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Abstract. A general linear spatial database model is presented in which
both the representation and the manipulation of non-spatial data is based
on first-order logic over the real numbers with addition. We first argue
the naturalness of our model and propose it as a general framework to
study and compare linear spatial database models. However, we also
establish that no reasonable safe extension of our data manipulation
language can be complete for the linear spatial queries in that even very
simple queries such as deciding colinearity or computing convex hull of a
finite set of points cannot be expressed. We show that this fundamental
result has serious ramifications for the way in which query languages for
linear spatial database models have to be designed.

1 Introduction

There are many database applications that need the ability to store and manip-
ulate geometric data, such as geographic information systems (GIS), geometric
modeling systems (CAD), and temporal databases. We refer the reader to the
following papers for more background on the work done about spatial and tem-
poral databases®. [12, 29]

In a recent paper [18], Giiting specified requirements for spatial database sys-
tems: a spatial database system must first and foremost be a database system,
meaning that it should offer the tools needed to represent, store, and manipulate
both conventional and geometric data objects; in addition it should offer spatial
data types in its data model and query language; and finally it should sup-
port spatial data types in its implementation, e.g., by making available spatial
indexing and algorithms for spatial joins.

Spatial database models designed in accordance with the above requirements
can roughly be categorized in models based on fixed and variable spatial dimen-
sions. In models based on fixed spatial dimensions (e.g., [2, 16, 17, 35, 33]), the
spatial data types are subclasses of all possible point sets of a Euclidean space of
some fixed dimension (usually 1, 2, or 3), such as, e.g., points, lines, and polygons.

? Since temporal databases can be interpreted as 1-dimensional spatial databases, we
shall not give them separate consideration.



Unfortunately, the particular choices of spatial data types and corresponding op-
erators in these models are somewhat “ad hoc” as no singular set of spatial data
types and corresponding operators is known to serve well all spatial purposes.
Models based on variable spatial dimensions (e.g., [10, 22, 24, 28]) avoid this
lack of generality by adopting a more declarative approach. However, some of
the latter models may be too general from an implementational perspective.

It is the purpose of this paper to bridge the gap between the two main
approaches by presenting a general, variable-dimensional, linear spatial database
model as a formal framework to study the representation and manipulation of
linear spatial data. In Section 2, we introduce our model as a restriction of the
very general (non-linear) spatial database model considered by Paredaens et
al. [28]. The point sets in the model thus obtained are called semi-linear sets
and are characterized as definable in the first-order theory over the real numbers
with addition. By providing some alternative characterizations and establishing
desirable closure properties semi-linear sets on the one hand, and by proposing a
simple and natural declarative, calculus-like query language, called FO + linear,
for which an equivalent procedural algebra can be defined, on the other hand,
we argue the appropriateness of our model for the purpose it i1s intended. In
Section 3, we study the expressiveness of FO + linear. Although certain complex
geometric decision problems and computations can be expressed in an elegant
way, we were able to prove that no reasonable safe extension of FO + linear can
be complete for the linear spatial queries in that even very simple queries such as
deciding colinearity or computing convex hull of a finite set of points cannot be
expressed. The viability of alternative strategies to obtain a richer language that
circumvent the deep inherent problem identified in this paper are examined. In
Section 4, finally, we discuss the ramifications of our main result and compare
our approach with other work.

2 A General Linear Spatial Database Model

2.1 Semi-linear Sets

Linear spatial database models and prototypes proposed in the literature typi-
cally focus on a finite number of specific spatial data types one might designate
as “linear,” the particular choice of these primitives usually being driven by the
applications that are intended. The choice of these “linear” data types is further
motivated by the observation that many geometrical operations on typical linear
data, such as lines, and polygons, and their counterparts in three dimensional
space, have efficient algorithms. Thus, linear data types are also attractive from
an implementational perspective. Variable-dimension models avoid the “ad-hoc”
approach of choosing a set of data types and operators satisfying all application
needs by offering a general, declarative framework. It goes without saying that
such a general framework offers a tool to study spatial databases and their prop-
erties in a formal way, as is the case for conventional databases. In our model we
try to combine the benefits of these two approaches. It is our purpose to study



linear, spatial databases from a general perspective by offering a constraint-based
data model and a calculus-like query language with an equivalent algebra. To
do this, we took the most liberal restriction possible of an existing very general
and non-linear spatial database model, considered by Paredaens et al. [28].

