
We then present results of analysis of the data sets from the 12th Genetic
Analysis Workshop. We conclude the paper with a brief discussion.
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2 Statistical Models

2.1 The Additive Genetic Gamma Frailty Model for Age of
Onset

Consider a sibship with n sibs. Let Tj be the random variable of age at
disease onset for the jth sib. Let (tj , δj) be the observed data where tj is
the observed age at onset if δj = 1, and age at censoring if δj = 0. Consider
a candidate marker d in the linked region, and let g = (g1, · · · , gn) denote
the vector of genotypes at locus d of the m family members of known age
at disease onset. We assume that the hazard function of developing disease
for the jth individual at age tj is modelled by the proportional hazards
model with random effect Zj ,

λj(tj |Zj) = λ0(tj) exp(Xgjβ)Zj , for j = 1, 2, · · · , n, (1)

where λ0(t) is the unspecified baseline hazard function, and Xgj denotes
some function of the jth offspring’s marker genotype in the family, for
example, for additive model, Xgj = l, l = 0, 1, 2, counts the number of
the putative high-risk allele D and is for the genotype of jth member in
the family who carries l copies of the putative high-risk allele D. Zj is the
unobserved genetic frailty. Following Li and Zhong (2002), we define the
genetic frailty as the following

Zj = Udv2j−1 + Udv2j + Up,

where Vd = (v1, v2, · · · , v2n−1, v2n) is the inheritance vectors (Lander and
Green, 1987) of a sibship at d locus, v2j−1 = 1 or 2, and v2j = 3 or 4 for
j = 1, 2, · · · , n. The inheritance vector indicates which parts of the genome
at locus d are transmitted to the n children from the father and the mother.
Here Ud1 and Ud2 are used to represent the genetic frailties due to part of
the genome on the two chromosomes of the father at locus d, and Ud3,
and Ud4 are analogous though for the mother. The random frailty term,
Up, takes into account possible genetic contributions to the disease due to
loci unlinked to locus d, or contributions to shared familial effects. Assume
that the Ud1, Ud2, Ud3 and Ud4 are independently and identically distributed
across different families as Γ(νd/2, η), and Up is distributed as Γ(νp, η) over
different sibships, where η is the inverse scale parameter and νd and νp
are the shape parameters. To make the baseline hazard λ0(t) identifiable,
let νd + νp = η. Under this restriction, there are two free parameters, νd
and νp, and Udi ∼ Γ(νd/2, νd + νp), Up ∼ Γ(νp, νd + νp), i = 1, · · · , 2n and
Zj ∼ Γ(νd + νp, νd + νp).
Li and Zhong (2002) considered a similar model as (1), but they did not
include the Xgjβ term in the model. They further showed that the null
hypothesis that the candidate locus does not contribute to the risk of dis-
ease can be formulated as testing H0 : νd = 0. Li and Zhong (2002) gave



Li and Zhong 265

a retrospective likelihood ratio based test assuming that the population
disease rates are known. Li (2002) gave a prospective likelihood ratio based
test using the EM algorithm.

2.2 A score Test for Genetic Association in the Linked Region

Once linkage has been established, more markers are usually typed in this
region and genetic association test based on linkage disequilibrium is often
performed. However, it is well known that the transmission of alleles to
different sibs within a family is dependent in the linked region (Ewens and
Spielman, 1995). Therefore, direct applications of some of the tests treating
sibs within a family as independent will result in inflated type 1 error rates.
As we can see, when β = 0, the hazard function (1) and the joint density
and survival function for a sibship does not depend on the genotype at the
locus d, therefore, test of allelic association between locus d and the disease
or the null hypothesis that genotype at candidate locus will not affect the
risk of the disease can be formulated as testing H0 : β = 0.
Let Mi = (gi1, · · · , gini) be the vector of the marker genotypes at the
candidate marker locus for the ni children in the ith family, and gi =
(giF , giM ) be the vector of parental marker genotypes. We can derive a
score test based on the following retrospective conditional likelihood for
the ith family,

Li(νd, νp,Λ0(t), β; gi) = Pr(Mi|ti, δi, gi) =
Pr(Mi|gi)Pr(ti, δi|Mi)∑
M Pr(M |gi)Pr(ti, δi|M)

,

where
∑

M denotes summation over all possible offspring genotype vectors
M . The corresponding score statistic can be written as

Si =
ni∑
j=1

[δij − Λ0(tij )Fij (ti, δi, ν)](Xgij
− E(Xgij

|giF , giM )),

where Fij (ti, δi, ν) is a function of the age of onset data and
the linkage parameters. The score test can then be defined as

T =
∑N

i=1 Si/
√∑N

i=1 V (Si).

3 Applications to the 12th Genetic Analysis
Workshop Data

To demonstrate the proposed methods, we analyzed the simulated data
from the general population of 12th Genetic Analysis Workshop (GAW12).
The true disease model includes seven major genes which influence the
disease liability and age of onset. Among these 7 genes, only major gene 7
directly contributes to age of onset and major gene 6 directly contributes
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FIGURE 1. Left plot: Kaplan-Meier disease-free survival curves for males and
females estimated based on the founders’ data; right plot: Linkage results based
on our method (top plot) and the mean IBD test for chromosome 6 (bottom plot),
where the dashed horizontal lines refer to the critical values corresponding to 0.001
and 0.0001 significant levels respectively and the dashed vertical lines mark the
location of major genes 6 and 7.

to disease liability. Both major gene 6 and 7 reside on Chromosome 6, with
major gene 6 on the 30.5cM position and major gene 7 on the 31.5cM
position. Our analysis focuses on chromosome 6, which incudes a total of
152 microsatellite markers of an average of roughly 1 cM apart. There is a
total of 50 replicates, each containing 23 extended pedigrees with 1,497 total
individuals. We used the first thirty replicates of simulated data sets from
the general population, extracting 500 affected sib pairs with their parents
from each pedigree to ensure independence between nuclear families. We
then calculated the Kaplan-Meier nonparametric survival estimate as the
approximation of the baseline hazard function using the available age of
onset data from all the founders of the first thirty replicates (see left plot
of Figure 1). The plot indicates difference in survival rates between males
and females.
We first performed linkage analysis for chromosome 6. The right panel of
Figure 1 shows the results. These plots indicate that our methods give
stronger evidence of linkage than the mean IBD test, and adjusting for sex
as a covariate improves the power. For the regions far away from the true
disease region, no significant linkage signal is observed.
We then performed genetic association analysis for all the 65 SNPs existed
in the coding region of major gene 6. Figure 2 plots the negative logarithms
of the p-values of the test versus the sequence number of the 65 SNPs. We
observed that some SNPs in the coding region showed a significant evidence
of association with the disease, especially when the sex covariate was taken
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FIGURE 2. Results of association tests for SNPs in gene 1, (a) without adjusting
for sex; (b) adjusting for sex. The horizontal lines correspond to the significance
levels of 0.001 and 0.0001 and the vertical line indicate the true disease variant.

into account in the analysis. Note that we did not observe strong association
for some of the SNPs which are close to the true disease variant. This can
happen since the linkage disequilibrium is not just a function of the distance
between the two locus, it also depends on the allele frequencies.

4 Conclusions and Discussions

In conclusion, the statistical tests based on the additive genetic gamma
frailty models provide a flexible framework for incorporating age of onset
and environmental risk factors into genetic analysis of complex diseases.
The proposed methods are allele-sharing based and do not require specifi-
cation of the mode of inheritance or the penetrance functions. Analysis of
the GAW12 data sets and our simulation studies indicate that the methods
are applicable to real data sets (Zhong and Li, 2003, in preparation).
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Abstract: Structural equation modeling, or SEM, is a general and convenient
framework for statistical analysis that includes as special cases several tradi-
tional multivariate procedures, such as factor analysis, multiple regression analy-
sis, discriminant analysis, and canonical correlation. Structural equation models
for multilevel data have been formulated by several authors. The approach to mul-
tilevel SEM outlined by Muthn is particularly interesting, because he shows that
structural equation modeling of multilevel data is possible using available stan-
dard SEM software. A different approach is to estimate the covariance matrices
at the distinct levels, using standard multilevel regression software, as proposed
by Goldstein. This approach has the advantage that it also uses standard SEM
software, but the models and hence the program setups are far less complicated
than the models and setups implied by the Muthn approach. This paper exam-
ines both approaches in some detail, and compares them on an exemplary data
set.

Keywords: Multilevel structural equation models.

1 The Muthén Approach: Decomposing Multilevel
Variables

Multilevel structural models assume that we have a population of individ-
uals that are divided into groups. The individual data are collected in a
p-variate vector Yig (subscript i for individuals, g for groups). The variates
Yig can be decomposed into a between groups component YB = Y g, and a
within groups component YW = Yig − Y g. This decomposition leads to a
between groups covariance matrix ΣB (the population covariance matrix of
the disaggregated group means YB) and a within groups covariance matrix
ΣW (the population covariance matrix of the individual deviations from
the group means YW ). Following the same logic, we can also decompose
the sample data, which leads to the sample covariance matrices SB and
SW . An unbiased estimate of the population within groups covariance ma-
trix ΣW is given by the pooled within groups covariance matrix SPW . For
computational reasons it is convenient to calculate not the between groups
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covariance matrix SB itself but the scaled between groups covariance matrix
for the disaggregated group means S∗

B, which in the balanced case equals
nSB. Muthén (1989, 1990) shows that SPW is the maximum likelihood es-
timator of ΣW , with sample size N−G, and S∗

B is the maximum likelihood
estimator of the composite ΣW + cΣB.
In Muthén’s approach, we use the multi-group option of conventional SEM
software for a simultaneous analysis at both levels. We specify two groups,
with covariance matrices SPW and S∗

B . The model for ΣW must be specified
for both SPW and S∗

B, with equality restrictions between both ‘groups’ to
guarantee that we are indeed estimating the same model in both covariance
matrices, and the model for ΣB is specified for S∗

B only, with the scale factor
c = n built into the model.

2 The Multivariate Multilevel Approach: Direct
Estimation of the Covariance Matrix at each Level

Goldstein (1987, 1995) suggests using a multivariate multilevel (MVML)
regression model to produce a covariance matrix at the different levels, and
to input these in a second step into a standard SEM program for further
analysis. Multivariate multilevel regression models are multilevel regression
models that contain more than one response variable.
In multivariate multilevel models, the variables constitute the lowest-level
units. In most applications, the variables would be the first level, the indi-
viduals the second level, and if there are groups, these form the third level.
If we have p response variables, Yhij is the response on measure h of indi-
vidual i in group j. We define p dummy variables, one for each response
variable. In the multivariate multilevel model, the fixed part contains p
regression coefficients for the dummy variables, which are the p overall
means for the p outcome variables. The random part contains two covari-
ance matrices, Σij and Σj , which contain the variances and the covariances
of the regression slopes for the dummies on the individual and the group
level. Since that individual level and group level covariances are estimated
directly, they can be modeled directly and separately by any SEM pro-
gram. As a result, we get separate model tests and fit indices at all levels.
The multivariate multilevel approach to multilevel SEM also generalizes
straightforwardly to more than two levels. The resulting simplicity is a dis-
tinct advantage of the multivariate multilevel approach. There are other
advantages as well. First, since the multilevel multivariate model does not
assume that we have a complete set of variables for each individual, in-
complete data are accommodated without special effort. Second, if we have
dichotomous variables, we can use the multilevel generalized linear model
to produce the covariance matrices, again without special effort.
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TABLE 1. Population and estimated values of the model parameters

Loadings Population Muthén method MVML method
Variables F1 F2 BF1 WF1 WF2 BF1 WF1 WF2 BF1
X1 .3 .5 .300 .497 .300 .499
X2 .4 .4 .400 .395 .400 .397
X3 .5 .3 .500 .293 .500 .295
X4 .3 .5 .300 .497 .300 .499
X5 .4 .4 .400 .395 .400 .397
X6 .5 .3 .500 .293 .500 .295

3 Comparing the Two Approaches

In this paper, we compare the limited information Muthén approach and
the multivariate multilevel approach to multilevel SEM. Our benchmark
model is a two-level factor model with six observed variables, one factor at
the group level, and two factors at the individual level. Using procedures
outlined by Waller we have constructed a two-level data set that exactly
reproduces the benchmark model. The multilevel structure has 100 groups
all of size 50. The group size and the number of groups have been chosen
to be both large enough to ensure accurate estimation of both parameters
and standard errors at all levels (cf. Hox & Maas, 2001).
Since the data are balanced, Muthén’s method in this case is a full informa-
tion Maximum Likelihood method. The multivariate multilevel approach
produces Maximum Likelihood estimates, and since the input are two co-
variance matrices estimated by Maximum Likelihood methods the results
should be comparable to the estimates produced by the Muthén method.

4 Results

Table 1 shows the population values of the factor loadings and variances
in the two-level factor model. In addition, it shows the estimates produced
by Muthén’s method and by the multivariate multilevel (MVML) method.
It is clear from Table 1 that the individual level loadings are estimated with
total accuracy. Since the individual-level sample size is N−G = 4900, this is
not surprising. At the group level, where the sample size is 100, the loading
estimates are very close to the population values. The estimates produced
by the MVML method are somewhat closer to the known population values,
but both sets of estimates are so close to the true values that this difference
is utterly trivial.
Table 2 shows the population values of the factor loadings and the standard
errors produced by Muthén’s method and by the multivariate multilevel
(MVML) method.
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TABLE 2. Population and estimated standard errors of the model parameters

Loadings Population Muthén method MVML method
Variables F1 F2 BF1 WF1 WF2 BF1 WF1 WF2 BF1
X1 .3 .5 .010 .006 .010 .101
X2 .4 .4 .012 .008 .012 .095
X3 .5 .3 .014 .092 .014 .090
X4 .3 .5 .010 .006 .010 .101
X5 .4 .4 .012 .008 .012 .095
X6 .5 .3 .014 .092 .014 .090

It is clear from Table 2 that the standard errors of the individual level
loadings are estimated with total accuracy. Since the individual-level sam-
ple size is N −G = 4900, this is not surprising. At the group level, where
the sample size is 100, the standard errors are produced by the Muthén and
MVML method are a bit different. In this case, they would both lead to the
same conclusion, but the p-values and confidence intervals are certainly not
the same. To check the standard errors, we carried out a parametric boot-
strap on the covariance matrices produced by the MVML method. The
bootstrapped standard errors are very close to the asymptotic standard
errors produced by the direct estimation using the MVML method.
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Abstract: Correlated survival times may be modelled by introducing a random
effect, or frailty, component into the hazard function. For multivariate survival
data we extend a non-PH model, the generalized time-dependent logistic (GTDL)
survival model (MacKenzie, 1996, 1997), to include random effects. The extension
leads to two different, but related, non-PH models according to the method of in-
corporating the random effects. The h-likelihood procedures of Ha, Lee and Song
(2001) and Ha and Lee (2003), which obviate the need for marginalization (over
the random effect distribution), are derived for these extended models and their
properties discussed. The new models are used to analyze two practical examples
in the survival literature and the results are compared with those obtained from
fitting the PH and PH frailty models.

Keywords: Frailty models; Generalized time-dependent logistic; Hierarchical-
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1 Introduction

Proportion hazards (PH) frailty models which extend the standard PH
model (Cox 1972) to allow frailty are frequently to analyze multivariate
survival data which may arise, for example, when recurrent or multiple
event times on the same subject. However, the assumption of proportion-
ality can sometimes be inappropriate.
In this paper we introduce a flexible non-PH random-effect model based on
the generalized time-dependent logistic (GTDL) survival model (MacKen-
zie, 1996). The GTDL generalizes the relative risk (RR) in Cox’s PH model
to time-dependent form. The model, a wholly parametric competitor for
the PH model, has several interesting properties including a frailty inter-
pretation. In particular, by retaining Cox’s constant of proportionality as
the leading term in the RR, the model is not only capable of represent-
ing data which conform the PH assumption, but can also accommodate a
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wider class of survival data in which the assumption of proportionality is
untenable.
We, extend the GTDL to the multivariate survival data setting in two
ways, adopt the hierarchical likelihood (h-likelihood) approach of Ha, Lee
and Song (2001) and Ha and Lee (2003) for inference, use the new models to
analyze two well known practical data sets from the literature and compare
the results with the PH and PH frailty models.

2 The GTDL Model

A non-PH model, the GTDL regression model (MacKenzie, 1996), is de-
fined by the hazard function:

λ(t;x) = λ0p(t;x), (1)

where λ0 > 0 is a scalar, p(t;x) = exp(tα + xTβ)/{1 + exp(tα + xTβ)}
is a linear logistic function in time, α is a scalar measuring the effect of
time and β is a p× 1 vector of regression parameters associated with fixed
covariates x = (x1, . . . , xp)T . The relative risk (RR), the ratio of hazard
rates for two subjects with different values of covariates, x(1) and x(2), is
given by

γ(t;x(1), x(2)) = λ(t;x(1))/λ(t;x(2)) = exp{(x(1) − x(2))Tβ}ψ(t, x(1), x(2)),
(2)

where ψ(t, x(1), x(2)) = {1+exp(tα+x(2)Tβ)}/{1+exp(tα+x(1)Tβ)}. The
leading term on the right hand side of (2), Cox’s constant RR over time,
is thus moderated by ψ(·), a function of both time and covariates. That is,
the model (1) is a non-PH, but when α = 0 resulting RR is time invariant
and model is then PH. The cumulative hazard function is given by

Λ(t;x) =
∫ t

0

λ(s;x) ds =
λ0

α
log
{

1 + exp(tα+ xTβ)
1 + exp(xTβ)

}
. (3)

Under non-informative censoring the ordinary censored-data likelihood,
which depends on (1) and (3), is easily constructed.

3 Extended GTDL Models

The multivariate data structures are as follows. Let Tij (i = 1, . . . , q, j =
1, . . . , ni, n =

∑
i ni) be the survival time for jth observation of the ith

subject. Denote by Ui the unobserved frailty (or random effect) for the ith
subject.
We extend the model (1) to include a frailty term acting multiplicatively on
the individual hazard rate. Given Ui = ui, the conditional hazard function
of Tij takes the form

λ1ij(t|ui) = λij(t)ui, (4)
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The frailties Ui are assumed to be independent and identically distributed
random variables with a density function depending on the frailty parame-
ter θ, say g(.|θ). Alternatively, we may consider another natural extension
of model (1), by including a random component in the linear predictor,
tα + xTβ, of (1). Given Ui = ui, the conditional hazard function of Tij is
then of the form

λ2ij(t|ui) = λ0

exp(tijα+ xTijβ + ui)
1 + exp(tijα+ xTijβ + ui)

. (5)

where the Ui have been defined above.
Models (4) and (5) are similar, but (4) assumes that the random effects
act multiplicatively on the hazard function while (5) assumes they are
additive on a generalized loge-odds scale, which is the usual loge-odds
scale when λo = 1. While (4) is a conventional frailty model, (5) is not,
although it is nevertheless of interest, since then the random effects and
the fixed effects act linearly on the same scale.

The choice of g(.|θ) may be important. For h-likelihood inference, the choice
of parametric form is wide (and testable), since marginalization is not re-
quired. In this paper we shall adopt the log-Normal distribution for h-
likelihood inference - a choice to which inference on β is robust (Ha et
al., 2001; Ha and Lee, 2003). Perhaps a more natural choice for Model (4)
is the Gamma distribution, see Blagojevic, MacKenzie & Ha (2003) for a
marginal approach. Alternatively, we may adopt a non-parametric mixture
model.

4 H-Likelihood Estimation and Inference

Let the observable random variables be Yij = min(Tij , Cij) and δij =
I(Tij ≤ Cij), where Cij is the censoring time corresponding to Tij and I(·)
is the indicator function.
Following Ha, Lee and Song (2001), the h-likelihood for the model (4),
denoted by h, is defined by

h = h(α, β, θ) =
∑
ij


1ij +
∑
i


2i, (6)

where


1ij = 
1ij(α, β; yij , δij |ui) = δij logλ1(yij |ui) − Λ1(yij |ui)
is the logarithm of the conditional density function for Yij and δij given
Ui = ui, and 
2i = 
2i(θ; vi) is the logarithm of the density function for
Vi = v(Ui) = log(Ui) with parameter θ. Here v is scale on which the random
effects influence the linear predictor and vi = v(ui) = log ui: see also Lee
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and Nelder (1996). The maximum h-likelihood (MHL) estimating equations
of τ = (α, βT , vT )T with v = (v1, . . . , vq)T are given by

∂h/∂τ = 0. (7)

Note that the asymptotic covariance matrix (Ha et al., 2001) for τ̂ − τ is
given by the inverse of H = − ∂2h/∂τ2. For the estimation of the frailty
parameter θ, we use Lee and Nelder’s (1996) APHL (adjusted profile h-
likelihood) hP of θ after eliminating τ , defined by

hP = hA|
τ=τ̂

, (8)

where hA = h+ 1
2 log{det(2πH−1)}. Given estimates of τ , Lee and Nelder’s

(2001) REML (restricted maximum likelihood) estimating equation for θ,
maximizing hP , is given by

∂hA/∂α|τ=τ̂ = 0. (9)

5 Results

We illustrate the use of models (4) and (5) and also their conditional forms
(without frailty or random effects) and include Cox’s PH and PH frailty
models as comparators.
We analyze two sets of well-known multivariate survival data which have
appeared in the literature. Firstly, the kidney infection data of McGilchrist
and Aisbett (1991), comprising times to the first and second recurrences
of infection in 38 kidney patients and consider a single fixed covariate, sex
of the patients, coded 1 for female and 0 for male. Secondly, the placebo-
controlled randomized trial of gamma interferon (γ–IFN) in chronic granu-
lomatous disease (CGD) (Fleming and Harrington, 1991) in which scientific
interest is focused on the effect of treatment on the (possibly multiple) re-
currence times. In all, we analyze ten covariates including treatment. The
results of the analyzes are shown in Tables 1 and 2 respectively (omitted).
For the kidney data, the finding that femaleness is protective of recurrence
is confirmed in all of the models fitted. The standard error is elevated in
all frailty models suggesting that Cox Model and the non-PH models with-
out frailty fail to account properly for the (positive) correlation between
recurrence times. The α parameter in the non-PH models is not significant,
suggesting that there is no serious departure from the PH assumption in
these data.
The results for the CGD data are broadly similar in that the treatment ef-
fect is correctly identified by all models fitted. However, in these data, there
is clear evidence of non-proportionality α �= 0, but the size of this effect is
small. On the other hand, there is some difference in interpretation of the
longitudinal covariate, which is identified by all of the non-PH models.
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Abstract: We reparametrize the marginal covariance matrix arising in longitu-
dinal studies to model, jointly, the mean and covariance structures in terms of
three polynomial function of time. We also compare model selection procedures
based on regressogram estimation with those based on a direct search of the joint
model space. Using a BIC-based model selection criterion to identify the optimum
degree triple of the three polynomials, we show that the use of a saturated mean
model is not optimal, explain why regressogram-based model estimation may
mislead and give a new computational algorithm, based on a criterion involving
three pairwise saturated profile likelihoods, for finding the global optimum model
efficiently.
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1 Introduction

We model, jointly, the mean-covariance structures arising in longitudinal
studies. The technique is based on a modified Cholesky decomposition of
the usual marginal covariance matrix Σ(t, θ), where t represents time and θ
is a low-dimensional vector of parameters describing dependence on time.
The decomposition leads to a reparametrization, Σ(t, ς, φ), in which the
new parameters have an obvious statistical interpretation in terms of the
natural logarithms of the innovation variances, ς, and autoregressive coef-
ficients, φ. These unconstrained parameters are modelled, parsimoniously,
as different polynomial functions of time. Pourahmadi (1999, 2000). The
degrees of the polynomials adopted are suggested by means of the regresso-
grams, derived from the sample covariance matrix, which plot the sample
autoregressive coefficients and innovation variances against lag and time,
respectively (Pourahmadi, 1999, 2000). We include a polynomial represen-
tation for the mean structure in order to fit a joint mean covariance model.
This choice is reasonable for growth curve, longitudinal and multi-level
data (Rao, 1987 and Goldstein et al, 1996). The resulting model is an aug-
mented polynominal regression model involving three equations. Optimal
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model selection then involves identifying the best integer triple represent-
ing, respectively, the degrees of the three polynomial functions for the mean
structure, the autoregressive coefficients and the log innovation-variances.

2 Augmented Regression Model

Let yij be the jth of mi measurements on the ith of n subjects and
let tij be the time at which the measurement yij is made. Denote by
yi = (yi1, yi2, ..., yimi)′ and ti = (ti1, ti2, ..., timi)′ the mi × 1 vectors of re-
sponses and times of the ith subject. It is assumed that yi ∼ Nmi(μi,Σi),
where μi = (μi1, μi2, ..., μimi)′ and Σi are an mi× 1 vector and an mi×mi

positive definite matrix, respectively. The mean μij of yij can usually be
modelled by a linear regression, μij = x′ijβ, where xij denotes the baseline
covariates associated with the jth observation of the ith subject and β is
an (p+ 1) × 1 vector of regression coefficients. The subject-specific covari-
ance matrix, Σi, may be modelled as TiΣiT ′

i = Di. The below-diagonal
entries of Ti are the negatives of the autoregressive coefficients, φijk , in
ŷij = μij +

∑j−1
k=1 φijk(yik − μik), the linear least squares predictor of yij

based on its predecessors yi(j−1), ..., yi1. The diagonal entries of Di are
the innovation variances σ2

ij = var(yij − ŷij), where 1 ≤ j ≤ mi and
1 ≤ i ≤ n (Pourahmadi, 1999). The parameters φijk and ςij ≡ log σ2

ij are
unconstrained and are modelled in an augmented regression as

μij = x′ijβ φijk = z′ijkγ ςij = h′ijλ (1)

where β, γ and λ are the parameters of interest. Then, minus twice the
loglikelihood function, except for a constant, is given by

−2
 =
n∑
i=1

log |T−1
i DiT

′−1
i | +

n∑
i=1

r′iT
′
iD

−1
i Tiri (2)

where rij = yij − x′ijβ is the jth element of ri = yi −Xiβ, the vector of
residuals, and the matrix Xi has row vectors x′ij (j = 1, 2, ...,mi).
Pan & MacKenzie (2003) give an inter-dependent iteratively re-weighted
least squares algorithm for computing the maximum likelihood estimates.
Their algorithm is more general than Pourahmadi’s procedure which is
restricted to balanced longitudinal data.

3 Optimal Model Selection

For direct comparability with Pourahmadi’s methods we choose, as our
model selection criterion, the BIC, defined as

BIC(p, q, d) = −(2/n)
̂max + (p+ q + d+ 3)(logn/n) (3)
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where 
̂max = 
(β̂p, γ̂d, λ̂q) is the maximized loglikelihood for the models
with the specified degree triple (p, q, d), and p+ q+ d+ 3 is the number of
parameters in the associated models, including polynomials of degree zero.
The best triple, (p∗, q∗, d∗), say, satisfies

(p∗, q∗, d∗) = arg min
(p,q,d)

{BIC(p, q, d) } (4)

where p, q and d lie in the range 0 to (m0 − 1), and where m0 =
max1≤i≤n{mi}, when the data are unbalanced and m0 = m otherwise.
We denote the corresponding value of 
̂max by 
(β̂p∗ , γ̂d∗ , λ̂q∗).
Use of (4) implies a direct search of the 3-dimensional joint model space
which may be thought computationally expensive. However, a general pro-
cedure is required, because the simple regressogram-based model selection
procedures proposed by Pourahmadi (1999) ignore the covariance structure
between the parameters evident in the observed and expected information
matrices (Pan & MacKenzie, 2003) and are therefore not optimal for model
selection.
Accordingly, to minimize computational labour we propose an efficient
search strategy to identify the global optimum model. From an appeal to
profile likelihood theory (Barndorff-Nielsen, 1991), we conjecture that the
optimum model may be found using three BIC-based searches involving
the profile likelihoods obtained by saturating the parameter sets in pairs:

p∗c = argmin
p

{BIC(p,m− 1,m− 1)}
q∗c = argmin

q
{BIC(m− 1, q,m− 1)} (5)

d∗c = argmin
d

{BIC(m− 1,m− 1, d)}

Our conjecture, tested successfully below, is that (p∗, q∗, d∗) = (p∗c , q
∗
c , d

∗
c).

Our profile BIC algorithm reduces the number of maximizations required
to find the global maximum from m3 to 3m + 1 in balanced longitudinal
studies.

4 Example Analysis

Kenward (1987) analyzed an experiment in which cattle were assigned ran-
domly to two treatment groups A and B, and their weights were measured
11 times over a 133 day period. Thirty animals received treatment A and
another thirty received treatment B. Pourahmadi (2000) analyzed the data
in group A using a saturated mean model with 11 parameters. Inspection
of the sample regressograms suggested the use of two cubic polynomials for
modelling the covariance structure, one for the autoregressive coefficients,
in lag, and another for the innovation variances, in time. We re-analyze
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group A and provide a detailed analysis of group B, using (a) the joint re-
gression model, (b) our computational algorithm and (c) the global search
strategy, as described above.
First we investigated whether or not a saturated mean was required. Like
Pourahmadi (1999) we used two cubic polynomials for modelling the au-
toregressive and innovation parameters. Figure 1 shows that, when p is
varied, BIC(p, 3, 3) takes its minimum at p = 8 and not at the saturated
mean p = 10. The BIC values between p = 5 and p = 10 are very simi-
lar, suggesting that a saturated mean is un-necessary. Secondly, we studied
the effect on the other parameters of varying p in the (p, 3, 3) model. Fig-
ure 2 illustrates the effects on the innovation variances. One can see that
a sub-optimal choice of p influences the estimation of the other parame-
ters - contrary to much current statistical thinking. Thirdly we identified
the optimal model as BIC(8, 4, 3) = 71.73 and not BIC(10, 3, 3) = 71.89,
as claimed by Pourahmadi. The difference in BIC values is small, in this
case, but the structures implied by the two models are rather different -
regressogram-based inference (with a saturated mean model) having failed
to correctly identify q, the degree of the polynomial for the autoregres-
sive coefficients. In further work, we investigated model mis-specification
by systematically over-fitting the optimal model ie, by saturating one, two
and three dimensions in turn. These results show that mis-specification of
the innovation variances is most serious.
Analysis of Group B, in which simple cubic trends are absent from the re-
gressograms, showed that the regressogram approach was more suboptimal
than in Group A, that our computational algorithm always converged, and
that our search strategy identified the global optimum. Details will appear
in the main paper.

5 Discussion

We undertook this work to improve our understanding of joint mean-
covariance modelling in the analysis of longitudinal studies. We have
demonstrated that the use of a saturated mean model in the data ana-
lyzed by Pourahmadi is not optimal and that the use of the regressograms
can lead to mis-specified models. Moreover, it is clear that in some cir-
cumstances none of the components of the optimal triple may be identified
correctly by regressogram inference. The problems encountered are not con-
fined to the model class investigated, but, in principle, are likely to arise,
whenever the observed information matrix is not block diagonal. Accord-
ingly, we cannot endorse their routine use at this time, but advocate instead
the BIC-based profile search method proposed above.
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Abstract: This presentation begins with a brief introduction of the Neonatal
Health Services in Canada Project. The study, currently funded by Canadian
Institute for Health Research, aims to examine the impact of geography, local
health access and health care systems on variations in outcomes and resource use
in neonatal intensive care units (NICUs) across Canada. The assessment of NICU
outcomes and resource utilization is discussed from the viewpoint of statistical
modeling. As an illustration, we present an in-depth analysis of neonatal mortal-
ity variation among 17 Canadian NICUs, with covariates available at both the
patient and NICU levels. We describe the use of hierarchical Bayesian models for
systematically exploring outcome heterogeneity between NICUs and discuss sta-
tistical issues relating to multilevel modeling, Bayesian computation via MCMC,
analysis involving outlying observations, and estimation of multi-level effects.

Keywords: Hierarchical logistic regression model; Markov Chain Monte Carlo;
Random effects; Mortality in neonatal intensive care unit; Institutional compar-
ison of outcomes.

Overview

Recent literature illustrates the potential of hierarchical Bayesian method-
ology as a general framework of substantial flexibility for multilevel analy-
sis of outcome variations within the context of institutional comparison
and provider (i.e. physician, hospital, teacher, school) profiling. Studies to
date have largely focused on institutional comparison or provider profil-
ing through the development of risk-adjusted performance indicators, for
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example, risk-adjusted mortality rates or performance score, among insti-
tutions or providers. A common goal of these studies was the ranking of
adjusted performance indicator or the identification of ‘under-performed’
provider(s).
In this presentation, we discuss more general issues surrounding quanti-
tative comparisons of institutional outcomes and development of analytic
strategies for comprehensive analysis of multilevel health services data in
order to provide detailed information about important sources of outcome
variation. We demonstrate the extended potentials of the Bayesian hierar-
chical modeling as a general strategy for systematically evaluating response-
covariate associations at each level of the hierarchy, examining cross-level
interaction, quantifying residual variance or attribution of unexplained vari-
ability, and deriving various types of risk-adjusted and risk-specific inter-
provider comparisons. We present an analysis of neonatal mortality vari-
ation among 17 neonatal intensive care units (NICU) across Canada and
engage an extensive discussion on relevant issues that are important for in-
stitutional comparison, provider profiling, and quality improvement efforts.
In the past decade, the development of Markov chain Monte Carlo (MCMC)
methods has made it possible to implement full Bayesian inference in multi-
level modeling. The availability of various MCMC methods greatly extends
the potential of Bayesian hierarchical models as a general framework for
comprehensive analysis of systematic variation arising from various sources
and for adequate assessment of model uncertainty and estimation preci-
sion. In this study, we illustrate Bayesian analysis of multilevel data and
the implementation of MCMC computation. We emphasize particular con-
tributions of Bayesian hierarchical modelling of population heterogeneity
in institutional comparison studies, and discuss statistical issues relating to
Bayesian computation and inference, estimation of multi-level effects, and
analysis involving high-leverage observations.
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Abstract: We propose a general approach to regression on ”images” that can
pose severe challenges to standard statistical methods. The main contribution of
this work is to build a two-dimensional coefficient surface that allows for interac-
tive features across the indexing plane of the regressor array. We aim to use the
estimated coefficient surface for reliable (scalar) prediction. We assume that the
coefficients are smooth along both indices. We present a rather straight-forward
and rich extension of penalized signal regression (Marx and Eilers, 1999) using
penalized B-spline tensor products, where appropriate difference penalties are
placed on the rows and columns of the tensor product coefficients. Our methods
are are grounded in standard penalized regression, thus cross-validation, effec-
tive dimension and other diagnostics are accessible. Further the model is easily
transplanted into the generalized linear model framework.

Keywords: Multivariate calibration; P-splines; Signal regression; Tensor prod-
uct.

1 Introduction

Consider fluorescence spectroscopy experiments: for each response, there
are thousands of regressors arranged in a two-dimensional array (along
emission and excitation axes). The problem is inherently ill-posed, as often
the number of samples in the training data is far less than the number of
array elements. Bro (1998) presented sugar process data that consisted of
several scalar quality measurement responses (e.g. ash content and color)
and regressor information that consisted of emission spectra (at 571 wave-
lengths) across seven excitation wavelengths. This yields an array of 3997
regressors, but there are only m = 265 training samples. Such data struc-
ture is not specific to chemometric applications: one can imagine medical
images for several (hundred) patients. The image can be viewed as a regres-
sor surface (e.g. 64 × 64 grey-scale pixels). The response may be a binary
indicator of presence or absence of some tumor feature, and modelling such
data may further require structure of the generalized linear model. Eilers
and Marx (2003) had success on a similar, simpler, problem: one using
(functional) spectra regressors, which could be viewed as a ”very narrow
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FIGURE 1. Examples of surfaces that can be generated from tensor products when
constraining roughness in two dimensions. Effective dimension (upper, left:74);
(upper, right: 34); (lower, left: 23); (lower, right: 5).

image”. To provide an idea of how a surface may look Figure 1 provides
examples of coefficient surfaces using tensor products. The upper, left panel
displays a surface constructed from essentially unpenalized tensor products,
whereas the lower, right surface displays the limiting plane resulting from
large second order penalties on every row and column of tensor products.
The other two figures have a mixture of a low penalty on one axis and a
high penalty on the other.

2 Tensor Product B-splines in a Nutshell

Eilers and Marx (2003) provided an overview of tensor products. Figure 2
displays a portion of a full tensor product basis. As seen, tensor product
B-splines exist in, say, the v × t plane. There are knots selected on an
equally-spaced grid, carving out the plane into subrectangles. A tensor
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FIGURE 2. A portion of a full tensor product basis.

product Br(v)B̆s(t) is positive in the rectangular region defined by the
knots R = [vr, vr+qv+2] × [ts, ts+qt+2] or on a support of spanned by
(qv + 2)× (qt + 2) knots, where q is the degree of the B-spline. Specifically,
each tensor product can be indexed by one of (nv × nt) knot pairs (r =
1, . . . , nv and s = 1, . . . , nt) and

Br(v)B̆s(t) ≥ 0 for all v, t ∈ R; else zero (1)

Some technical details follow. We choose to divide the domain v (wave-
length 1): vmin to vmax into n′ equal intervals, using n′ + 1 interior knots.
Taking each boundary into consideration, a complete basis needs n′+2q+1
total knots. Denote the knots as: v1, . . . , vn′+2q+1. The total number of
B-splines on the axis is n = n′+q. For indexing purposes it is convenient to
associate each B-spline, Br(v) with exactly one of the (first) k = 1, . . . , n
knots. A similar division of the t axis (wavelength 2) is made for B̆r(t),
also using equally-spaced knots, but possibly using a different q, n′ or p.
Denote Γnv×nt = [γrs] as the matrix of unknown tensor product B-
spline coefficients. For given knot grid, a very flexible surface can be ap-
proximated at each of the digitized spectra surface coordinates (vj , tk)
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(j = 1, · · · , p1; k = 1, · · · , p2) by

α(vj , tk) =
nv∑
r=1

nt∑
s=1

Br(vj)B̆s(tk)γrs, (2)

where r = 1, . . . , nv and s = 1, . . . , nt. The system of equations is of order
nvnt. The (p1p2) × 2 matrix of regressor locations is j = (v ⊗ 1p2 , 1p1 ⊗
t). The matrix Bv and B̆t are evaluated at the first and second column
of j, respectively. It is computationally efficient (by avoiding looping) to
reexpress the surface in matrix notation as α(v, t) = Bγ, where γ = vec(Γ)
(of length nvnt), and

B = Bv�B̆t = (Bv ⊗ 1′
nt) � (1′

nv ⊗ B̆t). (3)

The symbols ⊗ and � denote Kronecker product and elementwise
multiplication of matrices, respectively. The matrix B is of dimension
(p1p2) × (nvnt), i.e. the p1p2 (digitized) surface is (initially) projected onto
a nvnt smooth dimensional surface. Penalized estimation of γ and its use
with regressor surfaces are next discussed.

3 Penalized Two-Dimensional Coefficient Surfaces

Given the ith regressor matrix Xi = [xijk] of dimension p1 × p2 (i =
1, . . . , m; j = 1, . . . , p1; k = 1, . . . , p2) and coefficient surface α(v, t),
express the mean

μi = α0 +
p1∑
j=1

p2∑
k=1

xijkα(vj , tk). (4)

Using tensor product B-splines, (2) can be substituted into (4) yielding

μi − α0 =
p1∑
j=1

p2∑
k=1

xijk

nv∑
r=1

nt∑
s=1

Br(vj)B̆s(tk)γrs = x′
iBγ, (5)

where x′
i = vec(Xi). We aim to find a practical solution to minimize

Q(α0, γ) = |y − α0 − Mγ|2, where X is of dimension m × (p1p2) and
M = XB. The use of tensor product B-splines does reduce the dimension
of estimation, but there are still nvnt + 1 unknown parameters. For even
moderately complex surfaces, ill-posed estimation problems can arise, as
it may be necessary to increase the number on knots on the grid to allow
enough flexibility.
In the spirit of P -splines (Eilers and Marx, 1996), appropriate penalties can
be put on γ and thus regularize estimation. A separate difference penalty
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is attached to each of the rows and each of the columns of Γ. The objective
function is now modified to minimize

Q
(α0, γ) = |y − α0 − Mγ|2 + λv|Pvγ|2 + λt|Ptγ|2 + λ0|γ|2. (6)

The last term in (6) is an overall ridge penalty. Indexing can quickly get
out of hand and the penalties are most compactly represented in matrix
notation as: Pv = (D′

dDd) ⊗ Int and Pt = Inv ⊗ (D′
dDd), where I denotes

the identity matrix. Although it is not reflected in the notation, the order of
the row penalty (dv) can be different from that of the column penalty (dt).
Much like the PSR approach, the difference penalties ensure that adjacent
coefficients with in the same row (or a column) do not differ too much from
each other. The penalties can continuously regulate roughness through the
nonnegative λv, λt and λ0.
The explicit P -spline solution for (6) is

γ̂ = (M
′M
 + λvP


v + λtP



t + λ0I


)−1M
′y,

with M
 = (1m|M), P 
 = (0|P ), and I
 = diag(0, Invnt). The predicted
values are ŷ = M
(α̂0, γ̂

′)′. The “hat” matrix is H = [hii′ ] = M
(M
′M
+
λvP



v + λtP



t + λ0I


)−1M
′ . Given ŷ and the diagonal of H , leave-one-out
cross-validation standard error of prediction can be quickly calculated:

CV(λv, λt, λ0) =

√√√√ 1
m

m∑
i=1

(
yi − ŷi
1 − hii

)2

.

The optimal (λv, λt, λ0) can be found, e.g. using a search to minimize CV.
The dimension of the estimated coefficient surface can be approximated by
trace(H), and the error variance component estimated by

σ̂2 =
|y − ŷ|2

m− trace(H)
.

For computational purposes, it is worth mentioning that the explicit solu-
tion for (6) can be found efficiently through data augmentation tricks, i.e.
(α̂0, γ̂

′)′ = (M
′
+M


+)−1M
′
+y+, where

M

+ =

⎡⎢⎢⎣
1 M
0

√
λv(Dd ⊗ Int)

0
√
λt(Inv ⊗Dd)

0
√
λ0Invnt

⎤⎥⎥⎦ and y+ =

⎡⎢⎢⎣
y
0
0
0

⎤⎥⎥⎦ .
Two-dimensional spectroscopic data often have a parallelogram shape leav-
ing unsupported regions in v× t: however the penalty automatically reme-
dies this problem. Since the coefficient surface model is grounded in (pe-
nalized) least squares regression techniques, the methodology can be easily
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extended into the generalized linear model, e.g. using the penalized scoring
algorithm with binomial or Poisson responses. Optimization of the tuning
parameters can then be identified by minimizing and information criteria, a
simple function of deviance and effective dimension. Lastly, simpler models
can be investigated that use varying coefficient structure.
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Abstract: Model building of data obtained from three-or-more-factor experi-
ments carried out in incomplete split-block-plot design is presented. In the mod-
elling the structure of an experimental material and a four-step randomization
scheme are taken into account. In the construction method some efficiency-
balanced designs are considered. With respect to the analysis of the obtained
randomization model with six strata the approach typical to the multistratum
experiments with orthogonal block structure is adopted.

Keywords: General balance; Mixed design; Split-block design; Split-plot design.

1 Introduction

Some experimental designs used in agricultural research for three-or-more
factor experiments are extensions of either a split-plot or a split-block de-
sign (cf. Gomez and Gomez, 1984). The considered here design is the ex-
tension of the split-block design in which the intersection plot is divided
into subplots to accommodate a third factor. Another term of the design is
the strip-split-plot design (cf. Gomez and Gomez, 1984). We can note that
it is a mixed design of the split-block design for two first factors and the
split-plot design with treatment combinations of the first two factors and
the third factor.,
In the paper we consider a situation when the split-block-plot (SBP) design
is incomplete with respect to (w.r.t.) one or more factors. In the construc-
tion method some efficiency balanced (EB) designs, in particular balanced
incomplete block (BIB) designs are taken into account (cf. Cochran and
Cox, 1957, Caliński and Kageyama, 2000).

2 Assumptions and Notation

Let us consider a three-factor experiment of a SBP type in which the first
factor, say A, has s levels A1, A2, ..., As, the second factor, say B, has
t levels B1, B2, ..., Bt and the third factor, say C, has w levels C1, C2,
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...,Cw. Thus the number v = stw denotes the number of all treatment
combinations in the experiment.
We assume that experimental material is divided into b blocks. Every block
forms a row−column design with k1 rows and k2 columns. Then each in-
tersection plot (called also whole plot) is divided into k3 subplots. So, the
number of observations is equal to n (= bk1k2k3). Here the rows correspond
to the levels of the factor A, termed also as row treatments, the columns
correspond to the levels of the factor B, called also column treatments,
and the subplots are to accommodate the levels of the factor C termed as
subplot treatments.
It can be noted there are four plot sizes (the row, the column, the whole
plot and the subplot), so there are four levels of precision with which the
effects of the various factors are estimated. The highest level corresponds
to the subplot factor and its interactions with other factors. The precision
is strictly connected with efficiency of the estimation of the contrasts (com-
parisons) of the treatment combinations. It is well known that the efficiency
is the highest (full efficiency) in the complete (in particular orthogonal, if
it exists) design.
We consider a situation that SBP design with k1 ≤ s, k2 ≤ t, k3 ≤ w
is incomplete w.r.t. one factor (A or B or C) only, two factors only or is
incomplete w.r.t. all the factors. It means those first factors, A and B, can
be arranged as in an incomplete split-block design (cf. Hering and Mejza
S., 1997, Mejza I., 1998) and the third factor, C, can be arranged as in an
incomplete split-plot design (cf. Mejza and Mejza, 1984).

3 Linear Model

Since all units have to be randomized before they enter the experiment,
we perform the four-step randomization. Let us note that first three steps
of the randomization connected with the blocks, the rows and the columns
are strictly the same as in the split-block design whereas the fourth step
connected with the subplots takes place as in the split-plot design. So, this
mixed process of randomization leads to a randomization model with five
main strata (without zero stratum connected with mean of an experiment
only). This model is of the form:
where Δ′ is a known design matrix for v treatment combinations, and τ
(v×1) is the vector of fixed treatment combination effects. According to the
orthogonal block structure of the SBP designs, the dispersion matrix V(γ)
can be expressed by {V(γ) =

∑5
f=0 γfPf )} where γf ≥ 0 and {Pf} are a

family of known pairwise orthogonal projectors adding up to the identity
matrix (cf. Houtman and Speed, 1983). The range space �{Pf} of Pf ,
f = 0, 1, . . . , 5, is termed the f -th stratum of the model and γf are unknown
strata variances. This model will be analyzed using the methods developed
for multistratum experiments. So, we have zero stratum (0) generated by
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the vector of ones, inter-block stratum (1), inter-row (within the block)
stratum (2), inter-column (within the block) stratum (3), inter-whole plot
(within the block) stratum (4) and inter-subplot (within the whole plot)
stratum (5).
Let us assume that the treatment combinations are ordered lexicographi-
cally. It is well known that statistical properties of the design are strictly
connected with the algebraic properties of the stratum information matrices
for the treatment combinations Af , f = 1, ..., 5. It is useful to express them
by the known from the theory of block designs matrices Cf , f = 0, 1, 2, 3, 4.
They have the forms:

C0 = rδ − n−1rr′,

C1 = rδ − (k1k2k3)−1N1N′
1, C2 = rδ − (k2k3)−1N2N′

2,

C3 = rδ − (k1k3)−1N3N′
3, C4 = rδ − k−1

3 N4N′
4,

where N1, N2, N3, N4 are treatments vs. blocks -, treatments vs. rows -,
treatments vs. columns - and treatments vs. whole plots incidence matrices,
respectively, r = N11b = N21bk1 = N31bk2 = N41bk1k2 is the vector of
replications of the treatment combinations, rδ = diag(r1, r2, ..., rv) and 1x
is the x-dimensional vector of ones.
These matrices are C-matrices of the associated orthogonal design, the
block design, the row design with rows as blocks, the column design with
columns as blocks and the whole plot design with whole plots as blocks,
respectively. Then the information matrices Af can be expressed as follows:

A1 = C0 − C1, A2 = C1 − C2, A3 = C1 − C3

A4 = C2 + C3 − C1 − C4, A5 = C4.

Let εfh denote an eigenvalue of the matrix Af w.r.t. rδ, corresponding also
to an eigenvector sh, f = 1, ..., 5, h = 1, 2, ..., v. Since Af1v = 0, the last
eigenvector sh may be chosen as n

1
2 1v.

We can note that ph = rδsh, defines a (basic) contrast p′
hτ , h = 1, 2, ..., v−

1. These contrasts are strictly connected with the comparisons among the
main effects of the considered factors and interaction effects between them.
Stratum efficiency factors of the considered SBP designs w.r.t. these con-
trasts are expressed by the eigenvalues εfh, f = 1, ..., 4, h = 1, 2, ..., v − 1.

4 Some Case of the Split-Block-Plot Design

It is convenient to introduce abbreviations to describe the properties such as
efficiency and balance of the design. Let Mf{q, α} denote the property that
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q contrasts among the treatments of factor M (or interaction contrasts) are
estimated with efficiency α in the f - th stratum. In other words, we say
that the design is Mf{q, α} - balanced. Particularly, for α = 1 the design
is Mf{q, 1} - orthogonal.
Let us consider the SBP design incomplete w.r.t. the row and column treat-
ments and complete w.r.t. the subplot treatments.
Let NA(s× b) and NB(t× b) be incidence matrices for the row and the
column treatments w.r.t. the blocks, respectively. Then we have: N1 =
NA ⊗ NB ⊗ 1w and r = rA ⊗ rB ⊗ 1w, where rA = NA1A, rB = NB1B,

C0 = rδA ⊗ rδB ⊗ Iw − n−1rAr′A ⊗ rBr′B ⊗ Jw,
C1 = rδA ⊗ rδB ⊗ Iw − (k1k2w)−1(NAN′

A ⊗ NBN′
B ⊗ Jw),

C2 = rδA ⊗ rδB ⊗ Iw − (k2w)−1(rδA ⊗ NBN′
B ⊗ Jw),

C3 = rδA ⊗ rδB ⊗ Iw − (k1w)−1(NAN′
A ⊗ rδB ⊗ Jw),

C4 = rδA ⊗ rδB ⊗ Iw − w−1(rδA ⊗ rδB ⊗ Jw),
where rδA = diag(rA1 , r

A
2 , ..., r

A
s )′ and rδB = diag(rB1 , r

B
2 , ..., r

B
t )′.

Let K(A) ={h : h = 1, 2, ..., s− 1} and K(B) ={m : m = 1, 2, ..., t− 1} and
let

CA = rδA − k−1
1 NAN′

A with eigenvalues μ1, μ2, ..., μs w.r.t. rδA,

CB = rδB − k−1
2 NBN′

B with eigenvalues ξ1, ξ2, ..., ξt w.r.t. rδB.

Following algebraic properties of the Cf , f = 0, 1, ..., 4 given above and the
structures of the matrices CA and CB we have:

Corollary 1.
The considered incomplete SBP design is:
A1{1, 1 − μh} - balanced, h ∈ K(A), B1{1, 1 − ξm} - balanced, m ∈ K(B),
(A×B)1{1, (1 − μh)(1 − ξm)} - balanced, h ∈ K(A), m ∈ K(B),
A2{1, μh} - balanced, h ∈ K(A),
(A×B)2{1, μh(1 − ξm)} - balanced, h ∈ K(A), m ∈ K(B),
B3{1, ξm} - balanced, m ∈ K(B),
(A×B)3{1, (1 − μh)ξm} - balanced, h ∈ K(A), m ∈ K(B),
(A×B)4{1, μhξm} - balanced, h ∈ K(A), m ∈ K(B),
C5{w − 1, 1} - orthogonal,
(A× C)5{(s− 1)(w − 1), 1} - orthogonal,
(B × C)5{(t− 1)(w − 1), 1} - orthogonal
and (A×B × C)5{(s− 1)(t− 1)(w − 1), 1} - orthogonal.
We can notice that all contrasts connected with main effects of the factor
C and with its interaction effects with other factors are estimated with
full efficiency in the inter-subplot stratum. Other contrasts are estimable
in two strata (between main effects of A and B) and four strata (between
interaction effects A×B).
If EB (in particular BIB) designs are considered as generating designs for
the row and column treatments the number of efficiency classes reduces.
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Let CA = μ(rδA − (bk1)−1rAr′A) and CB = ξ(rδB − (bk2)−1rBr′B) be C-
matrices of the EB (in particular BIB) designs and let
μ = [ bk1 − k−1

1 tr(NAN′
A)] /[ bk1 − (bk1)

−1r′ArA)] and
ξ = [ bk2 − k−1

2 tr(NBN′
B)] /[ bk2 − (bk2)

−1r′BrB] be their eigenvalues,
respectively (e.g. Caliński and Kageyama, 2000).
Then we can express:

Corollary 2.
The considered SBP design with EB (in particular BIB) design for the row
and column treatments is:
A1{s− 1, 1 − μ} - balanced, B1{t− 1, 1 − ξ} - balanced,
(A×B)1{(s− 1)(t− 1), (1 − μ)(1 − ξ)} - balanced,
A2{s− 1, μ} - balanced, (A×B)2{(s− 1)(t− 1), μ(1 − ξ)} - balanced,
B3{t− 1, ξ} - balanced, (A×B)3{(s− 1)(t− 1), (1 − μ)ξ} - balanced,
(A×B)4{(s− 1)(t− 1), μξ} - balanced, C5{w − 1, 1} - orthogonal,
(A× C)5{(s− 1)(w − 1), 1} - orthogonal, (B × C)5{(t− 1)(w − 1), 1} -
orthogonal and (A×B × C)5{(s− 1)(t− 1)(w − 1), 1} - orthogonal.
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Abstract: The paper constitutes an application of causal inference methods
to a microeconomic dataset. The economic question is to evaluate the effect of
the use of credit cards on the Italian families’ liquidity. In order to take into
account the self-selection of the units to the treatment, the Instrumental Variables
method (Imbens and Angrist, 1994; Angrist et al, 1996) and the Two Stage
Model (Heckman, 1978; 1979) are applied. The final result is a negative and
significant causal effect of credit cards on the minimal amount of cash held by
Italian families.
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1 Introduction

The aim of the paper is to quantify the effect of the use of credit cards on the
minimal amount of cash that Italian families held at home and under which
a withdrawal becomes necessary. The main justification is in the fact that
credit cards can be considered as close substitutes for cash in small amount
payments. Consequently a significant effect of credit cards on the amount
of cash families need for the everyday life would contribute in explaining
the different liquidity choices induce by the use of alternative payment
instruments and eventually in suggesting further directions of research.
But the analysis is complicated by the fact that credit cards can act, other
than as substitute of money, as a mean of encouragement to buy and of
consumer credit; and each of these potential causes can have effects of
different directions on liquidity. Moreover, a first descriptive analysis shows
a self-selection of the units to the treatment. Then an evaluation of the
overall effect required to take in to account all the potential causes and
this is possible only by an appropriate use of causal inference methods.
The data used in this application are from the sample survey “The Italian
families conditions in 1995 (I bilanci delle famiglie italiane nell’anno 1995)”
run by the Italian Central Bank (Banca d’Italia). The statistical unit is the
Italian family, and the size of the sample is 6586 units.

2 Methodology

The analysis is performed by using statistical methods for causal inference
and it is based on the concept of potential outcomes. Following this ap-
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TABLE 1. Conditional relative frequencies of the pre-treatment variable “House-
holder position”.

Householder position: Di = 0 Di = 1
blue-collar 0.190 0.083
white-collar 0.174 0.401

manager, high officials 0.009 0.066
professional man, entrepreneur 0.140 0.246

unemployed 0.026 0.011
housewife, retired 0.461 0.193

proach, causal effects are defined by comparing average potential outcomes
that would have been observed under different treatments: Average Treat-
ment Effect, A.T.E. (Holland, 1986). In this application the outcome is the
minimal amount of cash held by a family (Yi), and the treatment is a bi-
nary indicator of the presence of at least a credit card holder in the family
(Di). Under the assumption of random assignment to treatment, A.T.E.
can be estimated simply by comparing the average outcomes in the group
of treated and non-treated. But a first descriptive analysis shows that the
pre-treatment variables are unbalanced in the subsamples defined by the
treatment (Table 1 shows the results for the pre-treatment variable ”House-
holder position”). This is in contrast to the assumption of randomization
and justifies the use of appropriate causal inference methods for taking into
account the self-selection of the units to the treatment.
To this purpose, two different statistical methods will be used: the method
based on Instrumental Variables, I.V. (Imbens and Angrist, 1994; Angrist
et al., 1996), and the ”Two Stages Model” (Heckman, 1978, 1979). In first
analysis the non-parametric and less restrictive I.V. method is applied.
Angrist et al (1996) showed that, by introducing an instrumental variable
having the role of ”random assignment to treatment”, Zi, and under weaker
albeit crucial assumptions, it is possible to identify and estimate causal
effects without relying on distributional assumptions. More precisely the
I.V. estimate, β̂IV , in the regression

Yi = αIV + βIVDi + εi

identifies the treatment effect, for the group of people complying with the
assignment to treatment (Local Average Treatment Effect: L.A.T.E.). This
result can be extended to the whole population under the further assump-
tion that the treatment effect for non-compliers is equal to the treatment
effect for compliers. Alternative to the I.V. methods is the parametric and
more restrictive ”Two Stages Model”. It is essentially a simultaneous lin-
ear equations system, with a latent endogenous variable and a multivariate
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TABLE 2. T-test for the causal effect of the assignment on the treatment
(df=6562).

Effect t-test p-value
+0.0757 8.0642 0.000

TABLE 3. Estimated causal effect of credit cards for the compliers (I.V. method).

Effect Stand.Dev. p-value
+20.52 48.19 0.670

normal stochastic term:{
D∗
i = α1H + X′

iβ1XH + γi
Yi = α2H + βDHDi + X′

iβ2XH + εi .

Where: {
Di = 1 if D∗

i ≥ 0,
Di = 0 if D∗

i < 0;

cov (Xi, γi) = cov (Xi, εi) = 0;

(
γi
εi

)
∼ N

[(
0
0

)
,

(
1 ρ
ρ σ2

)]
;

(
γi
εi

)
⊥
(
γj
εj

)
∀ i �= j.

Under these and the further assumption of homogeneity (stating that causal
treatment effect has to be equal for every unit), the A.T.E. for the whole
population is identified and consistently estimated by a two-steps proce-
dure (Heckman, 1978; 1979). In order to improve the fitting a set of pre-
treatment variables (X) is included in the two equations.

3 Results

In this application the role of random assignment to treatment can be
attributed to the binary indicator of living, for a family, in close “proximity
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TABLE 4. Estimated causal effect of credit cards on Italian families’ liquidity (in
Euro); Two Stages Model.

parameter p-value
Intercept 23.58 0.057

Effect of the use
of credit cards -68.30 0.035

Family size +8.32 0.000
Geograph. area:

Center Italy -5.41 0.248
South Italy +40.48 0.000

Town size (# inhabitants):
beetwen 40.000 and 500.000 -2.01 0.769
beetwen 20.000 and 40.000 -11.31 0.133

less than 20.000 -8.48 0.280
Householder schooling:

primary school +7.21 0.392
junior high school +20.71 0.020

high school +42.81 0.000
University degree +91.70 0.000

Householder position:
white-collar +13.19 0.081

manager, high officials +23.81 0.175
professional man, entrepreneur +43.40 0.000

unemployed -17.17 0.173
housewife, retired +30.53 0.000

to the bank”. This choice is supported by the fact that the causal effect
of the variable “proximity to the bank” on the treatment is significantly
different from zero (Table 2). Despite the goodness of the instrument, the
I.V. method produces an estimate of the effect of Di on Yi not significantly
different from zero (Table 3). This result justifies the use of the parametric
and more restrictive ”Two Stages Model”.
The final result is a negative and significant causal effect of credit cards on
the minimal amount of cash held by Italian families. The effect is quantified
in -68.30 Euro for the families with at least a credit card holder (Table 4).

Acknowledgments: I would like to thank Fabrizia Mealli, Gliberto Ghi-
lardi, an anonymous referee, as well as seminar participants in Firenze (I),
and Pisa (I) for useful comments and suggestions.
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Abstract: The paper deals with an application of variance free model approach
to the analysis of diallel cross experiments in which the offsprings were obtained
by Griffing’s Type II crossing system. Moreover, an estimation and testing hy-
potheses concerning such genetical characteristics as general combining ability,
specific combining ability and heterosis effect are discussed.
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1 Introduction

In the breeding programs breeders wish to compare the performance of
inbred lines, and in particular which crosses would be the most profitable.
In this program two facts are very important, namely the crossing system
of inbred lines (sometimes called matting design) and the diallel cross ex-
periment (called environmental design). The statistical analysis deals with
observations made on offspring obtained in some crossing system. In the
paper we consider the system dealing with crossing the pairs of inbred
lines. Two such systems are well known, i.e. line x tester system and diallel
crossing system.
The statistical analysis of line x tester experiments by the approach of vari-
ance free model is given by Mejza and Mexia (2002).
By diallel crossing system we mean the one in which a set of p inbred lines
is chosen and crosses among these lines are made. It means that we can
get maximal pxp combinations. Diallel cross system may depending upon
whether or not the parental inbred lines or the reciprocal F1 are included
or not. Griffing (1956) gave the classification of diallel cross systems. Ad-
ditionally, he gave the statistical analysis for proposed four types of diallel
crosses for data obtained in the experiments carried out in randomized
complete block design. This analysis was generalized for other block design
(cf. Mejza, 1994, Mejza and Mejza, 1995).
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This paper deals with Griffing’s II Type of crossing system.This type of
diallel crossing includes parents and one set of F

′
1s (but not reciprocal

F
′
1s).

In the selection process some genetical characteristics such as general com-
bining ability (gca), specific combining ability (sca) and heterosis effect (he)
play the crucial role (cf. Singh and Chandhary, 1979). The problem which
naturally arises is the choice of proper environmental design. In the paper
we assume that the diallel cross experiment was performed in a complete
randomized design.

2 The Analysis of Diallel Crosses - Type II

Let us assume that the k-th replication yijk concerning the genotype ob-
tained after crossing the i-th line with the j-th line, (shortly denoted as
(i,j) - th cross) is modelled as follows:

yijk = γij + eijk i = 1, 2, ..., p, j = i, i+ 1, ..., p, k = 1, 2, ..., n, (1)

where γij denotes the expected value of the trait observed on the cross (i,j)
and eijk denotes the error. It will be assumed that eijk ∼ N(0, σ2) for all
i, j, k. The genotype effect can be expressed as:

γij = μ+ gi + gj + sij , (2)

where μ denotes the general mean, gi, (gj) - the gca effect of the i-th (j-th)
line, sij - the sca effect of the (i,j) cross, such that sij = sji.
The gca, sca and he are defined by Griffing (1956) as follows:

gi = 1
(p+2) (γi. + γii − 2

pγ..),

sij = γij − 1
(p+2) (γi. + γ.j + γii + γjj) + 2

(p+1)(p+2)γ..,

hij = γij − 1
2 (γii + γjj) or hij = γij−max(γii, γjj),

where

γi. =
∑p

j=i γij , γ.. =
∑p

i=1

∑p
j=i γij ,

¿From the definitions of gca and sca effects it follows that∑p
i=1 gi = 0 and

∑p
j=1 sij + sii = 0, for each i.

Now let us define the general hypotheses that to be tested by the cross
experiments considered.
The hypotheses can be expressed as:
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1. H01: gi = 0; for all i,

2. H02: sij = 0; for all i ≤ j,

3. H03: gi = 0; for fixed i

4. H04: gi − gj = 0; i �= j,

5. H05: sij = 0; for fixed i, j, i ≤ j,

6. H06: sij − sik = 0; i ≤ j, k, j �= k,

7. H07: sij − skl = 0; i ≤ j, k ≤ l, i �= k, l, j �= k, l,

8. H08: hij = 0; for all i < j,

where i, j, k, l = 1, ..., p. The above hypotheses can be verified by using
standard analysis of variance technique.

3 Variance Free Model

Let us assume that on each offspring cross we observe two continuous
traits (random variables) say (X, Y) and let their joint distribution be
normal. Moreover, let us take n observations on each offsprings from the
mating design (xij1, yij1), ..., (xijn, yijn).
The inference concerning genotypes (genetical characteristics) can be
based on these traits independently. But this is correct only when traits
are uncorrelated (independently distributed). However, many times the
traits are correlated and then is worth taking this fact into account in
further inference from breeding experiments. In this paper we propose one
of the ways allowing us to infer on genotypes (throughout the gca, sca and
he) on the basis of correlation coefficients.
Let ρij i=1,2,..., p, j= i,i+1,...,p be the correlation coefficient for the
(i,j) cross and let rij be its estimator. Then using the transformation (cf.
Kendal and Stuart, 1958, Mexia, 1990)

zij = 0.5
√
n− 3 ln((1 + rij)/(1 − rij)) (3)

we obtain zij ∼ N(μij , 1), where

μij = 0.5
√
n− 3 ln((1 + ρij)/(1 − ρij)) + (ρij

√
n− 3)/(2(n− 1)),

i = 1, 2, ..., p, j = i, i+ 1, ..., p.
When the number of cross replication is quite large, the component
(ρij

√
n− 3)/(2(n − 1)) is proportionally small with respect to the first

part of μij . Hence, in the further considerations we will assume that
zij ∼ N(μ̃ij , 1), where μ̃ij = 0.5

√
n− 3 ln((1 + ρij)/(1 − ρij)) = c lnϕij ,
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where c = 0.5
√
n− 3, ϕij = (1 + ρij)/(1 − ρij).

Finally, expressing μ̃ij in the same way as in (2) we obtain the model

μ̃ij = μ̃+ g̃i + g̃j + s̃ij , (4)

where μ̃ is the general mean, g̃i, g̃j are the lines gca effects, respectively
and s̃ij are the sca effects, s̃ij = s̃ji.
Hence, the zij we can express as:

zij = μ̃ij + ẽij , (5)

where ẽij ∼ N(0, 1).

Model (5) is called variance free model of Griffing’s Type II cross experi-
ment. To find the estimators of gca, sca and he in the model (5) we can use
analysis of variance technique for two-factor experiments without repli-
cates. For the model (5) the least squares estimators of gca, sca and he
can be obtained by using zij instead of γij . Let us note that the sums of
squares in analysis of variance follow χ2 distribution with known variance.
This simplifies procedures for testing hypotheses.
The problem worth noticing is connected with the meaning of the hypothe-
ses considered in the model (2) in relation to variance free model (5).
Let us introduce the following abbreviations:

ϕi∗ = Πp
j=1ϕij , ϕ∗∗ = Πp

u=1Π
p
v=uϕuv, κ = (ϕ∗∗)2/p.

Then we have: μ̃i. = c ln ϕi∗, μ̃.. = c lnϕ∗∗,
and
gi = (c/(p+ 2)) ln((ϕiiϕi∗)/κ),

sij = (c/(p+ 2))ln((ϕp+2
ij ϕ

2/(p+1)
∗∗ )/(ϕi∗ϕj∗ϕiiϕjj)),

hij = c ln (ϕij/
√
ϕiiϕjj) or hij = c ln (ϕij/max(ϕii, ϕjj)).

The hypotheses mentioned earlier can be expressed in the following way:

1. H∗
01: ϕiiϕi∗ = κ; for all i.

2. H∗
02: ϕ

p+2
ij ϕ

2/(p+1)
∗∗ = ϕi∗ϕj∗ϕiiϕjj ; for all i, j; i ≤ j,

3. H∗
03: ϕi∗ϕii = κ; for fixed i,

4. H∗
04: ϕiiϕi∗ = ϕjjϕj∗, i �= j

5. H∗
05: ϕ

p+2
ij ϕ

2/(p+1)
∗∗ = ϕiiϕi∗ϕjjϕ∗j ; for fixed i, j; i ≤ j,

6. H∗
06: ϕ

p+2
ij /(ϕjjϕ∗j) = ϕp+2

ik /(ϕkkϕk∗), i �= j, k; j �= k,
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7. H∗
07: ϕ

p+2
ij /(ϕiiϕi∗ϕjjϕj∗) = ϕp+2

kl /(ϕkkϕk∗ϕllϕl∗),

i ≤ j, k ≤ l, i �= k, l, j �= k, l,

8. H∗
08: ϕij = max(ϕii, ϕjj) or ϕij = √

ϕiiϕjj ,

where i, j, k, l = 1, 2, ..., p.
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Abstract: Multilevel analysis is an appropriate tool for the analysis of hierarchi-
cally structured data. There may, however, be reasons to ignore one of the levels
of nesting in the data analysis. In this paper we use a three level model with
one predictor variable as a reference model and ignore the top or intermediate
level in the data analysis. Analytical results show that this has an effect on the
estimated variance components and that variances of estimated regression coef-
ficients may be overestimated, leading to a lower power of the test of the effect
of the predictor variable. These results depend on the ignored level and the level
at which the predictor variable varies, as well as on the sample sizes and the
variance components.

Keywords: Multilevel model; Variance components; Iterative generalized least
squares; Power.

1 Introduction

In many studies data have a nested structure which means that persons
are nested within clusters. Examples are pupils nested in classes nested
in schools and employees nested within worksites. The correct statistical
technique for the analysis of such data is multilevel analysis (e.g. Hox,
2002) since it accounts for correlated outcomes of persons within the same
cluster.
Even when the multilevel model is used, incorrect conclusions may be drawn
when not all possible levels for which variations in the outcome variable of
interest occur are included into the model. There are several reasons for
ignoring a level of nesting in a multilevel analysis. First, the data set does
not include identifiers on all possible levels at which the outcome variable of
interest varies. Second, applied researchers may found a model with many
levels too complicated and may tend to use a simpler model. Third, in
some cases certain levels of nesting are not clearly identified. For instance,
groups of friends within schools are not as clearly identified as classes within
schools. Fourth, levels of nesting may have to be ignored when the computer
package to be used for the data analysis can only handle a limited number
of levels.
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The consequences of ignoring the top level in a two-level model have been
extensively studied (Moerbeek, Van Breukelen and Berger, in press). Little
is known on the consequence of ignoring a level of nesting in a multilevel
model with more than two levels. Hutchison and Healy (2001) and Tran-
mer and Steel (2001) showed the effect of ignoring a level of nesting on the
estimated variance components. Opdenakker and Van Damme (2000) ana-
lyzed an existing data set with four levels of nesting to show the effect of
ignoring a level of nesting on the estimated parameters and their standard
errors. The purpose of the present paper is to give a systematic overview
of the consequence of ignoring a level of nesting in a multilevel analysis.

2 Multilevel Model

Assume the underlying data structure has three levels of nesting. For the
sake of concreteness, units at the three levels are called pupils, classes and
schools. For pupil i in class j in school k the multilevel model that relates
outcome yijk to predictor variable xijk is given by

yijk = γ0 + γ1xijk + vk + ujk + eijk (1)

were eijk ∼ N(0, σ2
e), ujk ∼ N(0, σ2

u), vk ∼ N(0, σ2
v) are the random terms

at the pupil, class and school level, respectively. In order to derive formulae
that are of practical use we assume a balanced design with n3 schools, n2

classes per school, and n1 pupils per class. The predictor variable may be
measured at the pupil, class or school level. A predictor variable that is
measured at the pupil level is assumed to be a pure pupil-level variable;
that is, it varies at the class level only and its mean is the same in each
class. Likewise, a variable measured at the class level is assumed to be a
pure class level variable.

3 Effect of Ignoring a Level of Nesting on Estimated
Variance Components

Iterative Generalized Least Squares (Goldstein, 1989) may be used for the
analysis of model (1). Ignoring the class level results in

̂̃σ2

v = σ̂2
v +

n1 − 1
n1n2 − 1

σ̂2
u (2)

̂̃σ2

e = σ̂2
e +

n1n2 − n1

n1n2 − 1
σ̂2
u

where the estimated variance components obtained with ignoring a level of
nesting are indicated with a tilde in order to distinguish them from those
for three levels of nesting. So, the variance component is redistributed over
the other two variance components, depending on the sample sizes at the
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TABLE 1. v̂ar(γ̂1) without and with ignoring a level of nesting.

level of v̂ar(γ̂1) for ignored level v̂ar(γ̂1) with
variation three levels ignoring the given level

pupil σ̂2
e

n1n2s2x
school σ̂2

e

n1n2n3s2x

pupil σ̂2
e

n1n2n3s2x
class

σ̂2
e+

n1n2−n1
n1n2−1 σ̂

2
u

n1n2n3s2x

class σ̂2
e+n1σ̂

2
u

n1n2n3s2x
school σ̂2

e+n1(σ̂
2
u+σ̂2

v)
n1n2n3s2x

school σ̂2
e+n1σ̂

2
u+n1n2σ̂

2
v

n1n2n3s2x
class σ̂2

e+n1σ̂
2
u+n1n2σ̂

2
v

n1n2n3s2x

class and pupil level. For any fixed n1, the fraction of σ̂2
u that is added to

σ̂2
e is equal to 0 if n2 = 1, and increases if n2 increases. For any fixed n2, the

fraction of σ̂2
u that is added to σ̂2

e is equal to 1 if n1 = 1, and decreases if n1

increases. Of course, the change in the estimated variance components at
the pupil and school level is low if σ̂2

u is low. The situation is less complex
for ignoring the school level, which results in

̂̃σ2

u = σ̂2
u + σ̂2

v (3)̂̃σ2

e = σ̂2
e .

So the estimated variance component at the school level is added to that
at the class level, while that at the pupil level remains unchanged.

4 Effect of Ignoring a Level of Nesting on Test
Statistics

Ignoring a level of nesting also has an effect on the v̂ar(γ̂1). For each of
the three levels at which the predictor variable may vary Table 1 shows
the v̂ar(γ̂1) for the three level model and for the model with ignoring the
class or school level. s2x is the variance of the predictor variable xijk . Note
that we only consider the cases in which the ignored level is not the level
at which the predictor variable varies, since it is realistic to assume that
all identifiers at this level are well registered and available in the data set.
The v̂ar(γ̂1) is too large if the predictor variable varies at the pupil level
and the class level is ignored. The overestimation of v̂ar(γ̂1) increases when
n2 and/or σ̂2

u increase, or when n1 decreases. The v̂ar(γ̂1) is also too large
when the predictor variable varies at the class level and the school level
is ignored. In this case the overestimation of v̂ar(γ̂1) increases when n1

and/or σ̂2
v increase, but does not depend on n2. Moreover, Table 1 shows

that ignoring the school level does not have an effect on the v̂ar(γ̂1) of a
pupil level predictor, and that ignoring the class level does not have an
effect on the v̂ar(γ̂1) of a school level predictor.
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5 Conclusions and Discussion

This paper has shown that ignoring a level of nesting has an effect on the
estimated variance components. The variance of a regression coefficient may
be overestimated, leading to a too small test statistic for the test on the
effect of the associated predictor variable on the outcome, and consequently
too low power.
For simplicity a model with just one predictor variable was used in this
paper, but it can be shown that the results also hold for models with more
predictor variables as long as each predictor variable varies at just one level
of the multilevel data structure. A predictor variable that varies at more
that one level may be split up into orthogonal components that each vary
at just one level (Neuhaus and Kalbfleisch, 1998). Of course the results only
hold if the same predictors are used in the model with three levels of nesting
and in the model with ignoring a level of nesting. The situation becomes
more complex if predictor variables at the ignored level are also removed
from the multilevel model since then the variance components, and hence
standard errors of regression coefficients estimators, are not only affected
by ignoring the level of nesting but also by the removal of these predictor
variables from the multilevel model (Snijders and Bosker, 1994).
It should be noted that we assumed balanced designs since that leads to
relatively simple formulae for the change in variance components when ig-
noring a level of nesting and to relatively simple formulae for the v̂ar(γ̂1). If
sample sizes vary, their mean values may be substituted into these formu-
lae, which then only hold approximately. The approximation is, of course,
less accurate if the variability in sample sizes is large.
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jnenvoer 35, B-3000 Leuven, Belgium; geert.verbeke@med.kuleuven.ac.be

Abstract: Whenever inference for variance components is required, the choice
between one-sided and two-sided tests is crucial. This choice is usually driven
by whether or not negative variance components are permitted. For two-sided
tests, classical inferential procedures can be followed, based on likelihood ratios,
score statistics, or Wald statistics. For one-sided tests, however, one-sided test
statistics need to be developed, and their null distribution derived. While this has
received considerable attention in the context of the likelihood ratio test, there
appears to be much confusion about the related problem for the score test.
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sided test; Variance component.

1 Introduction

The linear mixed-effects model (Laird and Ware 1982, Verbeke and Molen-
berghs 2000) is a commonly used tool for variance component models and
for longitudinal data. Let Yi denote the ni-dimensional vector of measure-
ments available for subject i = 1, . . . , N . A general linear mixed model then
assumes that Yi satisfies

Yi = Xiβ + Zibi + εi, (1)

in which β is a vector of population-averaged regression coefficients called
fixed effects, and where bi is a vector of subject-specific regression co-
efficients. The bi describe how the evolution of the ith subject deviates
from the average evolution in the population. The matrices Xi and Zi are
(ni×p) and (ni×q) matrices of known covariates. The random effects bi and
residual components εi are assumed to be independent with distributions
N(0, D), and N(0,Σi), respectively. Inference for linear mixed models is
usually based on maximum likelihood or REML under the marginal model.
Thus, we can adopt two different views on the linear mixed model. The
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fully hierarchical model is specified by

Yi|bi ∼ Nni(Xiβ + Zibi,Σi),
bi ∼ N(0, D), (2)

while the marginal model is given by

Yi ∼ Nni(Xiβ, Vi = ZiDZ
′
i + Σi). (3)

Even though they are often treated as equivalent, there are important differ-
ences between both views. Obviously, (2) requires the covariance matrices
Σi and D to be positive definite, while in (3) it is sufficient for the resulting
matrix Vi to be positive definite. Different hierarchical models can produce
the same marginal model and some marginal models are not implied by
any hierarchical model.
The simplest example to illustrate differences between the marginal and
hierarchical views is found by restricting the random effects in (1) to a
random intercept, producing the marginal model:

Y i ∼ N(Xiβ, τ
2Jni + σ2Ini) (4)

where Jni equals the ni × ni matrix containing only ones. In the marginal
view, negative values for τ2 are perfectly acceptable (Nelder 1954, Verbeke
and Molenberghs 2000, Sec. 5.6.2), since this merely corresponds to nega-
tive within-cluster correlation ρ = τ2/(τ2 + σ2). In the hierarchical view,
it is clearly imperative to restrict τ2 to nonnegative values.