Paredaens, Van den Bussche, and Van Gucht considered as spatial data all
geometrical figures definable in elementary geometry, i.e., first-order logic over
the real numbers with addition and multiplication. These figures are called semi-
algebraic sets in real algebraic geometry. [4] The rationale behind this approach
was that the first-order theory of the reals is decidable by means of a very
strong form of effective quantifier elimination [11, 3], and that, consequently,
many properties of semi-algebraic sets are decidable, too. [20]

A formula in the first-order logic of the reals, a real formula for short, is built
from atomic real formulae using boolean operators and quantification over real
variables; atomic real formulae are conditions built from real terms using one of
the six binary comparison relations =, <, >, <, >, and #; and real terms are
polynomials in real variables with integer coefficients.

A very general and appealing way to obtain linear figures is to consider only
those real formulae that are exclusively built from real terms that are linear
polynomials; these real formulae will be called linear formulae and the real terms
from which they are built will be called linear terms. Clearly, linear formulae
can be characterized as first-order formulae over the real numbers with addition
only. Without loss of generality, we may assume that atomic linear formulae are
of the form Y ", a;x; # a , where z1,...,z,, are real variables, ay,...,a,, are
integer coefficients, a is an integer, and 6 is one of = >, > < <, and #.

Every linear formula ¢(z1, ..., 2, ) with free real variables zy, ..., 2, defines
a geometrical figure {(z1,...,2m) | ¢(®1,...,2m)} in m-dimensional Euclidean
space R"™ by letting real variables range over the real numbers. Semi-algebraic
sets defined in this way are called semi-linear sets. Examples of semi-linear sets
are given in Example 1.

It is of course important that these semi-linear sets satisfy several desirable
closure properties:

Propositionl. Semi-linear sets are closed under the set operations union, dif-
ference, intersection, and Cartesian product, and under projection.

The proof of the above proposition is straightforward and is therefore omit-
ted. Notice that the above closure properties can also be regarded as providing
interpretations for the various Boolean operators occurring in linear formulae. In
particular, existential quantification can be interpreted as a projection. Finally,
notice that negation can easily be computed, as the negation of an atomic linear
formula is obtained by appropriately changing the comparison relation.

Next, the above closure properties allow us to establish two alternative char-
acterizations of semi-linear sets.

Glnther [15] defines polyhedral chains as a representation scheme for geo-
metric data. A polyhedral chain in a Euclidean space (of arbitrary dimension) is
defined as a finite sum of cells each of which is a finite intersection of half-spaces.



A polyhedral chain is called semi-linear if its cells can be described by equations
with rational coefficients.

Proposition 2. Semi-linear sets and semi-linear polyhedral chains represent the
same class of figures.

Proof. Since semi-linear polyhedral chains can be defined in terms of half-spaces
that can clearly be described by atomic linear formulae, Proposition 1 yields
that they are semi-linear sets.

Conversely, an atomic linear formula represents either a hyperplane or an
open or closed half-space or the complement of a hyperplane, which is the union
of two open half-spaces. It is therefore easy to see that any semi-linear set defined
by a linear formula without quantifiers can alternatively be defined as a semi-
linear polyhedral chain. This result extends to semi-linear sets defined by general
linear formulae, as the quantifiers can be eliminated [21, 19] (details omitted).

Another practical tool to deal with semi-linear sets is polytopes. A polytope
in a BEuclidean space (of arbitrary dimension) is defined as the convex hull of
a non-empty finite set of points in that space. [7, 27, 23]. A polytope is called
semi-linear if it can be defined in terms of points with rational coefficients. An
open polytope 1s the topological interior of a polytope with respect to the smallest
sub-space containing the polytope.

Proposition 3. Bounded semi-linear sets and finite unions of open semi-linear
polytopes are equivalent.

Proof. Every open semi-linear polytope can be written as a finite intersection of
open half-spaces of which the bounding hyperplanes can be described by equa-
tions with rational coefficients. Therefore, it is possible to write the union of open
semi-linear polytopes as a semi-linear polyhedral chain. Conversely, a bounded
semi-linear set can be written as a semi-linear polyhedral chain. Because of the
boundedness of the semi-linear set, all cells of the polyhedral chain are bounded
and can therefore be shown to be the union of open semi-linear polytopes (details
omitted).

The above characterizations allow us to conclude that most spatial data types
found in the literature are sub-types of the semi-linear sets. Giiting [16, 17]
in his geo-relational algebra proposes the spatial data types pownt, line, and
polygon, which can be seen as 0-, 1-, and 2-dimensional polytopes, respectively.*
Egenhofer [13] in his spatial data representation model proposes as basic objects
simplices, which are special kinds of polytopes.

In summary, semi-linear sets constitute a very general and elegant paradigm
to represent linear spatial data, which are the kind of spatial data that are
most often considered. As opposed to general semi-algebraic sets which are too

* The polygons considered by Giiting are not necessarily convex, but can always be
decomposed into convex polygons.



complex, we believe semi-linear sets have the potential for efficient implementa-
tion. The alternative characterizations we presented offer the opportunity to
use polyhedral chains or polytopes as internal representation for semi-linear
sets. Glinther [15] has described efficient algorithms to perform set-operations
on polyhedral chains. Algorithms to compute efficiently the union or intersec-
tion of n-dimensional polytopes are provided by Putnam et al. [31]. Several op-
erations and techniques in computational geometry, such as plane sweep and
divide-and-conquer, can be used for this purpose. [26, 36, 8, 30] Brodsky et
al. [6] introduced canonical forms for semi-linear sets to make efficient imple-
mentation of operations on semi-linear sets possible. Lassez et al. [25, 19] have
proposed variable elimination algorithms for sets of linear constraints. Finally,
the notion of semi-linear set 1s not bound to any particular dimension. Even
though practical applications are rarely situated in a dimension higher than 4,
this generality of semi-linear sets is of relevance, since—as pointed out earlier—
semi-linear sets defined by existentially quantified linear formulae can straight-
forwardly be interpreted as projections of higher-dimensional semi-linear sets
defined by unquantified linear formulae.

2.2 The Data Representation Model

A linear spatial database scheme, &, is a finite set of relation names. Each
relation name, R, has a type which is a pair of natural numbers; [n, m]. Here, n
denotes the number of non-spatial columns and m the dimension of the single
spatial column of R. Consider a relation type [n,m]. A syntactic tuple of type
[n, m] has the form (a1, ..., an; (21, ..., 2m)), with ay, ..., a, non-spatial values
of some domain, U, and ¢(x1,...,2y) a linear formula with m free variables.
As already observed, we may assume without loss of generality that this formula
is quantifier-free. A syntactic relation of type [n,m] is a finite set of syntactic
tuples of type [n, m]. A syntactic instance, finally, is a mapping assigning to each
relation name of a scheme § a syntactic relation of the same type.

The semantics of a syntactic tuple t = (ay,...,an;9(21,...,2m)) of type
[n,m] is the possibly infinite subset of U™ x R denoted as I(t) and defined as
the Cartesian product {(a1,...,a,)} x S, in which S € R™ is the semi-linear
set {(x1,...,2m) | @(x1,...,2m)} . This subset of U" x R™ can be interpreted
as a possibly infinite (n + m)-ary relation, called semantic relations, the tuples
of which are called semantic tuples. The semantics of a syntactic relation, r,
is the semantic relation denoted as I(r) and defined as |J,, (¢). Finally, the
semantics of a syntactic instance, Z, over a database scheme & is the mapping
assigning to each relation name R in S the semantic relation I(Z(R)).

Ezample 1. The example in Figure 1 shows a spatial database representing geo-
graphical information about Belgium.

Notice that a syntactic relation has exactly one spatial attribute. Since ap-
plications which would require more spatial attributes can be simulated with
one spatial attribute using Cartesian product, we chose not to complicate the
formalism by relaxing the restriction we imposed.
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Fig. 1. Example of a spatial database.




2.3 Linear Spatial Queries

In non-spatial database theory, a query is usually defined as a mapping from
databases to databases which (i) is computable and (i¢) satisfies some regularity
condition, usually referred to as genericity. [9]

In spatial models such as ours, the picture is somewhat more complicated,
since queries can be viewed both at the syntactic level and the semantic level.
The ramifications of this duality were discussed at length by Paredaens, Van den
Bussche, and Van Gucht in the context of their general spatial data model [28].
Therefore, we shall only summarize their main conclusions here, in the context
of our model:

1. Given an input scheme &, and an output scheme S, a linear spatial query
is a mapping of the linear spatial database instances of &j, to the linear
spatial database instances of Syy;, both at the syntactic and the semantic
level.