2 Inference for Variance Components

While each of the two views are possible, there are important differences
regarding statistical inference for variance components. The first, uncon-
strained case, is classical regarding inference for the variance component
τ2 since the usual two-sided alternative H0 : τ2 = 0 versus HA2 : τ2 �= 0
is then used. Wald, likelihood ratio, and score tests are then asymptot-
ically equivalent, and the asymptotic null distribution is well known to
be χ2

1. In the constrained case, one typically needs one-sided tests of the
null-hypothesis

H0 : τ2 = 0 versus HA1 : τ2 > 0. (5)

As the null-hypothesis is now on the boundary of the parameter space,
classical inference no longer holds, appropriate tailored test statistics need
to be developed, and the corresponding (asymptotic) null distributions de-
rived. We will briefly review the likelihood-ratio case and then turn to score
tests in the next section.
Suppressing dependence on the other parameters, let 
(τ2) denote the log-
likelihood, as a function of the random-intercepts variance τ2. Further, let
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FIGURE 1. Graphical representation of two different situations, when developing
one-sided tests for the variance τ 2 of the random intercepts bi in model.

τ̂2 denote the maximum likelihood estimate of τ2 under the unconstrained
parameterization. We first consider the likelihood ratio test, with statistic:

TLR = 2 ln
[
maxH1A 
(τ2)
maxH0 
(τ2)

]
.

Two cases, graphically represented in Figure 1, can now be distinguished.
Under Case A, τ̂2 is positive, and the likelihood ratio test statistic is identi-
cal to the one that would be obtained under the unconstrained parameter
space for τ2. Hence, conditionally on τ̂2 ≥ 0, TLR has asymptotic null
distribution equal to the classical χ2

1. Under Case B, 
(τ2) is maximized
at τ2 = 0 under H1A as well as under H0, yielding TLR = 0. Both cases
are equally probable to occur, under the null. Hence, the asymptotic null
distribution of TLR is easily seen to follow a 0.5P (χ2

1 > c) + 0.5P (χ2
0 > c)

null distribution. This was one of Stram and Lee’s (1994) special cases.
Note that, whenever τ̂2 ≥ 0, the observed likelihood ratio test statistic is
equal to the one under the unconstrained model, but the p-value is half
the size of the one obtained from the classical χ2

1 approximation to the null
distribution.
In general, inference under the unconstrained model for the variance com-
ponents in D can be based on the classical chi-squared approximation to
the null distribution for the likelihood ratio test statistic. Under the con-
strained model, Stram and Lee (1994) have shown that the asymptotic null
distribution for the likelihood ratio test statistic for testing a null hypoth-
esis which allows for k correlated random effects versus an alternative of
k+ 1 correlated random effects (with positive semi-definite covariance ma-
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trix Dk+1), is a mixture of a χ2
k and a χ2

k+1, with equal probability 1/2. For
more general settings, e.g., comparing models with k and k + k′ (k′ > 1)
random effects, the null distribution is a mixture of χ2 random variables
(Shapiro 1988), the weights of which can only be calculated analytically in
a number of special cases. Shapiro’s (1988) results provide a few important
special cases, not studied by Stram and Lee (1994). For example, if the
null hypothesis allows for k uncorrelated random effects (with a diagonal
covariance matrix Dk) versus the alternative of k+k′ uncorrelated random
effects (with diagonal covariance matrix Dk+k′), the null distribution is a
mixture of the form

k′∑
m=0

2−k
′
(
k′

m

)
χ2
m.

Shapiro (1988) shows that, for a broad number of cases, determining the
mixture’s weights is a complex and perhaps numerical task.

3 The Score Test

Verbeke and Molenberghs (2003), using results by Silvapulle and Silvapulle
(1995), have shown that similar results are obtained when a score test is
used instead of a likelihood ratio test. The use of score tests for testing vari-
ance components under a constrained parameterization requires replacing
the classical score test statistic by an appropriate one-sided version. This
is where the general theory of Silvapulle and Silvapulle (1995) on one-
sided score tests proves very useful. They consider models parameterized
through a vector θ = (λ′,ψ′)′, where testing a general hypothesis of the
form H0 : ψ = 0 versus HA : ψ ∈ C is of interest. Silvapulle and Silvapulle
(1995) allow C to be a closed and convex cone in Euclidean space, with
vertex at the origin. The advantage of such a general definition is that one-
sided, two-sided, and combinations of one-sided and two-sided hypotheses
are included.
Adopt the following notation. Let SN (θ) and Hθ) be the score vector and
Hessian matrix of the log-likelihood function. Further, decompose SN as
SN = (S′

Nλ,S
′
Nψ)′, let Hλλ(θ), Hλψ(θ) and Hψψ(θ) be the corresponding

blocks in H(θ), and define θH = (λ′,0′)′. θH can be estimated by θ̂H =
(λ̂

′
,0′)′, in which λ̂ is the maximum likelihood estimate of λ, under H0.

Finally, let ZN be equal to ZN = N−1/2SNψ(θ̂H). A one-sided score
statistic can now be defined as

TS := Z ′
NH

−1
ψψ(θ̂H)ZN − inf

{
(ZN − b)′H−1

ψψ(θ̂H)(ZN − b)|b ∈ C
}
. (6)

Note that the score statistic, heuristically defined in the case of the random-
intercepts model is a special case of (6). Indeed, when τ̂2 is positive, the
score at zero is positive, and therefore in C, such that the infimum in (6)
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becomes zero. For τ̂2 negative, the score at zero is negative as well and the
infimum in (6) is attained for b = 0, resulting in TS = 0.
It follows from Silvapulle and Silvapulle (1995) that, under suitable regu-
larity conditions, for N → ∞, the likelihood ratio and score test statistics
satisfy TLR = TS + op(1). This indicates that the equivalence of the score
and likelihood ratio tests not only holds in the two-sided but also in the
one-sided cases. Moreover, what is known about the null distribution in
the case of the likelihood ratio test, immediately carries over to the score
test case. This result corrects the common belief that, even when variance
components are on the boundary of the parameter space, the score test
deserved no special treatment. Verbeke and Molenberghs (2003) provide
an empirical illustration. In practice, calculation of (6) requires some ex-
tra programming work and, even though it is not insurmountable, in most
situations one may therefore be inclined to resort to likelihood ratio testing.
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1 Introduction

Given a sequence of n time-ordered random variables Y1, . . . , Yn, ‘mean-
shift models’ are defined as models where the mean values change at some
unknown time-points, the so-called changepoints. For instance with one
changepoint ψ the model is E[Yt] = β for t ≤ ψ and E[Yt] = β + β1 for
t > ψ. These have to be contrasted with models where the mean values
are connected at the unknown breakpoints, hereafter referred as ‘breakpoint
models’ or ‘continuous changepoint models’. The theoretical, different, is-
sues related to both the models, as well as practical difficulties in estimating
them, are well-known. A common feature is that standard asymptotic the-
ory is unreliable, the basic concept being that the statistic tests are not
random variables but stochastic processes. As regards to hypothesis test-
ing, the papers previously published on the topic may be divided into two
wide categories: i) methods based on the celebrated ‘CuSum approach’
avoiding of estimating the model; ii) likelihood-ratio-type tests based on
comparisons between the model with and without changepoint. The latter
approach requires ML estimates to be available. With regard to estimation,
most of works proposed in the literature use grid-search-type algorithms
and thus have the disadvantage to depend strongly on the sample size, n,
and the number of changepoints, L. A ‘simple’ grid-search algorithm works
in O(nL) operations, but recently Bai and Parron (2003) discussed an im-
proved ‘dynamic’ version working in O(n2) operations for any L. However
with a modest series length and more than one changepoint, the dynamic
programming can still be rather time-consuming and so this might be an
obstacle in practice.
Here we illustrate a simple but very efficient method to estimate mean-
shift models with any n and L. The method relies on an exact algorithm
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recently proposed to estimate continuous changepoints in regression models
(Muggeo, 2002). We illustrate the idea in the following sections.

2 Estimating the Model

Let x = 1, 2, . . . , n the time variable; omitting the indices and the error
terms, a multiple (L > 1) continuous changepoint model for the response
z is given by

z = β0 + βx + β1(x− ψ1)I(x > ψ1) + . . .+ βL(x− ψL)I(x > ψL) (1)

This model implies gradual changes at the unknown breakpoints ψl (l =
1, 2, . . . , L), where the generic difference-in-slope parameter, βl, has to be
non-null if the lth change occurs. The breakpoint model (1) is continuous
at x = ψl where its first derivative z′ = y, namely

y = β + β1I(x > ψ1) + . . .+ βLI(x > ψL) (2)

follows a multiple mean-shift model: here even the same regression func-
tion is discontinuous at the changepoints. Therefore there exists a direct
correspondence between the equations (1) and (2): the latter is the first
derivative with respect to x of the former, and the slope parameters in
one are the intercepts in the other. Thus from a mean-shift model (2) for
the observed y, we define the correspondent breakpoint model for z and
estimate it by means of the exact algorithm discussed in Muggeo (2002):
the method relies just on fitting iteratively a certain linear model and
needs starting values for the changepoints that may be easily obtained by
the, possibly smoothed, plot. A simple idea is used to build the ‘work-
ing response’ z: given y1, y2, ..., yn ordered according to the linear model
a + bx (x = 1, . . . , n), say, it is well known that the differentiated values
∇yt = yt − yt−1 represent the first derivative of the ys with respect to
x: the fitted line throughout the points (xt,∇yt) is a null-slope-line with
intercept equal to b, i.e. E[∇yt] = b. Thus by the inverse argument, given
observations arranged according to a parallel line y = b, say, it is possible
calculate the relevant ‘integrated’ data lined with slope b:

1. fix z1 = k 2. calculate zt = yt−1 + zt−1 for t = 2, . . . , n+ 1
Hereafter we use Δy to mean integrated data obtained by the step 1. and 2.
above: hence in short Δy = z and ∇z = y. If a mean-shift model (2) holds
for y, the correspondent working response z follows a breakpoint model
(1) with respect to x; the intercept depends on the z1 = k, but this is not
of interest, as it is not included in the model (2). Figure 1 displays some
simulated mean-shift models and the corresponding breakpoint models.
The estimates β̂, β̂l and ψ̂l for the breakpoint model are assumed as point
estimates for the mean-shift model, therefore fitted values and residual
dispersion may be easily obtained. Although the output of the breakpoint
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FIGURE 1. Simulated mean-shift models y = 5 + 8× I(x > 100) + ε, ε ∼ N(0, σ)
and relevant transformations; from left to right σ = 0, 1.5, 3.5, 5, 8, 10. The vari-
ance-reduction in breakpoint models is noticeable with σ = 10.

model includes the 2(L+1) full covariance matrix, it does not seem possible
to evaluate the 2L+1 covariance matrix for the mean-shift model. In order
to get standard errors and confidence intervals for the parameter estimates
some resampling-based method could be employed, e.g. the bootstrap. It is
worth noting that bootstrap methods are rather prohibitive in changepoint
analysis since the estimation of the changepoints needs a lot of time for each
model using grid-search-type algorithms, but the linear method (Li) here
discussed does not suffer from such limitation. To study the performance of
such method and compare it with the dynamic grid-search approach (Dy),
a small simulation study was undertaken, generating n = 100 gaussian
variates according to two different changepoint models (L = 1 and L = 2).
Both the Li and Dy methods were applied and results are shown in Table 1.

TABLE 1. Comparison between the ‘dynamic’ (Dy) and ‘linear’ (Li) algorithms:
mean (m), median (m ) and standard deviation (s) of the changepoint estimators
(1000 replicates of n = 100 simulated gaussian data).

L = 1 L = 2
ψ = 20 ψ1 = 35 ψ2 = 70

Method m m s m m s m m s

Dy 25.3 20.0 13.3 35.5 35.0 7.4 69.1 70.0 7.1
Li 27.1 21.0 16.4 36.6 35.0 10.7 66.9 69.0 12.7

Results are, in general, according to the expectations. Performance of the
estimators, in terms of bias and standard deviation, is poorer when the
changepoint is on the edges (i.e. ψ → 0 or n) and gets better as ψ moves
near the middle (ψ → n/2); however, even with ψ = 35 the estimators
are substantially unbiased and for ψ = 50 they are so exactly (results not
shown). Moreover both bias and standard deviation decrease as n and/or
βl increase. As one could expect it, Dy outperforms Li because it scans all
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possible values, therefore bias and standard deviation of the Dy-estimator
are lower. But differences in the standard deviations are rather noticeable
and although further research is needed, at least two remarks might be
addressed: because the likelihood for ψ could not be strictly concave (as it
is the case for linear parameters) it could happen that sometimes Li finds
a local optima and stops; Dy does not estimate the model simultaneously
(it estimates ψ by grid-search and estimate the linear beta parameters
assuming fixed ψ̂), thus uncertainty of the beta-estimates might be ruled
out in the psi-estimates. These reasons could cause the Dy estimators to
be less variable. Execution time was, of course, much lower in Li method;
for L = 1 differences are trifling, but for L = 2 we recorded an average time
to estimate one model by Dy equal to 7.8 and 27.9 seconds for n = 100
and n = 200 respectively; Li used always less than 1.5 seconds, allowing
resampling techniques to be employed in reasonable times. Calculations
were performed using the R packages strucchange by A. Zeileis and the
forthcoming segmented, both working with no external code.
Additional covariates with fixed coefficients can be included in the model in
a straightforward way. In order to fit a mean-shift model with explanatory
variables w, namely y = β +

∑
βlI(x > ψl) + γw, it is sufficient to fit

Δy = β0(k) + βx +
∑
βl(x − ψl)I(x > ψl) + γΔw, namely the integrated

transformations have to be applied at every explanatory variable w: this
is the analogous in differentiated model where the effect of w on y is the
same of one of ∇w on ∇y.

3 Application: the Nile Data-set

Figure 2 illustrates the time series of the Nile whose annual flows seem
to drop in 1898 because a dam was built; this is a well-known data-set
in changepoint problems, see for instance Cobb (1978). According to the
method discussed above, a continuous changepoint model is applied to the
working response. Even if the plot shows a possible break-point located
at x = 30 approximatively, the starting value is set 60 in order to show
that the starting points are, generally, a minor issue. Figure 2 shows the
observed data along with the fitted values and the ‘transformed data’ on
which a breakpoint model is estimated. The estimated changepoint is the
28th observation, namely the 1898 as elsewhere reported. The estimated
slopes before and after the break-point for the transformed ‘z-data’ are
1082.37 and 851.01 respectively, corresponding to the mean levels in the
original data-set.

4 Conclusions

An efficient algorithm to estimate mean-shift models has been illustrated.
Emphasis is given on the estimation problem that seem to have received
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FIGURE 2. The Nile data-set: observed and fitted values (left) and transformed
‘z’ working values (right); broken lines emphasizes the breakpoint at x = 28.

less attention in literature. Of course given the point estimates, one could
apply likelihood-based tests that are known to have greater power when
the change is expected to take place on the tails.
Although it has to be acknowledged that the method has to be investigated
further to assess, for instance, effect of autocorrelation on the transformed
data and possible bias in the estimates of additional explanatory variables,
the method is quite attractive and seems to work well in practice; Its main
features include: i) exactness, i.e. if the breakpoints exist they are always
revealed in data with relatively low variance; ii) noticeable efficiency, being
the estimation substantially independent of n and L; iii) ability in esti-
mating simultaneously the model, and therefore allowing (co)variability
among the estimates to be taken correctly into account. Furthermore it
should be noted that the transformed ‘integrated’ data are much less scat-
tered around the straight lines. Therefore passing from a mean-shift to a
breakpoint model, allows to deal with much more clear-cut relationships
making changepoint detection and estimation easier. As example see the
last picture on the right in Figure 1, where σ = 10: the two parallel lines
in the mean shift model are almost negligible, but the breakpoint is rather
evident through the z-values. Of course when the variance is very high rela-
tively to parameter values (in the example in Figure 1, σ = 50), the derived
V-shaped relationship can be very wiggly and breakpoint detection is still
difficult.
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Abstract: Scoring of caries experience in dental studies usually involves different
examiners. In this respect, the kappa statistic (Cohen, J. 1960) is often used to
indicate the inter-examiner variability. We argue that the kappa values are not
useful to indicate the impact of the examiner effect on an epidemiological study.
Instead, we present a logistic random effects model with a correction term. The
correction term for inter-examiner bias with respect to a gold standard is obtained
from a calibration study. As an example the proposed approach was applied to
a geographical oral health study based on the Signal Tandmobiel r© dataset. A
frequentist as well as a Bayesian approach were used with the latter providing an
easy way of accounting for the variability of the estimated regression coefficients.
Further, we evaluated how large the calibration data should be to obtain reliable
estimates.
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1 Introduction

From a dental point of view it was of interest to examine the geographical
trend in caries experience in Flanders. To this end, we employed the Signal
Tandmobiel r© data, a 6 year longitudinal oral health study started in Flan-
ders (Belgium) in 1996 involving 4468 children. The outcome of interest is
the dmft index, which is the sum of the number of decayed (d), missing
due to caries (m) and filled (f) teeth. The dmft index is hereby referred to
as the caries experience. To examine the geographical trend first a random
logistic regression model was applied (Hartzel, Agresti and Caffo (2001))
whereby

log

(
πik1 + . . .+ πikr
πik,r+1 + . . .+ πik4

)
= λr + x′

iβ + uk, r = 1, 2, 3 (1)
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where xi is a d-dimensional vector of covariates pertaining to the ith child
and β is the corresponding vector of regression coefficients (fixed effects),
πikr is the probability of child i in school k being classified in category r of
the ordinal caries response. The random intercept uk pertains to the kth
school and we assume that uk ∼ N(0, σ2). λ1 is the intercept and (λ2, λ3)
are the ordered category cut-off parameters of the dmft index, which satisfy
λ2 < λ3. Below the vector (λ1, λ2, λ3)′ will be denoted as λ. Observe that
only the caries experience of the first year of examination was used. In this
preliminary analaysis both frequentist (SAS procedure NLMIXED) and
Bayesian (WINBUGS program) models were fitted.
In a Bayesian context the likelihood needs to be combined with a prior
distribution of the parameters. First, we choose the same prior distribution
for the regression coefficient βs (s = 1, · · · , d), i.e, βs ∼ N(0, 10−6). The
precision is chosen to be very small so that a vague prior distribution for β is
obtained, ensuring that the posterior is data driven. Second, we choose σ2 ∼
IG(10−2, 10−2) so that the prior distribution is sufficiently diffuse. Third,
we take a vague normal prior for λ1, i.e., λ1 ∼ N(0, 10−6) and a truncated
normal prior for the other category cutoffs, i.e., λ2 ∼ N(0, 10−6)I(λ1, λ3)
and λ3 ∼ N(0, 10−6)I(λ2, +∞).
The results of these fit clearly indicated a significant East-West gradient
in the degree of caries experience, being higher in the East of Flanders.
However, this model did not take into the account the scoring variability
of the 16 dental examiners, each active in a restricted geographical area.
A calibration dataset contrasting the sixteen dental examiners involved in
the study against a gold standard on scoring dmft was available. Hence, we
could calculate the kappa statistics for each examiner against this gold stan-
dard. From a scheme proposed by Landis and Koch (1977) we concluded
that our kappa values showed moderate to good agreement. However, it
is not directly clear what message these kappa values brings us on the
outcome of the dental analysis.
A classical way to take a confounder into account is to include it into the
(logistic) regression model. Clearly, controlling for examiner removed the
geographical East-West trend. The same conclusion could be drawn when
the examiner was included in the model as a random effect. We argue
that correcting for examiner in this way is not appropriate because it does
not take into account the scoring bias and/or variability of the examiners.
Instead, we opted for another correction.

2 Methodology

To properly take the examiners’ effect into account, we propose an ordinal
random effect logistic regression model with a correction term. This cor-
rection term could be estimated from the calibration data. Our model is



Mwalili et al 331

given by,

Pr(yij ≤ a|γ, xi, uk) =
a∑
c=1

4∑
d=1

γjcdqikd, (2)

whereby

qik =

⎛⎜⎜⎝
F (λ1 + xi

′β + uk)
F (λ2 + xi

′β + uk) − F (λ1 + xi
′β + uk)

F (λ3 + xi
′β + uk) − F (λ2 + xi

′β + uk)
1 − F (λ3 + xi

′β + uk)

⎞⎟⎟⎠ .

q′ik = (qik1, · · · , qik4) and γjab is the conditional probability of classifying a
discretized dmft score in the ath category by examiner j given it is classified
in the bth category by the gold standard.
The SAS procedure NLMIXED (SAS Institute Inc.) can be used to estimate
the unknown parameters (λ, β, σ2) of model (2) when for γ an estimated
value is imputed from the calibration data. However, one needs to take
into the account the uncertainty with which the γ is estimated. This could
be done by some analytical approximations but it can be even done more
easily by a Bayesian approach, e.g. by using WINBUGS. We have followed
this approach to analyse our geographical dental study.
Finally, we provide analytical as well as simulation results to illustrate the
impact of calibration sample size on the precision of the corrected model.
Firstly, we have taken examiners with five different scoring behaviours: (1)
severely underscoring, (2) moderately underscoring, (3) variable (even in
underscoring & overscoring), (4) moderately overscoring, and (5) severely
overscoring all with the same kappa value compared with the gold standard.
Secondly, we used five examiners. Each examiner was biased in scoring
caries experience as compared to the gold standard and was active in only
one of the five provinces of Flanders. Thus our second simulation study
mimicked the epidemiological dental study.

3 Results

The Bayesian posterior estimates of geographical regression coefficients
from WINBUGS applied to the Signal Tandmobiel r© study are slightly
larger in absolute value compared to the estimated regression coefficients
from NLMIXED, but overall the estimates of the NLMIXED and WIN-
BUGS are close, given their estimated variability. Further, a sensitivity
analysis by varying different prior distributions showed that our conclu-
sions were relatively stable. Compared to the NLMIXED output, the stan-
dard errors of our estimated Bayesian regression coefficients are higher,
due to the variability with which γ is estimated from the calibration data.
But more importantly, the East-West gradient remained important in both
geographical models.
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The results of the first simulation exercise are displayed in Table 1. These
results show that a kappa value of less than 1 is always associated with
attenuated estimated regression coefficients. This is known from the error-
in-variables literature Carroll et al (1995). It is also known that the size of
calibration dataset (n0) has a great impact on the correction for bias and
the (increased) variability of the corrected estimates.

TABLE 1. Simulation study 1: Parameter estimates from a logistic binary regres-
sion model where the response is measured with error. The examiner has κ = 0.6
compared to the gold standard with five different scoring patterns.

Gold corrected
Pat- Para- Standard Crude n0 = 50 n0 = 100 n0 = 200
tern meter mean(sd) mean(sd) mean(sd) mean(sd) mean(sd)

1 β0 = 0 -0.01(.09) -0.52(.09) -0.03(.37) -0.01(.30) 0.01(.24)
β1 = 1 1.02(.14) 0.58(.13) 1.16(.69) 1.12(.61) 1.07(.36)

2 β0 = 0 0.00(.09) -0.30(.09) -0.05(.45) 0.01(.31) -0.01(.25)
β1 = 1 1.00(.13) 0.56(.13) 1.16(.82) 1.08(.43) 1.05(.39)

3 β0 = 0 0.00(.09) -0.00(.09) -0.03(.41) -0.01(.32) -0.04(.25)
β1 = 1 1.00(.14) 0.57(.12) 1.17(.80) 1.08(.40) 1.05(.30)

4 β0 = 0 0.00(.09) 0.30(.09) -0.04(.42) -0.03(.32) 0.01(.24)
β1 = 1 1.00(.13) 0.61(.13) 1.12(.65) 1.05(.40) 1.03(.28)

5 β0 = 0 -0.01(.09) 0.51(.09) -0.06(.49) -0.02(.31) -0.06(.24)
β1 = 1 1.01(.14) 0.66(.14) 1.13(.63) 1.05(.29) 1.02(.25)

The results of the second simulation study are shown in Table 2. Now two
covariates were involved covariate 1 (effect β1) and a geographical east-west
covariate (effect β2).

TABLE 2. Simulation study 2: Parameter estimates from a logistic binary regres-
sion model where the response is measured with error controlling for covariate 1
and a geographical covariate. Each examiner has κ = 0.6 against the gold stan-
dard.

Para- Gold corrected
meter Standard Crude n0 = 50 n0 = 100 n0 = 200

mean(sd) mean(sd) mean(sd) mean(sd) mean(sd)

β0 = 0 -0.005(.08) 0.974(.08) 0.054(0.56) 0.013(0.38) 0.006(.27)
β1 = 1 0.997(.08) 0.402(.06) 0.921(0.28) 0.959(0.22) 0.978(.19)
β2 = 2 2.017(.14) -0.729(.12) 1.893(1.35) 1.995(0.98) 2.002(.66)

By correcting for misclassification on the response, it is clear that the cor-
rection reduces bias in the estimates to 0, but with an increase in the
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standard errors of the estimates. The bias and standard errors of the esti-
mates from the corrected model decreases as the number of observations in
the calibration data increases. In application to the Signal Tandmobiel r©
data, this model model confirmed the East-West gradient in the degree of
caries experience in Flanders.

4 Conclusion

The simulation studies show that the correction terms removes the bias
introduced by the misclassification of the response by the examiner with
respect to the gold standard. However, the correction reduces the precision
of the parameter estimates. These results are equally supported by esti-
mates of the ordinal logistic applied to the Signal Tandmobiel r© study. We
find that the larger the calibration sample size the larger the precision and
reduction of the bias after correction.
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1 From GLMs to HGLMs

A GLM has the following three-part structure:
(i) A response vector y with mean μ and independent errors from a one-
parameter exponential family.
(ii) A set of covariates X1, X2, ..., Xk, whose effects β combine linearly to
form a linear predictor,

η =
∑

Xiβi.

(iii) A monotonic link function η = g(μ) connecting the linear predictor
and the mean.
The classical normal model has errors from a normal distribution and link
function the identity function, η = μ. A GLM may have error distributions
including Poisson, binomial, multinomial, gamma and inverse Gaussian.
Any GLM distribution may be expressed by its variance, which has the
form

var(y) = φV (μ),

where φ is the dispersion parameter and V () is the variance function. The
kernel of the log-likelihood has the form∑

{yθ − b(θ)}/φ,

where θ = θ(μ) is the GLM canonical parameter. If η = θ, the link is
a canonical link. GLMs have a single algorithm for fitting any model of
the class. It generalizes the least-squares of classical models to iterative
weighted least squares, using an adjusted dependent variate

z = η + (y − μ)(∂η/∂μ)

in place of y, with iterative weights given by

W = (∂μ/∂η)2V (μ)−1.
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Goodness of fit is measured by the deviance, a log-likelihood-ratio statistic
which generalizes the residual sum of squares.
HGLMs extend GLMs in two important ways. First the mean and the dis-
persion may be modelled jointly, and secondly the linear predictor may
contain both fixed and random effects, each with its own dispersion para-
meter to be estimated. These two extensions are discussed below.

2 Joint Modelling of Mean and Dispersion

Such models can be expressed as two interlinked GLMs, one for the mean
and one for the dispersion. Given values of φ, the dispersion parameter
(now varying over experimental units), the reciprocals are used as prior
weights for the analysis of the mean as a GLM. From the analysis of the
mean, we form the deviance components for each unit, and these become
the response for the dispersion GLM. The distribution for the dispersion
GLM is gamma, and the link is usually assumed to be the log. A linear
predictor on the log scale is postulated, and the joint fit is done by alter-
nating mean and dispersion models until convergence. For details see Lee &
Nelder (1998). An important field of application for this technique is that
of quality-improvement experiments.

3 Random Effects

Random effects are well known in the normal case, the linear predictor
Xβ being extended to Xβ + Zu, where u is a vector of random effects
from a normal distribution. Estimates are required for the fixed effects and
the variance components for y and u. Individual estimates of the random
effects u are called best unbiased linear predictors or BLUPs. In HGLMs
the response y may follow a GLM and the distribution of the random
effects may come from any conjugate distribution of a GLM. Such conjugate
distributions include the gamma, inverse gamma, beta and normal.

4 Fitting an HGLM

Two criteria are used for fitting an HGLM. For the fixed and random effects
beta and u, given the dispersion components, we maximize the hierarchical
or h-likelihood, first defined by Lee & Nelder (1996). This consists of two
parts, one derived from the conditional distribution of y|u, and one from
the distribution of the random effects. The random effect u may appear in
the linear predictor for y on some scale v(u), say, v = log(u), in which case
the second term is derived from the density of v not u. The h-likelihood is
not a Fisherian likelihood because the random effects are not observed, but
we believe it to be the natural extension of Fisher likelihood to random-
effect models. For given values of the dispersion components, we fit the
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fixed effects β and the random effects u simultaneously, by maximizing the
h-likelihood. To estimate the dispersion components we use a generalization
of REML, using an adjusted profile h-likelihood eliminating the fixed and
random effects. We alternate between estimation of β and u given the
dispersion components, and of the dispersion components given β and u.

5 The Algorithm

The fitting of a HGLM can be reduced to the fitting of interlinked GLMs,
as in the joint modelling of mean and dispersion. The model for the mean
can be reduced to an augmented GLM, in which the response vector is
augmented by quasi-data for the random effects, and the augmented design

matrix (for one random effect) has the form
(
X Z
0 I

)
. The model for

the dispersion can be written as a GLM with response derived from the
deviance component for the model for the mean. Again, the fitting is done
alternately until convergence. See Lee and Nelder (2001a) for details.

6 Extensions

The model class can be expanded, first to allow correlated observations
expressed by random effects in the linear predictor (Lee and Nelder,2001b),
and secondly to allow random effects in the dispersion model. The latter
gives rise to Double HGLMs, and these have important implications in
expanding the class of financial models. For a fuller list of the applications
of HGLMs see Lee (2003).

7 Software

Software for fitting HGLMs and DHGLMs is available as a set of Genstat
procedures: the procedures include those for setting up the model, fitting
the model, display of results and model checking. The reduction of the
fitting to that of interlinked GLMs implies that GLM model-checking tech-
niques can be extended to the wider class,
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Abstract: Identification of unbalanced regional supply is one approach to fi-
nancial controlling of health care systems. Hospital discharge data together with
demographic data make a simple supply indicator. Analysing such data from
Styria by a main effect Poisson model shows very bad model fit. 80% of the ob-
servations are identified as outliers and the interpretation of these results would
lead to assess the local hospital system absolute supply deficiency. Improving the
fit by modelling overdispersion through the quasi likelihood approach (QLM) and
the negative binomial model (NBM) is successful. Only of few observations remain
outliers and consequently the supply with hospital care is judged satisfying. As
the QLM and the NBM identify different sets of outliers a bootstrap approach
to variance estimation is applied. It turns out that the same observations are
identified as with the QLM.

Keywords: Residuals; Overdispersion; Bootstrap.

1 Introduction

This paper was motivated by analyses of data from the Styrian health care
system. As a consequence of growing concern about the costs of the public
health care, financial controlling based on empirical data became impor-
tant. One approach to controlling intends to optimize the allocation of
money by detecting regional over- and undersupply with medical services.
Hospital discharge frequency is used as supply indicator and the regional
distribution of the population serves as benchmark. Assuming equal hospi-
talization rate in all regions supply deficiency is indicated by large devia-
tions of the hospital discharge distribution from the (benchmark) popula-
tion distribution.
We use hospital discharge data from the six Styrian NUTS-3 (NUTS=No-
menclature des unités territoriales statistiques) regions that contain ICD-9
(ICD=International Classification of Diseases) diagnostic information, so
that 17 main disease groups can be distinguished. Thus we have a total of
6 × 17 = 102 observations Yij (i = 1, . . . , 17 disease groups DGi, and j =
1, . . . , 6 regions Rj). The research problem is to discover regional differences
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in hospitalization frequency for the 17 disease groups which can be stated
as testing

H0: The rate of hospitalization due to DGi is the same for all
regions, i.e. λi1 =, . . . ,= λiJ = λi.

versus

H1: The rate of hospitalization due to DGi differs for at least
two regions, i.e. λij �= λik for some pair (j, k).

Let Yij ∼ P (μij) then under H0 we have

λi = μij/nj or μij = njλi,

and under H1

λij = μij/nj or μij = njλij ,

with nj the population in Rj . Testing H0 vs. H1 is an ANOVA-type of
problem for rates. Using the normal approximations to the Poisson variables
the statistics

Ti =
∑
j

(Yij − μ̂ij)2

μ̂ij
(1)

are χ2-distributed with df = 5 under H0. Taking λ̂i = ni/n as estimate we
obtain μ̂ij = (ninj)/n, where ni =

∑
j Yij and n =

∑
j nj . In cases with

Ti > χ2
α H0 is rejected and at least one region has a deviant hospitalization

rate.

2 Log-linear Models

2.1 Poisson Regression

The problem described in section 1 can be represented by a GLM (McCul-
lagh & Nelder, 1989), namely the Poisson regression using the canonical
log-link. Under H0 we have

μ
(0)
ij = njλi = nj exp(βi), (2)

which can be seen as a series of 17 intercept models with offset nj , and (1) is
just the Pearson chi-square statistic X2

i . To test for regional differences the
H0-models are estimated and X2

i and the deviances Di should have values
smaller than the critical value χ2

α(df). The estimation of the 17 models is
equal to the simultaneous estimation of 17 intercepts within one model.
Consequently X2 =

∑
iX

2
i and D =

∑
iDi. Thus equation (2) can also

be seen as a main effect Poisson model (PM) for the hospitalization rates
with factor “Disease group”.
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2.2 Interaction, Bias and Outlier Detection

For H1 we have the interaction model

μ
(1)
ij = njλij = nj exp(βi + γij) = μ

(0)
ij exp(γij). (3)

Model (3) is not applicable to our data as it is the saturated model with
μ̂

(1)
ij = Yij . But the residuals from model (2) can be used to obtain some

information about the unknown γij . Based on the estimates from model
(2) we obtain E(r(0)ij ) = E(Yij − μ̂

(0)
ij ) = 0 given that H0 is valid. If H1

holds then the estimate μ̂(0)
ij is biased and

E(r(1)ij ) = E(Yij − μ̂
(0)
ij ) = μ

(1)
ij − μ

(0)
ij = μ

(0)
ij [exp(γij) − 1] �= 0.

This bias carries over to the standardized Pearson residuals

srij =
yij − μ̂

(0)
ij

[(1 − hij)V (μ̂(0)
ij )]1/2

, (4)

which are asymptoticallyN(0, 1) underH0 (V (·), the variance function, hij ,
the diagonal elements of the GLM hat matrix). Therefore |srij | > z1−α/2
can be used as screening tool to identify large deviations from the means,
i.e. biased observations. In regression analysis observations with values of
srij outside of some interval (e.g. [−1.96, 1.96]) are regarded as outliers.
Estimating model (2) when actuallyH1 is correct results in biased estimates
for μij and consequently bad model fit. Besides misspecification of the
mean (leading to bias) we have misspecification of the variance function
(leading to wrong precision) as second important reason for bad model fit.
Bias enters the statistics X2 and srij in the numerator, while the variance
assumption affects the denominator. Thus observing bad model fit together
with many outliers may be caused by heavy bias and/or the wrong variance
model.

2.3 Modelling Dispersion

As we cannot estimate a better mean model to achieve better model fit,
we look for alternatives to the Poisson variance assumption V (μ) = μ. In
general V (·) may depend on some additional scale or dispersion parameters
φ or α, like for instance the QLM with V (μ, φ) = φμ, and the NBM with
V (μ, α) = μ + αμ2. For φ > 1 and α > 0 we model overdispersion, i.e.
V (·) > μ. A consequence of using V (·) > μ is that only large deviations are
identified as outliers. We expect to find smaller sets of biased observations
for the srij from the QLM and the NBM. Besides that the sets may differ
markedly as φμ > μ+ αμ2 for 0 < μ < φ/α, and vice versa for μ > φ/α.
φ is usually estimated by X2/df or D/df , while α can be estimated by
maximum likelihood. For the QLM the scaled value of X2 is just df when
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φ̂ = X2/df is used, and df(X2/D) when φ̂ = D/df is used (similar for
D). Thus the improvement in model fit for the QLM cannot be properly
expressed in a number like for the NBM. This leaves us with the problem
to choose between the QLM and the NBM.

3 Bootstrap

In section 2 we use the asymptotic properties of the standardized Pear-
son residuals to identify outliers. The results may depend strongly on the
assumed variance structure and moreover there is no ad hoc method to
choose between the competing models QLM and NBM. As alternative for
outlier identification the nonparametric bootstrap shall be used to estimate
the distribution of the residuals. The bootstrap method based on residual
resampling for GLM (Davidson & Hinkley, 1999) requires that the residu-
als are approximately iid, which is best met by the standardized deviance
residuals

rdij =
sign(yij − μ̂ij)[2(l(yij) − l(μ̂ij)]1/2

(1 − hij)1/2
=

d(yij , μ̂ij)
(1 − hij)1/2

.

To obtain the bootstrap response y∗ij we sample from the set of centered rdij
(e∗ij ∈ {rdij − rdij}) and solve the equation e∗ij = d(y∗ij , μ̂ij) by the Newton
method. Fitting the bootstrap models μ∗

ij = nj exp(β∗
i ) we estimate the

variance of the raw residuals rij = yij − μ̂ij by

V ar∗(rij) =
1

B − 1

B∑
k

(y∗(k)ij − μ̂
∗(k)
ij )2, (5)

where (·)∗(k) (k = 1, . . . , B) are the bootstrap replications. To identify the
outliers we compare the residuals standardized with (5) given by

sbrij =
yij − μ̂ij

V ar∗(rij)1/2
,

with the percentiles of the empirical distribution of all standardized boot-
strap residuals given by

sbr∗ij =
y∗ij − μ̂∗

ij

V ar∗(rij)1/2
.

4 Application and Results

Application of the 17 intercept Poisson models from equation (2) to our
data shows that H0 has to be rejected for all disease groups at both usual
critical values χ2

0.05(5) = 11.07 and χ2
0.01(5) = 15.86 (see Table 1).
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TABLE 1. Results of the Poisson models for the 17 disease groups DEi

DGi X2
i Di DGi X2

i Di

01 219.72 214.16 10 423.32 411.88
02 616.63 600.36 11 93.93 95.87
03 83.36 84.91 12 343.30 330.28
04 40.61 42.27 13 1499.12 1440.24
05 1322.94 1305.58 14 17.60 17.36
06 1748.23 1699.09 15 322.87 313.25
07 1191.09 1150.52 16 1282.92 1188.75
08 224.31 221.08 17 1366.61 1357.18
09 301.42 301.27

TABLE 2. Results for the Poisson Model, the Quasi-Likelihood Model and the
Negative Binomial Model

Number of outliers
X2 D φ̂ α̂ α = 0.05 α = 0.01

PM 11097.97 10774.06 – – 81 78
QLM 11097.97 10774.06 126.75 – 8 4
NBM 107.73 103.55 – 0.0232 8 3

For the PM we also have a very bad model fit: X2 = 11097.97 and
D = 10774.06 with df = 85. This is paralleled by 80% of the observa-
tions identified as outliers, i.e. |srij | > z1−α/2, and further |srij | < 33
with mean (standard deviation) 0.79 (11.63). The interpretation of these
results is simply that the Styrian hospital system is doing extremely bad
in supplying the Styrian population with health care.
Fitting the QLM and the NBM has the expected effect. The standardized
Pearson residuals are now much smaller for both the QLM (|srij | < 3) and
the NBM (|srij | < 5). The mean (standard deviation) is now 0.07 (1.03)
for the QLM, and -0.001 (1.13) for the NBM. The number of identified
outliers is reduced drastically for the QLM and the NBM (see Table 2),
and consequently the supply of the Styrian population with health care
from hospitals can be judged as balanced, save for a few exceptions. Table
2 gives some results for the PM, QLM and NBM.
A closer look on the outliers shows that the QLM and the NBM identify
different observations. At α = 0.05 four out of twelve observations are
identified by both models, and at α = 0.01 the models only agree on one
out of six observations. This divergence is due to the different shapes of
the estimated variance functions (cf. section 2.3).
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The bootstrap method based on B = 1999 samples gives estimates of
V ar∗(rij) that lead to bootstrap standardized residuals |sbrij | < 3 with
mean (standard deviation) 0.05 (1.13). The empirical distribution of the
standardized bootstrap residuals sbr∗ij has mean (standard deviation) 0.00
(1.00), but it is slightly skewed and shows a peak. Using the α/2 and 1−α/2
quantiles of this distribution we identify the same outliers as the QLM. A
possible explanation for this result is given by Friedl (1997), who showed
that resampling from standardized Pearson residuals yields a bootstrap
dispersion estimate that is just the empirical variance of the Pearson resid-
uals. Moreover this estimate can be used as an estimate for the dispersion
parameter φ of the QLM. It appears that this also holds approximately for
the standardized deviance residuals.
For final interpretation of the results we combine the two sets of outliers by
union, giving twelve suspicious observations, and intersection, which gives
us four substantial outliers (α = 0.05). The variance functions of the QLM
and the NBM cross at μ = 0 and μ = φ/α. The intersection is equivalent
to using the upper part of both functions, i.e. V (μ) = φμ for 0 < μ < φ/α
and V (μ) = μ+ αμ2 for μ ≥ φ/α, and the union takes the lower parts.