2. At the syntactic level, a linear spatial query must be partially recursive.

3. At the semantic level, a linear spatial query must satisfy certain genericity
conditions.

We shall not elaborate on the nature of the above-mentioned genericity con-
ditions as this issue is not within the scope of the present paper. For the sequel,
it suffices to realize that a linear spatial query language must be well-defined
both at the syntactic and semantic level.

Ezample 2. An example of a (very simple) linear spatial query on the database
in Example 1 is “Find all cities that lie on a river and give their names and
the names of the rivers they lie on.” More complicated linear spatial queries are
given in Section 3.1.

2.4 The Linear Spatial Calculus and Algebra

In this section, we present two query languages, a calculus and an algebra, and
establish their equivalence. As both languages in our opinion were kept as simple
as can reasonably expected, we feel that our equivalence result emphasizes the
naturalness of both languages.

We first define the linear calculus. The linear calculus is obtained by adding
to the language of linear formulae defined in Section 2.1 the following:

— a totally ordered infinite set of variables called non-spatial variables, disjoint
from the set of real variables;
— atomic formulae of the form vy = vs, with v; and v, non-spatial variables;

— atomic formulae of the form R(vy, ..., vn;p1,...,Pm), with R a relation name
of type [n,m], v1,..., v, non-spatial variables, and pi, ..., py, linear terms;
and

— universal and existential quantification of non-spatial variables.



Linear calculus formulae can be interpreted as mappings from linear spatial
database instances to linear spatial database instances at the semantic level in
the standard way.®

In a straightforward manner, the spatial algebra of Paredaens, Van den Buss-
che, and Van Gucht [28] can be restricted to a linear algebra of which the expres-
sions can be interpreted as computable mappings from linear spatial database
instances to linear spatial database instances at the syntactic level.

Using the same techniques as Paredaens et al., it is possible to establish the
following result:

Proposition4. Every linear calculus formula can be effectively converted into
a linear algebra expression and vice-versa, in such a way that both express the
same mapping from linear spatial database instances to linear spatial database
winstances, respectively at the semantic and syntactic level.

The equivalence result in Proposition 4 also establishes that the linear cal-
culus (or algebra) is indeed a spatial query language in the sense of Section 2.3.

Ezrample 3. The query in Example 2 can be expressed by the following linear
calculus expression:

{(e,7) | (F2)(Fy)(Cities(c, =, y) A Rivers(r,z,y))} .

3 Expressiveness of Linear Spatial Query Languages

In this section, we shall give results concerning both the expressiveness and
limitations of the linear spatial calculus of Section 2.4, which will be referred to as
FO +linear for brevity. The spatial calculus of Paredaens, Van den Bussche, and
Van Gucht [28] designed to manipulate geometric objects definable by general
real formulae shall be referred to as FO 4+ poly.

3.1 Expressiveness of FO + linear

Up to now, a precise characterization of the expressive power of FO + linear is
still wide open. In this section, we try to give a feeling for the kind of queries that
can be solved in FO + linear by presenting some typical examples of topological
or geometrical properties computable in FO 4 linear.

In order to state the solutions to our example queries concisely, we shall use
some abbreviations. We shall use vector notion to denote points. In this notation,
equations such as x —y < z should be interpreted coordinate-wise. In particular,
—(x = 0) denotes that x is not the origin of the coordinate system, whereas x # 0
denotes that none of the coordinates of x equals 0! In all the queries below, the
input database consists of one relation name S of an arbitrary purely spatial

5 The linear calculus can also be shown to satisfy a genericity condition, but we shall
not digress on this issue here.



type. The restriction on S is justified since in FO + linear manipulation of both
conventional and geometric data can be done in a straightforward manner as is
shown earlier (Example 3).

Ezxample 4. The following FO + linear expression decides whether S is discrete:
(¥)(3d)((d £ 0) A S(x) = ~(3y ) (~(y = x) A (x—d <y < x+d))) .

Since discrete semi-algebraic sets are necessarily finite [4], the same property
holds a fortiori also for semi-linear sets. Conversely, a finite semi-linear is neces-
sarily discrete. Hence the above expression can also be used to decide whether
S is finite. It is however possible to decide finiteness of semi-linear sets without
having to rely on the above property of semi-algebraic sets as for an arbitrary set
in a Euclidean space finiteness is always equivalent to discreteness and bounded-
ness. The following FO + linear expression decides whether S is bounded:

(3d)(¥x)(¥y )(S(x)AS(y) = —d<y—x<d) .

Ezrample 5. In this example, we show that several topological properties of a
semi-linear set can be computed in FO + linear. For instance, the topological
interior of S is computed by the following FO + linear expression:

Ad)(d£0)A(Vy)(x—d<y <x+d)=5(y)) .

Similarly, the topological closure of S is computed by the following FO + linear
expression:

(Vd)((d £ 0) = (Fy)(Sly) Ax—d<y<x+d)) .

Hence, also the topological boundary of S can be computed as the difference of
the topological closure and the topological interior. We note that Egenhofer in
his paper [13] showed that with these topological operations; a whole class of
topological properties can be expressed in R?.

Due to space limitations, we conclude this section with some useful queries
that can be expressed in FO + linear, without giving the formulae.

— Is a semi-linear set of R™ n-dimensional (i.e., not embeddable in a space of
lower dimension)?

— Compute the regularization® of a semi-linear set. Because of this query, the
regularization of the set operations union, intersection and difference can be
computed. This is an important result since in practice it turns out that
the regularized set operations are more important than the standard set
operations.

— Translate or scale a semi-linear set. Reflection according to some axis or the
origin is also computable.

5 Intuitively, a regular set has no dangling or isolated boundary points.



3.2 Limitations of FO + linear

In this section, we demonstrate that there are fundamental, inherent limitations
to safe calculus-like languages for linear spatial databases, which in particular
apply to FO+linear. By safe, we mean that the language can only express linear
queries.

Definition5. Let x, y and z be m-dimensional vectors of real variables. The
3m-ary colinearity predicate line,, (x,y, %) evaluates to true if in m-dimensional
Euclidean space the points with coordinates x, y, and z are colinear.

Theorem 6. The language FO+linear+colinearity is equivalent to the language
FO + poly.

Proof. Obviously, the colinearity predicate liney, (x,y,z) can be expressed in
FO + poly by the following formula:

(x=y)V (@A =Ax+(1-Vy) .

Conversely, consider the ternary multiplication predicate product(z, y, z) which
is true if z = xy. Let x and z be m-ary vectors of real variables of which the first
components are x and z, respectively, and let e; and y be m-ary vectors of real
variables of which the second components are 1 and y, respectively. All other
components of e;; x, y, and z are 0. In m-dimensional Euclidean space, this
predicate can be expressed by the following formula in FO + linear 4 colinearity:

(Vu)=(liney, (x,e2,u) Aliney, (z,y,u)) .

The above formula expresses the geometric construction of the product of two
real numbers (see, e.g., [34], p. 144), whence its correctness. (The expression is
not correct in case of y = 1, y = 0 or = 0. However, these individual cases
can be treated separately.) Clearly, any atomic real formula can be expressed
in FO + linear extended with the above multiplication predicate. Therefore,
FO + linear + colinearity and FO 4+ poly are equivalent.

Corollary 7. The convexr hull of a set of n points in m-dimensional Fuclidean
space cannot be expressed as a m(n + 1)-ary predicate in any safe extension of
FO + linear if m > 2 and n > 2.

Proof. The proof follows immediately from the above theorem and the obser-
vation that three points in m-dimensional Euclidean space are colinear if and
only if one of them is on the line segment defined by the other two, which is the
convex hull of that pair of points.

Notice that the convex hull of any m-dimensional (semi-algebraic) set S can
be expressed in FO + poly as

<.

{(2) | 3x:) M) (N S(x:i) A

i=0 7

MN=0AD N=1A(z= Z/\ixi))} :

0 =0



It is interesting to note that in FO + linear convexity is decidable:

Proposition8. [32] It is decidable in FO + linear whether a semi-linear set is
convez.

Proof. The following FO + linear expression decides whether S is convex:
(Vx)(Vy )(S(x) A S(y)) = (F2)(5(z) A (22 =x+Y))) -

Similarly, one may ask if in FO + linear it is decidable whether a semi-linear
set 1s a line, even though colinearity is not computable.

3.3 Extensions of FO + linear

The question arises whether “reasonable,” “non-trivial” safe proper extensions of

FO +linear exist at all. In this section, we review some mechanisms for extension
proposed by other authors and discuss to which extent they might be useful for
our purposes.