Acknowledgments: We are grateful to Herwig Friedl for helpful discus-
sions and comments on our work.
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1 Departamento de Matemática, Escola Superior de Tecnologia de Setúbal, In-
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Abstract: In environmental epidemiology, as in any other subject involving ob-
servational studies, one is interested in finding effect estimates that are (almost)
unbiased and have smallest possible variance. In environmental epidemiology, as
in other fields, one can achieve this only through a proper design. Logit models
are a precious toll in this area.
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1 Introduction

Logit models are widely used to express the probability of occurrences of
diseases as a function of environmental impacts.
Typically, exposures are measured at fixed stations. These exposures are
then taken to be representative for the whole population near this station.
As a consequence, both measurement errors and measurements biases must
be taken into consideration.
In this presentation, we consider a situation with measurement error only.
We use such a model for discussing what happens when the error in the
measurement of the impacts is not negligible. Our main result is that the
bias in the slope of the response is always negative. A result like this one
expresses a loss of sensibility to the exposures variations that results from
less precision in their measurement.

2 Model

We assume that with exposure f the probability of disease is given by

p =
eβ0+β1f

1 + eβ0+β1f
.
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Let β̂1 and β̃1 be the maximum likelihood estimators obtained from exact
f1, . . . , fn measures of exposure and approximate measures f̃1, . . . , f̃n with

f̃i = fi + εi, i = 1, . . . , n

the ε1, . . . , εn being independent and identically distributed with null mean
value and variance σ2

ε .
If we have n samples with dimensions ni , i = 1, . . . , n, the corresponding
logits having variances vi , i = 1, . . . , n, it may be shown through lengthy
but straightforward computations that

E
(
β̃1 − β̂1

)
= −β1

[(∑n
i=1

1
vi

)2

−∑n
i=1

1
v2
i

]
(∑n

i=1
1
vi

)(∑n
i=1

f2
i

vi

)
−
(∑n

i=1
fi
vi

)2 σ2
ε < 0.

We point out that the denominator in this expression may be used to
estimate the variance component σ2

f , associated to exposures differences
between the chosen stations.
The next step was to partition the variance σ2

ε in two independent compo-
nents

σ2
ε = σ2

a + σ2
e

where

• σ2
a − is the variance component associated to the sampling errors

inside the population associated to the monitoring stations;

• σ2
e − is the variance component associated to measurement errors.

Through more straightforward computations it may be shown that

E
(
β̃1 − β̂1

)
= −β1

σ2
a + σ2

e

σ2
f

.

3 Scenarios

We now apply the previous expression to study measurement design in
several scenarios.

3.1 First Scenario

The monitoring stations as well as the sub-population are chosen. For
each station there will be a corresponding region, so the station as well
as the region will be given. Of the three variance components we can only
influence σ2

e . Let us assume that there is a relation between costs and pre-
cision for this component, given by a decreasing function with an horizontal
asymptote.
Our aim is to determinate the point C′ of cost per station to the right of
which there is only limited decrease in σ2

e .
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3.2 Second Scenario

The monitoring stations are given but the regions limits are not. Let us
assume that the population assigned to a station is formed by L sub-
populations. Since we have n populations we will have the same number of
decompositions. Besides this for each station there will be a sub-population,
for which it is most representative, the standard sub-population.
In this scenario we can influence (minimize) both σ2

a and σ2
e , subject to

the use of certain sub-populations, thus controlling σ2
ε and through it the

bias.
A rule that we can follow, is to assign each sub-population to the station
for which the standard population is nearest to it. To carry out this work
we need to choose:

• the standard sub-population for each station;

• a dissimilarity measure between sub-populations;

• to build the dissimilarity matrix between sub-populations.

3.3 Third Scenario

The third scenario is a free scenario. Let us assume that we only have an
approximate idea of the number of stations to implant. We could start
from the dissimilarity matrix that we previously considered and apply a
cluster analysis to try to identify sub-populations that are gravity centers.
These could be the chosen as standard sub-populations for the monitoring
stations. It could happen that not all of the proposed stations could be
implanted. It is important to point out that in this last scenario we can
influence the three components σ2

a , σ2
e and σ2

f . Thus achieving a better
control of the bias than in the first two scenarios.
Our aim is to minimize

σ2
a + σ2

e

σ2
f

.

If we assume that we are comparing scenarios for which the values of σ2
a+σ

2
e

are similar, we then could think of maximizing σ2
f .

4 The Future Work

To work on Scenarios 2 and 3 we must have information to enable us to
obtain the above mentioned dissimilarity matrix.
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4.1 Required Information

In order to collect such an information we should start with a list of vari-
ables that influence exposure and characterize populations. The ideal would
be:

1. To select the variables in the population;

2. To define the sub-population;

3. To build the dissimilarity matrix;

4. To select the sub-population as candidates to be standard sub-
population;

5. To select the standard populations and to define the “limits (bound-
aries)”;

6. To implant the monitoring stations;

7. To build a sample in each region.

At the end we should, using the approximated (adjusted) values, obtain
the average incidence p̂.
On the other hand the chosen variables to define the population should
include residence and/or working place in order to facilitate establishing
the regions boundaries.
Let us observe that there is a certainty likeness between the method that
we are trying to develop and the “a priory tariffation method. Thus we
can start with a preliminary large list of discrete variables, and then, check
which of those are significantly related to incidence variations. The next
step should be the use of the chosen variables to define sub-populations.
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Abstract: This paper examines an overall estimate of effect based on the strat-
ified Wilcoxon test.
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1 Introduction

Parametric models offer stratified estimates of overall treatment effect on
the scale of the response. But there is no widely used method of estimating
treatment effect associated with stratified nonparametric tests such as the
stratified Wilcoxon (or van Elteren) test. There are many areas of research
where such an estimate is warranted because a stratum-by-treatment ef-
fect is not expected. Clinical trials are a common source of such data, the
stratum being investigator, hospital or country.

2 Data Analysed

Four sets of simulated data were used. Each set had 10 strata, and each
stratum had 16 observations, 8 from each of two treatment groups (A and
B), making 160 observations in all. The 10 strata each had a baseline,
which was randomly assigned by sampling from a Normal distribution. The
individual observations for each stratum were then calculated by adding to
the stratum baseline a second random sample from a standard Normal
distribution. Finally, if the treatment group was B, 0.5 was added to the
observation. Thus the true treatment difference would be expected to be
estimated as 0.5. The sets of data differed as follows:

• Set 1 had no contamination

• Set 2 had 20 percent of observations contaminated with a uniform
(-5, -5.01) distribution

• Set 3 had 10 % of observations contaminated with a high-variance
Normal distribution (mean zero, standard deviation (SD)=10)
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FIGURE 1. Distribution of a single sample (160 observations) from data set 1

See Figure 1 and Figure 2 for histograms illustrating these data. The strata
for these first three sets had baselines sampled from a Normal distribution
with mean zero and SD=0.5. Set 4 was as set 1, except that the strata
baselines were more dispersed, being sampled from a standard Normal dis-
tribution. One thousand samples of each set were created.
In addition, analyses of highly-skewed mercury concentrations in Periphy-
ton (Walpole and Myers, 1985, cited in Helsel and Hirsch, 2003) are briefly
discussed.

3 Approaches Used

This paper proposes an extension of unstratified nonparametric methods
of estimation (Lehmann, 1975)to stratified nonparametric tests such as the
van Elteren test (van Elteren, 1960). Such extensions are not widely used
or explicitly described in standard textbooks. An estimate based on the van
Elteren test adapts the technique described by e.g. Sprent and Smeeton,
(2001, pp. 1-43). This method was first suggested to the author by Kevin
Kane of the statistical software company Phastar, and its rationale clarified
in discussions with Dennis Boos and Gary Koch. In brief, the estimate of
treatment difference is calculated by incrementing the response of one of the
treatment groups until the expected value of the nonparametric statistic
under the null hypothesis is found.The estimate of treatment difference is
equal to the amount of the increment.In detail, the steps are as follows:
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FIGURE 2. Distribution of a single sample from data sets 2 and 3

1. Using the Hodges-Lehmann estimate of median treatment difference,
identify which treatment group has the lower median difference. Let
us call this treatment group A.

2. Using as a start and end point the Hodges-Lehmann lower and upper
CIs respectively, increase the value of all observations for group A by
small increments, calculating the van Elteren test statistic after each
increment.

3. At the point where the test statistic has reached its expected value
under the null hypothesis of no treatment difference, the increment
estimates the treatment difference under the van Elteren test.

The estimate of upper CI for the treatment difference is calculated similarly:

1. Note that the lower CI based on the van Elteren statistic will be
greater than or equal to the lower CI of Hodges-Lehmann. Using as
a start and end point the Hodges-Lehmann lower CI and the van El-
teren estimate of treatment difference respectively, increase the value
of all observations for group A by small increments, calculating the
van Elteren test statistic after each increment.

2. At the point where the test statistic has reached the value which
yields a two-sided significance of 5 percent,the increment estimates
the lower CI for the treatment difference under the van Elteren test.
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TABLE 1. No contamination, strata baseline sampled from 0.5 * standard Normal

Type of estimate Cover Power CI length
One-way ANOVA 0.967 0.861 0.679
ANOVA stratified 0.940 0.903 0.595
Wilcoxon 0.966 0.828 0.706
Wilcoxon stratified 0.946 0.893 0.613

The upper CI is estimated in a similar manner to the lower CI. ANOVA-
based estimates are used in this paper as comparators for the nonparametric
estimates. The paper thus presents four estimates:

• As a baseline, the mean difference and its 95 percent CI based on the
t-test (One-way ANOVA)

• Estimates from stratified ANOVA

• Nonparametric unstratified estimate based on the Wilcoxon test the
Hodges-Lehmann estimate of median difference

• Nonparametric estimate based on the stratified Wilcoxon, or van El-
teren, test

The coverage and power associated with the CI are presented below for
estimates of treatment difference over 1000 instantiations of the four sets
of data described above.

4 Main results

Table 1 acts as a baseline and summarises the results for the four methods
of estimation over 1000 simulations for data with strata differing in their
overall mean, but otherwise Normally distributed with a true treatment
difference of 0.5. Results are as expected, with coverage close to the nominal
coverage and lower power associated with the nonparametric CIs (Hodges
and Lehmann, 1962).
However, when the disparity between the strata increases so that the stra-
tum baseline is sampled from a standard Normal distribution, the unstrat-
ified Wilcoxon (Hodges-Lehmann) estimate loses power considerably (Ta-
ble 2)
Table 3 features simulations with 20 percent of the data concentrated in the
left tail of the distribution. This pattern is often found in biometric mea-
sures. While coverage is largely unaffected for all estimates, the power of
the estimates based on ANOVA is of course dramatically reduced; and the
stratified nonparametric CI has increased its advantage in power relative
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TABLE 2. No contamination, strata baseline sampled from standard Normal

Type of estimate Cover Power CI length
One-way ANOVA 0.985 0.685 0.838
ANOVA stratified 0.941 0.902 0.596
Wilcoxon 0.990 0.635 0.872
Wilcoxon stratified 0.944 0.871 0.644

TABLE 3. Contaminated with observations at left tail, strata 0.5*standard Nor-
mal

Type of estimate Cover Power CI length
One-way ANOVA 0.956 0.298 1.375
ANOVA stratified 0.944 0.337 1.307
Wilcoxon 0.962 0.509 0.992
Wilcoxon stratified 0.940 0.658 0.797

TABLE 4. With high-variance Normal contamination, strata 0.5*standard Nor-
mal

Type of estimate Cover Power CI length
One-way ANOVA 0.944 0.194 2.032
ANOVA stratified 0.925 0.210 1.951
Wilcoxon 0.957 0.655 0.851
Wilcoxon stratified 0.925 0.774 0.737

to its unstratified nonparametric equivalent.Finally, Table 4 follows McK-
ean and Vidmar (1994) in examining contamination with highly-variable
Normal data. As noted in the paper by McKean and Vidmar, the power
of the estimates based on ANOVA is particularly badly affected by the
high-variance contamination. The stratified nonparametric CI retains its
superiority in power over its unstratified nonparametric equivalent and of
course over the ANOVA-based estimates.
Analysis of the mercury data in Helsel and Hirsch (2003) shows that where
the stratum effect is not significant, the estimate based on the stratified
Wilcoxon test has no significant advantage over the traditional unstratified
equivalent, the Hodges-Lehmann estimate: the CIs are almost identical. It
should be noted that this will often be the case, and that where differences
between the strata are modest, the standard Hodges-Lehmann estimate
and CI is often an adequate estimate of treatment effect.
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5 Conclusions

In estimating a treatment effect and CI in a stratified nonparametric set-
ting, the unstratified Hodges-Lehmann estimate and CI may be adequate
with regard to coverage and power, if the strata have overall means only
moderately different from one another. As a rough guide, the means should
be consistent with a Normal distribution with a SD about half that of the
residuals from a full model (i.e. a model which includes stratum effects).
With greater dispersion between the strata, a stratified estimate such as
that presented here is preferable. When data is Normally distributed, the
ANOVA estimate is of course the best choice, but its well-known loss of
power in the face of contamination by more highly dispersed data or skewed
data is confirmed again by this paper.
Further research is desirable to compare the nonparametric estimates pro-
posed in this paper with those of robust regression (e.g. McKean and Vid-
mar, 1994).
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help with the formatting of this paper.
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Abstract: Markov switching autoregressive models (MSARMs) are efficient tools
to analyse nonlinear and nongaussian time series. A special MSARM with a har-
monic component is here proposed in the bayesian framework to analyse periodic
time series. We perform a complete Gibbs sampling algorithm for model choice,
for constraint identification and for the estimation of the unknown parameters
and the latent data. We illustrate our methodology with two examples about the
dynamics of air pollutants.
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1 Introduction

Air quality control includes the study of data sets recorded by air pollu-
tion testing stations. We are interested in the analysis of the dynamics of
the hourly mean concentrations of carbon monoxide (CO) and of the daily
mean concentrations of sulphur dioxide (SO2). The main characteristics of
the series that must be modelled are: i) different unobserved levels of pol-
lutant mean concentrations, depending on the weather conditions (higher
level of pollution in the colder days and lower in the warmer ones), ii)
serially correlated data, iii) daily (CO) or yearly (SO2) periodicities, iv)
missing observations. By these characteristics, Markov switching autore-
gressive models (MSARMs) (Hamilton (1994), ch. 22) can be efficient tools
to analyse these environmental time series. A special MSARM with a har-
monic component is here proposed in the bayesian framework, giving rise
to Harmonic MSARMs (HMSARMs).

2 Harmonic Markov Switching Autoregressive
Models

MSARMs of order (m; p), henceforth MSAR(m;p), are discrete-time sto-
chastic processes {Yt;Xt}, such that {Xt} is an unobservable discrete-time
Markov chain with a finite number of states, m, while {Yt}, given {Xt}, is

355
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an observed autoregressive process of order p with the conditional distri-
bution of Yt depending on {Xt} only through the contemporary Xt. Let
{Xt} be a discrete, first-order, homogeneous, ergodic Markov chain on a
finite state-space SX with cardinality m (SX = {1, . . . ,m}) . Γ = [γi,j ] is
the (m×m) transition matrix, where γi,j = P (Xt = j | Xt−1 = i), for any
i, j ∈ SX , x

T = (x1, . . . , xT )′ is the sequence of the states of the Markov
chain and, for any t = 1, . . . , T , xt assumes values in SX . Hence, given
the order-p dependence and the contemporary dependence conditions, the
equation describing HMSARMs is

Yt(xt) = μxt + ϕ1(xt)Yt−1(xt−1) + . . .+ ϕp(xt)Yt−p(xt−p) + ηt + Et(xt), (1)

where Yt(i) denotes the generic variable Yt when Xt = i, for any 1 ≤ t ≤ T
and for any i ∈ SX ; the autoregressive coefficients ϕτ(i), for any τ = 1, . . . , p
and for any i ∈ SX , depend on the current state i of the Markov chain; ηt
is a harmonic component of periodicity 2s,

ηt =
s∗∑
j=1

(η1,j cos (πjt/s) + η2,j sin (πjt/s)) , (2)

where s∗ is the number of significant harmonics (s∗ ≤ s) ; Et(i) denotes
the gaussian random variable Et when Xt = i, with zero mean and preci-
sion λi

(
Et(i) ∼ N (0;λi)

)
, for any i ∈ SX , with the discrete process {Et},

given {Xt}, satisfying the conditional independence and the contemporary
dependence conditions. Notice that the harmonic component does not de-
pend on the hidden Markov chain for identifiability reasons: if it depended,
to have an identified model, we would assume the same hidden state all
along the period 2s. The labels of the states and the sub-models, given a
state, are interchangeable; the model (1) is unidentifiable in data fitting
and therefore we need the following identifiability constraint: λi < λj , for
any i, j ∈ SX such that i < j. In the following section we shall see how
and why we choose this special constraint. At this point it is important
only to notice the constraint is chosen ex post after simulations in such a
way to respect the geometry and the shape of the unconstrained posterior
distribution.
The parameters of the model, the latent data and the missing observations
are estimated by simulation, performing Gibbs sampling, placing conju-
gate priors; the sequence of hidden states is estimated through the for-
ward filtering-backward sampling algorithm by Carter and Kohn (1994) and
Frühwirth-Schnatter (1994). Before performing parameter estimation we
need to choose the best model and to select its identifiability constraints.
MSAR model choice is performed through Bayes factor, computing the
marginal likelihoods by the Chib-Neal method (Chib (1995), Neal (1999)).
The selection of the identifiability constraints is done exploiting the mix-
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FIGURE 1.

ing properties of the random permutation sampling algorithm (Früwirth-
Schnatter (2001)). In any iteration of the Gibbs sampler the entries of the
vector λ must be in increasing order to satisfy the identifiability constraint.
If λ is not ordered, instead of rejecting the vector and going on sampling
till we have an ordered one, we introduce the constrained permutation sam-
pling algorithm (Früwirth-Schnatter (2001)): we apply a permutation to or-
der the precisions and consequently we apply the same permutation to the
generated sequence of states and to the switching-parameters previously
generated.

3 Applications to Air Pollution

Two applications of HMSARMs to real data will be studied in the following
and two time series, the first about the daily mean concentrations of sul-
phur dioxide (SO2) and the second about the hourly mean concentrations
of carbon monoxide (CO), will be analysed in detail. In each application we
shall compare many competing models which differ for the cardinality of
the state-space of the hidden Markov chain and for the order of the autore-
gressive process. We shall go on three consecutive steps: i) model selection,
ii) constraint identification, iii) parameter estimation.

3.1 Application to Daily Mean Concentrations of SO2

The first periodic time series we consider is about the daily mean concentra-
tions of SO2, in micrograms per cubic meter, recorded by the air pollution
testing station placed in Via Goisis, Bergamo (Italy) from the 13th of Sep-
tember, 1996, to the 25th of November, 1999 (1169 observations). In the
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series of SO2 a yearly periodicity is evident (2s = 365) and the number s∗

of the harmonics is one.
Model selection, performed by means of Bayes factors in which the marginal
likelihoods, i.e. the normalizing constants of the posterior densities, are
computed according to Chib (1995), corrected by the relabeling of the
hidden states (Neal (1999)), that the HMSAR(3;1) is the best among all
the competing models.
Now we have to carefully identify the constraint which must respect the
geometry and the shape of the unconstrained posterior distribution. Identi-
fiability constraint is chosen by eye, looking at the graphs of the output of
the unconstrained Gibbs sampling performed associated with random per-
mutation sampling (Frühwirth-Schnatter (2001)): we plot couples of out-
puts of the estimates of the parameters obtained via unconstrained Gibbs
sampling with random permutations of the hidden states; after that we
check if there are groups corresponding to the different states and if these
groups suggest special ordering in the labeling.
Random permutation sampling is an easy adjustment we introduce in the
Gibbs sampler: at any iteration all the steps of Gibbs sampling run un-
constrained; then we randomly generate one of m! ways of labelling the
states and consequently update the sequence of the hidden states and any
switching-parameter according to the selected permutation of the states.
Random permutation sampling allows us to explore the whole support
of the posterior distribution, improving the mixing property of the sam-
pler because the chain is free to move through the different subspaces,
and encourages the moves from the current subspace to one of the other
(m! − 1). Graphically analysing the outputs of the unconstrained HM-
SAR(3;1) model, we choose the constraint on the precisions: λ1 < λ2 < λ3

(Figures 1a and 1b). Now we can run constrained permutation Gibbs sam-
pling for the HMSAR(3;1) model to estimate its parameters.
We obtain that SO2 yearly dynamics, described by the ηt’s, respects that
of the climatic conditions: higher levels of SO2 in the colder periods of the
year and lower levels in the warmer ones (Figure 1f). Moreover we can
see the dynamics of the fitted values (Figure 1d) respects the dynamics
of the actual data, the natural logarithms of the observations (Figure 1c).
Finally we are interested in the dynamics of the hidden states, representing
the three different levels of pollution occured during the analysed period,
which we can observe in Figure 1e, where we have the sequence of the
posterior modes of any generated state xt, for any t = 1, . . . , T .

3.2 Application to Hourly Mean Concentrations of CO

The second periodic time series we consider is about the hourly mean con-
centrations of CO, in milligrams per cubic meter, recorded by the air pol-
lution testing station placed in Via San Giorgio, Bergamo (Italy) from the
20th of October, 1998, 1 a.m., to the 8th of December, 1998, 12 p.m. (1200
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FIGURE 2.

observations). In the series of CO a daily periodicity is evident (2s = 24)
and the number s∗ of the harmonics is two. In the model choice phase we
notice that the HMSAR(2;1) is the best among all the competing models.
Then graphically analysing the outputs of theunconstrained HMSAR(2;1),
we choose the constraint on the precisions again: λ1 < λ2 (Figures 2a and
2b). Finally, by the parameter estimation side, the CO daily dynamics,
ηt’s, respects the rush hours, in fact we have the peaks at eight a.m. and
five p.m. (Figure 2f). The fitting performance of the model is evaluated
through the plots of actual, the natural logarithms of the observations, and
fitted values (Figures 2c and 2d): we have the fitted series well describes the
observed phenomenon. By the Markov chain side, the estimated sequence
of hidden states is plotted in Figure 2e.

4 Conclusions

The previously described empirical studies about air pollution show that
Markov switching autoregressive models with a harmonic component well
analyse periodic time series whose dynamics nonlinearly depend on latent
variables. Model choice and inference have been performed through Gibbs
sampling, considering the label switching problem, which has been effi-
ciently tackled by permutation sampling.
The models we considered can be extended in many ways (i.e. time-varying
transition matrices, multivariate pollutants and multisites recording analy-
sis) to apply them more extensively to air quality control; these extensions
are the subject of future researches.
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Abstract: This work deals with the calculation of local influence curvatures
and generalized leverage in univariate elliptical nonlinear regression models. This
class of models includes all symmetric continuous distributions, such as normal,
Student-t, generalized Student-t, exponential power and logistic, among others.
We derive the total local influence of the ith observation Ci and we decompose
the generalized leverage matrix into two terms, one that may be interpreted as
a contribution of the position parameter estimates on the leverage and the other
as a kind of correction due to the estimation of the dispersion parameter. This
correction vanishes for the normal case. We also establish a connection between
generalized leverage and local influence. An illustrative example is given.

Keywords: Elliptical distributions; Leverage; Likelihood displacement; Local
influence; Residuals; Robust models.

1 Elliptical Nonlinear Regression Models

Let Yi, i = 1, . . . , n, be independent random variables with density function
of the form

fyi(yi) =
1√
φ
g{(yi − μi)2/φ}, yi ∈ IR, (1)

where φ > 0 is the scale parameter, g : IR → [0,∞] is such that
∫∞
0
g(u2)du

< ∞. We shall denote Yi ∼ El(μi, φ). The function g(.) is called density
generator (see, for example, Fang, Kotz and Ng, 1990). The univariate
elliptical nonlinear regression model is defined by

Yi = μi(β) + εi,

where μi(β) = μ(β;xi) is a nonlinear function of β = (β1, . . . , βp)T and
εi ∼ El(0, φ). An iterative process to get the maximum likelihood estimates
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β̂ and φ̂may be developed by using, for example, the scoring Fisher method.
This joint iterative process is given by

β(m+1) = β(m) + (4dg)−1{D(m)T
β D(m)

β }−1D(m)T
β D(v(m)){y − μ(β(m))}

(2)
and

φ(m+1) =
1
n
QV (β(m+1)) (m = 0, 1, 2, . . .), (3)

where QV (β) = {y − μ(β)}TD(v){y − μ(β)}, Dβ = ∂μ(β)/∂β, dg =
E{W 2

g (U2)U2} with U ∼ Eln(0, 1), Wg(u) = g′(u)/g(u) with g(u) =
∂g(u)/∂u and D(v) = diag{v1, . . . , vn} with vi = −2Wg(ui) and ui =
(yi − μi)2/φ, i = 1, . . . , n. We should start the iterative process (2)-(3)
with initial values β(0) and φ(0).

2 Local Influence

Let L(θ) denote the log-likelihood function from the postulated model
where θ = (βT , φ)T and let ω be a n× 1 vector of perturbations restricted
to some open subset Ω ⊂ IRn. The perturbations are made on the likeli-
hood function, such that it takes the form L(θ|ω). Denoting the vector of
no perturbation by ω0, it is assumed that L(θ|ω0) = L(θ). The idea of
local influence (Cook, 1986) is concerning with characterizing the behav-
iour of the likelihood displacement LD(ω) = 2{L(θ̂)−L(θ̂ω)} around ω0. It
may be showed that the normal curvature at the direction � takes the form
C�(θ) = 2|�TΔT (L̈)−1Δ�| where −L̈ is the observed Fisher information
matrix for the postulated model (ω = ω0) and Δ is the (p+ 1)× q matrix
with elements Δij = ∂2L(θ|ω)/∂θi∂ωj, evaluated at θ = θ̂ and ω = ω0,
i = 1, . . . , p+1 and j = 1, . . . , n. As perturbation scheme we shall consider
the heteroscedastic model

fyi(yi|ωi) =
√
ωi
φ
g{ωi(yi − μi)2/φ}, (4)

with ωi denoting the weight corresponding to the ith case, i = 1, . . . , n.
When ωi = 1, the perturbed model (4) reduces to the postulated model
(1). Indeed, we are perturbing the scale parameter by changing it to
φ/ωi for the ith observation. We obtain ΔT = [− 2

φ̂
D(b̂)Dβ̂ ,− 1

φ̂2 D(b̂)ê],
that is an n × (p + 1) matrix, where D(b) = diag{b1, . . . , bn} with
bi = {Wg(ui) + uiW

′
g(ui)}ei and ei = yi − μi(β), i = 1, . . . , n. Then,

the total local influence of the ith observation (Lesaffre and Verbeke, 1998)
yields Ci = 2|�Ti ΔT (L̈)−1Δ�i|, where �i is an n × 1 vector of zeros with
one at the ith position. We can express −L̈ in a closed-form expression.
Attention should be given to those observations with Ci > 2C̄.
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3 Generalized Leverage

Let ŷ = μ(β̂) be the predicted response vector. The main idea behind the
concept of leverage (see, for instance, Emerson, Hoaglin and Kempthorne,
1984; St. Laurent and Cook, 1992; Wei, Hu and Fung, 1998) is that of
evaluating the influence of yi on its own predicted value. This influence may
be well represented by the derivative ∂ŷi/∂yi that equals hii in the normal
linear case, where hii is the ith principal diagonal element of the projection
matrix H = X(XTX)−1XT and X is the model matrix. Extensions to more
general regression models have been given, for instance, by St. Laurent and
Cook (1992) and Wei et al.(1998). Using equation (2.6) of Wei et al. (1998)
the (n× n) matrix (∂ŷ/∂y) of generalized leverage in univariate elliptical
nonlinear regression models may be expressed as

GL(θ̂) = GLβ(θ̂) + GLφ(θ̂),

where GLβ(θ̂) may be interpreted as a contribution of β̂ on the leverage
while GLφ(θ̂) is a kind of correction due φ̂. In particular, for the nor-
mal case, the generalized leverage matrix GL(θ̂) reduces to the Jacobian
leverage matrix

Ĵ = Dβ̂

{
DT
β̂
Dβ̂ − [êT ][Dβ̂β̂ ]

}−1

DT
β̂
. (5)

St. Laurent and Cook (1992) compare (5) with the tangent plane leverage
matrix Ĥ = Dβ̂(D

T
β̂
Dβ̂)

−1DT
β̂
, that is the orthogonal projection matrix

onto the subspace spanned by the columns of the matrix Dβ̂ . If we use
the perturbation scheme yiωi = yi + ωi and we assume φ fixed then Ci =
|âi|
φ̂

GLii, where ai = −2{Wg(ui) + 2uiW ′
g(ui)}.

4 Application

In order to illustrate an application we shall consider the data set described
in Ratkowsky (1983, Table 6.1) on the weight of the dried eye lens, Y (mg)
of the European rabbit Oryctolagus cuniculus versus the age of the animal,
X (days), a sample of 71 observations. This animal is largely distributed
in wild populations in Australia. A three-parameter model that presented
both intrinsic and parameter-effects curvatures non-significant under nor-
mal error with constant variance for logY , shall also be considered here
under other elliptical errors. An interesting aspect of this data set that
supports the use of error distributions with heavier tails than the ones of
the normal distribution is the suspicion of two outliers under least-squares
estimation. Then, to reanalyze the data, we propose the following model:

Yi = exp
(
α− β

xi + γ

)
eεi ,
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FIGURE 1. Envelopes and index plots of GLii and Ci for the normal (top),
Student-t with 10 df (middle) and logistic-II (bottom), fitted on the rabbit data.

where εi ∼ El(0, φ) are mutually independent errors. A Student-t model
with 10 degrees of freedom and a logistic-II model were also fitted to the
data. The maximum likelihood estimates do not differ much among the
three fitted models, but the approximate standard errors of the Student-t
and logistic-II models are smaller than the ones of the normal model. Figure
1 presents some diagnostic graphics. Even though observations 16 and 17
appear as possible outliers in all the fitted models the generated envelopes
do not present any unusual features. Observations 1, 2 and 3 appear as
high leverage points in the three models. The Student-t model stands out
less observations in the index plot of Ci than the logistic-II and normal
models. We can notice from these graphics that younger animals tend to
be more influential on the parameter estimates and on their own fitted
values. The dotted lines in the graphics of GLii represent the index plot
of ĥii (tangent plane leverage) which are negligible, as expected, for the
normal case, but differ for the outstanding observations in the Student-t
and logistic-II models. Elimination of the observations 16 and 17 produces
larger changes in the estimates of the normal model than in the estimates of
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the Student-t and logistic-II models. However, elimination of the influential
and high leverage points does not change much the parameter estimates
but produces considerable changes in the approximate standard errors.
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Abstract: Identification of placebo responders among subjects treated with ac-
tive drug has significant clinical and research implications. In clinical practice
when a patient treated with medication improves, this improvement may be at-
tributed to the chemical component of the drug itself (“true drug effect”), a
“placebo effect”, or some combination of these. Determining the proper subse-
quent treatment and maintenance of the patient may be aided greatly by un-
derstanding the type of a patient’s response. This work presents a framework
for studying placebo response in diverse areas of medicine. In order to identify
placebo responders among drug treated patients, a profile of the clinical status
over time (outcome profile) is estimated for each subject. Self-consistent parti-
tioning techniques are used to group subjects based on the amount of curvature
in the profile as well as the overall trend in the profile. The resulting partitions
determine representative profiles for subjects in the drug group which can sub-
sequently be used to classify patients. The method is applied to data from a
clinical trial for treatment of depression involving placebo and the active drug
phenelzine.

Keywords: Clustering; Principal points; Self-consistent points; Specific drug
response.

1 Introduction and Background

Identifying placebo responders among drug-treated patients is an impor-
tant problem for practicing clinicians and is at the heart of numerous long
standing issues in drug research, Kahn and Brown, 2001. In psychiatry,
ill people who are treated and improve are called responders. Responders
treated with active drug may have improved due to a true drug effect or
they may have responded to non-specific aspects of the treatment, called
placebo effect. For the purposes of this paper placebo effect is defined as the
totality of effects that cannot be attributed to the active chemical compo-
nent of the drug, such as the effect of taking a pill and interacting with and
receiving attention from clinicians and nurses. True drug effect is defined
to represent the effect of the active chemical compound in the drug that is

367
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not contained in the placebo pill. Clinical decisions will be affected if pa-
tients on drugs can be identified as achieving a placebo effect or achieving
a true drug response. For example, in standard clinical practice, subjects
identified as placebo responders may not need a continued drug treatment.
In addition, such patients might require more frequent observation by the
treating clinician since they are at higher risk for relapse than patients who
experience a true drug response (Stewart et al, 1998).
In antidepressant studies, response rates among placebo-treated subjects
are substantial and can range from 25% to 40%, Kahn and Brown, 2001.
Clearly, among responders in the active treatment group there will be
placebo responders as well as true drug responders. Quitkin et al (1997)
describe certain patterns in the trajectory over time of the severity of de-
pressive symptoms of patients treated with active drug and conclude that
they are likely to correspond to placebo effects because they occur no more
often on drug than on placebo, while others might represent true drug re-
sponses.
An established view in psychiatry gives rise to a classification of subjects
treated with active drug into five non-overlapping categories presented be-
low Quitkin et al., 1997. Subjects treated with placebo can only fall only
into one of the first three categories. (A.) Non-responders: subjects who do
not improve throughout the trial. (B.) Non-responders with initial placebo
effect: subjects who temporarily improve in the beginning of the treatment
due to a non-specific effect, but deteriorate by the end of the study. (C.)
Placebo responders: subjects who respond due to the non-specific effects
of the treatment. (D) True drug responders: subjects who have a specific
effect, i.e., subjects who respond to the active chemical component of the
drug and not to any of the non-specific components of the treatment. (E.)
Mixture effect responders: subjects whose final outcome is a combination
of specific and non-specific effects; such are subjects who have an initial
improvement due to non-specific effects and then experience a true drug
effect.
The primary goal of this paper is to determine a way of identifying the
placebo responders in the drug-treated group of patients.

2 Data Description

Data from a clinical trial for the treatment of depression are analyzed.
Subjects were randomized to either the antidepressant phenelzine or to
a placebo. The outcome measure for each subject was an integer score
between 0 and 23 on the Hamilton Depression (Ham-D) scale, assessed at
baseline (week 0) and then once a week for six weeks. Higher scores on the
Ham-D indicate greater severity of depression.



Petkova et al 369

FIGURE 1. A scatterplot of the estimated average-slope coefficients and concavity
coefficients for the phenelzine (×) and placebo (�) groups.

3 Functional Profile Modeling

The depression severity over time for each subject is modeled using a func-
tional data analysis approach Ramsay and Silverman, 1997. The Ham-D
response was modeled as a quadratic function of time plus a random er-
ror. Orthonormal basis functions are used to represent the functional data.
Thus, the model for the ith individual is

yi(t) = β0if1(t) + β1if1(t) + β2if2(t) + εi(t)

where the functions f0, f1, f2 are constant, linear and quadratic respectively
defined so that they are orthonormal over the range 0 ≤ t ≤ 6 weeks.
Figure 1 shows a scatterplot of the β1 and β2 parameters for the active
treatment group (×) and placebo group (�).

4 Clustering Functional Data

The average-slope and concavity coefficients are used to classify individ-
uals in order to determine representative profiles for categories A - E in
the Introduction. The classification is based on identification of clusters
in the bivariate distribution of (β1, β2). Several clustering approaches are
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FIGURE 2. The left frame shows the k = 5 cluster means from the constrained
cross pattern with center point labeled by A, B, C, D, and E corresponding to the
five outcome profile categories. These five cluster means are plotted as parabolas
for the phenelzine group. The five curves shown here are the five representative
curves for the phenelzine group.

considered, among them the distribution-free k-means algorithm and ML
assuming normality for the joint distribution of β1 and β2. The k-means al-
gorithm which is designed to find distinct subgroups performs inefficiently,
furthermore it typically produces numerous solutions depending on initial
starting values which makes the interpretation of any single solution as the
set of representative profiles problematic, Tarpey, 1998. The ML estimators
are generally impractical to compute.
The approach taken is to classify drug treated subjects using methodology
based on principal points, Flury, 1990. and self-consistent points, Flury,
1993, which is similar in spirit to learning vector quantization and reference
point logistic classification. The set of principal points is the optimal k-
point representation of a theoretical distribution in terms of mean squared
error (MSE). Formally, a set of k points ξ1, . . . , ξk are principal points for
a random vector X if

E( min
j=1,...,k

‖X − ξj‖2) ≤ E( min
j=1,...,k

‖X − yj‖2)

for every set of k points y1, . . . ,yk. The optimal one-point representa-
tion of a distribution (in terms of mean squared error) is the mean which
corresponds to k = 1 principal point. Thus, principal points are simply
a generalization of the mean from one to several points which optimally
represent the distribution.
Symmetric multivariate distributions often have many different sets of self-
consistent points. Tarpey, Tarpey, 1998, showed that the principal points
(as well as other sets of self-consistent points) form symmetric patterns for
the multivariate normal and other symmetric multivariate distributions.
With the covariance configuration present in the data, a nearly optimal (in
terms of MSE) cluster point pattern for the bivariate normal distribution is
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TABLE 1. Estimated classification counts and percentages for the phenelzine and
placebo groups

Number Number
Frame Description of outcome in phenelzine in placebo

group group
A Non-Responders 10 (16.9%) 30 (63.8%)
B Non-Responders

with Initial Placebo Effect 13 (22.0%) 6 (12.8%)
C Placebo Responders 16 (27.1%) 8 (17.0%)
D True Drug Responders 10 (16.9%) 1 (2.1%)
E Mixture Effect Responders 10 (16.9%) 2 (4.3%)

the cross pattern with a center point, Tarpey, 1998. An efficient alternative
to maximum likelihood is to find semiparametric estimates of self-consistent
points constrained to form symmetric pattern susing grid search.