In recent papers, Afrati, Cosmadakis, Grumbach, and Kuper [10, 1] proposed
a calculus in which they extended a language similar to FO+linear with variables
that range over lines. Unfortunately, they were able to show that their language
is also equivalent to FO + poly. Thus, extending FO + linear with line variables
does not lead to a safe proper extension of FO + linear.

In a series of papers, J.-L. Lassez et al. (e.g., [25]) proposed so-called param-
eterized queries. A parameterized query is of the form

{lon, . an, B) [ (Vo) - (Yo ) (S, - m) =
((alyl + o Fapy, < 6) /\go(ozl,...,ozn,ﬁ))}

where S is a set of linear constraints on ¥, ...,y, and ¢ is a set of linear con-
straints on the parameters «q, ..., a, and 3. Observe that because of the term
a1y + - - + anpy, this formula violates the syntax of FO + linear. However, it
follows from a result by T. Huynh, C. Lassez, and J.-L. Lassez [19] that param-
eterized queries are safe linear spatial queries.

The precise relationship between FO+linear and the language of parametrized
queries 1s as of yet still unclear. On the one hand, some FO + linear queries
may not be expressible by parametrized queries, but on the other hand, not all
parameterized may be expressible by FO + linear queries because they violate
FO + linear syntax. A mechanism such as used in parametrized queries remains
a viable candidate for extending FO + linear, provided sufficient syntactic re-
strictions are built in to prevent that, e.g., colinearity can be expressed.

We want to point out that languages such as FO + linear rely heavily on
the use of subqueries as a tool to solve more complicated queries. A possible
approach towards extending FO + linear might therefore be adding some non-
expressible linear queries which may not be applied arbitrarily to the results of
subqueries. This 1s currently under investigation.



4 Discussion

In this paper, we have proposed a general linear spatial database model that
tries to combine the benefits of both fixed dimensional linear spatial database
models and general variable dimensional databases. We used this model as a
framework to study the manipulation and representation properties of formal
and still implementable linear spatial database models in general.

The proposed model uses semi-linear sets as spatial data type. We showed by
establishing the equivalence of semi-linear sets with the data types used in fixed
dimensional linear spatial database models that semi-linear sets have the right
properties to be used as a practical spatial data type. Otherwise, semi-linear sets
form a specialization of semi-algebraic sets, which are the data type used in the
variable-dimension database model considered by Paredaens et al. [28]. Also the
query language, FO + linear, is a specialization of the query language defined in
[28] and is equivalent with a procedural algebra language. Both our spatial data
and query language (FO + linear) have linear constraints as their fundamentals,
and can therefore serve as a formal framework to study the intended properties.

Although a lot of interesting practical queries can be expressed in FO+linear,
we found that FO + linear nevertheless has serious shortcomings with respect
to expressive power, and can therefore not be considered fully adequate as a
querying tool for linear spatial databases. The central issue in this regard is that
certain natural linear queries (such as deciding colinearity or computing convex
hull of a finite set of points) cannot be expressed. However, the problem en-
countered is not merely a deficiency of our particular model, but is of a deep
fundamental nature, since we have shown that extending FO + linear to accom-
modate these queries leads to languages which are no longer safe in the sense
that also non-linear data can be derived.

We have shown by considering some other proposals for linear spatial database
query languages that there is no obvious way to circumvent this problem. In this
connection, we want to mention two more approaches to linear spatial databases.

Brodsky and Kornatzky [6] propose a complex-object object-oriented spa-
tial database models in which the data in the objects are represented as linear
constraints and are therefore equivalent to semi-linear sets. Therefore, they face
the same expressibility problems as we do. The issue of complex-object types is
orthogonal to the more fundamental issue of reasoning about data types specific
to spatial and temporal data.

Kanellakis and Goldin [22] describe a general framework for pure spatial
relations with as query language the union of some existing query language
and a decidable logical theory. Unfortunately, they only work out the dense
order constraint case by giving an appropriate algebra. They only suggest the
practical importance of linear constraints, but do not say anything about their
expressiveness.

Our paper has therefore elicited a fundamental problem in the design of
logic-based query languages for linear spatial databases.



In order to overcome this problem it may perhaps be necessary to first restrict
FO + linear before extending it. As hinted at towards the end of the previous
section, the main culprit of the problem we identified seems to be the absence of
any limits to the use of (existential) quantification—geometrically corresponding
to projection—in FO+linear. In retrospect, an algebraic approach similar to that
of Giiting [16] may be most promising and therefore deserves further study in
this new light.
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