5 Results

The cross pattern (with center point) appears to perform best in terms of
PMSE compared to other symmetric patterns and the solutions from the
k-means algorithm. Figure 2 shows the constrained cross pattern cluster
means plotted as parabolas in function space. A summary of the repre-
sentative profiles are provided in Table 1 along with the corresponding
counts (and percentages in parentheses) of subjects that fall in each of the
categories.
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Abstract: In this paper we find all two-parameter count distributions (satisfying
very general conditions) that are closed under addition so that their maximum
likelihood estimator of the population mean is the sample mean. For count distri-
butions only additively closed with respect the population mean, the behaviour
of their proportion of zeroes characterizes the distribution. Several examples of
application of these results are commented.
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1 On the Generalized Hermite Distribution

The Poisson distribution is arguably the most widely used distribution in
modeling count data. There are a variety of reasons for this, including
principles (like the law of rare events) that suggest how and why it arises
so frequently in applications as well as certain properties which facilitate
its use. One such property is its closure under addition, whereby sums of
independent Poissons are again Poisson-distributed. Another is the fact
that the sample mean is the maximum likelihood estimator of the mean of
a Poisson-distributed population.
To model departures from Poisson distribution that produce situations like
overdispersion or zero inflation it is reasonable to consider discrete distri-
butions with more than one parameter. The following result characterizes,
under very general conditions, all two-parameter count distributions so that
they are closed under addition and their maximum likelihood estimator of
the population mean is the sample mean (Puig, 2003):

Theorem 1: Given a count variate X that can be parameterized by its
mean μ and variance σ2, with a pgf continuous in μ and σ2, closed under
convolutions so that the maximum likelihood estimator of μ is the sample
mean. Then the distribution of X is the same as n1Y1 + n2Y2, where Yi
are two independent Poisson variates with means (μn2 −σ2)/(n1(n2 −n1))
and (σ2 − μn1)/(n2(n2 − n1)) respectively, where n1 and n2 are positive
integers, n1 < n2.
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From the practical point of view, not all distributions characterized by
this theorem are useful. If n1 > 1 then some positive integers can never
occur. For instance, if n1 = 2 and n2 = 5, then the values 1 and 3 have a
probability equal to 0. For this reason we only consider the situation where
n1 = 1 and n2 = n and it corresponds to a family of distributions known
as Generalized Hermite distribution (Gupta and Jain, 1974). When n = 2
this is known as Hermite distribution, which was introduced by Kemp and
Kemp (1965, 1966).
By using this family of distributions we have analyzed the daily death
registers for men and women aged 95 years and over in the Comunidad
Autnoma de Madrid during 1995 (source from the Centre d’Estudis De-
mogrfics). Some properties of these data sets justify to use a two parameter
count distribution closed under addition (see Puig, 2003).

2 Zero Inflation and Overdispersion

Definition: Let X denote a non-negative integer random variable (count
variable) such that its mean is μ and its proportion of zeroes is p0. The
zero inflation index of X is, zi(X) = 1 + log(p0)/μ.

Notice that zi(X)=0 if X is Poisson distributed and zi(X) > 0 if X is ’zero
inflated’, that is, its proportion of zeroes is greater than the proportion of
zeroes of a Poisson variate having the same mean.
Many of the random variables used to modelize count data are zero inflated
and overdispersed. For instance, it happens for any mixture of Poisson dis-
tributions. Moreover, for two parameter count models that can be para-
meterized by their mean μ and dispersion index d = V (X)/μ, often their
zero inflation index is a function that only depends of d. Table 1 shows the
log-pgf (log-probability generating function) and these functional relations
for some of the most frequently employed count distributions.
Notice that all these distributions are closed under addition, if the parame-
ter d is fixed for all the independent variates that are summed. Moreover,
their maximum likelihood estimator of μ is also the sample mean.
The following result clarifies the importance of the relation between zero
inflation and dispersion indexes:

Theorem 2: LetX be a count variate that can be parametrized by its mean
μ and dispersion index d, with a pgf continuous in μ and twice differentiable
with continuity in d. Suppose that X is closed under convolutions when d
is fixed and the maximum likelihood estimator of μ is the sample mean.
Then zi(X) = f(d), for some appropriate real valued function f(.), and
this function characterizes X .

The proof is based on the paper of Sprott (1983).
This theorem can be applied in exploratory data analysis in order to choose
and appropriate count data model, when the researcher analyzes several
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TABLE 1. Relation between zero-inflation and dispersion indexes for some
discrete distributions parameterized by μ and d (Neg.Bin.=Negative Binomial,
P.I.G.=Poisson-Inverse Gaussian).

Name log-pgf ZI-index
Neg. Bin. − μ

d−1 log(1 − (d− 1)(t− 1)) 1 + log(d)
1−d

Neyman A μ
d−1 (e(d−1)(t−1) − 1) e1−d+d−2

d−1

Polya-Aeppli 2μ(1−t)
(d−1)(t−1)−2 1 − 2

d+1

Hermite μ((d − 1)(t2 − 1)/2 + (2 − d)(t− 1)) d−1
2

P.I.G. μ
d−1(1 −√1 − 2(d− 1)(t− 1)) d−

√
1+2(d−1)

d−1

TABLE 2. Six frequency distributions of automobile insurance claims.

No. of claims
Data set 0 1 2 3 4 5 6 7

1 103704 14075 1766 255 45 6 2
2 370412 46545 3935 317 28 3
3 7840 1317 239 42 14 4 4 1
4 3719 232 38 7 3 1
5 96978 9240 704 43 9
6 20592 2651 297 41 7 0 1

samples coming from similar experiments and the observed proportion of
zeroes is high. This is the situation for the examples that we have studied.
For instance, the counts of microarthropods in several samples of forest
soil, or the counts of chromosomic abnormalities in 5000 cells when they are
bombed with different doses of radiation (source ’Departament de Biologia
Animal, de Biologia Vegetal i d’Ecologia, UAB’).
Theorem 2 suggests a simple way that can help us to decide which count
distribution can be used to fit the overall data sets. The method is to draw
scatter-plots with the estimated values of zi(X) and d, and compare the
observed profiles with the theoretical profiles of some count distributions
like those showed in Table 1.
Theorem 2 also lets to construct new two parameter count distributions
for a given relation zi(X) = f(d). The following example illustrates these
procedures.

2.1 An Example: Automobile Claim Data Sets.

Gossiaux and Lemaire (1981) analyzed six data sets giving the number of
automobile insurance claims per policy over a fixed period of time. These
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FIGURE 1. Rescaled zi index versus d for some count distributions.

data sets are shown in Table 2.
Poisson distribution is not adequate to fit these data sets because there are
overdispersion. The Negative Binomial distribution improves the fits but G.
E. Willmot (1987) remarks that the Poisson-Inverse Gaussian distribution
works better.
Figure 1 shows the plots of the re-scaled zero-inflation index zi with respect
to disperson index d for several of the count data distributions mentioned
above. The sample values corresponding to the six data sets are also plotted.
The plots show that the choice of the Poisson-Inverse Gaussian distribution
is more adequate than the choice of the Hermite, Neyman A, Polya-Aeppli
or Negative Binomial. However we can consider a new distribution with a
log-pgf of the form μ(1 − β)1−(1−(d−1)(t−1)/(1−β))β

β(d−1) , with β = 2/3.
Notice in Figure 1 how the performance of this new distribution is better
than those obtained by using the Poisson-Inverse Gaussian.
The results of this graphical exploratory analysis coincide with the results of
a goodness of fit chi-squared based analysis. Table 3 shows the chi-squared
goodness of fit tests statistics with their corresponding p-values for the
β = 2/3, Poisson-Inverse Gaussian and Negative Binomial distribution.
Observe that the β = 2/3 distribution provides p-values higher than
Poisson-Inverse Gaussian, for 4 of the data sets and for the overall. It
is clear that the Negative Binomial distribution provides poor fits.
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TABLE 3. Chi-squared goodness of fit test statistics for the six data sets. The
values in brackets are the p-values.

Data set
Distrib. 1 2 3 4 5 6 Overall
β = 2/3 3.675 0.455 2.816 2.178 5.635 0.226 14.983

(.299) (.929) (.421) (.536) (.131) (.973) (.663)
P.I.G. 0.601 3.393 5.256 0.594 6.505 0.760 17.109

(.896) (.335) (.154) (.898) (.089) (.859) (.516)
Neg. Bin. 14.104 9.916 18.524 1.408 9.272 3.887 57.111

(.003) (.019) (.000) (.704) (.026) (.274) (.000)
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1 Introduction

The relation among several autoregressions can be modeled with the vector
autoregression

xt = c+ Φ1xt−1 + Φ2xt−2 + . . .+ Φkxt−k + et (1)

of order k, VAR(k), where xt, xt−1, . . . , xt−k are n-dimensional vectors with
the corresponding coefficient vectors Φ1,Φ2, . . . ,Φk, c is the constant and
et is the error vector, which is assumed IID. If the covariance matrix, H , of
et is not diagonal, the set of linear equations (1) corresponds to a system
of seemingly unrelated regressions (Zellner, 1962) and in H are hidden the
relations among the components of xt. To highlight such relations we can
represent the canonical VAR(k) in (1) in its structural form (SVAR) (Sims,
1986):

Θ0xt = d+ Θ1xt−1 + Θ2xt−2 + . . .+ Θkxt−k + ut (2)

where Θi = Θ0Φi for i = 0, . . . , k, d = Θ0c and ut = Θ0et with covariance
matrix Θ0HΘ′

0 = D, which is diagonal.
If there are no zeros in the coefficient vectors, the SVAR is saturated but
in many cases some lagged variables on the RHS in (2) do not play any
role in explaining the current variables, xt. In this case the value of the
corresponding coefficient is zero and hence the SVAR is sparse.
In this paper we will identify sparse structures for vector autoregression by
using graphical modeling and the final directed acyclic graph (DAG) will
point at possible causal interpretations.
An examination of the covariance matrix of the variables involved, both
current and lagged, can assist in identifying the sparse structure by the

379
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A A

B B

C C

FIGURE 1. Moralization of a directed acyclic graph.

computation of the partial correlations using the inverse variance lemma
(Whittaker, 1990, pp. 142–143). The significance of the partial correlations
of model (2) can be tested using the appropriate sampling properties (Reale
and Tunnicliffe Wilson, 2001 and 2002). In this way we obtain a conditional
independence graph (CIG). The model (2) may be represented by a DAG
in which the components of xt, xt−1, . . . , xt−p form the nodes, and causal
dependence is indicated by arrows linking nodes.
Although the DAG and the CIG represent a different definition of the joint
probability, there is a correspondence between these two graphs which is
embodied by the moralization rule: because of this result we can obtain
the CIG from the DAG by transforming the arrows into lines and linking
unlinked parents. As a matter of example consider the graph in Figure 1:
A and B are the parents of C. The moralization of the DAG on the left is
obtained by transforming the existing arrows into edges and by adding and
edge which links the parents. We define this kind of edges as moral edges.
While the CIG represents the associations among the variables either in
terms of conditional dependence or simply in terms of partial correlation, if
the joint distribution is not Gaussian, the DAG has a natural interpretation
in terms of causality. As it is not the aim of this paper to get involved in
the philosophical debate around the definition of causality, we simply refer
to a recent book by Pearl (2002).
The DAG is very attractive because of its causal interpretation but all
we can observe in practice is the the CIG obtained by the sample partial
correlation. So actually we need to perform the inverse operation of the
moralization, we call it demoralization. Unfortunately while the transfor-
mation of a DAG into a CIG is unique, there are several DAG’s which
can give the same CIG. As an example consider the CIG on the right end
side in figure 1: it could result from the moralization of all the DAG’s in
Figure 2. So we need to identify the moral links and remove them and to
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FIGURE 2. Possible directed acyclic graph.

do that we need to use all the knowledge we have about the relationships
among the random variables in the system.
In the time series context the nature of the model is that all arrows end in
nodes representing the contemporaneous variables on the left hand side of
(2). Some arrows will start from the past, and some from other contempo-
raneous variables.
The coefficients are estimated by single equation ordinary least squares
(OLS) regression. This is fully efficient under our working assumption,
that the vector series is Gaussian. Our methods are also applicable, and
the properties of the estimates given by the regression are reliable, under
wider conditions, such as et being I.I.D., presented for example in Anderson
(1971).

2 The Inflation Transmission

As a matter of example we apply our methodology to the inflation trans-
mission between Italy (a), Germany (b), France (c) and the US (d) in the
period January 1988 - December 2001.
We first identified a VAR of order 16 using the corrected Akaike information
criterion and then used the inverse variance lemma to compute the partial
correlation matrix for the variables a(t), b(t), c(t), d(t), . . . , a(t − 16), b(t−
16), c(t− 16), d(t − 16). We then test the significance of the partial corre-
lation. As anticipated before we have a problem as we are testing several
partial correlation simultaneously with a significant probability of making
type I or type II errors. We use the strategy of testing using different levels
of probability so we get a better feeling of the different significance.
In our specific case considered two levels of probability: 99% (bold lines)
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FIGURE 4. Possible DAGs for current variables.

and 95% (thin lines). The corresponding conditional independence graph
is presented in Figure 3.
We then consider the possible DAG’s for the current variables (see Figure 4)
and apply subset regression in order to cancel moral links and derive the
complete DAG’s.
We eventually present the main alternative models and compare them using
appropriate likelihood based methods similar to the AIC.
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1 Introduction

We investigate the power of a backwards elimination model selection pro-
cedure for graphical log-linear models (GLL) with two or three binary vari-
ables. We illustrate how to estimate power of single edge exclusion tests
using asymptotic normal approximations. In Section 2 we review edge ex-
clusion tests. In Section 3 we present normal approximations to the distri-
butions of the likelihood ratio test statistic for single edge exclusion, under
the alternative hypothesis that the saturated model holds. Results are used
to approximate the power of the model selection procedure. Conclusions
from a simulation study, to assess the quality of such approximations, are
given. In Section 4 we illustrate power calculations using data on university
admissions.

2 Edge Exclusion in Graphical Log-Linear Models

Graphical log-linear models are a subclass of hierarchical log-linear models,
specified by setting a set of two-factor interaction terms λij (and hence their
higher-order relatives) to zero. The parameters of the GLL model are the
remaining terms not set to zero. Such models can be interpreted solely
in terms of conditional independence. Testing the null hypothesis that λij
and all higher-order interaction terms including it are zero is equivalent to
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testing for conditional independence between the two corresponding factors
Xi and Xj , given the remaining ones. For details see Whittaker (1990).

Let X1, . . . , Xp be binary variables, here coded 0 and 1, and let πa(xa)
denote the marginal probability of Xi = xi : i ∈ a. The total sample size
equals n∅. Cell probabilities are assumed strictly positive, i.e., no structural
zeros are allowed. Odds ratios are a commonly used measure of association
in a contingency table. Let ψij denote the marginal odds ratio between Xi

andXj (with i and j from 1 to p and i �= j) and ψij·k denote the conditional
odds ratios, given a third binary variable Xk. A hat indicates a maximum
likelihood estimator (m.l.e.).

Backwards elimination is a commonly used method for selecting a GLL
model. The strategy is to start with the saturated model and test all the
pairwise conditional independence statements, using test statistics for sin-
gle edge exclusion. The likelihood ratio test (LRT) is the most commonly
used test; alternatives include the Wald and the efficient score tests. Under
the null hypothesis, each test statistic is asymptotically chi-squared dis-
tributed. In the two variables case signed square-root versions of the test
statistics can also be used. Under the null, these are asymptotically stan-
dard normal distributed. The test statistics for single edge exclusion from
a saturated GLL model are functions of many parameters (representing all
higher order interaction terms), the number of parameters depending on
the number of variables being considered. Hence, in general, the p variables
case is complicated. For binary variables, Salgueiro (2002) presented closed
form expressions for the test statistics, for p = 2 and 3, as a function of cell
probabilities. Below only the non-signed version of the LRT statistics are
considered.

In the two binary variables case H0 : λ12 = 0 ⇔ ψ12 = 1 and the LRT
statistic for the exclusion of edge (1,2) from the saturated GLL model is

L12 = 2 n∅
∑

x1,x2∈{0,1}
π̂12(x1, x2) log

[
π̂12(x1, x2)

{π̂1(x1) π̂2(x2)}
]
. (1)

With three binary variables, the LRT statistic for excluding edge (i, j) from
the saturated GLL model (i �= j, from 1 to 3), with H0 : λij = λijk = 0 ⇔
ψij·k=0 = ψij·k=1 = 1, is

Lij = 2n∅
∑

xi,xj,xk∈{0,1}
π̂ijk(xi, xj , xk) log

{
π̂ijk(xi, xj , xk) π̂k(xk)
π̂ik(xi, xk) π̂jk(xj , xk)

}
. (2)

3 Power of Single Edge Exclusion Tests

The test statistics for single edge exclusion from the saturated GLL model
presented in Section 2 can be written as a function of the λ-terms of the
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log-linear expansion. Let θ = vec(λ) be the vector of parameters of interest.
Its m.l.e., based on n∅ observations, is θ̂ = vec(λ̂) and has an asymptotic
normal distribution with mean θ and variance given by the inverse of the
information matrix.
Salgueiro(2002) used the delta method to derive asymptotic normal approx-
imations to the distributions of the test statistics for single edge exclusion
from the saturated GLL model, under the alternative that the saturated
model holds. As a result, Lij is asymptotically normal distributed. For
p = 2 and 3, respectively, the mean AE[Lij ] is given by (1) and (2), with
estimators replaced by parameters, and the variance var(Lij) by

var(L12) = 4n∅
∑

x1,x2∈{0,1}
π12(x1, x2)log

2

(
π12(x1, x2)

π1(x1) π2(x2)

)
− 1

n∅
(AE[L12])

2,

var(Lij) = 4 n∅
∑

xi,xj ,xk∈{0,1}
πijk(xi, xj , xk) log2

(
πijk(xi, xj , xk) πk(xk)

πik(xi, xk) πjk(xj, xk)

)
− 1

n∅
(AE[Lij ])

2.

For p = 3,
cov(Lij , Lik) = − 1

n∅
(AE[Lij ]) (AE[Lik]) + 4 n∅

∑[
πijk(xi, xj , xk)log

(
πijk(xi, xj , xk)πk(xk)

πik(xi, xk)πjk(xj , xk)

)
log

(
πijk(xi, xj , xk)πj(xj)

πij(xi, xj)πkj(xk, xj)

)]
Simulation results show the proposed approximations hold for large sample
sizes and odds ratio values not close to independence.
The asymptotic normal approximations presented above can be used to
estimate the power of a backwards elimination model selection procedure
for selecting the saturated GLL model. In this context we define power of
a model selection procedure as the probability of selecting the true model
given the specified true model parameters. In the cross-tabulation of three
binary variables there are eight cell probabilities that add up to one. Hence,
the parameter space is seven dimensional. In the two binary variables case
the parameter space has dimension three. Let ξ denote the vector of the
chosen parameters, either cell probabilities or combinations of conditional
odds ratios and marginal probabilities that uniquely define the contingency
table under analysis, depending on the information available. The power of
a size α LRT for excluding edge (1,2) from the saturated GLL model with
two binary variables can be estimated as

P
[
L12 > χ2

1;1−α | ξ] a= P

[
Z >

χ2
1;1−α −AE[L12]√

var(L12)

]
,

where Z ∼ N (0, 1) and χ2
1;1−α is the upper α quantile of a chi-squared

distribution on one degree of freedom.
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In the three binary variables case there are three LRT statistics (L12, L13

and L23) for single edge exclusion from the saturated GLL model. The
power of selecting the saturated model is the probability that each of these
test statistics is greater than χ2

2;1−α, given the values of the chosen para-
meters in ξ. Power can be approximated with a three-dimensional integral:

P
[
min(L12, L13, L23) > χ2

2;1−α | ξ] a= ∫
D

φ3 (μ, Σ) dL12 dL13 dL23,

where D = {χ2
2;1−α,∞}3 and φ3(μ,Σ) is a trivariate normal density with

mean vector μ and variance matrix Σ, whose elements are given by the
formulae for means, variances and covariances, presented above.
Simulation results were also used to estimate power and to assess the quality
of the normal approximations proposed. The main conclusions are that
the probability of selecting the saturated model is very sensitive to the
total sample size, to the values of the (conditional) odds ratios and to
the balance of the contingency tables. The normal approximations to the
power of the non signed LRT statistic perform well for large sample sizes
and (conditional) odds ratio values not close to one.

4 An Example: University Admissions

Data on graduate admissions to the University of California at Berkeley
in 1973, presented by Agresti (2002, page 63), are used to illustrate power
calculations. In particular, the associations between admission (A: y or
n), gender (G: m or f) and department (D: 3 or 4) is investigated. For
these data, ψ̂GA = 1.02 and, conditioning on D, ψ̂GA·D=3 = 1.13 and
ψ̂GA·D=4 = 0.92. For n∅ = 1710, the LRT statistic for H0 : G⊥⊥A|D is
1.05, with a p-value of 0.59, and a backwards elimination model selection
procedure chooses model GD,A (α = 0.05). Hence, there is no evidence of
gender discrimination in the admission process for departments 3 and 4.
To investigate the power associated with this LRT and this model selection
procedure, values of ψ̂GA·D=3 and ψ̂GA·D=4 more extreme than the observed
are considered. The five remaining parameters in ξ are selected to be the
marginal probability of D = 3, πD(3), the probabilities of G = m given
D = d, πG·D(m, d), and the probabilities of A = y given D = d, πA·D(y, d).
These five parameters are set close to their observed values: πD(3) = 0.54,
πG·D(m, 3) = 0.35, πG·D(m, 4) = 0.53 and πA·D(y, 3) = πA·D(y, 4) = 0.35.
For the LRT of H0 : G⊥⊥A|D, the power is greater than 0.62 (0.88) if one
(both) ψ̂GA·D=3 and ψ̂GA·D=4 is (are) outside (0.67, 1.50). Hence, a sample
of 1710 has enough power to detect a substantively interesting (conditional)
association between G and A. For the power of selecting the saturated
model the picture is less clear, as can be seen from Table 1. If one of the
conditional odds ratios is less than 0.67 and the other is greater than 1.50
then the power is greater than 0.87. However, if they are both less than
0.67 or both greater than 1.50 then the power can be much lower. This is
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TABLE 1. Power of selecting the saturated model for various values of ψ̂GA·D=3

(in rows) and ψ̂GA·D=4 (in columns); n∅ = 1710.

0.25 0.33 0.50 0.67 0.90 1.10 1.50 2.00 3.00 4.00

0.25 0.45 0.49 0.82 0.96 0.99 0.99 0.99 0.99 1.00 1.00
0.33 0.50 0.26 0.49 0.81 0.96 0.99 0.99 0.99 0.99 1.00
0.50 0.83 0.50 0.03 0.16 0.64 0.85 0.98 0.99 0.99 0.99
0.67 0.96 0.82 0.16 0.00 0.10 0.45 0.87 0.98 0.99 0.99
0.90 0.99 0.96 0.65 0.10 0.00 0.00 0.47 0.86 0.99 0.99
1.10 0.99 0.99 0.86 0.46 0.00 0.00 0.11 0.66 0.97 0.99
1.50 0.99 0.99 0.98 0.88 0.48 0.12 0.00 0.17 0.82 0.96
2.00 0.99 0.99 0.99 0.98 0.87 0.68 0.18 0.03 0.50 0.85
3.00 1.00 0.99 0.99 0.99 0.99 0.97 0.83 0.52 0.29 0.54
4.00 1.00 1.00 0.99 0.99 0.99 0.99 0.97 0.86 0.56 0.51

because for such values of ψ̂GA·D and the remaining values of ξ set close to
their observed values, the induced conditional association between A and
D is small and hence the corresponding edge is not required in the model.
The results in Table 1 highlight the need for care when specifying the values
in ξ to ensure that power calculations relevant to the hypotheses of interest
are being performed.

5 Conclusions

Presented in this paper are methods for estimating the power of single edge
exclusion tests and a backwards elimination model selection procedure for a
GLL model with two or three binary variables. The methodology presented
in this paper can be used for GLL models with four or more binary vari-
ables. However, there is currently no straightforward way of generalising
the formulae presented, due to the difficulty of handling the parameterisa-
tion. In contrast, in the graphical Gaussian framework generalisations are
straightforward, as shown by Salgueiro, Smith and McDonald (2003).
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Abstract: Web personalization has become an important part of e-commerce.
In this paper a solution to the problem of identification of dense clusters in the
analysis of Web Access Logs is presented by considering a modification of an
algorithm known from social network analysis. The procedure is illustrated by
analyzing a portal for children.
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1 Introduction

The general availability of an ever increasing amount of data coming from
the World Wide Web (WWW) is a reality now. Companies which provide
their products through the Internet require tools to study and profile their
customers in terms of browsing behaviour and personal information. Their
aim is gathering useful information and building up business intelligence
for the improvement of their web sites and systems (see e.g. Mobasher et.
al. (2000), Srivastava et. al. (2000)).
Web Mining is the extraction of interesting and potentially useful patterns
and implicit information from artefacts or activity related to the WWW.
There are roughly three knowledge discovery domains that pertain to Web
Mining: Web Content Mining, Web Structure Mining and Web Usage Min-
ing. The first is the process of extracting knowledge from the content of
documents or their descriptions. The second is the process of inferring
knowledge from the web organisation and from links between references
and referents in the web. The last, also known as Web Log Mining, is the
process of extracting interesting patterns in web access logs.
Let us consider a finite set of units (the I.P. addresses) on which one re-
lational variable has been measured (having visited at least m pages in
common); this forms a network N (set of units and relation(s) defined over
it) (see Wasserman et al (1994)).
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In order to analyze such a network one might consider the results developed
in two classical social network theories: the small-world theory (Kochenet
et al (1989)) and the peer influence theory (Friedkin (1998)). The first gives
evidence that there is a high degree of local clustering in the networks; so
an approach for studying the structure of large networks would involve the
identification of local clusters and the analysis of the relations within and
between clusters. The second theory indicates that, based on an endogenous
influence process, close units tend to converge on similar attitudes and
thus clusters in a small-world network should be similar along multiple
dimensions.
In this paper we present a solution to the problem of identification of dense
clusters in the analysis of web access logs, by considering a modification
of an algorithm known from social network analysis (see Moody (2001)).
The advantage of this approach is a reduced and more flexible structure
on which different techniques such as deterministic or stochastic block-
modelling , that is a structure which allows us to describe and to interpret
a dataset through a block structure. In that way a simplified representation
of the existing ties and relations can be obtained (see Schoier (2002)).
Moreover a distinctive structure for the degree of similarity within and
between clusters is yielded.

2 On the Individualization of Dense Clusters

We exemplify our approach on the log files of the Italian web site
www.girotondo.com, a portal for children. There are seven different
sessions named Bacheca, Corso, Favolando, Giochi, Links, News, Per-
come, comprising 362 jhtml pages. The period of observation is from the
29/11/2000 to the 18/01/2001. The original file contained 300000 records.
Records of log files containing information about any object (with .gif,
.jpeg., etc. extension) that is not its internet address are eliminated. In
this way we obtain a file indicating the internet address of each visited
page. We then proceed with a re-codification of the web pages by trans-
forming their URLs into numbers for easier handling (results in 117 pages).
After pre-processing we end up with a file of 10000 records.
The data considered consist of a finite set V of units or vertices (the I.P.
addresses) on which one relational variable R (having visited at least m =
35 pages in common) is measured. This forms a network N (set of units
and relation(s) defined over it).
The network may be represented as a finite graph G(V,R) where V repre-
sents the set of vertices and R the set of edges composed of pairs of vertices,
an actor i is adjacent to actor j if (vi, vj) ∈ R2 . The set of all nodes adja-
cent to node i is the unit’s neighbourhood. A path in the network is defined
as an alternating sequence of distinct nodes and edges which begin and end
with nodes and in which each edge is incident with its preceding and fol-
lowing nodes. Vertex i can reach vertex j if there is a path in the graph
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starting with i and ending with j. The length of the path from i to j is
given by the number of edges in the path. A network is connected if there
is a path of connections between all the pairs of vertices. When the ties
are concentrated within subgraphs (that is a graph of which graph vertices
and graph edges form subsets of the graph vertices and graph edges of the
given graph G) the network is clustered. The level of clustering relates to
the fact how uniformly the ties are distributed throughout the network.
A large network requires to individualize local clusters first and then to
analyze the internal structures of the clusters or the relations among these
clusters. This is exactly what we do in this paper.
Considering our Web data we have a matrix X (10000× 117) which repre-
sents one 2-mode network (users × pages). We refer to Table 1.
A 1-mode network (users × users) can be obtained via the free program
UCINET (Borgatti et al, 1999). The result can be seen in Table 2. The
thus obtained matrix has been transformed into a dichotomous matrix of
elements 1 denoting cases where the number of visited pages in common
exceeds the number 35, and 0 otherwise. This refers to Table 3.
At this point the network is reduced to a set of two position variables col-
lected in the matrix Y (10000 × 2) using a modified version of the recursive
neighbourhood mean algorithm (RNM) proposed by Moody (2001) written
in SAS language, the modification consists in the calculation of the mean
which is weighting (see step 3). It can be described as follows:
The algorithm of the modified version of RNM is

1. Assign to each I.P. address in the network an uniform random number
between 0 and 1 on each of two variables Y

2. Repeat n times

3. Reset each I.P. address value in Y by weighting according to the
number of connections (i.e. the number of shared pages viewed by
two users)

This procedure requires in the input, the list of adjacencies, that is the
couples of vertices among which exists a relation. See Table 4 At this point
the RNM algorithm has been applied. The output of the RNM algorithm
is the Y matrix, displayed in Table 5.
Finally the matrix Y is used as input for the cluster analysis. On the two
positional variables which formed the Y matrix Ward’s minimum variance
cluster analysis is carried out. In such a way we obtain a clear clustering
that reveals a structure of three clusters (see Moody, 2001, p.268) for the
choice of the number of clusters) among the units belonging to the net-
work. These clusters can be used in a faster cluster analysis programs (e.g.
Wasserman and Faust, 1994) where techniques like blockmodelling may be
applied.
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TABLE 1. Log files matrix.

I.P. address PAG. 1 PAG. 2
138.222.202.11 1 0
151.15.169.130 1 0
151.2.15.154 0 0

TABLE 2. Matrix with the common pages.

I.P. address 151.20.111.0 151.20.143.184
151.20.111.0 - 37
151.20.143.184 37 -
151.20.9.10 37 37

TABLE 3. Adjacency matrix.

I.P. address 151.20.111.0 151.20.143.184
151.20.111.0 - 1
151.20.143.184 1 -
151.20.9.10 1 1

The first cluster, the most numerous one, is formed by the I.P. addresses
which have a high frequency of relations, the second one by the I.P. ad-
dresses which are not so highly related, and finally the last one representing
very few relations. In order to visualize the network the program PAJEK
(Batagelj and Mrvar, 2002) has been applied.

3 Conclusions

In this paper we have presented a solution to the problem of identification
of dense clusters in the analysis of web access logs, by considering a modi-
fication of an algorithm known from social network analysis. Following the
cluster analysis eventually block-modelling techniques can be applied. In
doing so we have obtained an useful tool to study and profile customers in
terms of their browsing behaviour and personal information. This allows
us to built up useful business intelligence for the improvement of web sites
and the development of systems when data sets are large or even huge.
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TABLE 4. Input of the RNM procedure.

vertices vertices
1 3
1 4
1 5
.. ..

TABLE 5. Output of the RNM procedure.

I.P. address values of the Y matrix
151.20.111.0 0.48816 0.42557
151.20.143.184 0.48815 0.42557
151.20.9.10 0.48815 0.42557
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dichotomic partitioning of regressor variables space.The partitions that provide
for best separation of observations with different values of dependent variable are
searched inside apriori defined families. The problems of statistical verification
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1 Introduction

Suppose that we study dependence of some variable ζ on regressor vari-
ables X1, ..., Xn and our goal is to receive full and valid description of this
dependence by related empirical data set. Let vector of regressor variables
belongs to some subregion Mx of the multidimensional space �n. The vari-
ous types of dependent variable are admissible. So ζ may be binary variable
that is indicator of some class of objects, ζ may be vector of continuous
variables and at last ζ may be survival curve. We consider that dependent
variable satisfies two conditions. The first one is existence of procedure cal-
culating estimates of ζ mean by related data sets. The estimate of ζ by
data set S̃ will be referred to as ζ̂(S̃). For example ζ̂(S̃) is the arithmetic
mean by all values from S̃ in simple case when ζ is number or ζ̂(S̃) may be
Kaplan-Mayer estimate in case when ζ is survival curve. Letζ̂ belongs to
some set Mζ . The second condition is existence of distance function ρ that
is defined at Cartesian product Mζ

⊗
Mζ and has following properties:

a)ρ(ζ̂′, ζ̂”) ≥ 0 , b)ρ(ζ̂′, ζ̂”) = ρ(ζ̂ , ζ̂′), c)ρ(ζ̂′, ζ̂′) = 0 ∀ζ′, ζ” ∈ Mζ.

2 Multistage Dichotomies

Suppose that we use the empirical data set S̃0 = {s1 = (ζ̄1,x1), ..., sm =
(ζ̄m,xm)} where xj ∈ Mx and ζ̄j is the part of object sj that is used
to calculate the estimate of ζ. For example in case of survival analysis

397



398 Multistage Partitioning

ζ̄j = (αj , tj) where tj is the time of the last observation and αj indicates
if object exists at the time moment tj . We search the optimal description
of dependence as the set Q̃ of subregions from Mx that has the follow-
ing property. Let q ∈ Q̃ then it has such neighbor subregion q′ that the
difference |M(ζ | q) − M(ζ | q′)| is large enough to be discovered by S̃0.
To construct the optimal set Q̃ we suggest to use multistage partitioning
technique. At the first stage the set of optimal dichotomic partitions of Mx

is constructed by different independent variables and pairs of variables us-
ing families of partitions of different complexity levels. Then the statistical
validity of the found dichotomies is evaluated and the first stage output
set consisting of l1 dichotomies is formed: Q̃1 = {(Q1, Q

c
1), ..., (Ql1 , Q

c
l1

)},
where Qi ∪ Qci . At the second step optimal dichotomic partitions of sub-
regions {Q1, Q

c
1, ..., Ql1 , Q

c
l1
}are constructed by correspondent subsets of

S̃0 : {Q1 ∩ S̃0, Q
c
1 ∩ S̃0, ..., Ql1 ∩ S̃0, Q

c
l1

∩ S̃0}. The construction is finished
at the kth step when output set of statistically valid dichotomies is empty.

3 Partitions Families

The partition family is defined as the set of partitions with the limited
number of elements that are constructed by the same algorithm. The unidi-
mensional and two-dimensional families are considered. The unidimensional
families includes partitions of the allowable intervals of single variables.
The simplest Family I includes all partitions with two elements (subre-
gions) that are divided by one boundary point. The more complex Family
II includes all partitions with no more than three elements that are divided
by two boundary points. The two-dimensional families include partitions
of two-dimensional allowable areas of pairs of variables. The simplest two-
dimensional Family III includes all partitions with no more than four ele-
ments that are divided by one boundary point at each axis. At last the most
complex Family IV includes no more than nine elements that are divided by
no more than two boundary points at each axis. The use of partitions fam-
ilies with several levels of complexity has the following explanation. Some
more complicated regularities cannot be discovered with the help of simple
partitions. On the other hand the use of complex partitions families when
regularities are actually simple leads to distortions of boundary points and
to decrease of statistical validity due to overfitting effects. The use of more
complicated models from families II-IV leads to arising of great variety
of statistically valid regularities that actually are induced by more simple
ones. We suggest to eliminate superfluous regularities by eliminating from
output set models that are reduced to several more simple dichotomies and
at least one of these dichotomies has the same or greater level of statistical
validity.
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4 Optimal Dichotomic Partitions

An optimal dichotomic partition may be constructed by single variable
using unidimensional partitions families or by pair of variables using
2-dimensional partitions families. Suppose that some partition R con-

sists of subregions q1, ..., qr where
r⋃
i=1

qr = Mx. The partition induces

the partition of data set on subsets S̃1, ..., S̃r, where subset S̃iincludes
all objects from S̃0 with the vector of independent variables belong-
ing to qi . The value of partition quality functional for is calculated as
F (S̃0, R) = maxi∈{1,...,r}{ρ[ζ̂(S̃i), (S̃0)]}, where mi =| S̃i |. Suppose that
the maximal value of partition quality functional is achieved on partition
R0 = {q01, ..., q0r} and index i equal i0. Then the optimal dichotomic parti-
tion of subregion Mx is formed as pair of subregions {q0i0 ,Mx \ q0i0} .

5 Validation

The main problem in discussed partitioning technique is statistical valida-
tion of discovered regularities. The simple solution exists when the initial
data set is large enough to form besides training set S̃0 also the control
set S̃c. You can find the optimal partition by S̃0 and to estimate statistical
validity using S̃c with the help of standard statistical tests. But we cannot
use the same data set for the search of optimal partitions and for the es-
timation of statistical validity. So in case of relatively small size of initial
data set we suggest to use the technique based on permutations to test
the null hypothesis H0 about independence of ζ on variables X1, ..., Xn.
The probability that the data set may casually arise when H0 is true with
the quality functional meaning at optimal partition exceeding such optimal
functional meaning for true data set may be used as the measure of statis-
tical validity (p-value) of regularity discovered by . Let f̃ = {f1, ..., fm} is
permutation of numbers from the set {1, ...,m}. The artificial training set
may be constructed from S̃0 as S̃f = {s1 = (ζ̄f1 ,x1), ...sm = (ζ̄fm ,xm)}.
In case when H0 is true and objects to data sets are selected from the
same distribution and independently the probability of S̃0 coincides with
the probability of S̃f . So to estimate the p-value it is sufficient to calculate
the ratio of permutations that allow receiving optimal quality functional
value exceeding optimal value at S̃0 to the full number of permutations.

6 Realization

The main drawback of suggested approach is too great amount of calcu-
lating that is necessary to find all optimal partitions and to estimate their
statistical validity especially when permutation test is used. Experiments
have shown that the variant of discussed approach based on interactive
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mode may be successfully implemented even at common PC with the Pen-
tium type single processor. Such realization of the approach includes the
search of all optimal dichotomies using partitions families I-III. The user
selects the most interesting dichotomies from the found set and estimates
their statistical validity with the help of permutation test or some other
technique if such possibility exists. Significantly more complete version of
the approach is realized at the parallel system. The use of parallel com-
puting allows to find all dichotomies using partitions families I-IV together
with evaluation of their statistical validity.As it was noted previously in
section Partitions families the use of complicated models leads to aris-
ing to too great number of revealed regularities. The following approach
to eliminating of superfluous regularities was suggested. The significance
levels of complicated models from families II-IV are compared with signifi-
cance of more simple regularities that are found for the same variables. We
consider that regularity is reduced to more simple one and exclude it from
the output list if its significance level is worse than significance of at least
one simple regularity.

7 Experiments

The developed approach was successfully used in several tasks of med-
ical data analysis (Senko et al, 2001). However the correct evaluation of
its effectiveness is possible in case when true probability distributions
are known. So the Monte-Carlo simulation was used to test the perfor-
mance of optimal partitioning technique. We consider the scenario when
dependent variable ζ belongs to the set {0, 1} with equal probabilities of
0 and 1. Regressor variables X1, ..., Xn are independent and are distrib-
uted uniformly at cut [0,1], when ζ = 1. In case when ζ = 0 some of
regressor variables are distributed uniformly inside subregions of multi-
dimensional cube [0, 1]n that can be described by dichotomic partitions
from models I-III. The 10 artificial data sets with m = 100 observations
n = 10 regressor variables were received subsequently with the help of the
same random numbers generator.Variables X1 − X8 were mutually inde-
pendent. Besides variables X1 −X5 were distributed uniformly at cut[0,1]
for both values of ζ. So ζ did not depend on variables from this group.
Probability distributions of variables X6 and X7 were described by uni-
dimensional models with one boundary point corresponding to family I:
P(X6 ∈ [0, 0.5] | ζ = 0) = 0.95, P(X6 ∈ (0.5, 1.0] | ζ = 0) = 0.05,
P(X6 ∈ [0, 0.3] | ζ = 0) = 0.7, P(X6 ∈ (0.3, 1.0] | ζ = 0) = 0.3.
Probability distribution of variables X8 were described by unidimensional
model with two boundary points: P(X8 ∈ [0.3, 0.7] | ζ = 0) = 0.75,
P(X8 < 0.3 ∨ X8 > 0.7 | ζ = 0) = 0.25. Joint distribution of vari-
ables X9 and X10 was described by 2-dimensional model with one bound-
ary points for each variable: P(X9 < 0.4&X10 < 0.7 | ζ = 0) = 0.6,
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P(X9 > 0.4 ∨ X10 > 0.7 | ζ = 0) = 0.4. The statistical validity of re-
vealed regularities was evaluated with the help of permutation test that is
described in section Validation. Only regularities with validity estimated
at the significance level p < 0.01 were considered. The unidimensional one
boundary regularity related to variableX6 was revealed by selection of opti-
mal model from family I for all 10 generated data sets. The same regularity
related to variableX7 was revealed for 8 data sets only. The unidimensional
regularity with two boundary point related to variable X8 was revealed by
selection of optimal model from family II for 6 generated data sets.Only
two regularities from 10 were included to output list of 2-dimensional regu-
larities related to variable X9 and X10. These regularities were revealed by
selection of optimal model from family III. The cause of the poor results
in case of 2-dimensional regularities may be the relatively low difference
(0.6/0.4) of ζ conditional means in subregions of regressor variables space.
The only 3 regularities related to variables from group X1 − X5 were se-
lected. The two of them were unidimensional with two boundary points
and one was 2-dimensional with one boundary at each variable. The exper-
iments demonstrated that approach allows to reveal regularities but large
scale investigations are necessary to evaluate the sets of data analysis tasks
where it is effective.
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Abstract: The issue of surrogate endpoints in randomized clinical trials arises
whenever the time needed to observe the primary endpoint is very long or if the
primary endpoint is very expensive to observe. In theses cases, one may assess the
treatment effect on a surrogate endpoint instead on the primary endpoint and
reduce the duration or price of the trial. In this paper we use hierarchical Bayesian
models to evaluate a potential surrogate endpoint in multiple randomized clinical
trials. The methods are illustrated using data from three randomized clinical
trials.
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In randomized clinical trials, the main interest is to assess the treatment
(Z) effect on the primary endpoint (T ). However, in some cases, the time
needed to observe the endpoint of interest can be long (for example, if the
primary endpoint is time to event) or very expensive. In these cases, one
might benefit from using a surrogate endpoint(S), that would allow to de-
termine the treatment effect quicker or in a less expensive way.
In his landmark paper, Prentice (1989) proposed a formal definition of a
surrogate endpoint and suggested operational criteria for its validation in
the case of a single trial and single surrogate. According to the definition, a
surrogate endpoint is a variable for which a test of the null hypothesis of no
treatment effect is also a valid test of the corresponding null hypothesis for
the true endpoint. In view of some limitations of Prentice’s criteria, Freed-
man, Graubard, and Schatzkin (1992) proposed to use the proportion of
treatment effect explained by the surrogate endpoint as a measure of the va-
lidity of a potential surrogate. Several authors have pointed towards draw-
backs of the measure. For instance, De Gruttola et al. (1997) and Buyse
and Molenberghs (1998) have shown that the proportion of treatment ef-
fect explained by the surrogate is not truly a proportion, since it is not
restricted to the [0, 1] interval. As an alternative, Buyse and Molenberghs
(1998) proposed to replace the proportion of treatment effect explained by
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the surrogate by two measures closely related to it: the relative effect and
the adjusted association. The first one, defined at the population level, is
the ratio of the overall treatment effect on the true endpoint over that on
the surrogate endpoint. The second one is the individual-level association
between both endpoints, after accounting for the effect of treatment.
In this paper we focus on the meta-analytic approach, that is, the situation
when a potential surrogate is evaluated using data from multiple trials. We
further assume that the distribution of the true and surrogate endpoint
come from the exponential family and that true treatment effects on the
endpoints are given by

g{E(S|Z = 1)} − g{E(S|Z = 0)} = α,
g{E(T |Z = 1)} − g{E(T |Z = 0)} = β,

(1)

where g() denotes an appropriate link function. Within the meta-analytic
approach the first goal is to establish the association between β and α
to asses the quality of the surrogate at the trial level. To this aim, the
precision of the prediction of the treatment effect on the true endpoint
form the effect on the surrogate, should be assessed. This can be achieved
by formulating a model for the joint distribution of treatment effects [α, β],
or a model of the conditional distribution [β|α]. Note that a joint model
[α, β] imposes a conditional model for [β|α] but one can specify a model
for [β|α] without specifying the joint model. The second goal is to assess
the quality of individual level surrogacy, i.e., the precision of the prediction
of the true endpoint from the surrogate for an individual patient. This can
be evaluated considering the association between the two endpoints in the
joint distribution o f! S and T given Z, [T, S, |Z].
The evaluation of a surrogate endpoint within the meta-analytic setting
has been discussed, e.g., by Daniels and Hughes (1997) and Buyse et al
(2000). Both papers considered a multiple trial setting with normally
distributed true and surrogate endpoints and proposed a two-stage
model for the evaluation of the potential surrogate. Daniels and Hughes
(1997) assumed that only summary data from the trials were available.
They used a hierarchical Bayesian model for the estimated treatment
effects [α̂, β̂], in which the joint distribution of the estimated effects
was specified at the first stage and the conditional distribution of [β|α]
was specified in the second stage. Buyse et al (2000) assumed the
availability of individual-patient data and formulated a two-stage model,
with the joint distribution [T, S|Z] specified at the first stage and the
joint distribution of the treatment effects [β, α] specified at the second
s! tage. The advantage of the model proposed by Daniels and Hughes
(1997) is that one does not need to specify the joint distribution of T
and S. However, the price for this advantage is that the quality of the
individual level surrogacy cannot be assessed, what is possible in the
approach developed by Buyse et al (2000). In this paper we consider the
Bayesian approach under the assumption that individual data are available.
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We consider the following linear predictors for T and S{
E(Sij |Zij) = μSi + αiZij ,
E(Tij |Zij) = μTi + βiZij .

(2)

Here αi and βi are trial-specific treatment effects, μSi and μTi are trial-
specific intercepts and Sij and Tij are the surrogate and the true endpoints,
respectively, for subject j (j = 1, 2, . . . , ni) in trial i (i = i, 2, . . . , N). We
further assume that the two endpoints are normally distributed. Thus,
at the first stage of the hierarchical model we specify the following joint
distribution of Tij and Sij :(

Sij
Tij

)
∼ N

((
μS +mSi + (α+ ai)Zij
μT +mTi + (β + bi)Zij

)
,Σ
)
, (3)

where Σ is given by

Σ =
(
σ
SS

σ
ST

σ
ST

σ
TT

)
. (4)

At the second stage of the model the priors for the ‘fixed’ effects are spec-
ified:

μS ∼ N(0, θ2μS ),
μT ∼ N(0, θ2μT ),
α ∼ N(0, τ2

α),
β ∼ N(0, τ2

α).

(5)

For the precision parameters in (5) (flat) hyperprior models were specified
using Gamma distributions, e.g., θ−2

μS ∼ gamma(0.001, 0.001), etc. Similar
to the model proposed by Daniels and Hughes (1997) we need to specify a
prior distribution to model the association between the treatment effects
of the two endpoints. Note that, while Daniels and Hughes (1997) based
their model on [β|α], Buyse et al. (2000) used the joint distribution of the
random effects [mSi,mTi, ai, bi] in order to evaluate trial level surrogacy.
In the current model we follow the latter approach and specify the prior
model for the joint distribution of the random effects to be

⎛⎜⎜⎝
mSi

mTi

ai
bi

⎞⎟⎟⎠ ∼ N

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0
0

⎞⎟⎟⎠ , D

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
d
SS

d
ST

d
Sa

d
Sb

d
ST

d
TT

d
Ta

d
Tb

d
Sa

d
Ta

d
aa

d
ab

d
Sb

d
Tb

d
ab

d
bb

⎞⎟⎟⎠ . (6)

As the hyperprior distribution for the covariance matrices in (3)
and (6), a Wishart distribution is assumed:

D−1 ∼ Wishart(RD) and Σ−1 ∼ Wishart(RΣ). (7)
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In order to assess trial-level surrogacy, Buyse et al. (2000) proposed to use
the coefficient of determination deifned as:

R2
trial(f) =

(
d
Sb

d
ab

)T (
d
SS

d
Sa

d
Sa

d
aa

)−1(
d
Sb

d
ab

)
d
bb

. (8)

Similarly, to measure individual-level surrogacy Buyse et al. (2000) pro-
posed to use the coefficient of determination given by

R2
indiv =

σ2
ST

σ
SS
σ
TT

. (9)

Indeed, R2
trial(f) = 1 and R2

indiv = 1 indicate perfect surrogacy at trial
and individual level, respectively.

To avoid computational problems, Buyse et al (2000) proposed a reduced
model in which the linear predictors of S and T do not include trial-specific
intercepts. In the hierarchical model, the likelihood at the first stage of the
model can be specified by omitting the trial specific random intercepts from
(3). This leads to specify that(

Sij
Tij

)
∼ N

((
μS + (α + ai)Zij
μT + (β + bi)Zij

)
,Σ
)
, (10)

At the second stage of the model, the prior distribution the random effects,
(ai, bi), was assumed to be bivariate normal with mean 0 and covariance
matrix D. Note that the covariance matrix D is the 2 × 2 right bottom
sub matrix in (6) and is assumed to follow a Wishart distribution, D−1 ∼
Wishart(RD). Other prior and hyperprior models remain the same as in
the full model. For the reduced model the coefficient of determination (8),
measuring the trial-level surrogacy, reduces to R2

trial(r) = d2
ab
/d

aa
d
bb

.
For illustration, we consider data from four randomized multicenter trials
in advanced ovarian cancer, previously analyzed by Buyse et al (2000). The
data were collected for a purpose of a meta-analysis considering the com-
parison of cyclosphosphamide plus cisplatin with cyclosphosphamide plus
adriamycin plus cisplatin (Ovarian Cancer Meta-Analysis Project, 1991).
The true endpoint Tij is defined as Log(survival time in years) and the sur-
rogate endpoint Sij is taken as Log(progression-free survival time in years).
We used center as the unit of analysis given that the number of trials is
insufficient to applied meta-analytic methods. A total of 50 centers were
available for the analysis, with the number of patients varying 2 to 274 per
center.
We fitted the hierarchical Bayesian models (3)–(7) and (10) using MCMC
simulation with 9000 iteration following a burn-in period of 1000 iterations.
Table 1 presents the maximum likelihood estimates for both R2

trial(f) and
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TABLE 1. R2
trial(f) and R2

indiv. The full fixed effects model corresponds to the
model in Eq. (2), while the reduced fixed effects model corresponds to the model
in Eq. (2) without trial-specific intercepts. The results for the fixed effects model
were obtained by Buyse et al (2000). R2

trial ≡ R2
trial(f) and R2

trial ≡ R2
trial(r) for

the full and the reduced model, respectively.

MODEL Trial level Individual level
R2
trial R2

indiv

Full (Fixed) 0.940 (0.017) 0.886 (0.0006)
Full(Bayesian) 0.938 (0.038) 0.885 (0.0006)
Reduced (Fixed) 0.928 (0.020) 0.888 (0.0006)
Reduced (Bayesian) 0.925 (0.048) 0.885 (0.0006)

R2
indiv obtained from the fixed effects model and reported in Buyse et

al (2000), as well as the posterior means obtained from the corresponding
Bayesian model. The point estimates are comparable, while the standard
errors of R2

trial(f) are greater for the hierarchical Bayesian model. This re-
sults in credible intervals for the posterior means which are wider than the
confidence intervals for the ML estimates.
The results presented in this work suggest that the use of the hierarchi-
cal Bayesian modelling for the meta-analytic approach to the validation of
surrogate endpoints is completely feasible.
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Abstract:
Customer analysis is the study of customers and their behaviors. Nowadays, data
mining is a frequently adopted technique to conduct customer analysis, so that the
companies can discover valuable information among their customer data, such as
the segmentation of the customers. Clustering is one of data mining techniques
which supports the customer segmentation. It partitions the observations into
disjoint groups such that the profiles of objects in the same groups are relatively
homogenous, whereas the profiles of objects in different groups are relatively
heterogeneous.
This paper presents New Condorcet Criterion, a non-hierarchical clustering tech-
nique. This technique is particularly work well for a data set that consists of
categorical data. We apply the method to analyze the customer behaviors of
XploRe statistical software.

Keywords: Customer analysis; Data mining; Clustering technique.

1 Introduction

The sensational developments in the field of information technology in the
last ten years have eased a lot of complications that were related to the
collection of bulky data. It has created the necessity for automated infor-
mation discovery from data, which has lead to a growth of the promising
field called data mining (Fayyad et al, 1996).
Data mining tries to discover patterns and relationships hidden in the data
using suitable statistical models and techniques (Chen, Han and Yu, 1996).
Therefore, data mining may yield profitable results for almost every organi-
zation that collects data on its customers, markets, products or processes.
Clustering is considered as one of data mining tools. According to the
research held by KDD Nuggets (http://www.kdnuggets.com), clustering
is the most frequent method applied in data mining. Clustering is aimed
to discover a group and to identify interesting distributions and patterns
within the data.

409
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This paper presents New Condorcet Criterion, a non-hierarchical clustering
method. This method is particularly work well for a data set that consists
of categorical data. We apply the method to analyze the customer be-
haviors of XploRe statistical software. Based on the characteristics of the
cluster members, we outline how the result of this analysis may be used for
marketing strategy of XploRe.
The rest of the paper is organized as follows. The next section reviews the
methodology of Condorcet Criterion. The third section presents the data
and mining technology. In the fourth part, the result and discussions are
presented. Final section contains some concluding remarks.

2 Condorcet Criterion

The clustering algorithm used in this paper is based on the New Condorcet
Criterion (NCC) of Michaud (1997). It is inspired by Condorcet (1743-
1794)’s work on finding a desirable way to aggregate votes (rankings) in an
election (Michaud, 87).
The NCC is defined for categorical attributes. The distance between at-
tribute values as 1 if two elements have different values and 0 otherwise.
The distance between two elements can be viewed as a modified hamming
distance, that is, the number of attributes for which the two elements i and
j is the number of ”judges” who ”disagree” about whether elements i and
j should be in the same class (and m− dij is the number of agreements).
The NCC combines intraclass agreement as well as interclass disagreement
such that ”good” partitions, i.e. those with small intraclass distances and
large interclass distances, get higher values of the criterion function (Grab-
meier and Rudolph, 2002).

3 The Data and Mining Technology

The aim of our analysis is to identify a number of clusters of users who
have downloaded the statistical software XploRe by performing a cluster
analysis of its download profiles, which could function as the base for the
development of the marketing strategy.
The collected raw data of XploRe user consists of 2593 profiles of individuals
who have downloaded the statistical software XploRe from October 11, 2001
to March 13, 2003. A free trial version of XploRe can be downloaded from
the homepage at http://www.xplore-stat.de.
Before the downloading, users are asked to participate an online survey.
The online questionnaire composes mainly two parts. All questions (except
for email address) are answered by selecting items from possible responses.
We have made some improvements in the survey comparing the previ-
ous practice, which was conducted by Sofyan and Werwatz (2001). The
new variables concerning the benefit sought by the users and features of
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their research were added to the questionnaire. In addition, the values of
some some variables were also reformed. We choose IBM’s Intelligent Miner
(http://www.software.ibm.com/data/ iminer) for our analysis because
it employs condorcet criterion which is particularly well-suited for categor-
ical data sets.

4 Results and Discusions

The prior analysis (Sofyan and Werwatz, 2001) has indicated that the op-
timal partition of the data is not necessary to be the one, which is with
highest statistical goodness value but has no meaningful characteristics
for marketing. Bearing the segmentation requirements in mind, the chosen
partition should have relative high goodness value of statistics and, at the
same time, could deliver a handful groups that can be handled and targeted
by the marketer. The targeted groups should be within the reach of and
sensitive to the marketing instruments. Therefore, one must carefully con-
sider about the clustering segments, whether the partition could be used
to develop the marketing strategy for the target market.
The final segmentation had five variables and four clusters. The five vari-
ables are work field, where work, resource of first learn, XploRe version
and OS platform. With these five variables, the four cluster segmentation
achieves relative high of NCC value (0.6002) and good interpretation of
the data comparing the other segmentation. As mentioned before, the final
chosen segmentation should not only achieve the high statistic value, but
also could deliver a rational description of the data. Therefore, we dropped
the results that have lower NCC values and the results which are with high
NCC value but difficult to tape meaningful characteristics for the customer
groups.
Figure 1 shows the visual result of the clustering. The character of cluster
Cluster 1 is dominant by the value ”internet” of variable first learn. There-
fore, the segment of Cluster 1 called as Internet surfer. This group of
users are more like to look for information through internet. They down-
load the local version of XploRe, use windows as platform. They work in
widespread field. The working places of them are similar distributed as
whole sample, mainly in university and home.
Cluster 2 and Cluster 3 are determined by two dominant variables, first
learn and where work. Users from Cluster 2 work mainly at ”university
(88%)” and the main information resource is ”friends (39%)”. Users from
Cluster 3 work mainly at ”home (67%)” and they first get learn XploRe
through ”some unidentified resources (44%)”. Thus, Cluster 2 is Acad-
emia, who work at university and Cluster 3 is Home worker, who work
at home. Academia and Home workers also mainly download local ver-
sion of XploRe and use windows as platform. But the Academia work
mainly in the field of econometrics, while the Home workers work in
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FIGURE 1. Visualization of the optimal partition.

widely spread fields with finance and actuarial science in a relative high
percentage 17.
XploRe users from Cluster 4 are Linux user, who are indicated by the
variable ”platform”. 86% of them use Linux as platform. Linux user prefer
to download the local version of XploRe as well. They work in widely spread
fields and places, get information from different resources, among which
”Internet” has a relative dominant position (56%).

5 Conclusion

In this paper, we have presented the results of a cluster analysis of 2593
profiles of individuals who have downloaded the statistical software XploRe.
Each profile consisted of a set of variables that are the responses to a
mandatory online questionnaire preceeding the actual downloading process.
Using New Condorcet Method particularly suited for our categorical data,
we arrived at a partition consisting of four clusters: Internet surfer,
Academia, Linux user and Home worker. All the groups except Linux
users work with windows systems and engage in economic study of finance
or econometrics. Internet surfers are characterized by their dominant
usage of Internet as the information resources. Academia are researchers
from university with more academic background. They heavily depend on
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personal communication channels. Home workers is a mix group. They
work mainly at home, get information from various resources, among which
Publications/Journal has a relative important position. The Linux users
are sophisticated computer users who work under Linux, have natural sci-
ence background and make relative heavy use of the internet.

Acknowledgments: Special Thanks to Prof. Dr. Wolfgang Härdle of In-
stitut für Statistik und Ökonometrie for his useful comments suggestions.
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Abstract: We consider a Plackett-Dale model to study familial transmittance
of longevity. We focus the analysis on associations between mother, father and
first child, and therefore we work with family clusters of equal size. We propose a
series of tests to perform inferences on the model parameters. The methodology
is applied to a demographic database of a Flemish village (18th-20th century).
The main substantial conclusion is that familial transmission happens mainly via
the mother. We explore the impact of such other factors as censoring, gender
effect, age at death, etc. This paper complements the results of Matthijs et al
(2002) and suggests further analyses to better understand the precise mechanisms
behind these associations.

Keywords: Plackett-Dale model; Multivariate survival model; Pseudo-likelihood
inference; Familial clustering; Correlation.

1 Introduction

The main topic of this work is to propose a number of inferential tools to
test the parameters of a multivariate marginal survival model. We explain
how the methodology works and we apply it to the study of associations
between longevity of family members in a small Flemish village. Each family
is treated as a cluster and we will use a multivariate Dale model for survival
data combined with pseudo-likelihood ideas. The main substantial topic to
be addressed are differences in the influences of fathers and mothers on the
female offspring’s longevity.
Moerzeke is a small village in the center of Flanders, the Dutch speaking
part of Belgium, within the province of East Flanders. It is a geographical
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isolate as it is almost completely surrounded by the river Scheldt.
The information in the Moerzeke database is drawn from church and civil
registers. In Belgium, these sources are of good quality and appropriate for
populations studies. The database contains all individuals who were born,
married or died in Moerzeke.

2 Statistical Model

Pseudo-likelihood ideas are used to estimate the parameters and a num-
ber of inferential tools are proposed. We consider the survival times Tj of
mother, father, and first child (j = 1, 2, 3) of 457 families with complete
information on dates of death and we observe a vector of covariates Z.
Marginal Weibull distributions for each survival time are assumed. Let us
consider the individual information of family i expressed in vector format
as (Ti1, Ti2, Ti3,Δi1,Δi2,Δi3, zi1, . . . , zin3) so thatW ij = (T i,Δi,Zi) are
the values for a particular cluster i and survival time j within cluster. The
Δij variable indicates whether the lifetimes is observed or not.
The pseudo-likelihood function to estimate the parameters of this model
is constructed along the lines of Le Cessie et al (1994) and Renard et
al (2002) by considering all three possible pairs of outcomes on an in-
dividual (W 1r,W 2�) (W 1r,W 3�) and (W 2r,W 3�). Those pairs produce
fTrT�(W ir,W i�) with r < 
, r = 1, 2, 3 and 
 = 1, 2, 3, where fTrT� is the
density function of the Plackett-Dale distribution (Dale 1986 and Mardia
1970). In this case the dependency can be defined using a global cross-
ratio at (tr, t�) given by θr�(tr, t�). The Plackett distribution is obtained
for constant cross-ratio θr�(tr, t�) ≡ θ (Plackett 1965, Mardia 1970).
We can define then

ln p
(Φ) =
N∑
i=1

∑
(s,t)∈S

ln fTsTt(W is,W it,Φ), (1)

where S is the set of all possible pairs of outcomes of interest and Φ the
vector of parameters.
The pseudo-likelihood estimator Φ̂ is defined as the maximiser of (1). Con-
sistency has been shown by Arnold and Strauss (1991), le Cessie and van
Houwelingen (1994), and Geys, Molenberghs, and Ryan (1999). The para-
meters of this model and their standard errors can be estimated by means of
the maximum likelihood method and the asymptotic normality results pro-
vide an easy way to consistently estimate the asymptotic covariance matrix.
Precisely, Φ̂ converges in probability to the true parameter value Φ0, and√
N(Φ̂ − Φ0) converges in distribution to Nq(0, J(Φ0)−1K(Φ0)J(Φ0)−1)

with J(Φ) and K(Φ) appropriate defined.
This asymptotic normality result provides an easy way to consistently es-
timate the asymptotic covariance matrix. A further advantage of the PL
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approach is the close connection of pseudo-likelihood with likelihood, en-
abling one to construct pseudo-likelihood ratio and pseudo-score test sta-
tistics that have easy-to-compute expressions and intuitively appealing dis-
tributions (Aerts et al 2002).

3 Test Statistics

To test the parameters of the model several tools can be used as Wald,
score or likelihood ratio tests. However, while point estimation and asymp-
totic normality have already been established, we need to construct the
pseudo-likelihood counterparts to classical inferential tools such as ratio
test statistics and score test statistics. Particularly, to perform a test for
the association parameters of the model, we need to extend the Wald, score
and likelihood ratio test statistics to the pseudo-likelihood framework. It is
important to note that the strategies proposed are not restricted to those
parameters and it can be applied to any other model parameter.
Association parameters θij equaling one indicate independence between Ti
and Tj . This can be translated in terms of hypotheses such as

H0 : θr� = 1 θr� ∈ IR≥0 r, 
 = 1, 2, 3.

More generally, let us assume we are interested in an hypothesis of the
type H0 : ϕ = ϕ0 where ϕ denotes a q-dimensional subvector of the p-
dimensional vector of regression parameters Φ and write Φ = (ϕ′, β′)′.
To construct the Wald test we use the asymptotic normality properties of
the pseudo-likelihood estimators. We use the following result

W ∗ = N(ϕ̂− ϕ0)′Σ−1
ϕϕ(ϕ̂− ϕ0) ∼ χ2

q .

In this expression, Σϕϕ denotes the q × q submatrix of Σ = J−1KJ . The
matrices J and K were mentioned before. The matrix Σ can be estimated
by using the pseudo-likelihood estimate Φ̂. Thus, the Wald statistic is very
easy to obtain and the more convienient one in cases where model fitting
is very time consuming.
The pseudo-score Statistics is constructed by fitting the null model and it
has the advantage over the Wald test that is invariant to reparameterisa-
tion.
We give another proposal for testing H0 based on likelihood ratio ideas:

G∗2 = 2[pl(Φ̂) − pl(ϕ0, β̂(ϕ0))]

and is termed pseudo-likelihood ratio test statistic. Note that, when apply-
ing the pseudo-likelihood ratio test, the model needs to be fitted twice, for
the full and the reduced models, potentially making the procedure more
time consuming. It is well known from the pseudo-likelihood theory that
the Wald test is the one with lowest power. However, from a practical
point of view it is the more convenient one. All test statistics have been
implemented using the SAS IML procedure.
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4 Analysis of the Data and Concluding Remarks

The methodology we propose is used to analyse the Moerzeke data, making
it the first application of this particular model to data of a genetic type. To
proceed we first fit a multivariate Plackett-Dale model and then inferences
are made by using the tests proposed.
We restrict the analysis to a subgroup of families having at least one child.
From earlier studies we know that for this group, familial transmittance
of longevity to daughters is relatively large (Matthijs et al, 2002). In this
study, we address whether this association is mainly maternally or pater-
nally transmitted.
We fit the model using the year-of-birth of each family member and the
gender of the child as covariates.
The estimated association parameter between mother and child is 1.349
indicating a positive association between those. However, for father-child
the value seems to be lower (0.983).
Inferences are made by using the tests defined above. The null hypothesis
of no association was tested in each case via the Wald, score and pseudo-
likelihood tests and the results show similar conclusions irrespective of the
test applied, while the Wald statistics gives the largest p-value. We observe
that the null hypotheses of no association between father’s and mother’s
longevities on the one hand and father’s and child’s longevities on the other
hand (θ12 = 1 and θ23 = 1) but the situation is different for mother and
child. Indeed, we reject θ13 = 1.
We explore this topic by applying the model to different subsets. We also
performed the test for the association parameters for each gender and we
can see for sons there are not any significant differences, while for daughters
there seems to be a stronger association in case of mothers and daughters
than for the rest of the association parameters (θ13).
We proposed three different alternatives to perform inferences for the model
parameters: Wald, pseudo-likelihood ratio and score type tests. We illus-
trated how these test can be performed. Even if the Wald test is the one
with less power, in this context we noticed that it is easily implemented
from a computational point of view. Even though the pseudo-likelihood
and pseudo-score tests are the most powerful, as was observed with other
types of data (Geys et al, 1999), here it demands to fit different models.
Given the complexity of these models it can be hard to obtain the building
blocks needed to calculate these statistics.
The main substantial conclusion is that significant associations were de-
tected between mother and child. In a second step the associations were
modelled within the group of daughters and sons separately and we ob-
served significant associations between mother and daughter, but not be-
tween mother and sons.
This finding confirms the role of the mother in the transmission of longevity.
However, as these findings were present for both mothers and daughters
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above the age of fifty as for mothers and daughters reaching at least the
age of 10, this finding does not support the view that familial associations
in adult mortality are only visible at later ages.
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Abstract: In time series analysis of air pollution effects on health, several para-
metric and non-parametric methods to adjust for confounding factors such as
trend, seasonality and weather have been proposed. However, an optimal strategy
for choosing smoothers and their degree of smoothness does not yet exist. In this
paper we evaluate the performance of various smoothers (parametric and non-
parametric) with different criteria to choose the degree of smoothness in terms
of bias and efficiency in a simulation study. Results showed that non-parametric
methods can lead to seriously biased air-pollution effect estimates. Among the
parametric methods, Penalized Splines with relatively large number of knots gave
minimally biased results. Given that P-splines avoid the backfitting algorithm in-
volved in GAM while being as flexible as the non-parametric smoothing methods
it may be a reasonable choice.

Keywords: Air-pollution; GAM; P-splines; Time-series

1 Introduction

Epidemiological time series conducted in cities around the world have re-
ported significant, adverse health effects of air pollution, even at historically
low levels of air pollution (Katsouyanni et al 2001; Samet et al 2000). Crit-
ics of these studies have raised questions as to the validity of the data,
methods of analysis and the rational for particular choices in model speci-
fication (Kinney et al 1995; Samet et al 1995). In recent years Generalized
Additive Models (GAM; Hastie and Tibshirani, 1990) with non-parametric
adjustment for confounding factors have been used to estimate the short-
term effects of air pollution on health (Schwartz 1996; Katsouyanni et al
2001). Estimation in GAM is based on a combination of the local scoring
algorithm and the backfitting algorithm (Hastie and Tibshirani, 1990) and
therefore, unlike Generalized Linear Models (GLM), which have an exact
solution, requires iterative approximations. Recently it has been reported
that default convergence criteria in statistical packages such as S-plus can
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result in biased fitted linear parameters, but this can at least partly over-
come by using more stringent convergence criteria (Dominici et al 2002).
In another study though it was found that in the presence of concurvity,
the nonparametric analogue of multicollinearity, GAMs result in seriously
underestimated variances of the fitted model parameters (Ramsay et al
2002). Due to the above-mentioned problems in fitting GAM models, GLM
with parametric smoothers (i.e. natural splines) for time and weather vari-
ables have been alternatively proposed. However, an optimal strategy for
choosing smoothers and their degree of smoothness does not yet exist. The
aim of this work is to evaluate the performance of various smoothers (para-
metric and non-parametric) with different criteria for choosing the degree
of smoothness in terms of bias and efficiency in a simulation study that
imitates multi-center studies.

2 Methods

A two stage hierarchical modeling approach was adopted. In the first stage
data from each city were analyzed separately while in the second stage
evidence across cities was combined using meta-regression techniques. For
the first stage of the analysis Poisson regression models were fitted. The
general form of the model was:

ln(μct) = ln [E (Y ct )] = α0 +
q∑
j=1

f cj (X
c
tj) + βcPc

t +
6∑
i=1

βiDowi

where Yc
t denotes the observed count of the relevant health outcome (mor-

tality in our case) at city c on day t, βc the effect estimate for the pollutant
(PM10 in this case), Xc

tj the non-pollution predictor variables (i.e., time,
mean daily temperature and mean daily relative humidity), f cj smooth
functions of these variables and Dowi indicator variables for the day of the
week and μct is the expected count of the relevant health outcome. To con-
trol for non-linear relationships we used the methods: 1) locally weighted
non-parametric smoothing (LOESS); 2) smoothing splines (SP); 3) natural
splines (NS); 4) penalized - splines (PS; Marx and Eilers 1998; Aerts et
al 2002). Each smoother has a parameter that determines the degree of
smoothness. For LOESS this is called span while for SP and NS the degree
of smoothing is specified through the degrees of freedom. The first two
methods are non-parametric smoothers and therefore the backfitting al-
gorithm is needed. The backfitting algorithm cycles through the variables
Xtj and estimates fj by smoothing the partial residuals. Except for PS
models all the others were fitted in S-plus using either the gam of the glm
function for non-parametric and parametric smooth functions respectively.
PS models were fitted in R. For the PS models the methodology described
by Marx and Eilers (1998) was applied. For the Xtj variable the B-Spline
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smoother can be specified as fj = Bjαj , where Bj is the B-Spline matrix
(with nj knots) and αj the unknown vector of coefficients associated with
the B-Spline bases. The P-Spline can be considered as a sum of κ B-Splines,

that is fj =
κ∑
k=1

Bjkαkj where bjkt = Bjk(Xjt) is the value of the B-Spline

κ at Xtj . Marx and Eilers (1998) proposed a smoothness requirement of the
B-Spline parameters αkj . A drawback of the method is that one also needs
to optimize the number and position of knots. Marx and Eilers (1998) rec-
ommended to use a large number of equally spaced knots (between 10 and
30) but prevent over fitting by attaching a difference penalty on adjacent
B-Spline coefficients αkj . Model parameters are estimated by maximizing
the penalized log likelihood. For LOESS, the span was specified according
to the following criteria: a) Minimization of the absolute value of the Sum
of the partial autocorrelation function (PACF) over 60 days; b) Minimiza-
tion of Akaike’s information criteria (AIC); c) Minimization of Bayesian
information criteria (BIC). For SP the df were prefixed (7/year for time, 6
for temperature and 3 for humidity). The choice of the number of df was
based on the results from the NMMAPS study (a multi-city study in the
USA; Samet et al 2000). For the NS method, all the three criteria used in
the LOESS method plus prespecified df as in the SP method were used.
For the PS method the smoothing parameters were determined by a) the
generalized cross-validation (GCV) method; b) the GCV after prespecify-
ing the number of knots to be between 10 to 30 for trend and c) equating
the needed df to those used in the NMMAPS project.
In the second stage city-specific air pollution effect estimates produced
from the first stage of the analysis (β̂c) were pooled using inverse variance
weighting. Both fixed and random overall estimates were obtained (Berkey
et al 1995).

3 Simulation Study

To assess the effect of the various methods to control for confounding effects
on city-specific relative rate estimates in time-series studies of air pollution
and health we conducted a simulation study. Data were generated under
the following assumptions: a) Fifteen cities were contributing daily data
for 5 years on daily number of deaths (Y ct ), PMc

10, mean daily temperature
(T c) and relative humidity (Hc). b) Three different patterns regarding long-
term and seasonal trends in mortality series as well as weather conditions
were considered. For each pattern 5 cities contributed data. A parametric
model was used to generate data in each city (c)

Yt ∼ Poisson(μt)
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log(μt) = a0 + (b + bc)PM c
10 +

q∑
i=1

(a1i cos 2πi
365 t + a2i sin 2πi

365 t ) + (1)

+a3(T − Tc)2+ + a4 (T − Tc)2+ + a5 H + a6 H2 +
6∑
j=1

bj Dowj

That is, a sinusoidal curve of order 2,3 and 4 (i.e. q =2 or q = 3, or q = 4)
for the three different patterns was used to control for long-term trends, a
double quadratic function for temperature (with different change points for
the three different patterns) and a quadratic function for humidity. c) Model
parameters were generated from the multivariate normal distribution:⎛⎝ b

ai
bj

⎞⎠ ∼ N

⎡⎣⎛⎝ β
αi
βj

⎞⎠ , V

⎤⎦
Note that β (the overall PM10 effect) is constant and equal to 0.000617
(Katsouyanni et al 2001). An error (bc) has been added to β in each city
to reflect the between cities variability (τ2), that is bc ∼ (N(0, τ2). d)
Model parameters were based on real data from the APHEA-2 (A Euro-
pean collaborative study; Katsouyanni et al 2001). In particular, for the
three different patterns data from 3 cities (London, Cracow and Madrid)
representative of the different geographical areas across Europe (North,
Central and South Europe, respectively) were used. True values of the
model parameters were determined by fitting model (1) in these 3 cities.
The original data on temperature humidity and PM10 from these cities (to
incorporate original structures in the data) were used as the covariates in
the simulated data.

4 Results

The PM10 pooled estimate was sensitive to the method used to adjust for
confounding factors such as trend, seasonality and weather. Depending on
the method, the bias ranged from -27% to 17%. Within each method, the
different criteria to choose the appropriate df led to different degree of bias
in the pooled PM10 estimate. In addition, non-parametric methods (i.e.,
LOESS and SP) tended to underestimate the SE of the PM10 effect. For
the P-spline method, using GCV to determine the smoothness parame-
ters led to underfitting (i.e., relative small dfs) and therefore to seriously
biased pooled PM10 estimate (bias -16%). However, improving model fit
by increasing the dfs (i.e., prespecifying either the total dfs or the num-
ber of knots) resulted in substantial bias reduction (bias −3% and −7%
respectively).

5 Conclusions
In time series analysis of air pollution effects on health, some degree of
concurvity is expected. In such cases, GAM models could lead to biased
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results. Among the parametric methods to adjust for confounding factors,
P-spline (with relatively large number of knots, for example around 30)
avoids the backfitting algorithm involved in GAM, and thus all the associ-
ated weaknesses, while being as flexible as the non-parametric smoothing
methods.
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1 Department of Statistics, University of Economics and Business Adminis-
tration, Augasse 2-6, A-1090 Vienna, Austria. Email: regina.tuechler@wu-
wien.ac.at

2 Department of Applied Statistics (IFAS), Johannes Kepler Univer-
sität, Altenbergerstr. 69, A-4040 Linz, Austria, Email: Sylvia.Fruehwirth-
Schnatter@jku.at

Abstract: In this work we use MCMC methods to estimate random coefficient
models. The following two issues which we believe are of considerable practical
concern are addressed. Firstly, the convergence behaviour depends on the para-
meterization. An inappropriate parameterization may have a serious impact on
the mixing properties especially for higher dimensional data. Secondly, a mayor
cause for poor convergence of MCMC chains stems from the attempt to estimate
over-fitted models. We present an efficient algorithm that makes it possible to
start with a rather general model structure and to let the data tell us which
special structure to choose.
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1 The Random Coefficient Model

In the centered parameterization we define the random coefficient model in
the following way:

yi = Ziβi + εi, εi ∼ N(0, σ2
εI), (1)

βi = βG + ui, ui ∼ N(0, Q). (2)

For subjects i = 1, . . . , N the vector yi contains Ti observations and Zi is
the Ti × d-dimensional design matrix for the d individual effects βi. The
vectors ui capture unobserved heterogeneity as deviations of the individual
effects βi from the common mean βG and are distributed normally with
common covariance matrix Q. The model (1), (2) is centered both in the
mean and in the covariance structure.
We may rewrite that model in the non-centered parameterization as:

yi = Ziβ
G + ZiCz̃i + εi, εi ∼ N(0, σ2

εI), (3)
z̃i ∼ N(0, I), (4)
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where the Cholesky decomposition of the covariance matrix Q = CC′ is
used, C lower triangular. The Cholesky decomposition is a representation
of the correlated deviations uil from (2) in terms of uncorrelated standard
normal ones, uil =

∑l
m=1 Clmz̃im = Cl·z̃i, where z̃im ∼ N(0, 1) are inde-

pendent for all m = 1, . . . , d, and dim(ui) = dim(z̃i). In the non-centered
parameterization the mean βG and the covariance Q moved to the obser-
vation equation (3).
The influence of the parameterization of the mean on the convergence be-
haviour was analyzed by Gelfand, Sahu and Carlin (1995) for normal linear
models.
Non-centering of the mean and the covariance is investigated in Meng and
Van Dyck (1998) and Frühwirth-Schnatter (2002).

2 Parsimonious Estimation of Unobserved
Heterogeneity

Statistical inference for the covariances of a random coefficient model is
usually based on the estimation of a full rank matrix Q from (2) (see e.g.
Verbeke and Lesaffre, 1996, Frühwirth-Schnatter, Tüchler and Otter, 2003).
Within MCMC sampling the covariance matrix Q may be simulated by a
Gibbs sampler from the conditional inverted Wishart distribution given
estimates of β1, . . . , βN . Note that by choosing a full rank matrix Q, we
allow unobserved heterogeneity to be present for all effects of the design
Zi.
In contrast to that, we may follow the principle of adaptive parsimony
with respect to Q. Parsimony is achieved by restricting certain elements
appearing in the matrix of the Cholesky factors C to be 0. We let the
data tell us which elements this should be. We treat the problem of finding
those elements of C that are non-zero as a variable selection problem. We
introduce for each element Clm, m = 1, . . . , d, l = m, . . . , d, an indicator
γlm which takes the value 1, if Clm �= 0, and 0 otherwise:

Clm = 0, iff γlm = 0,
Clm �= 0, iff γlm = 1.

Note that Clm for all 1 ≤ l < m is 0 by definition. γ = {γlm}, as well as
the omitted variables z̃N = (z̃1, . . . , z̃N) are estimated along with all other
parameters in a Bayesian framework using MCMC methods.
The problem of finding the form of the covariance matrix is closely related
to variable selection problems and therefore to the issue of estimating ob-
served heterogeneity. For these problems we can think of C as parameter
matrix and z̃i would be deterministic in equation (4). We think that it is
of considerable practical concern that variable selection problems may eas-
ily be treated within a Bayesian framework by obvious extensions of the
methods of this paper.
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3 Bayesian Estimation According to the Principle of
Adaptive Parsimony

We estimate all parameters from their joint posterior distribution using
a Markov chain Monte Carlo algorithm. In the first step (I) we generate
the indicators γlm one at a time from γlm|γ\lm, z̃N , σ2

ε , y by applying the
efficient sampling scheme of Smith and Kohn (2002). γ\lm denotes the se-
quence γ where γlm is excluded and y are the data. Once a new draw of γ is
available, all those elements of C that are restricted to zero are defined. In
step (II) we generate all unrestricted elements of C jointly with βG condi-
tionally on γ, z̃i, σ2

ε and y from a multivariate normal distribution. In step
(III) the individual parameters z̃1, . . . , z̃N are conditionally independent
and normally distributed. Step (IV) amounts to sampling σ2

ε from inverted
gamma distributions.

4 Example

We simulated data for N = 200 subjects from model (1), (2) with βG =
(15 3 − 0.8)′, σ2

ε = 10 and a sparse covariance matrix

Q =

(
2.25 0 3
0 0 0
3 0 5.25

)
. (5)

We estimated these data with three different algorithms. To compare the
convergence properties of the various methods we give the sample paths
and the autocorrelation plots for the first component of the mean and the
first diagonal element of the covariance matrix, denoted beta1 and q1 in
the plots, respectively.
Full conditional Gibbs sampling, centered parameterization: The first
method is a full conditional Gibbs sampling algorithm based on the centered
parameterization (1), (2). The covariance matrix is estimated from inverted
Wishart. In Figure 1 we see that the algorithm is rather inefficient in terms
of autocorrelations.
Full conditional Gibbs sampling, non-centered parameterization, model (3),
(4), no variable selection: In comparison to the sample paths and autocor-
relation plots of Figure 1 those for the non-centered parameterization in
Figure 2 are much better at least for the mean structure. This is inline with
the results in Gelfand et al (1995) where it is stated that the non-centered
parameterization is to be preferred for data with little heterogeneity in
the random effects in comparison to the variability captured by the model
error.
Parsimonious estimation of the covariances: As we can see in Figure 3
parsimonious estimation of the covariance matrix improves the convergence
behaviour of the sampler substantially. The algorithm finds the correct
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FIGURE 1. Full conditional Gibbs sampling, centered parameterization
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FIGURE 2. Full conditional Gibbs sampling, non-centered parameterization

structure of the covariances very well. The following mean indicator may
be interpreted as probability of an element of Q to be significant:

prob(Q �= 0) =

(
1 0.00 1

0.00 0.01 0.00
1 0.00 1

)
.

The second effect is no random effect but a fixed effect. This feature may
not be detected by the first two algorithms which sample a wrong full rank
covariance matrix Q. This overparameterization has also a negative effect
on the convergence behaviour of the other (significant) elements of Q.
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FIGURE 3. Parsimonious estimation of the covariance matrix, non-centered pa-
rameterization
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1 Introduction

In many countries, particularly in the Third World, it is very difficult to
obtain reliable data on HIV/AIDS because most death certificates note only
the opportunistic disease e.g.TB, meningitis, pneumonia which actually
caused the patient to die, while making no or infrequent mention of the
pre-existing condition of HIV/AIDS. One frequently sees competing risks
models based on the proportional hazards model. Here it will be shown
that, since HIV/AIDS data fits an accelerated failure time model better
than a proportional hazards model, a parametric survival function will be
used with logistic regression to perform the function of a mixed model in
modeling HIV/AIDS data.

2 Conditional Accelerated Failure Time Models as
Functions of Cause Specific Hazard Rate Functions,
αi(t)(i = 1, 2).

Suppose we consider a 2-cause competing risks model with cause specific
hazard rate functions αi(t) (i = 1, 2) where αi(t) = pi(t)/S(t), pi(t) be-
ing the pdf of α(t) and S(t) being the survivor function. According to
Hougaard (2000), a competing risks model allows only one possible tran-
sition into each state. This would mean that a competing risks model is
not a multi-state model. This introduces an interesting concept in the case
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of HIV/AIDS. Before any treatment has occurred we have a multi-state
model and therefore a competing risks model but once treatment by anti-
retroviral drugs has taken place we can no longer have a competing risks
model as can be seen from the chart below. This chart imitates a poster at
IBS by Heiner (2002).
The overall hazard rate function will then be

α(t) = α1(t) + α2(t)

and given that death has already occurred, the conditional probability that
it was due to cause (i) is given by

πi =
αi(t)
α(t)

In modelling the hazard rate associated with cause (i) (i = 1, 2), each
person is treated as censored at the occurrence of death from any cause
other than cause (i). Accelerated failure time models can be formulated
in terms of the hazard rate function (Bagdonavicius and Nikulin, 2002).
It is generally accepted that how the overall hazard rate function divides
itself amongst its constituent parts can be seen by analyzing the condi-
tional probabilities of each of the hazard rates but is in itself not of prime
importance. What is of greatest importance is the cause of death. We can
therefore write

S(t) = exp
{
−
∫ t

0

α(u)du
}

To analyze the conditional probabilities of each of the hazard rate a hazard
model for the overall hazard rate is specified and analyzed along with a
logistic regression of the conditional probability of the cause of death of
interest (Ghilagaber, 1998).
It can be shown that from this it follows that

S(t, z) = exp
{
−
∫ t

0

α(u)du
}

exp{βz}

and so for each cause specific hazard function we have

S(t/αi(t)) = exp
(
−
∫ t

0

αi(u)du
)

(i = 1, 2)

and the probability P (t/αi(t, z) = pi(t, z)
where a logistic regression model for π1(t, z) is:

logit[π1(t, z)] = 
n

{
π1(t, z)

1 − π1(t, z)

}
= β0(t) + βz (1)

There are thus proportional hazards over death from opportunistic diseases
but not over the covariates.
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TABLE 1. Number of male deaths

HIV/AIDS TB Pneu- Karposi’s Gastric Meningitis Other
monia Sarcoma diseases

17 2 0 0 0 0 0
13 9 3 0 0 1 0
23 0 0 3 14 20 66

TABLE 2. Number of female deaths

HIV/AIDS TB Pneu- Karposi’s Gastric Meningitis Other
monia Sarcoma diseases

40 6 0 0 4 1 1
51 8 4 0 0 2 0
76 0 0 1 10 22 1

3 Data Analysis

Data collected at three local hospitals yielded the following causes of death.
Patients had been tested for HIV/AIDS and the other diseases can therefore
be classified as opportunistic diseases.
We see from the tables that while 220 people were registered as having died
of HIV/AIDS during a given period of time, if the numbers of people who
were known to have HIV/AIDS as well as the opportunistic diseases from
which they died then the actual number of people who died as a result of
having HIV/AIDS during the given period of time was in fact 398.

4 Summary

We have shown that death from opportunistic diseases known to be asso-
ciated with HIV/AIDS is closely related to the pre-existing condition of
HIV/AIDS. See equation (1). This means that the number of deaths from
these diseases should be taken into account when compiling the statistics of
death from HIV/AIDS. It is hoped that it would then be possible to obtain
a more realistic idea of how many people have died as a result of HIV/AIDS,
particularly in the Third World countries. It can be shown that the Weibull
is the only initial distribution for which with constant explanatory variables
the accelerated life models and the proportional hazards models coincide
(Cox and Oakes, 1984).
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Abstract: This work discusses and evaluates penalized quasi-likelihood estima-
tion techniques for the situation where random effects are correlated, as is typical
in mapping studies.

Keywords: Mixed poisson model; Over-dispersion; Spatial autocorrelation.

1 Introduction

Full maximum likelihood analysis in generalized linear mixed models usu-
ally involves iterative numerical quadrature. Breslow and Clayton (1993),
however, have popularized the use of penalized quasi-likelihood (PQL)
methods developed by Stiratelli et al (1984) and Schall (1991) for infer-
ence in these models. PQL analysis relies on a series of approximations to
the mixed model. Its main advantage is that its implementation is very
straightforward and computationally simple. Estimation proceeds using a
so-called working vector and the restricted maximum likelihood (REML)
equations under the normal theory linear model. Lin (1994) has shown,
through a study of the theoretical properties of PQL estimators, that they
are reliable for the analysis of independent counts. For the analysis of pro-
portions with low denominators, Breslow and Lin (1995) note that PQL
estimators show substantial bias.
In this paper we aim to assess the suitability of PQL inference for random
effects models where the random effects are correlated. The setting we use
for our illustration and study is that of mapping studies. Mapping rates
is essentially a problem of describing the spatial and sometimes spatio-
temporal distribution of rates over a region. Such distributions display the
geographic variation in mortality or disease incidence and are important
for epidemiological and health-policy purposes. The models in common use
for assessing spatial variation are mixed Poisson models, which incorporate
random region-specific effects. These region-effects may represent environ-
mental factors, and often exhibit spatial correlation.
In this work a correlated mixed Poisson model and penalized quasi-
likelihood estimation for this model will be described. The model includes
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an interaction between random regions and fixed age effects (Dean, Ugarte
and Militino, 2001). An analysis of mortality data from British Columbia
(B.C.), Canada, over the five-year period 1985-1989 will be presented. We
will also evaluate the behaviour of PQL estimators for small samples us-
ing the basic scenario as encountered in the analysis of the B.C. mortality
data, but also encompassing different levels of spatial correlation and re-
duced population sizes. Our results show that the PQL estimators have
fair small-sample properties. When mortality counts are small, however,
our simulations show a greater deterioration in the performance of the
PQL estimators of the variance components than that for the parameters
in the mean.

2 Description of the Model

Suppose the area under study is divided into I contiguous regions labelled
i = 1, . . . , I. In British Columbia, these are termed local health areas, and
I = 79. Let Cij be the number of stratum-specific (e.g. sex, disease) deaths
in the i-th region for the j-th age group j = 1, . . . , J . Conditional on the
random region effects, the number of deaths in each area is assumed to
be Poisson distributed with mean μij = eijrij , where rij are the unknown
relative risks of mortality from the disease, treated as random effects, and
eij are the ‘expected’ number of deaths. That is, given the random effects
rij ,

Cij |rij ∼ Poisson(eijrij) (1)

where eij = nijmj, nij being the corresponding population count in the
time period considered and mj being a fixed age effect representing the
mean mortality rate for the j-th age-group. We decompose the region by
age-group log-relative risks as the sum of two independent components:

log rij = ui + wij . (2)

The term ui models both intrinsic Gaussian autoregression (Besag, 1974),
representing local spatially structured variation, and the unstructured het-
erogeneity of the relative risks which is usually associated with covariates
not included in the model. Here u ∼ N(0,Du),Du = σ2

u(λQ
− +(1−λ)Iu),

where Q is determined by the neighborhood structure of the regions and Iu
is an identity matrix; λ determines the relative weights between the spatial
and the unstructured variation. When λ = 1, there is no unstructured het-
erogeneity, and the random effect ui can be interpreted conditionally given
u−i, the set of random region-effects excluding the ith:

ui|u−i ∼ N(ūδi ;σ
2
u/δi), (3)
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ūδi is the mean of the random effects corresponding to the regions in the
‘neighborhood’ of the ith and δi is the number of regions forming this
neighborhood. Neighborhoods may be defined in various ways, depending
on the context of the analysis, but one common definition is simply the set
of regions which share common boundaries with the ith region, and this
definition is adopted in our analyses described later. In this case Q has ith
diagonal element equal to the number of neighbors of the ith region and the
off-diagonal elements of each row equal −1 if the corresponding regions are
neighbors and 0 otherwise. The more general formulation for user-specified
weights ψij linking regions i and j is

ui|u−i ∼ N

(∑
j ψijuj∑
j ψij

,
σ2
u∑
j ψij

)
,

that is, the conditional mean of ui is a weighted mean of the other region-
effects. The conditional distribution (3) is appropriate for the 0/1 adjacency
weights used here. When λ = 0, there is no spatial correlation in the data
and ui ∼ N(0, σ2

u) independently. Because the specification is in terms
of conditional distributions, Q is a singular matrix (Besag, 1974; Besag
and Kooperberg, 1995). In generalized linear modeling, the typical solution
would be to reduce the problem to that of estimating a reduced set of
random effects with full rank variance matrix. This can be equivalently
handled using the Moore-Penrose generalized inverse, Q− (Harville, 1997,
chp. 20), which is the approach used in our applications.
The term wij in (2) represents an age-region interaction term, wij ∼
N(0, σ2

w), independent of ui, i = 1, . . . , I.
PQL estimation is an approximate inference technique for generalized linear
mixed models which uses weighted least squares algorithms for estimation
of parameters in the mean along with likelihood equations from an approx-
imating normal model for estimating variance components. In terms of a
generalized linear mixed model, (1) and (2) can be expressed more gener-
ally as E(C|b) = μb = g−1(offset + Xα + Zb), where C is the vector of
responses, in our situation, mortality counts Cij ; α is the vector of fixed
effects, here α = (logmj , j = 1, . . . , J) ; X is the corresponding design
matrix here of dimension IJ x J ; the offset for the mapping scenario is
the known vector of the logarithm of the population counts nij ; b is the
vector of random effects, here b = (uT , wT )T , Zb = Z1u + Z2w, Z1 and
Z2 being corresponding design matrices having dimensions IJ x I and IJ
square respectively, with Z2 being an identity matrix. The function g−1(.)
is the inverse of the so-called link function, so g(μb) is the linear predictor
η. For the log-linear specification used here, η = log (μb), so g−1 is the
exponential function, and ηij = logμij = lognij + logmj + ui + wij (see
(2.1) and (2.2)).
The integrated quasi-likelihood function is
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|D|−1/2
∫

exp

⎡⎣−1
2

∑
i,j

dij(yij , μbij) − 1
2
bTD−1b

⎤⎦ db
with

d(y, μ) = −2
∫ μ

y

y − u

u
du

and var (b) = D,

D =
(
Du 0
0 σ2

wIw

)
,

where Iw is an identity matrix of dimension IJ . Breslow and Clayton (1993)
exploited ideas on Laplace methods for integral approximations. By taking
a quadratic expansion of the term in the exponent about its maximizing
value before integration, the penalized quasi-likelihood is obtained. This
leads to a Laplace approximation to the integrated quasi-likelihood.
To correspond closely with the normal mixed effects model so that an
iterative weighted least squares algorithm may be applied to estimate the
fixed effects, Breslow and Clayton (1993) define a working response vector
Y to have components Yij = ηij−offset+(Cij−μij)g′(μij), where g′ is the
derivative of g; here g′(μij) = 1/μij . The associated normal theory model
is then

Y = Xα+ Zb+ ε, (4)

where ε ∼ N(0,W−1), W = diag{var(Cij |b)[g′(μij)]2}−1. The estimate of
α is obtained as α̂ = (XTV −1X)−1XTV −1Y , with estimated asymptotic
variance (XTV −1X)−1, V = W−1 +ZDZT . In our mapping context, V =
W−1 + Z1DuZ

T
1 + σ2

wIw and W = diag (μij). Note that this estimated
asymptotic variance does not account for the additional variability which
results in the typical scenario where variance components are estimated,
hence standard errors of the m̂j ’s may be underestimated. Random effects
are estimated as empirical Bayes estimates of their posterior mean given
the data: b̂ = DZTV −1(Y −Xα̂).
For estimation of the variance components, the restricted maximum likeli-
hood (REML) equations are employed (Harville, 1977),

1
2

[
(Y −Xα̂)TV −1 ∂V

∂θr
V −1(Y −Xα̂)

− tr
(
P
∂V

∂θr

)]
= 0, r = 1, 2, 3, (5)
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where P = V −1/2(I − H)V −1/2, H being a projection matrix typically
called the hat matrix, H = V −1/2X(XTV −1X)−1XTV −1/2. The asymp-
totic variance of θ̂ is I−1, where I has components

Irs = (1/2)tr [P (∂V /∂θr)P (∂V /∂θs)], r, s = 1, 2, 3.

3 Results

Penalized quasi-likelihood is a very straightforward technique to implement
for GLMMs. Our simulation results (not shown here. See Dean, Ugarte and
Militino, 2003) indicate that PQL estimators have little bias for the cor-
related model considered, except when means are very low yielding sparse
data with an abundance of zero counts. These results suggest that PQL
may be reliably used for exploratory studies, such as routine map produc-
tion at health agencies. Other approaches, e.g., Markov Chain Monte Carlo
methods, are available for etiological studies and other detailed analyses.
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Abstract: We discuss properties of the score statistics for testing the null hy-
pothesis of homogeneity in a Weibull mixing model in which the group effect
is modeled as a random variable and some of the covariates are measured with
error. The statistics proposed are based on the corrected score approach and they
require estimation only under the conventional Weibull model with measurement
errors and does not require that the distribution of the random effect be specified.
The results in this paper extend results in Gimenez et al. (2000) for the case of
independent Weibull models. A simulation study is provided.
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failure time model.

1 Weibull Measurement Error Models with a
Random Effect

Consider a sample divided into k groups and let Tij be the event time to
the individual j in the group i, with j = 1, . . . , ni, and i = 1, . . . , k. The
log-linear Weibull model with a random effect, models logTij as

logTij = Ui + βT
z zij + βxxij + σεij , (1)

where the ε′ijs are independent and identically distributed (i.i.d.) random
errors with standard extreme value density function f(ε) = exp(ε − eε),
ε ∈ �. We consider zij a covariate vector correctly observed and xij an
unobserved variable which is measured with error. We assume an additive
functional measurement error model relating the observed (surrogate) wij
and the unobserved xij , which is expressed as wij = xij + ηij , where η′ijs
represent unobserved i.i.d. errors with distribution N(0, φ). The random
effect for group i is represented as

Ui = α+ θ1/2Vi,
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where the V ′
i s are i.i.d. random variables with, E[Vi] = E[V 3

i ] = 0, E[V 2
i ] =

1, and E[V mi ] < ∞, m > 3, and otherwise unspecified distribution function
F . We assume that Ui, ηij , εij are all independent.

2 Marginal Likelihood

Consider that survival times are subject to right censoring and that censor-
ing is random, uninformative and independent of Ui. Set δij = 1 to indicate
a failure time and δij = 0 to indicate a censoring time. Let Yij be the ob-
served log survival time for subject j in group i. Denote by λ = (γT, θ)T,
the vector of parameters, with γT = (α,βT

z , βx, σ). The hypothesis of ho-
mogeneity is H0 : θ = 0. The likelihood with respect to the conditional
distribution of (Yij , δij) given Vi is

Lij(λ|u(vi), xij) = (1/σ)δij exp[δijs(xij , vi) − exp(s(xij , vi))], (2)

where u(vi) = α− θ1/2vi and s(xij , vi) = (yij − u(vi) − βTz zij − βxxij)/σ.
Note that for vi = 0, Lij(λ|u(0), xij) = Lij(γ, xij) depends only of γ.
Let Yi = (Yi1, Yi2, . . . , Yini)T and Y = (Y T

1 , ..., Y
T
k ), and assume other

vectors denoted similarly. The marginal log-likelihood corresponding to the
observed sample is given by

l(λ,x) =
k∑
i=1

log

∫ ni∏
j=1

Lij(λ|u(vi), xij)dF (vi). (3)

The solution proposed in Bolfarine and Valença (2002), follows by making
a Taylor series expansion of the integrand in (3) around vi = 0, which leads
to

l(λ,x) = l0(γ,x) +
k∑
i=1

log

[
1 +

hi(γ, xi)θ
2

+
∞∑
m=3

D
(m)
i (γ, xi)E(V mi )θ

m
2

m!

]
,

D
(m)
i (γ, xi) =

(
∂mLi(γ, xi)

∂αm

)
/Li(γ, xi) (4)

where Li(γ, xi) =
∏ni
j=1 Lij(γ, xij) and l0(γ) =

∑k
i=1 logLi(γ, xi), with

Lij(γ, xij) = Lij(λ|u(0), xij) given in (2). Denote s(xij) = s(xij , 0) =
(yij − α − βT

z zij − βxxij)/σ. The quantity hi(γ, xi) = D
(2)
i (γ, xi), can be

written as

hi(γ, xi) =
1
σ2

⎧⎪⎨⎪⎩
⎡⎣ ni∑
j=1

(exp(s(xij)) − δij)

⎤⎦2

−
ni∑
j=1

exp(s(xij))

⎫⎪⎬⎪⎭ , (5)
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3 Naive Tests of Homogeneity

Let S(λ;x) = ∂l(λ,x)/∂λ be the score function and I(λ;x) = −∂2l(λ,x)

∂λ∂λT be
the observed information matrix. Note that S and I can not be computed
when the true xij is measured with error since it is not observed. One
alternative is to replace the unobserved xij by the observed wij , and ignore
the measurement error. Such procedures are termed “naive” procedures.
Let λ̃0 = (γ̃0, 0) be the naive estimate under H0 (solution of S(λ,w) = 0,
under H0 : θ = 0). According to Valença (2003), two naive score statistics
to test the homogeneity hypothesis can be defined:

ZO =
1
2

∑k
i=1 hi(γ̃0, wi)√
VO(λ̃0,w)

, and ZH =
1
2

∑k
i=1 hi(γ̃0, wi)√
VH(λ̃0,w)

, (6)

where hi is given in (5), with xij replaced by wij and V0(λ̃0,w) =

Iθθ(λ̃0,w)−Iθγ(λ̃0,w)
(
Iγγ(λ̃0,w)

)−1

Iγθ(λ̃0,w), considering that Iθθ, Iθγ ,

Iγθ and Iγγ are elements of I, which is partitioned according to λ = (γT, θ).
VH(λ̃0,w) = 1

4

∑k
i=1(hi(γ̃0, wi) − h̄(γ̃0,w))2, with h̄ =

∑
hi/k.

However, as is well known (Gimenez and Bolfarine, 2000), the naive score
function S(λ,w) is biased and leads to inconsistent inference.

4 The Corrected Score Statistic

The corrected score approach for consistent inference in measurement er-
ror model was considered in Nakamura (1990) and Gimenez and Bolfarine
(1997). The corrected score function S∗(λ;w) = S∗(λ;w, Y ) is defined as a
function whose conditional expectation E [S∗(λ;w, Y )|x, Y )] with respect
to w given (x, Y ), coincides with S(λ;x). Under the normality assumption
for the measurement error, properties of the normal moments generating
function can be used to obtain the corrected score vector for the Weibull
model (1). For this model, we can obtain a corrected log-likelihood function
l∗ so that S∗(λ;w) = ∂l∗(λ,w)/∂λ, which is given by

l∗(λ,w) = l∗0(γ,w)

+
k∑
i=1

log

[
1 +

h∗i (γ, wi)θ
2

+
∞∑
m=3

D
∗(m)
i (γ, wi)θ

m
2 E(V mi )

m!

]
,

where l∗0(γ,w) =
k∑
i=1

ni∑
j=1

{δij {s(wij) − log σ} − exp(s(wij) − f)} ,
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FIGURE 1. Simulated levels of corrected (ZC) and naive (Z0, ZH , Znaive) tests
of homogeneity for increasing values of variance of the measurement error (1,000
replications). Without Censoring.

h∗i (γ, wi) =
1
σ2

⎧⎪⎨⎪⎩
⎡⎣ ni∑
j=1

(
es(wij)−f − δij

)⎤⎦2

−
ni∑
j=1

es(wij)−f − Fi

⎫⎪⎬⎪⎭ , (7)

with Fi =
∑ni

j=1 [exp(2s(wij) − 2f) − exp(2s(wij) − 4f)] , s(wij) = (yij −
α − βTz zij − βxwij)/σ and f = (β2

xφ)/2σ2. D∗(m)
i (γ, wi) is such that,

E[D∗(m)
i (γ, wi)|Y, xi] = D

(m)
i (γ, xi), given in (4). Then, we can compute,

under the null hypothesis, the corrected information matrix I∗(λ0,w) =
−(∂S∗(λ;w)/∂λ)|λ=λ0 , where λ0 = (λ, 0). A proposed corrected score sta-
tistic for testing H0 : θ = 0, based on results given in Gimenez et al. (2000),
is given by

ZC =
1
2

∑k
i=1 h

∗
i (γ̂

∗, wi)√
VC(λ̂∗0,w)

, (8)

where λ̂∗0 = (γ̂∗, 0), is the correct estimate under the null hypothesis (solu-
tion of S∗(λ;w) = 0, under H0 : θ = 0) and h∗i is given in (7). Considering
the matrices partitioned according to λ = (γT, θ), VC is defined as

VC(λ0,w) = [V ∗
o (λ0,w)]2G∗

θθ(λ0,w),

where V ∗
o (λ0,w) = I∗θθ(λ0,w) − I∗θγ(λ̂0,w)

{
I∗γγ(λ0,w)

}−1
I∗γθ(λ0,w),
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FIGURE 2. Simulated levels of corrected (ZC) and naive (Z0, ZH , Znaive) tests
of homogeneity for increasing values of variance of the measurement error (1,000
replications). 50% Censored.

with I∗θθ, I
∗
θγ , I

∗
γθ and I∗γγ being elements of I∗. G∗

θθ is an element corre-
sponding to θ, of the matrixG∗(λ0,w) = I∗−1(λ0,w)Γ̂∗(λ0,w)I∗−1(λ0,w),
with Γ̂∗(λ0,w) =

∑k
i=1 S∗

i (λ0,wi)S∗T
i (λ0,wi).

We consider that to a large number of groups the distribution of ZC , under
H0, can be approximate to a standard normal distribution, and we can use
the statistic to performing a unilateral test which reject the null hypothesis
to large positive values of this statistic.
We can use the sandwich structure of the variance of ZC to define another
naive statistic, Znaive = 1

2

∑k
i=1 hi(γ̃0, wi)/(Vnaive(λ̃0,w))1/2, where λ̃0 =

(γ̃0, 0) is the naive estimate under H0, hi(γ̃0, wi) is given in (5), with xij
replaced by wij and Vnaive is obtained similarly to VC , but using the usual
observed information matrix and the sandwich estimator instead of the
corrected functions.

5 Simulation

A simulation study was conducted to compare the performance of the pro-
posed test based on the corrected score ZC , with the naive tests ZO and ZH
given in (6) and Znaive. We use a sample with k = 100 and ni = 5 and test
the homogeneity hypothesis. We carried out size simulations based on 1,000
replications, considering increasing values for the variance of measurement
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error (φ), for a nominal size of 5%. We consider uncensored samples and
samples with 50% of censoring. The response was generated for zij scalar,
assuming that α = 0.5, βz = 0.8, βx = 1, and σ = 0.75. The random
variables Vi were generated as i.i.d. N(0, 1). The results are reported in
Figures 1 and 2. It is clear that the naive tests get simulated sizes very far
from the nominal levels with the increasing of φ, while the corrected test
ZC has simulated sizes close to the nominal level. Although censoring has
the effect of reduce the level of the test for the naive tests, in general the
use of the corrected test ZC leads to improvement in the level of the test.
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Abstract: We consider causal inference for randomised clinical trials which as-
sign patients to an experimental treatment or control and observe repeated event
times as outcomes. The structural accelerated failure time models (Robins and
Tsiatis, 1991) allow to analyze causal effects of observed exposures on a single
non-informatively censored survival time. They parametrize an exposure-specific
transformation of the observed outcome into a potential exposure-free outcome.
Estimation relies on equality of exposure-free distributions between treatment
arms and requires parameter-dependent recensoring of events.
As an alternative, Loeys and Goetghebeur (2002) proposed structural Cox PH
models for the analysis of possibly selective, time-constant exposures. They trans-
form observed hazard rates rather than observed times into potential exposure-
free hazard rates via a function of observed exposure. They thus avoid recensoring.
To handle repeated survival times we extend both structural methods following
the marginal modelling principle. We discuss model-specific constraints and com-
pare advantages. We apply both approaches to analyze recurrent lesions in an
HIV-prevention trial.

Keywords: Accelerated failure time models; Causal inference; Proportional haz-
ards model.

1 Introduction

We consider randomised clinical trials which assign patients to an experi-
mental treatment or control and observe repeated events as outcomes. Once
a significant intent-to-treat effect is found one aims to quantify a causal
dose-response relationship for the experimental treatment. This must ac-
count for treatment actually received when varying levels of exposure to the
prescribed dosing regimen are seen. An observed association between dose
and response does not just reflect a causal effect when different exposure
levels correspond with different risks even in the absence of a treatment
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effect. To answer the causal question: “what if experimental exposures had
been withheld?” potential outcomes are introduced and assumptions for
identifiability are imposed on the latent variables.
Structural Accelerated Failure Time(SAFT) models (Robins and Tsiatis,
1991) parametrize the transformation of observed times into potential expo-
sure-free times in function of observed exposure. Estimation equations im-
pose equally distributed exposure-free survival times between randomized
arms. To avoid informative censoring on the backtransformed scale, a re-
censoring scheme is typically devised which can dramatically reduce the
number of events in the backtransformed dataset and thus reduces the
information available for causal inference.
As an alternative to structural AFT models, structural Cox PH models were
recently proposed by Loeys and Goetghebeur (2002) to analyze the effect of
possibly selective but time-averaged exposures in randomised clinical trials.
Rather than transforming survival times directly, they transform observed
hazard rates into potential exposure-free hazard rates via a function of
observed exposure. In doing so they avoid the need for recensoring.
To analyze events occurring repeatedly over time, we extend both the SAFT
model and the structural PH model. Specifically, we adapt the marginal
methodology of Wei, Lin and Weissfeld (1989) and use robust variance esti-
mators to correct for the possible correlations within women. We compare
advantages and constraints of both methods and apply them to analyze
data from an HIV prevention trial which we describe next.

2 A Causal Question in the COL-1492 Trial

In the randomised, placebo-controlled COL-1492 trial for the prevention of
HIV (Van Damme et al, 2002), female sex workers from different centres in
Africa and Asia were triple blindly randomised to either an experimental
vaginal gel, COL-1492, or a placebo gel, Replens. On both arms of the
trial, women were asked to use the assigned gel before every vaginal act
and the male condom for every sexual act. At monthly scheduled clinic
visits they were tested for HIV, sexually transmitted infections and lesions.
The primary intent-to-treat analysis revealed a significantly negative effect
of the assigned experimental treatment on HIV-incidence.
The hypothesis was raised that high gel exposure might cause lesions which
ultimately give the virus easier access. At every clinic visit women reported
on their sexual acts of various types and the preventive measures that had
actually been taken. Here we set out to estimate the causal effect of the
daily number of vaginal acts with experimental gel on the incidence of
lesions, a recurrent event.
The largest centre Durban had the highest retention rate in the study
(93% after 6 months), saw a borderline significant HIV-effect (Hazard Ratio
= 1.6, p=0.06) and the largest number of observed lesions. We therefore
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concentrate our efforts on estimating the causal effect of gel exposure on
lesions in that centre.

3 A Structural AFT Approach for Recurrent Lesions

Let Ri = 1(0), i = 1, · · · , n, denote whether the ith person was assigned to
the treatment (control) arm. Consider further the times to K successive
events (observed lesions) T1i, . . . , TKi, which may be noninformatively cen-
sored by Ci (end of study participation). Let Eki be the daily number of
vaginal acts with the experimental gel between events k − 1 and k (where
event 0 means admission into the trial). Hence Eki = 0, ∀k for a woman on
the control arm. We propose a SAFT-model that backtransforms observed
failure times Tki to potential exposure-free failure times T 0

ki which would
have been observed on the Replens arm. Specifically we assume that for
some value β0 of β:

Tki(β) d=
k∑
l=1

(Tli − T(l−1)i)e−βEli (1)

where T0i ≡ 0 and d= means equality in distribution. At the true value β0,
Tki(β0) ≡ T 0

ki⊥⊥Ri holds.
To transform censoring times we define a new censoring variable Cki(β) =
min(Ci, Cie−βmk), where mk = maxni=1 {E1i, . . . , Eki}. Now testing for
H0 : β0 = β amounts to testing for independence between Tki(β) and Ri
based on noninformatively right-censored pseudo-data min(Tki(β), Cki(β))
with censoring indicators I(Tki(β) ≤ Cki(β)). We use the robust score test
from a working Cox PH model with a common effect of treatment for the
distinct event times Tki(β) but possibly different baseline risks. The es-
timated causal effect β̂0 is then the value of β which minimizes this test
statistic. A (1 − α)100% confidence interval becomes the set of values of β
which are not rejected by this robust score test at the α significance level.
When analyzing T1i, time to first event, in the COL-1492 trial we obtain
e−β̂0 = 1.68 with 95% CI [1.00, 3.13]. As illustrated in Figure 1, the mar-
ginal SAFT-model which includes all K = 6 possible failure times, leads to
an estimated effect e−β̂0 of 1.93 with 95% CI [1.06, 3.13]. Thus for women
observed with one treated act per day, the kth lesion time is estimated to
be 1.93 times longer under the potential Replens regimen.
The recensoring scheme explained above reduces an original 62 observed
events to just 35 in the pseudo data set at the estimated causal effect;
while only 25(54) at the lower (upper) 95% confidence limit remain. More
sophisticated and economical recensoring schemes could however be de-
vised. This wins in importance as more structural parameters enter the
model. To avoid recensoring we explore a structural PH model for the re-
current events, which transforms estimated intensity functions rather than
survival times themselves.
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FIGURE 1. Value of the robust score test statistic as a stepfunction of β with the
estimated causal effect β̂0 and its 95% confidence limits.

4 A Structural PH Approach for Recurrent Lesions

Per woman we consider now a time-averaged measure of exposure, Ei, over
the observation period. In addition we define UEi the potential exposure to
the experimental gel which is experienced when person i is assigned to it.
On the experimental arm UEi = Ei but in the control arm it is unobserved.
By design UEi is equally distributed between randomised arms.
The structural PH model then transforms the compliance-specific hazard
rate of the kth-failure in the experimental arm, λk(t|UEi = u,Ri = 1) to
its counterpart in the placebo arm λk(t|UEi = u,Ri = 0) via a function of
observed exposure and the causal effect ψ0:

λk(t|UEi = u,Ri = 0) = λk(t|UEi = u,Ri = 1)e−ψ0u (2)

Because UEi is latent in the control arm the hazard rate on the left hand
side is not directly estimable .
To estimate ψ0, we will compare estimated hazards between randomised
arms. At the true value, the corresponding survival distributions must be
equal when model (2) holds. More specifically, we estimate the failure-
specific survival distribution in the control arm: Sk(t|Ri = 0) by the
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Kaplan-Meier method. For a given ψ, we compute the exposure-free
failure-specific survival distributions in the treatment arm, following:

Sk,1→0(t|ψ) =
∑

n

i=1
RiSk(t|Ri=1,UEi )

exp{−ψUE
i }∑n

i=1
Ri

When model (2) holds together with the randomisation assumption, it im-
plies that

Sk(t|Ri = 0) = Sk,1→0(t|ψ0); ∀k.
A stratified ‘class K’ test (Gill, 1980) with an empirically estimated variance
is devised to compare those estimated distribution functions between arms.
The value of ψ which minimizes this test statistic yields again the estimated
causal effect.

Conclusion

We find that both the structural AFT and structural PH approaches are
adaptable to the marginal analysis of recurrent event times. In their current
implementation, the former has the advantage of being able to handle time-
varying exposures while the latter avoids efficiency loss due to recensoring.
To guide the practical choice between them one must currently consider
model fit, impact of recensoring and the variation of exposure rates over
time.

References

Gill, R.D. (1980). Censoring and Stochastic Integrals. Mathematical Cen-
tre Tracts 124: Amsterdam.

Loeys, T. and Goetghebeur, E. (2003). A causal proportional hazards es-
timator for the effect of treatment actually received in a randomized
trial with all-or-nothing compliance. Biometrics, 59(1), 100–105.

Loeys, T. and Goetghebeur, E. (2002). Causal proportional hazards mod-
els for the effect of treatment actually received in a randomized trial
with selective noncompliance. Technical Report 2002, Ghent Univer-
sity.

Robins, J.M. and Tsiatis, A.A. (1991). Correcting for non-compliance in
randomised trials using rank preserving structural failure time mod-
els. Communications in statistics: Theory and Methods, 20(8), 2609–
2631.

Van Damme, L. et al (2002). Effectiveness of COL-1492, a nonoxynol-9
vaginal gel, on HIV-transmission among female sex workers. The
Lancet, 360, 971–977 .



454 Structural AFT versus PH models

Wei, L.J., Lin, D.Y., and Weissfeld, L. (1989). Regression analysis of mul-
tivariate incomplete failure time data by modeling marginal distri-
butions. Journal of the American Statistical Association, 84(408),
1065–1073.



Modelling Pasture Growth Rates Using

L-spline Mixed Models

S.J. Welham1, B.R. Cullis2, G. Li2, M.G. Kenward1, and R.
Thompson3

1 London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
2 Wagga Wagga Agricultural Institute, NSW 2650, Australia
3 Rothamsted Research Ltd, Harpenden AL5 2JQ, UK

Abstract: L-splines use a linear differential operator to define an underlying form
for a model, then fit a smooth curve subject to a penalty defined by the linear
differential operator and a smoothing parameter. This paper describes briefly
the use of L-splines within the mixed model framework, with application to the
estimation of pasture growth rates in a complex long-term rotation experiment.
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1 Introduction

This paper describes the use of mixed model L-splines to analyse a long-
term rotation experiment in order to predict pasture growth rates. Mod-
elling of a pair of smooth curves for each rotation is required to estimate
pasture growth rate. As the curves do not correspond to a parametric form,
smoothing splines provide a convenient method of fitting curves.
Cubic splines were introduced into the mixed model setting by Wang
(1998), Brumback and Rice (1998) and Verbyla et. al., (1999), who noted
the mathematical equivalence between the penalised sum of squares used
to fit a cubic spline and the mixed model equations for a specific mixed
model. The smoothing parameter can then be estimated as part of the
model fitting process, usually by REML. In this context, the cubic spline
can be built into a general treatment structure and fitted at different levels
of the structure. In addition, random terms can easily be added to account
for other sources of variation in the data.
In the mixed model context, the cubic spline is partitioned into a fixed
linear component plus random terms, with zero expectation, representing
smooth deviations about the linear trend. The penalty is expressed in terms
of the accumulated second derivative of the fitted curve. However, in the
rotation experiment the underlying trend is not linear, but a seasonal cycle
with some linear trend. In this case the cubic spline model seems unnatural,
as it is clear that the deviation about the linear trend is non-zero. In this
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case it seems more natural to use L-splines, which use an underlying form
defined by a linear differential operator and penalise departures from this
underlying form. L-splines based on trigonometric functions can be fit as
linear mixed models. In this paper, we use an L-spline with underlying form
based on linear trend plus simple periodic cycles to model the data from
the rotation experiment.

2 Rotation Experiment

The data analysed in this paper come from a large rotation experiment de-
signed to investigate the influence of lime application and different rotations
on pasture growth rate. Further details of the experimental approach and
design can be found in Li et. al., (2001). The experimental design consisted
of 2 blocks of 40 plots, with eight treatments, using a 23 factorial structure
with underlying factors for perennial versus annual pastures, continuous
pastures versus pasture with crop rotations, and limed versus unlimed.
During any season, each block contained 2, 3 or 6 replicate plots in pasture
for each treatment. For grazing, a three-plot rotation system of replicate
plots was used for all treatments except for the annual pasture/crop rota-
tion treatment where a two-plot rotation system was used. The length of
spell was therefore effectively nested within the rotations. Measurements of
available pasture were taken from plots when a grazing period ended (after
grazing) and at the end of the spell just before the next grazing period
(before grazing). Five years data were available.
The aim of the analysis was to assess differences in the rate of production
of dry matter for the eight treatments, measured as the rate of dry matter
production during the spell between grazing. We used an indirect approach
to estimating relative growth rates via modelling the log of the dry matter
measurements as two paired series of measurements: after grazing and be-
fore grazing. The shape of these separate curves could be modelled closely
in time using splines. For a constant grazing cycle with spell length s and
stocking rate, the relative growth rate at any time can then be estimated
from the lagged difference between the two curves, using the spell time as
the lag. Disturbances in the grazing cycle were adjusted for empirically by
using lack of fit terms that account for variation in measurements around
the underlying smooth curves. In addition, we directly model correlation
over time due to repeated measurements from each plot.

3 L-splines

In the simplest case, we have data y (n × 1), measured with error, and
explanatory variable x with n unique values {x1, x2 . . . xn}. We specify an
underlying form of curve that is appropriate to the data, described by a
set of core functions u = {uj; j = 1 . . .m} which are annihilated by a linear
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differential operator L, i.e. Lu = 0. An L-spline penalises departures from
the favoured form defined by Lu = 0. For a single spline term, we fit a
model of the form

y = g + e

where g = g(x) for a function g(t). The L-spline is the function g(t) that
minimises the penalised sum of squares

(y − g)′(y − g) + λ

∫
[Lg(s)]2ds (1)

where λ is a parameter that controls the amount of smoothing. Ramsay
and Silverman (1997, section 15.2) prove that, for any basis {uj} such that
Luj = 0 for j = 1 . . .m, the function g minimising the penalised sum of
squares (for given λ) has the form

g(t) =
m∑
j=1

djuj(t) +
n∑
i=1

cik2(xi, t)

where k2 is a reproducing kernel function. Recipes for constructing a set of
basis functions for an L-spline with initial value constraints are given by
Heckman & Ramsay (2000). Properties of the reproducing kernel function
can be used to show that the penalised sum of squares (1) can be written
as

(y − Ud − Kc)T (y − Ud − Kc) + λcTKc (2)

where the matrices U and K have elements [U]ij = uj(xi) for i =
1 . . . n, j = 1 . . .m, [K]ij = k2(xj , xi) for i, j = 1 . . . n, d is a vector of
length m and c is a vector of length n.

4 L-spline Mixed Models

Minimisation of the penalised sum of squares (2) requires solution of the
equations [

U′U U′K
K′U K′K + λK

](
d̂
c̃

)
=
[

U′y
K′y

]
This system of mixed model equations contains implicit constraints U′c̃ =
0. We can absorb these constraints into the equations by reparameterising
the penalised sum of squares in terms of δ (size n − m) where c = Cδ
for any n × n −m matrix C of full column rank such that U′C = 0. The
resulting amended equations correspond to the mixed model equations for
a linear mixed model of the form

y = Ud + KCδ + e

with Ud representing fixed terms in the model, KCδ representing a random
model term, and a residual vector e with var(e) = σ2I, var(δ) = σ2

sH
−1 and
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λ = σ2/σ2
s , where H = C′KC. As for cubic spline mixed models (Verbyla

et. al., 1999, Wang 1998, Brumback and Rice, 1998), the spline can then
be estimated by fitting this mixed model with the smoothing parameter
estimated as a variance parameter using REML. For data sets with many
distinct covariate values, the L-spline mixed model defined above can be
difficult to fit, as it may require a large amount of workspace and processing
time. Both these factors can be reduced by using a reduced number of knots,
r say, defined at distinct covariate values t = (t1, t2 . . . tr)′.

5 Analysis of Rotation Experiment

The L-spline with core functions {1, t, sin(ωt), cos(ωt)} was used in mod-
elling the log dry matter data. The basic treatment structure of the exper-
iment at any one time can be written as rotation/graztrt where rotation
is a factor describing the 8 different rotations and graztrt describes the
status of each plot with respect to its position in the grazing pattern (af-
ter/before). This leads to the following full model (using Genstat/ASREML
operators)

fixed ∼ (constant+ lin(t) + cos(ωt) + sin(ωt)) ∗ (graztrt/rotation)
random ∼ plot+ lspl(t) + fac(t) + rotation.lspl(t) + rotation.fac(t)

+graztrt.rotation.lspl(t) + graztrt.rotation.fac(t)
residual ∼ plot.power(t) (3)

where t is the number of days since 1 April 1992 and ω = 2π/365.25 is used
to give a periodic cycle with period 1 year (on average). The continuous
variables lin(t), cos(ωt) and sin(ωt) have the obvious definition. The spline
function lspl(t) represents L-spline basis functions using 12 equally-spaced
knot points per year. The term fac(t) represents a factor version of the time
variable t and fits a separate effect for each distinct value of t present in the
data. Lack of fit terms (ie. terms including fac(t)) are used to account for
variation in the grazing pattern. The residual term fits a common power
model within plots to account for correlation in measurements across time
within plots. The analysis was done using GenStat and ASREML.
The estimated daily relative rate of pasture growth at time t can then be
calculated as

f̂(t+
s

2
) =

B̂(t+ s) − Â(t)
s

where s is the spell time and B(t), A(t) represent the log dry matter data at
time t before/after grazing respectively. Integration across time can be used
to estimate pasture accumulation. As these quantities are all linear func-
tions of model parameters, it is straight-forward to obtain their predicted
values with standard errors.
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6 Discussion

We have illustrated the use of L-spline mixed models in the analysis of com-
plex experimental data where the underlying form has a periodic pattern.
This work adds to the growing list of types of smoothing splines that can be
fitted within mixed models. Other examples include the P-splines of Eilers
and Marx (1996) and the related penalised splines of Parise et al (2001).
Further work is required to determine the relative merits of different spline
types in the mixed model context.
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Abstract: Electronic instrumentation provides many examples of ‘fat’ data
(n<p) and one succesful method, PLS, for its analysis is somewhat neglected by
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dence structure of the derived components and to formulating a bilinear factor
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1 Introduction

PLS originates from some papers of Wold in the 60’s and 70’s, and, while
there is no universal agreement on the best description of the PLS proce-
dure, if the variance matrix of the explanatory variables X is singular, it
is acknowledged that PLS performs well when ordinary least squares fails.
PLS has many adherents, especially from chemometrics and food science;
it is a technique that works well in practise, especially for the analysis of
data incorporating spectrometer readings. Martens and Naes (1989) give
an extensive practical exposition. An excellent recent theoretical review of
the statistical basis for PLS is given by Helland (2001).
The statistical community is somewhat more sceptical. Stone and Brooks
(1990) suggests that the methodology, in particular the choice of optimisa-
tion criterion, is arbitrary. Later Butler and Denham (2000) point out some
rather non-intuitive shrinkage properties of the PLS procedure. However in
applications, it is empirically competitive with other similar statistical pro-
cedures such as ridge regression and principal components regression, for
instance see Frank and Friedman (1993).
In Section 2 we summarise the linear least squares prediction framework
needed to build independence graphs for the PLS procedure which itself is
described in Section 3. The paper ends with a few concluding remarks.

2 Linear Least Squares Prediction

We follow Whittaker (1990) but also see Christensen (1991). Suppose
that X(p× 1) and Y (q × 1) are random vectors with some joint distri-
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bution, and with expectations E(X) and EY . The covariance cov(X,Y ) is
a bilinear operator, and for the purposes of this paper we suppose that
X⊥⊥Y ⇐⇒ cov(X,Y ) = 0 identifying independence with zero covari-
ance. The LLSP is E(Y |X)= E(Y ) + cov(Y,X)var(X)−1[X − E(X)]. The
alternative shorthand notations for the LLSP, Ŷ and Ŷ (X) prove useful.
Note that Ŷ = BX where B = cov(Y,X)var(X)−1 is the matrix of predic-
tion coefficients. The LLSP satisfies the important orthogonality condition
cov(Y − E(Y |X), X) = 0 or, equivalently, Y − E(Y |X)⊥⊥X . The partial
variance is defined as variance of the residual var(Y |X) = var[Y −E(Y |X)],
and the partial covariance by cov(Y, Z|X) = cov[Y −E(Y |X), Z−E(Z|X)].
The adjective ‘partial’ has the same meaning as in partial correlation,
rather than as in PLS. The criterion for conditional independence, Lau-
ritzen (1996) or Whittaker (1990), is defined here by X⊥⊥Y |Z ⇐⇒
cov(X,Y |Z) = 0, and defines the missing edges in the independence graphs.
The transformation: (X,Y )∼�(X,Y − Ŷ ), of the joint vector (X,Y ) to X
and residual of Y from the LLSP has associated graphs

X�

Y�
∼�

X� Ŷ
��

�Y − Ŷ

The graph on the right displays the fact that X⊥⊥Y − Ŷ , and that the link
fromX to Ŷ is deterministic. Thick arrows are used to display deterministic
(logical or functional) relationships.
The decomposition

Y = Ŷ + Y − Ŷ = BX + Y − Ŷ

is a deterministic identity.
A generative statistical model can be built from this LLSP identity by
supposing the random vector E exists exogenously, E⊥⊥X , B fixed, and
Y = BX + E, with graph

E�

X�

Y�
����
����

If var(E) = var(Y |X) and B is identical to the above prediction coefficients
then samples of (X,Y ) taken from the original distribution of (X,Y ) or
taken from (X,E) cannot be distinguished by inspection of second order
statistical properties.
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3 The PLS Population Algorithm

The PLS procedure is usually described by an algorithm, for instance,
Martens and Naes (1989) pl19. We follow this but express the procedure
entirely in terms of prediction of random vectors suppressing any reference
to samples of size n, that is, in population terms, Helland (2001).
We suppose Y is scalar, q = 1, though this is easily generalised. The algo-
rithm is

Initialise by setting E(Xi) = 0 and var(Xi) = 1 for i = 1, . . . , p.

Repeat the two steps: 1 Compute the direction

c = arg max
a|a′a=1

cov(a′X,Y ).

2 Adjust for T = c′X by replacing X and Y by their residuals X −
E(X |T ) and Y − E(Y |T ).

Stop the procedure at step k if cov(X,Y |T1, . . . , Tk+1) = 0, result-
ing in components (T1, . . . , Tk) from which the final predictor
E(Y |T1, . . . , Tk) may be formed.

There are some obvious remarks to make about the procedure. It reduces
the effective dimension of the explanatory model from p to k components.
Any computation of var(X)−1 is avoided, and, the canonical correlation
constraint a′var(X)a = 1 is replaced by a′a = 1. These components are
inherently informative about Y because of the way the loadings coefficients
c are chosen, and so likely to be predictive. The components are mutually
independent, ⊥⊥(T1, T2, . . . , Tk) so that E(Y |T1, T2, . . . , Tk) may be formed
as a sum. There is a downside, the initial scaling is arbitrary as is the
optimised criterion maxa|a′a=1 cov(a′X,Y ). More importantly, there is no
explicit statistical model, and thereby no default statistical inference.
The independence graphs that map this sequence of PLS transformations
begin with the display of the graph for (X,Y ) and, by extracting c1 from
(X,Y ), introduce T1 and the residuals (X1, Y1) after adjusting for T1

X�

Y�
∼�

T1�
�X̂1

�Ŷ 1

����

����

�X1 = X − X̂1

�Y1 = Y − Ŷ 1
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Note that the component is independent of the residuals, T1⊥⊥(X1, Y1),
after adjusting for the the first component.
Extracting c2 from the distribution of (X1, Y1) creates T2.

∼�

T1�
�X̂1

�Ŷ 1

����

����
T2�

�X̂1
2

�Ŷ1
2

����

����

�X2 = X1 − X̂1
2

�Y2 = Y1 − Ŷ1
2

The procedure would stop at k = 2 if X2⊥⊥Y2 or equivalently if
cov(X2, Y2) = cov(X,Y |T1, T2) = 0, and there would be no edge between
X2 and Y2 in this graph.
A generative model is formed by replacing the residuals by independent
stochastic errors, E,F , as with the LS model above, by replacing the
components by exogenous latent random variables, Z1, Z2, and by re-
interpreting X̂1, Ŷ 1 as predictors from Z1 rather than from T1. Assuming
⊥⊥{Z1, Z2, E, F} their graph is

Z1�
�X̂1

�Ŷ 1

����

����
Z2�

�X̂1
2

�Ŷ1
2

����

����

�E

�F

The observed values of X and Y are linear combinations of the predictors
and the errors so that

X = AZ + E

Y = BZ + F

and two versions of the independence graph for the generative model are

E�Z1�

Z2� F�

X��

�
���

Y�

	
		
� �

�

and

Z�
X�

Y�

����




�
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4 Concluding Remarks

This model is an instance of a common factor model, which has been de-
scribed in the PLS literature by Martens and Naes (1989) and proposed for
explicit model fitting by Burnham et al. (1999). The model as stated here
is under specified. For instance, while the independence structure (zero co-
variances) is clear the variance matrices of the stochastic errors may be set
in a variety of ways and additional assumptions are needed to make a full
statistical data analysis.
Furthermore the final model is not specific to PLS. Any procedure that
extracts sequences of linear combinations from (X,Y ) and then from their
residuals has the same sequence of independence graphs. The PLS choice,
characterised by restriction to combinations of X alone with coefficients
proportional to individual covariances, is not explicitly displayed in the
graphs. For further insight, see Helland (2001).
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Abstract: Analysis of covariance (ANCOVA) is often used in analyzing data
from randomized clinical trials, in which each subject has a pre- and a post-
treatment measurement, serving as covariate and outcome, respectively. Also
generalized least squares (GLS) related methods, like GEE and multilevel analy-
sis, can be used to analyze such data with pre- and post-treatment measures
treated as repeated measures. In this paper, these GLS related methods to es-
timate a treatment effect, i.e. difference in post-treatment expectation between
two groups, are compared with ANCOVA where different assumptions are made
about the regression slopes and residual post-treatment variances. We found that
ANCOVA is preferred to the GLS method when regression slopes are homoge-
neous, because of unbiased treatment effect and variance estimators, irrespective
whether residual variances are homogeneous or heterogeneous. In case of hetero-
geneous slopes and homogeneous residual variances, GLS could not be applied
with present software and, therefore ANCOVA must be used. Finally, in case
of heterogeneous slopes and residual variances, the GLS method is preferred to
estimate an overall treatment effect, because it takes into account the variability
of the pre-treatment mean estimator. But for estimating a conditional treatment
effect that depends on the pre-treatment value ANCOVA should be used.

Keywords: Analysis of covariance (ANCOVA); Generalized least squares (GLS);
Treatment effect estimators.

1 Introduction

Analysis of covariance (ANCOVA) is often applied to data from randomized
clinical trials, in which each subject has a pre- and a post-treatment mea-
surement, serving as covariate and outcome, respectively. Also generalized
least squares (GLS) related methods, like generalized estimating equations
(GEE) and multilevel analysis, can be used to analyze such data.
The purpose of this paper is to compare ANCOVA with these GLS related
methods to estimate an unconditional treatment effect, defined as the ex-
pected difference in post-treatment values between two treatment groups,
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where different assumptions are made about regression slopes and residual
post-treatment measures.

2 Methods

Consider a randomized study of G treatments and a quantitative outcome
variable. In group g, subject i has a pre-treatment measurement xgi and
a post-treatment measurement ygi; g = 1, 2, . . . , G and i = 1, 2, . . . , Ng.
Because of the randomization all groups are assumed to have the same
pre-treatment expectation μx and variance σ2

x. The within-group post-
treatment expectation μg and variance σ2

g as well as the covariance be-
tween pre- and post-treatment measures σg; xy may be influenced by the
treatments, indicated by subscript g. The pre- and post-treatment mea-
sures are assumed to be bivariate normally distributed with expectation
vector (μx, μg)′ and covariance matrix Vg. The treatment effect between
groups g and g′ is defined as the difference in post-treatment expectations,
i.e. τg,g′ = μg − μg′ .
The non-parallel lines ANCOVA model is a conditional model, in which
the post-treatment measure ygi is given conditional on the pre-treatment
measure xgi, i.e.

ygi = βg0 + βg1(xgi − μx) + εgi, (1)

where βg0 and βg1 are the group-specific intercept and slope of the
regression line of group g, respectively. The classical ANCOVA model
assumes that the errors εgi are normally and independently distributed
with mean zero and homogeneous within-group variance σ2

ε . But, in case
of heterogeneous slopes βg1, ANCOVA can account for heterogeneous
residual variances across the groups by applying model (1) to each group
separately. Since the pre-treatment measurement in model (1) is written
as a deviation from the population mean, (xgi − μx), βg0 is not only
the conditional expectation for a subject with an average pre-treatment
value, but also the unconditional expectation μg. Thus, the unconditional
treatment effect τg,g′ = βg0 − βg′0. The classical parallel lines ANCOVA
assumes, additional to homogeneous residual variance, homogeneous slopes
across the groups, i.e. β11 = β21 = . . . = βG1. In this case, μx can be
omitted from the model without affecting the treatment effect estimators.
In case of homogeneous slopes, heterogeneous residual variances imply
that weighted least squares (WLS) estimation should be used instead of
ordinary least squares (OLS) estimation (see e.g. Diggle, Liang and Zeger,
1994).
Equivalent assumptions to the ANCOVA assumptions of homogeneous or
heterogeneous slopes and residual variances can be made in multilevel and
GEE models. Therefore, the ANCOVA treatment effect estimators and
variances can be compared by those obtained from multilevel analysis or
GEE under different assumptions about the ANCOVA regression slopes
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and residual variances.

3 Results and Conclusions

The covariance parameters of the repeated measures, σ2
x, σ

2
g and σg; xy as

well as the pre-treatment expectation μx are generally unknown and have
to be estimated.
In case of homogeneous regression slopes, ANCOVA is then preferred to
multilevel analysis or GEE, because ANCOVA leads to unbiased treatment
effect estimators and variances, irrespective whether residual variances are
homogeneous or heterogeneous. The variances of the GLS treatment effect
estimators obtained from multilevel analysis or GEE are biased downwards,
because they ignore the variability in the estimators of σ2

x, σ
2
g and σg; xy.

In case of heterogeneous regression slopes, ANCOVA as well as the GLS
related methods lead to biased variances of the treatment effect estimators,
irrespective whether the residual variances are homogeneous or heteroge-
neous. ANCOVA ignores the variability in the estimator of μx, while the
variability in the estimators of σ2

x, σ
2
g and σg; xy is ignored in the variance of

the GLS treatment effect estimators. In case of heterogeneous slopes and
homogeneous residual variances, ANCOVA is preferred to GLS, because
GLS can not be applied with the present software, like SAS (release 8.02).
But, in case of heterogeneous slopes and residual variances, GLS related
methods may be used to estimate an unconditional treatment effect instead
of ANCOVA, because the variability in the estimator of μx can be crucial
especially when the regression slopes are quite heterogeneous. More details
about the treatment effect estimators and variances as well as the biases
in the variances can be found in our paper that has been submitted for
publication.

4 Discussion

Kenward and Roger (1997) discussed some simulation studies and pro-
posed to use inflated estimated covariance matrices Vg to adjust for the
variability in the estimators of σ2

x, σ
2
g and σg; xy, which was ignored in the

variance of the GLS treatment effect estimator. In their paper, the adjust-
ment procedure, which is also implemented in standard software like SAS,
was successful in reducing the bias in the variance of the GLS treatment
effect estimators. But Kenward and Roger also warned that the proposed
adjustment procedure may not be so successful in general as it was in their
paper.
The present paper discussed the estimation of unconditional treatment ef-
fects, but treatment effects can depend heavily on the pre-treatment value
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in case of heterogeneous regression slopes (see e.g. Fleiss, 1986). Such con-
ditional treatment effects can be important for a patient with a particular
pre-treatment value. Then, ANCOVA is also preferred to multilevel analysis
or GEE in case of heterogeneous regression slopes and residual variances.
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Based on Optimal Allocation of Sales Calls
and Product Samples

Alex Yaroshinsky
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Abstract: This paper outlines a methodology for optimal allocation of sales calls
and product samples among 7200 physicians. Implementation of this methodology
led to a 10in the number of prescribing physicians within a month of implemen-
tation.

Keywords: Sales; Forecast; Calls; Samples.

1 Methodology

The objective of this paper is to demonstrate a sales forecasting methodol-
ogy based on the optimal allocation of sales calls and product samples (call
and sampling plans). The purpose of these plans was to increase sales and
market penetration by assessing optimal quantities and allocation of calls
and samples over time among 7200 physicians. We performed a trend analy-
sis on the new and total prescription data for different physician groups
structured according to their market potential and market share. From
this analysis, optimal number and allocation of sales calls and product
samples was determined by building response surfaces” based on the num-
ber of prescriptions (TRx) as a function of number of calls and samples per
physician for a given period of time. We refer to Figure 1 for a graphical
representation of a ”response surface”.

2 Implementation

The analysis showed that both, prescription volume per month, and trends
over time, were substantially different for physician groups depending on
the market share of our products and physician-specific prescription vol-
ume within given dermatology market segment. For example, growth for
physicians with high market share was limited, and promotional activities
were only supporting current market share. Respectively, high sales call
frequency and samples were not generating additional prescriptions. On
the other hand, higher call volume and increased sample allocation were
generating significant incremental prescription volume for doctors with low
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FIGURE 1. Prescriptions as a function of sales calls and product samples.

market share, especially those with high potential (determined by the physi-
cian’s overall prescription volume within particular market segment). Op-
timal call frequency and sample allocation were implemented by the Con-
netics’sales force.
Sales forecast was built using dynamic regression model based on the lagged
values of dependent and explanatory variables. We refer to Figure 2 for a
graphical representation of the 2003 forecast. Prescription volume was used
as a response variable with sales call and product sample allocation over
time used as explanatory variables. Additionally, overall market volume
over time was used to better define seasonality. Current sales force capacity
was taken into account: optimal number of sales calls per sales represen-
tative could not exceed his/her annual capacity. Budget-driven restrictions
were imposed on the optimal sampling program.

3 Results

We were successful in designing optimal sales call and sampling plans as
we have experienced significant growth in sales of our products after imple-
mentation of this program. Total number of prescriptions per business day
in the months following implementation of the plan was growing 10-12a
graphical representation of actual sales before and after implementation of
a new plan in October. Additionally, as a result of our recommendations,
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FIGURE 2. Sales forecast.

the total number of doctors prescribing our products increased by 18pro-
gram. These results were further used to generate sales forecast for the first
quarter of 2003 and beyond.

Acknowledgments: Special thanks to Mr. Greg Vontz of Connetics Cor-
poration for valuable discussions and recommendations.
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FIGURE 3. Actual sales before and after implementation of a new plan in Octo-
ber.
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Abstract: The wandering ideal point models display ranking data graphically.
However, when the number of items to be rank is large, direct maximization of the
likelihood function is computationally demanding and numerically unstable. In
order to tackle this problem, we adopt a Bayesian approach via MCMC method
to estimate the parameters. Simulations are done to demonstrate the proposed
estimation method.
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1 Introduction

Rankings appear in our everyday life. Marketing research companies want
to know the preferences of consumers on different brands of a certain prod-
uct. Gamblers want to know the ordering of horses in races, but they are not
interested in the actual running times of the horses. In addition, rankings
eliminates the effects of different scale usage of individual and arbitrar-
ily assignment of the scale in ratings. Proper statistical analysis of these
ranking data helps us to study the individual’s preference-behaviour.

1.1 Ranking and Ordering

Some people may think that ranking is the same as ordering. Indeed, or-
dering is a list of items which is according to the acending or decending
order-preferences of the judge, while ranking is a list of ranks correspond-
ing to each item. For example, if a judge is presented to k = 3 items,
tram (item 1), taxi (item 2) and bus (item 3). The ordering 〈bus, tram,
taxi〉 means that the judge prefers taxi to tram to bus. We may also code
the ordering as 〈3,1,2〉. The ranking of the judge is (Rtram, Rtaxi, Rbus) =
(R1, R2, R3) = (2, 3, 1), because the judge most prefer item 2, item 2 has
rank 3. Similarly, the judge least prefer item 3, item 3 has rank 1. Once we
know the ordering, we know the ranking, vice versa.
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1.2 Interpretation of Ranking Data

Although ranking data is very common, people usually analyze it wrongly.
They may treat the discrete ranking data as a continuous scale and then
simply use regression or ANOVA to analyze it. Frequently, the very first
step of statistical analysis involves data visualization. This helps us to have
an insight of the data.

2 Wandering Ideal Point Model

Wandering ideal point model (WIPM), independently developed by De
Soete, Carroll and DeSarbo, and Böckenholt and Gaul in 1986, has been
widely used in paired comparison of items. For example, if the judge is
present to 3 items, he has to make comparisons between items 1 and 2,
items 2 and 3, and items 3 and 1. It visualizes individual preferences, so
that layman can understand the results easily. However, due to the difficulty
in calculating the likelihood function of the wandering ideal point model,
no applications on analyzing ranking data using this model for more than
5 items have been found in the literature.
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FIGURE 1. An illustration of a 2-dimensional WIPM.

Figure 1 shows a 2-dimensional model. θ1, θ2 and θ3 represent the items to
be ranked, while xj and x� show the location of judges j and 
. The judges
sample from the distribution Nd(μ,Γ), where Γ is a diagonal matrix. The
distance between xj and θ2 is smaller than that of θ1, which is in turn
smaller than that of θ3. Judge j would prefer item 2 to item 1 to item 3,
therefore, ranking of judge j is (2, 3, 1) and ordering 〈3,1,2〉. Similarly, the
ranking of judge 
 is (3, 1, 2). Moreover, a new x is sampled from Nd(μ,Γ)
each time when a set of items is presented to the judge. Therefore, the ideal
point of the judge ”wanders” around μ from trial to trial, which gives rise
to the name of the model.
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2.1 Restricitons in Developing the Model

Since the likelihood function is very complicated for the wandering ideal
point model, the studies of De Soete et al.(1986) and Böckenholt and
Gaul (1986) only focused on paired comparisons data. This requires high-
dimensional integration and the complexity increases with the number of
items to be ranked. The adoption of the classical approach in the parameter
estimation restricted the development of the model.

3 Methodology

To overcome the problem discussed in Section 2.1, in our context we adopt
a Bayesian approach via Markov chain Monte Carlo methods. Methods
proposed here is similar to the one used by Yu and Chan (2001). In order
to calculate the posterior distributions, data augmentation (Tanner et al.,
1987) is used in our method. Since the ordering of the distances between
the items and the judge determines the judge’s ranking, we can add the
utilities of each judge on the items, which are equal to the negative value
of corresponding distances, to the model. Note that we can only observe
the ranking, the utilities are unobservable.

3.1 Gibbs Sampler

The Gibbs sampler of the WIPM contains the following 5 steps:

1. Simulate Uij given xj , μ, Γ,Θ, Rj

2. Simulate xj given Uij , μ, Γ,Θ, Rj

3. Simulate μ given Uij , xj ,Γ,Θ, Rj

4. Simulate Γ given Uij , xj , μ,Θ, Rj

5. Simulate Θ given Uij , xj , μ, Γ, Rj

where Θ = (θ1, θ2, . . . , θk). The only difference between our approach and
that of Yu and Chan (2001) is that the full conditional distribution of Θ
is non-standard. Therefore, we proposed to use the Metropolis-Hastings
algorithm to generate random variates of Θ. The Metropolis-Hastings al-
gorithm involves a proposed density and a target density, and 3 proposed
densities have been tried: (a) Random-Walk (b) Random-Walk with Depen-
dence and (c) Independence. Figure 2 shows the first 20,000 Gibbs iterates
of θ21 based on these three methods. It can be seen that only Independence
Metropolis-Hastings algorithm can get convergence.
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FIGURE 2. θ21 against Number of Iterations.

4 Simulation Studies

The true values of the parameters and the results of the simulation studies
with 1000 judges and 6 items are shown in Table 1. The number of itera-
tions is 20000 and the burn-in period is 10000 in the Gibbs Sampler. The
Independence Metropolis-Hastings Algorithm is chosen for simulating Θ.
The initial value for μ is (1, 1)′, Γ is I and θ’s are (0, 0)′. Proper but vague
conjugate prior distributions were used. The results are satisfactory.

5 Conclusion

The proposed method is efficient in estimating the parameters for the wan-
dering ideal point model for ranking data. The CPU time runs on Compaq
Proliant system was about 10 minutes in our simulated studies.
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TABLE 1. Table of Simulation Results.

True Posterior 90%
Parameter Value Mean S.D. Interval

μ1,1 0.4 0.3998 0.0531 ( 0.3413, 0.5197)
μ2,1 0.6 0.5913 0.0438 ( 0.5192, 0.6648)
Γ1,1 1.2 1.3013 0.1491 ( 1.1913, 1.6722)
Γ2,2 1.2 1.2619 0.0878 ( 1.1182, 1.4111)
θ1,1 -0.8 -0.8137 0.0317 (-0.7659, -0.8506)
θ1,2 -1.0 -0.9944 0.0382 (-1.0543, -0.9394)
θ2,1 1.0 1.0170 0.0399 ( 0.9132, 1.0481)
θ2,2 -1.0 -0.9843 0.0281 (-1.0392, -0.9461)
θ3,1 0.5 0.5293 0.0330 ( 0.4706, 0.5808)
θ3,2 0.8 0.7899 0.0333 ( 0.7196, 0.8319)
θ4,1 -1.0 -1.0354 0.0380 (-1.0674, -0.9436)
θ4,2 0.5 0.4478 0.0300 ( 0.4124, 0.5113)
θ5,1 0.3 0.3027 0.0228 ( 0.2629, 0.3381)
θ5,2 -0.5 -0.5036 0.0281 (-0.5437, -0.4514)
θ6,2 1.2 1.2445 0.0336 ( 1.1704, 1.2875)
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Abstract: Registrations in epidemiological studies suffer from incompleteness,
thus a general consensus is to use capture-recapture models. Lately there has
been a thrust to incorporate covariates which relate to the capture probabilities in
order to improve the estimate of population size. In this presentation we evaluate
the usefulness of partially-overlapping covariates and furthermore show how data
can be analyzed if the covariates are unobserved for some individuals.
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1 Introduction

The multiple-record systems estimator is widely used to estimate the size
of epidemiological populations using several incomplete registrations (or
lists). These registrations usually contain a large number of covariates. In
most capture-recapture studies observable heterogeneity is usually taken
into account by the use of fully overlapping covariates. These covariates can
be easily incorporated in log-linear or multinomial logit models. Accounting
for observable heterogeneity has been shown to minimize the bias of the
estimate of the population size (see Alho, 1990).
In this presentation we evaluate the usefulness of partly overlapping co-
variates in the multiple system estimator. There is little or no information
on the use of non-overlapping covariates. If these covariates are related to
the inclusion probabilities in-line with the problem with fully overlapping
covariates we presume that any estimation (or analysis) excluding them
results in a bias.
A simple way to analyze capture-recapture data with non-overlapping co-
variates will be to replace (impute) each missing value with a single reason-
able proxy (alternatives are the mean, random hot-deck, and model-based)
for each missing value. This approach is usually called single imputation
as only one value us assigned to each missing value. Once the data are
imputed, capture-recapture methods incorporating covariates can then be
used. The main deficiency of single imputation is that the single value im-
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TABLE 1. Simple problem 2

List 2
List 1 Not included Included
Not included n0(++) n2(+1) n2(+2)

Included n1(1+) n3(11) n3(12)

n1(2+) n3(21) n3(22)

puted underestimates the true variability as the imputed value is assumed
known with certainty rather than missing in the analysis.
Therefore we take another approach. We will assume that the covariates are
missing at random (MAR) in the sense of Little and Rubin (1987); that is,
the probability of missingness depends only on the observed data (includ-
ing the response). This is a reasonable assumption here, because almost all
of the missingness is due to unasked questions. Thus we assume that the
missingness provides no information about the underlying process, imply-
ing that the missing data mechanism is ignorable (see Little and Rubin,
1987). If these assumptions hold, the data can be efficiently analyzed using
methods for data that are MAR, for example, the EM algorithm and mul-
tiple imputation. For this presentation we concentrate on problems where
all the covariates are categorical.
In Section 2 we illustrate how the EM algorithm can be implemented for
simple cases, that is, where all the covariates are categorical. We show a
scenario where ignoring the missing covariates and using traditional meth-
ods would result in unbiased estimate of the population size. An analysis of
real data on neural tube defects with three overlapping registrations which
are incomplete, with both fully overlapping and non-overlapping covariates
is analyzed in Section 3. We conclude with a discussion and future work in
Section 4.

2 Illustration of EM Algorithm

Assume that we have two binary covariates and two lists. Further assume
that each list measures one covariate (list 1 measures covariate A and list 2
covariate B). This scenario is summarized in table 1 (indices for covariates
shown in brackets). Note that if all cases with non-overlapping covariates
are dropped, the problem is unidentified (or has no solution). If we ignore
the covariates the estimate of the numbers missed by all lists is given by;

n0(++) =
n1(++)n2(++)

n3(++)
. (1)
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If we assume the covariates are related to the inclusion probabilities, the
numbers missed using the EM algorithm is,

n0(11) =

[
n1(1+) × n3(11)

n3(11)+n3(12)

] [
n2(+1) × n3(11)

n3(11)+n3(21)

]
n3(11)

;

=
n1(1+)n2(+1)n3(11)

n3(1+)n3(+1)
;

Similar equations can be made for n0(12), n0(21), and n0(22). These equations
hold in the general case, that is when the covariates are dependent. How-
ever, if the two covariates are independent, then one could use equation 1
to arrive at an unbiased estimate of the number missed (and population
size). This is because under independence,

n3(ij)

n3(i+)n3(+j)
=

1
n3(++)

, i, j = 1, 2.

This shows that using the covariates (and using the EM algorithm) offers
an alternative to the independence model.
Another interesting example is in the three list scenario, where there are
two covariates, A and B: List 1 measures both variables, list 2 measures
covariate A and list 3 measures covariate B. In this example, unlike the
previous example, models with the main covariate effects also result in a
different estimate of the population size compared to the model excluding
covariates. In this case utilizing the partly overlapping covariates provides
the researcher with a rich choice of models, which can be discriminated
using the Aikake Information Criterion (AIC) or likelihood ratio test.
The variance estimator and confidence interval associated with the estima-
tor of the population size can be constructed using the parametric bootstrap
procedure. In most instances the capture counts are approximately distrib-
uted as a multinomial distribution. Thus a bootstrap sample is generated
from a multinomial distribution with population total equal to the esti-
mated population size and probabilities equal to the fitted probabilities.
Note that the cells corresponding to the numbers missed have non-zero
probabilities, resulting in the estimator not conditional on the observed
sample size.

3 Application

In the Netherlands cases with neural tube defects are registered in several
national and regional data bases, and none of these databases include all
cases of neural tube defects. For this analysis we use three registrations.
The first (R1) is a registry for low risk pregnancies and birth in primary
care, the second (R2) registers births in secondary care, and the third (R3)
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registers admission and re-admissions of newborns to paediatric department
within the first 28 days of life.
In each of the three registries duration of pregnancy (in weeks) and birth
(or delivery) weight of the child (in kilograms) is recorded (full overlapping
covariates). R1 and R2, also have information on age of mother, parity of
child, and ethnic group which are not measured in R3.
We will use data from 1992 to 1998 with 1446 cases. The analysis also
has to take into account that children with a pregnancy duration below 24
weeks (abortions) cannot be observed in LNR. We have previously shown
how data from registration emanating from different populations can be
analyzed using the EM algorithm and the same technique will be used
here. The data have 1278 observations with fully observed covariates and
98 observations in LNR only. The other 110 observations have item missing
values but none have missing values on all covariates.
To illustrate the EM algorithm in this example the covariates used are
birth weight of child (BW: 0 if < 1 kg, 1 if ≥ 1 kg), pregnancy duration
(PD: 0 if < 24 weeks and 1 if ≥ 24 weeks), ethnic group (ETN: 0=Dutch,
1=otherwise), parity (PRT: 0 if ≤ 2 children and 1 if > 2 children), and age
of mother (MOM: 0 if < 35 years and 1 if ≥ 35 years). This analysis will be
compared with results from an analysis utilizing only variables observed in
all the registrations, that is, pregnancy duration (in weeks) and birth (or
delivery) weight of the child (in kilograms).
The models fitted to the data set and corresponding estimates of population
size are shown in table 2. In this case the best-fitting model with fully
overlapping covariates results in a comparable estimate of the populations
size to the model including partially overlapping covariates.

4 Conclusions and Discussions

In this article we generalize the multiple systems estimator with categorical
covariates to cases where the covariates are not necessarily measured in all
registrations. This is accomplished by using the EM algorithm. We show
that in the two list case if the covariates are independent in some cases
analysis can be performed using the traditional multiple systems estimator.
Note that, if there is only one covariate and that covariate is measured by
only one registration, it is impossible to measure heterogeneity due to that
covariate and it can safely be ignored.
For mixed categorical and continuous covariates we envisage that using
multiple imputation (see Schafer, 1997) would be more suitable, but this is
a subject of further research.
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TABLE 2. Selected models with deviance and AIC

# of
Design matrix par’s AIC N̂

Without covariates
1 R1 +R2 +R3 + Y ear 10 4491 2423
2 1 + (R1 +R2 +R3) × Y ear 28 4448 2396
3 2 + H1 29 4436 3292

Including covariates
4 1 + BW 11 4326 2423
5 4 + PD 12 4151 2277
6 5 + ETN+PRT+MOM 15 1790 2277
7 6 + (BW+PD+ETN+PRT+MOM)×Y ear 45 1825 2277
8 6 + (R1 +R2 +R3) × Y ear 33 1746 2250
9 8 + (BW+PD+ETN+PRT+MOM)

×(R1 +R2 +R3) 47 1555 2155
10 9 + H1 48 1543 3002
11 10 + H1×Y ear 54 1552 3072
12 10 + (BW+PD+ETN+PRT+MOM)×H1 52 1549 3046
13 9 +(R1 : R2 +R1 : R3 +R2 : R3) 50 1541 3149
14 13 +(R1 : R2 +R1 : R3 +R2 : R3) × Y ear 68 1548 4474
15 13 +(BW+PD+ETN+PRT+MOM)×

(R1 : R2 +R1 : R3 +R2 : R3) 62 1560 2845
16 8 + [PD × (BW+ETN+PRT+MOM)]×

(R1 +R2 + R3)+
(R1 : R2 +R1 : R3 +R2 : R3) 62 736 3266

Including fully observed covariates only
(best model)
17 5 +(BW×PD)× [(R1 +R2 +R3)+

(R1 : R2 +R1 : R3 +R2 : R3)] +
(R1 +R2 + R3) × Y ear 41 3090 3165

References

Alho, J. (1990). Logistic regression in capture-recapture models. Biomet-
rics, 46, 495–504.

Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing
Data. New York: Wiley.

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. New York:
Chapman & Hall.



486 Are Partially-overlapping Covariates Necessary?



Author Index

Ades, P., 195
Aerts, M., 15, 137, 183
Agostinelli, C., 21
Al-Tawarah, Y., 27
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